
Agile Business Suite Log Analysis and
Stochastic Modeling of Transactions

Anindya Mukherjea

Department of Computer Science and Engineering
National Institute of Technology Rourkela

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/143648325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Agile Business Suite Log Analysis and
Stochastic Modeling of Transactions

Thesis submitted in partial fulfillment

of the requirements of the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science and Engineering)

by

Anindya Mukherjea
(Roll Number: 214CS1140)

based on research carried out

under the supervision of

Prof. Korra Sathya Babu

May, 2016

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Department of Computer Science and Engineering
National Institute of Technology Rourkela

May 20, 2016

Certificate of Examination

Roll Number: 214CS1140
Name: Anindya Mukherjea
Title of Dissertation: Agile Business Suite Log Analysis and Stochastic Modeling of
Transactions

We the below signed, after checking the dissertation mentioned above and the official record
book (s) of the student, hereby state our approval of the dissertation submitted in partial
fulfillment of the requirements of the degree of Master of Technology in Computer Science
and Engineering at National Institute of Technology Rourkela. We are satisfied with the
volume, quality, correctness, and originality of the work.

Prof. Korra Sathya Babu
Principal Supervisor External Examiner

Prof. Santanu Kumar Rath
Head of the Department

Department of Computer Science and Engineering
National Institute of Technology Rourkela

Prof. Prof. Korra Sathya Babu
Professor

May 20, 2016

Supervisor’s Certificate

This is to certify that the work presented in the dissertation entitled Agile Business Suite
Log Analysis and Stochastic Modeling of Transactions submitted by Anindya Mukherjea,
Roll Number 214CS1140, is a record of original research carried out by him under my
supervision and guidance in partial fulfillment of the requirements of the degree of Master
of Technology in Computer Science and Engineering. Neither this thesis nor any part of it
has been submitted earlier for any degree or diploma to any institute or university in India
or abroad.

Prof. Korra Sathya Babu

Dedication

Dedicated to my parents and teachers

Signature

Declaration of Originality

I, Anindya Mukherjea, Roll Number 214CS1140 hereby declare that this dissertation entitled
Agile Business Suite Log Analysis and Stochastic Modeling of Transactions presents my
original work carried out as a postgraduate student of NIT Rourkela and, to the best of
my knowledge, contains no material previously published or written by another person, nor
any material presented by me for the award of any degree or diploma of NIT Rourkela or
any other institution. Any contribution made to this research by others, with whom I have
worked at NIT Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works
of other authors cited in this dissertation have been duly acknowledged under the sections
“Reference” or “Bibliography”. I have also submitted my original research records to the
scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT
Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

May 20, 2016
NIT Rourkela

Anindya Mukherjea

Acknowledgment

I would like to thank my project guide Prof. Korra Sathya Babu at National Institute of
Technology, Rourkela for his domain knowledge and timely advice.

Secondly, I would like to thank the entire Agile Business Suite team at Unisys
Corporation, ATCI, Bangalore for their immense help in the project starting from
accumulation of required log files to clarification of domain specific doubts and concerns.
In particular, I would like to acknowledge the support given to me by Mr. Venkitaraman
Anatharama and Mr. Karthikeyan Rajagopalan.

Last but not least, my sincere thanks goes to my family and friends who have supported
me during the entire course of this project.

April 20, 2016
NIT Rourkela

Anindya Mukherjea
Roll Number: 214CS1140

Abstract

Agile Business Suite (ABSuite) is an application development and deployment product that
can define, generate andmanage complete, highly scalable, real world, platform independent
applications. The product was developed by Unisys Corporation with the intention to allow
developers to rapidly develop their complete applications without having to think about low
level platform dependent implementation details thus saving them from having to write
thousands of lines of code. Many enterprises like Banks, Healthcare Facilities, Traffic
Management, Financial Institutions and etc. use ABSuite to develop their applications and
automate their business logic.

Once deployed on the application servers, the generated applications are managed by the
ABSuite Runtime framework. One important function of the ABSuite Runtime is tomaintain
a set of log files that contain immense information on system behavior, communication
between the system and the runtime framework and user interaction with the system. There
are various kinds of log files that are generated by the ABSuite Runtime, each having
its own format and vast amounts of hidden knowledge stored in them. These log files
contain important information regarding usage patterns, system failure patterns and other
performance bottlenecks. Thus proper analysis of these log files is necessary to obtain vital
information which will help in optimizing system performance, easing maintenance tasks,
identifying hidden bugs and abnormal behavior and adopting better design strategies.

Log files are produced by almost all devices, systems and protocols. In general, the
analysis of any kind of log file is not an easy task. There are several challenges that need
to be addressed first in order to obtain proper and accurate results. The first issue is directly
related to the fact that ABSuite log files are often huge and heterogeneous in nature. Standard
Algorithms fail in such conditions and thus the task of log analysis requires a different
approach. Secondly, identification of required information and the log files storing such
information requires domain specific knowledge and expertise regarding the generated log
files. Without prior information on what to look for and where to look for, the analysis
process will become impossible. Last but not least is the issue of unstandardized format
of each of the ABSuite log files which makes processing a difficult task. Keeping the
above things in mind, this thesis presents some of the ideas behind developing a tool that
automatically analyzes the generatedABSuite log files and extracts information that will help
the developers to optimize the application’s performance and reduce the system’s downtime
and maintenance cost.

vii

In this thesis we discuss three stages of analysis. The first stage (Ispec Analysis) finds
basic statistical parameters like trigger count, frequency and probability distribution of each
transaction occurring in the system. This information is used in subsequent stages to obtain
more accurate results and hypothesis. In addition, We also present a way to use the results
of this stage to estimate usage and traffic patterns, peak loading conditions and heavily
used modules of the system. The second stage (Response Time Analysis) obtains mean
time to response for each transaction. This information is used to identify transactions with
high latencies and find the most likely cause of those latencies. The third stage (Exception
Analysis) finds which transactions frequently generate exceptions and how many types of
exceptions are generated by each transaction. The results of this stage help in identifying
the number, type, severity and cause of exceptions generated by the system. The results of
this stage can also help in taking high level decisions like whether system resources need to
be increased to avoid deadlocks, whether there is any need to increase bandwidth allocation,
whether there is any need to change the current design of the system and etc.

Finally, we present and compare the analysis results of all the three stages for two sample
applications (developed using ABSuite) with known usage characteristics. We also explain
how the developers can use the results of each stage of analysis to better optimize their
systems using the two sample applications as case study.

Keywords: Agile Business Suite; Log Analysis; Basic Ispec Analysis; Response Time
Analysis; Exception Analysis.

Contents

Certificate of Examination ii

Supervisor’s Certificate iii

Dedication iv

Declaration of Originality v

Acknowledgment vi

Abstract vii

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Introduction to Agile Business Suite . 1

1.1.1 Benefits of Agile Business Suite 2
1.1.2 Model Driven Architecture . 3
1.1.3 Components of Agile Business Suite 4
1.1.4 System Modeler Development Environment 4
1.1.5 Generation of Applications using ABSuite 6
1.1.6 Elements of an ABSuite Model 7
1.1.7 Transaction Processing . 10

1.2 Introduction to Problem Domain . 13
1.2.1 Issues and Challenges involved 15

2 Literature Survey 17

3 Proposed Algorithms 21
3.1 General Methodology . 21
3.2 Proposed Algorithm for Basic Ispec Analysis 24
3.3 Proposed Algorithm for Response Time Analysis 25
3.4 Proposed Algorithm for Exception to Ispec Mapping 26
3.5 Implementation . 29

ix

4 Experimental Results and Observations 30
4.1 Experimental Results and Observations for Basic Ispec Mapping 30

4.1.1 Observations for Basic Ispec Analysis 32
4.2 Experimental Results and Observations for Response Time Analysis 37

4.2.1 Observations for Response Time Analysis 39
4.3 Experimental Results and Observations for Exception to Ispec Mapping . . 41

4.3.1 Observations for Exception to Ispec Analysis 42

5 Conclusions 44

References 46

Index 48

x

List of Figures

1.1 Architectural Overview of an application developed using ABSuite 3
1.2 Interaction between the two major components of ABSuite 5
1.3 The System Modeler environment embedded in MS Visual Studio for

developing ABSuite applications . 6
1.4 Segment Cycle (Transaction Processing Cycle) 10
1.5 Runtime cycle (from the client’s viewpoint) 11

3.1 A record present in the Audit log of an ABSuite application 21
3.2 A record present in the System log of an ABSuite application 23
3.3 A snapshot of the temporary file showing exception details for a system. . . 28

4.1 Ispec details for Application 1 . 31
4.2 Ispec details for Application 2 . 31
4.3 Frequent Ipecs for Application 1 . 32
4.4 Frequent Ipecs for Application 2 . 33
4.5 Ispec Distribution for SSE15 (System 1) 33
4.6 Ispec Distribution for EGE15 (System 1) 34
4.7 Ispec Distribution for SSE21 (System 1) 34
4.8 Ispec Distribution for INQAL (System 2) 35
4.9 Ispec Distribution for CASHI (System 2) 35
4.10 Ispec Distribution for WRKOR (System 2) 36
4.11 A snapshot showing the results of Response Time Analysis 37
4.12 A snapshot showing the processes that contribute to increasing Response

Time for RECON Ispec . 40
4.13 A snapshot showing different exceptions of System 1mapped to their elements. 41
4.14 A snapshot showing different exceptions of System 2mapped to their elements. 42

xi

List of Tables

2.1 Product Survey . 20

4.1 Basic Ispec Analysis for System 1 vs. System 2. 32
4.2 Response Time Analysis for System 1 vs. System 2. 38
4.3 Ispecs with largest Response Times for System 1. 39
4.4 Response Times for most frequent Ispecs of System 1. 40
4.5 Exception to Ispec Mapping results for System 1 and System 2. 42

xii

Chapter 1

Introduction

1.1 Introduction to Agile Business Suite

Enterprise Application development (EAE), developed at Unisys corporation, is one of a
very select class of software products capable of generating complete applications that can
be run in a very large-scale mission critical environment. Agile Business Suite (ABSuite) is a
new Unisys product that builds upon the tradition of EAE and aims to further improve use of
component technology as well as provide very close integration with Microsoft Windows
technologies. The purpose of this change was to allow EAE systems to interact more
effectively with other systems, as well as making them easier to customize and maintain.
Moving to component technology also has the advantage of modernizing, and standardizing,
the development environment, making it easier to attract and retain developers. ABSuite
enables enterprises to develop and generate application to the Windows .NET framework.
It does this by providing a distinctly different development tool as a plug-in project type
within the familiar Microsoft Visual Studio .NET framework, giving customers an enhanced
development environment with System Modeler and generation of complete deployment
environments, including databases, application servers, and all associated artifacts.

ABSuite combines the best of the EAE toolset with concepts from object-oriented (OO)
technology, offering users the richness of OO application development. For example, by
building standard elements as classes and encapsulating them in a clean interface, users
can customize standard applications to suit specific requirements. Specialized standard
framework classes facilitate adding data or overriding behavior. The ABSuite development
environment brings the ability to specify the application based on ‘what’ needs to be done
rather than ‘how’ it is to be done as is inherent in most procedural OO development
environments.

ABSuite enhances Visual Studio with a highly productive development environment
based on high-level specification of the business model, capability to deploy complete
applications, and the flexibility to easily adapt the model to evolving business needs and
changes in user environments. By specifying ‘what’ rather than ‘how’, the ABSuite
deployment infrastructure takes care of technology and platform changes while the
developer worries only about business-level changes. With ABSuite, customers can develop

1

Chapter 1 Introduction

components for their applications using System Modeler, included in the ABSuite product.
This development environment snaps into the Visual Studio .NET framework as a project
type and provides the same look and feel as the Microsoft-supplied project types. This
flexibility ensures that Agile Business Suite successfully targets the wide customer base
already enjoyed by EAE as well as attracting new customers looking for an enterprise-scale
development tool.

Because ABSuite is integrated into the .NET environment, users can build business
solutions that include both ABSuite and other .NET components thus optimizing resource
usage. An ABSuite solution may, for example, comprise ABSuite components, Visual
Basic .NET, and C++ componentsand etc. Through the use of standards such as SOAP,
UDDI and WSDL, these solutions may work with other clients and services generated
by other IDEs such as Web Sphere Application Developer (WSAD), Visual Studio or
Borland/TogetherSoft.

1.1.1 Benefits of Agile Business Suite

Agile Business Suite generates complete, customized applications capable of scaling to
support hundreds and, if necessary, thousands of end users. It enables a company with
limited development staff to rapidly build, deploy, and manage complex applications. With
this in mind, Agile Business Suite users should enjoy the following benefits —

1. High Productivity
The following features ensure high productivity for an enterprise –

A) Decoupling of High level specification of the business model and low level
implementation details.

B) Quick and efficient Generation of the complete application from the business
model.

C) One button deployment of the application.

D) Lifecycle management.

2. Large Scale
Agile Business Suite customers will typically require a system that supports many
users. The numbers of users are often in the hundreds, if not in the thousands, and
potentially geographically dispersed.

3. Ability to absorb constant change
Typically, an Agile Business Suite customer has an application that is subject to
constant change over short periods of time. The fact that Agile Business Suite has
the capability to rapidly absorb and mirror business change is a key customer benefit.

2

Chapter 1 Introduction

1.1.2 Model Driven Architecture

One of the greatest strengths of EAE is that it models an application at the logical level. It
has allowed customers to —

1. Focus their efforts on describing their application’s behavior rather than focusing on
the details of implementation; and

2. Bring their applications forward from one generation of technology to another, or from
one platform to another, over the life of their application.

In ABSuite, this logical model is being enhanced and simplified by merging the best of
the EAE concepts with the best of the mainstream component concepts, including COM and
UML, to give a more powerful development environment than either in isolation.

The design of the model for ABSuite has been based on the principle of allowing users to
describe a change to the model as directly as possible, requiring the model to make whatever
other changes are required as a consequence. For example, an ispec becomes output or
I/O by virtue of having persistent attributes, rather than having to specify its kind and that
of its attributes separately, and making sure they agree. The model is made persistent in a
relational database, making changes to the model transactional, and allowing work groups to
share a single model. Consequently, it ensures that all changes to the model are valid. Unlike
3GLs whose models are captured in text files, ABSuite actively prevents errors rather than
simply identifying the errors later. Figure 1.1 below shows the architectural overview of an
application being developed using ABSuite —

Figure 1.1: Architectural Overview of an application developed using ABSuite

3

Chapter 1 Introduction

1.1.3 Components of Agile Business Suite

AB Suite is made up of 2 major components —

1. ABSuite Developer ABSuite Developer includes the following –

A) System Modeler (for modeling information systems using UML diagrams. It
constitutes the Solution/App definition phase.)

B) Builder (for generating and deploying the system developed in the Modeler. It
constitutes the Solution/App generation phase)

C) Debugger (for testing systems modeled using the Modeler).

D) Version Control.

2. ABSuite Runtime ABSuite Runtime is installed on the target runtime platforms and
provides an infrastructure in which the ABSuite components run. The ABSuite
Runtime is responsible for the following tasks –

A) Global Management

B) DB Administration

C) DB Audit/Recovery

D) Transaction Management

E) Report Management

F) Inter System Communication

G) Runtime Infrastructure

Figure 1.2 below shows the 2 major components of ABSuite —

1.1.4 System Modeler Development Environment

System Modeler is a model based tool for designing and developing information systems.
It allows us to focus on logical requirements of a system without worrying about platform
specific implementation details. Individual elements defined in the Modeler translate into
multiple physical elements in the runtime system. For Example – an element representing
a customer in system modeler might translate into a database table, executable code used
by runtime framework and a UI. Because the modeler creates a model that is platform
independent, it is much easier to change than an application created using a 3GL – one can
simply update the high level definition and the Builder updates the low level implementations
automatically. One can add logic to a class using system modeler’s high level scripting
language LDL+ or SQL. The LDL+ language includes commands for performing common
data processing tasks such as value manipulation, database look ups and report control.

4

Chapter 1 Introduction

Figure 1.2: Interaction between the two major components of ABSuite

Figure 1.3 shows the System Modeler environment embedded in MS Visual Studio for
developing ABSuite applications.

The System Modeler uses a number of screen panes, which include —

1. The Solution Explorer, which displays files of versionable elements of a project. Each
element in the Solution Explorer can be manipulated by source control in standard
ways such as addition to a version control bank, checking in, and checking out.

2. The Class View, which displays the hierarchy of classes and their members, and
can be used to add new elements to the model, move and rename them. Its main
function, however, is to select elements to be displayed in the Properties window of
the Developer System Modeler.

3. The Properties window, which displays properties that are common to all the elements
selected in the Class View or Solution Explorer. The properties are shown in table
format listing the property names and values. Changes to property values are applied
to all selected elements.

In addition to these views that are part of the Visual Studio environment, SystemModeler
also includes a Designer Window, which contains tabbed pages with different views of an
element in the model. The Designer pages include —

1. Documentation, showing a WYSIWYG text editor for text or embedded OLE objects
describing the element.

2. LDL+ Logic for a method, profile, or SQL script.

5

Chapter 1 Introduction

Figure 1.3: The SystemModeler environment embedded inMSVisual Studio for developing
ABSuite applications

3. Relationships between elements—relationships are actual, i.e. reflecting a dependency
between elements.

4. Class diagram, showing a UML class diagram of an element and its classes.

5. Painter for user graphical user interfaces, reports, and teach screens.

1.1.5 Generation of Applications using ABSuite

Once the application model is developed using System Modeler, we can deploy it to one
of the allowable server platforms. The paradigm and process of simple actions to build,
compile, and deploy an application is well established in the ABSuite Environment. The
ABSuite Builder translates design information stored in the developer model into a running
database application. During this process, Builder uses input from the model, in the form
of structural information, configuration information (properties), and logic. The Builder
stores the latest previously generated files for each configuration. If the application has been
generated previously, these files will be retrieved from the Builder cache folder instead of
regenerating them.

6

Chapter 1 Introduction

Internal file templates are used to provide a framework for the form and structure of
the various structural elements, which make up the generated application files. Typically,
they are partially complete examples of the elements they represent and contain triggers that
cause the Builder process to insert specific generated code fragments at particular places.
File templates also provide a means of specifying code fragments to be generated in the
target language when certain conditions are met. As far as possible, Builder is separated
from any knowledge of the form of the generated code.

Change analysis compares the current state of the model, using the date and time of the
last change, to the files comprising the previously generated application (if any) to determine
which elements need to be generated. The files that comprise the application are generated
along with deployment project information.

The generated C-Sharp files, which make up a C-Sharp project, are compiled and
linked using the pre-compiled libraries and input to the deployment project. Following
compilation and linking of the C-Sharp project, the output files are stored in the model for
each configuration, to be retained for future build/change analysis of the application.

The deployment project is then built to create the deployment package (MSI). Once the
deployment package has been created, the generated application files, and the output of the
C-Sharp project build may be deleted and the folders containing them are removed.

1.1.6 Elements of an ABSuite Model

This section describes the elements of the ABSuite logical model of a customer’s application
and includes information about the following —

1. Elements
All of the elements of the Agile Business Suite model share certain characteristics —

A) Each has a name. Names are between 1 and 64 characters long, and can contain
any combination of alphanumeric characters and underscores, except that they
can not start with an underscore or numeral.

B) A “Stereotype”. This is a concept borrowed from UML. It is a tag that indicates
to Agile Business Suite Developer how this element should be interpreted. For
example, ispecs, business segments and reports are all classes in the Agile
Business Suite model, but they are distinguished by their stereotype. The
stereotype tells Agile Business Suite Developer that they are special kinds of
classes and have special behavior in Developer and are generated differently to
vanilla classes. Stereotypes provide an extensible mechanism, which is to be
used in future to add new constructs

C) A short text description.

7

Chapter 1 Introduction

2. Namespaces
All elements, with the exception of the model itself, belong to an owning element.
Elements are identified within their owner by their name, and for this reason their
owner is called a “Namespace”. Each kind of Namespace controls the kinds of
elements it can contain. Its members might be Namespaces themselves.

3. Classes
Classes are the most significant unit of an application. They describe objects and
components. A Class is a specialization of a Namespace, containing other classes
or Attributes, Methods, Profiles, Presentations and etc. Classes can inherit these
members from their superclass. Each element in a Class can be defined to be visible
—

A) Only within its Class (private).

B) Within its Class and any class inheriting from it (protected).

C) Outside its Class (public).

Business segments, ispecs, insertable GLGs, and reports become special kinds of
classes, distinguished by their stereotype. There can also be classes with no stereotype,
which still represent logical classes, but do not conform to any Agile Business Suite
patterns. The Segment class is a component: a cohesive unit of the application that
can be deployed as a unit.

Unlike other products which implement persistent objects, ABSuite considers that all
objects exist inmemory only, but their persistent attributesmay be read from and stored
back to a record in the database at various times. A single in-memory object may
load and store data belonging to a number of different database records. A common
example of this is when iterating through records in the database. A single in-memory
object will load its persistent attributes from successive database records.

External classes can act as placeholders for —

1. Ispecs in other applications (to support external auto to applications from earlier
versions of Enterprise Application Environment).

2. External components (implemented outside Agile Business Suite).

These are each represented in the same form as other classes, but have no
implementation defined (private members, logic or subsets).

Ispecs (Interface Specifications)

Ispecs (ispec-stereotyped classes) represent an entity in the business world, such as a
customer, product, or vendor. Ispecs have inherent behavior related to —

8

Chapter 1 Introduction

1. Control of the ispec processing cycle and error handling, which includes —

A) Initializing non-interface and non-persistent variables.

B). Performing appropriate validation of input variables, including automatic
lookups, value-checking logic, numeric validation, date validation, and
ascertaining the presence of required variables.

C) Invoking the Prepare method.

D) Invoking the Main method.

2. Assembling error and/or output messages for transmission to the application user.

Reports

Reports (report stereotyped classes) allow one to —

1. Perform batch processing tasks. For example, we can use reports to perform bulk
updates of records in the database.

2. Present raw business data stored in the database as meaningful information about
the operation of the business. For example, we can use reports to produce sales
receipts, invoices and sales reports. Reports are the major tool for reporting,
collating and presenting information to business operation staff.

3. Consolidate data. For example, we can use reports to delete database records that
are no longer needed.

4. Attributes

Data that belongs to a class is called an attribute. Attributes are specialized variables.
Global set-up data items (GSDs) are attributes of a business segment. An ispec’s data
items and set-up data items (SDs) are its attributes. A report’s set-up data items are its
attributes. Any attribute can now be made persistent.

Ispec attributes were previously classified as input, output, IO or inquiry, which
describe whether the attribute is persistent and/or appears in the user interface for
input and output or output only. These characteristics are now described directly:
an attribute becomes “output” by virtue of being persistent, and “input” by virtue of
appearing in a user interface, or the combination of the two

5. Methods

Methods contain logic, which can be called by their clients. They use parameters
to pass data in and/or out. They can also have local variable. The model allows

9

Chapter 1 Introduction

for logic to be defined in a range of different languages. In Agile Business Suite
this can be LDL+ or a dialect of SQL (as used in SQL scripts). Methods are also a
specialized name space, containing local variables and parameters. Performable and
Callable global logic becomes a method of the business segment class, the ispec logic
overrides built-in methods in the framework classes, and frames become classes of
their report class with the frame layout (if any) as a presentation.

1.1.7 Transaction Processing

Transaction processing is implemented via the ABSuite segment cycle. This functionality
occurs since all segment methods implicitly process transactions, and the segment cycle
processes ispecs as transactions. The transaction processing cycle also determines the
context in which logic commands operate. When a logic command is executed, its operating
context is resolved to the stereotype of the initial class activated by the segment cycle (for
ispecs and events) or the called report (for reports).

Other processing occurs within the context of the segment cycle (including the ispec
cycle), such as copy cycle processing (transaction processing of copy ispecs and events),
SQL script processing (of SQL scripts), and automatic entry processing.

The segment cycle is the processing cycle that occurs when the application executes an
ispec or event transaction. It is controlled by the segment and defines the order in which
built-in methods are called. Figure 1.4 below shows the basic segment cycle whereas Figure
1.5 shows the runtime cycle from the client’s viewpoint.

Figure 1.4: Segment Cycle (Transaction Processing Cycle)

10

Chapter 1 Introduction

Figure 1.5: Runtime cycle (from the client’s viewpoint)

Requesting an Ispec

An ispec can be requested as a result of one the following —

1. A request from the Select Ispec dialog box.

2. A Recall logic command invoked by another ispec.

3. A Recall logic command invoked by the same ispec.

4. An Abort logic command.

5. A Roc logic command..

6. A request/incoming message from an external caller via the segment’s public (COM)
interface..

7. An automatic refresh of the ispec..

When an ispec is requested, the following process steps occur before the ispec is ready
to accept input (for ispecs with a user interface, this corresponds with its display to the
application client). The orange arrow in the Figure 1.4 above indicates the starting point
—

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message.

11

Chapter 1 Introduction

2. The Construct method is called unless either the ispec is being requested due to an
automatic refresh and a Message logic command has not been invoked, or the ispec
has not been requested as a result of a Recall logic command invoked by the same
ispec. The Construct method can be used for reasons such as the pre-filling of user
interface fields, or security checking.

Transmitting an Ispec Update

An ispec update initiates the following process steps (the green arrow in the Figure 1.4 above
indicates the starting point) —

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message if they are in the presentation, or to the
appropriate ”empty” value depending on the attribute type.

2. Automatic edit occurs – attributes with decimals are validated. Any errors are returned
to the application client.

3. The Prepare method is called. The Prepare method can be used for reasons such as
generating a customer number, performing any necessary validation of user input data,
performing logic actions based on the user input, or recalling another ispec without
processing the current ispec. Any Message or Recall logic commands invoked will
halt processing at the end of the prepare method.

4. Automatic validation occurs – keys, dates, and required fields are validated; the
database records corresponding to the specified keys are retrieved if they have an
automatic lookup dependency. Any errors are returned to the application client.

5. TheMainmethod is called. TheMainmethod can be used for reasons such as checking
stock-on-hand, or checking a customer credit limit for a sale. Any errors are returned
to the application client.

6. Automatic update occurs – for a persistent ispec, the database record is updated (or
written).

7. At this point, one of the following process steps occurs —

A) If a Recall logic command was invoked on the same ispec, the Construct method
call is skipped, and the segment cycle repeats from step 1 above.

B) If a Recall logic command was invoked on a different ispec, the specified ispec
is requested. See Requesting an ispec above for details.

C) If the ispec’s Refresh Screen property is set to true, and no Recall logic command
was invoked, the current ispec is requested. See Requesting an ispec above for
details.

12

Chapter 1 Introduction

D) If the ispec’s Refresh Screen property is set to false, and no Recall logic command
was invoked, the Select Ispec dialog box is displayed. See Requesting an ispec
above for details.

Transmitting an Ispec Inquiry

An ispec inquiry occurs when an ispec is transmitted with its Maint built-in presentation
attribute is set to ”FIR”, ”LAS”, ”NEX”, ”BAC”, or ”REC”. It initiates the following process
steps —

1. Segment and ispec attributes without defined initial values are initialized to their
corresponding values from the input message.

2. Automatic edit of keys occurs – numeric fields are validated, separators and decimal
points are removed. Any errors are returned to the application client.

3. The database record corresponding to the specified keys is retrieved

4. The retrieved record is made available (for ispecs with a user interface, this
corresponds with its display to the application client).

Ispec Cycle

The ispec cycle is a subset of the segment cycle (as shown in Figure 1.5) and consists of the
processing of an input message by a single ispec. It is controlled by each individual ispec.
The ispec cycle can also be called independently of the segment cycle, such as with external
automatic entry processing.

1.2 Introduction to Problem Domain

Agile Business Suite (ABSuite) is an application development framework using which
developers can develop their applications efficiently and in less time, without having to write
thousands of lines of code. The developers focus only on the model of the application and
the ABSuite framework generates code from that model – including class hierarchies, tables,
views and databases (with assertions, validations, aggregations, constraints, triggers and
etc.), UI’s, executable code or logic and etc. – it generates the full, ready to use application.

Once the application is deployed, the Runtime environment monitors all user interactions
as transactions and maintains various log files – System logs, Audit logs, Tracker logs and
etc. These log files contain various information like - which user is sending the request,
at what time the request is generated and served, what information is received, whether
there were any exceptions and etc. For example, audit logs contain information on how the
application is used by the customers (For example – what attributes are sent by the user as
input to perform an insert operation in the database). System logs contain information on how

13

Chapter 1 Introduction

the application interacts with the deployment environment (Windows/MCP). For example –
whether the system failed for a transaction because of insufficient system resources (like a
printer not being available) or whether the transaction failed due to an invalid input from the
user. The first kind of error information will be found in the system logs whereas the second
type of error messages will be found in the audit logs.

As an example, consider an IRCTC application developed using ABSuite. The IRCTC
application will constantly interact with the runtime environment to handle client requests.
Each client can be of different technology and can have hundreds of users to service. For
example, we can have 200 users using a JSP client, 400 users using an ASP.Net client,
300 user using a WPF client and so on at a time. Under such loading conditions the
runtime creates audit logs and system logs to keep track of all events (transactions and
exceptions). A typical usage can lead to a 300 MB log file consisting of 10 million records
Keeping this scenario in mind, the ultimate objective of our work is to design and develop
an automated tool that provides in depth analysis for all systems or applications developed
using ABSuite based on the contents of audit and system logs. The tool should be able to
analyze the different log files created and discover information that can help improve system
performance and reduce system downtime. It should be able to present statistical results
that define how the system performs in terms of usage patterns, peak loading conditions,
number, type and severity of exceptions generated and etc. Some of the information that can
be extracted include the following —

1. Traffic Behavior and Usage Patterns
Information pertaining to traffic and usage patterns can provide insight into parameters
such as distribution of system load over a particular duration of time, peak loading
hours of the system, most frequently accessed modules of the system, most and least
performed transactions during a particular timespan and etc.

2. Mean Time to Response (MTTR)
Mean Time to Response is defined as the average time taken by a transaction to service
a request. Information pertaining to response times of the transactions can help us
estimate the overall response time of the system. This parameter can also identify
transactions with abnormally high latencies.

3. Mean time to Failure (MTTF)
Mean Time to Failure is defined as the average time duration between the occurrences
of two successive failures of the same transactions. Information pertaining to failure
times can help us estimate the overall failure time of the system. This information
can then be used to predict the time, type, severity and average service time of future
failures.

4. Error conditions and causes

14

Chapter 1 Introduction

This gives information pertaining to different types of errors generated by the
application and root causes of those errors. It can also indicate whether some new
type of error has been encountered.

5. System abnormalities and bugs
Hidden bugs are often introduced during the development cycle of a particular
application. These bugs are rare and often result in unexpected system behavior. We
hope to identify these bugs during our analysis.

Information gained from the log files can help us to improve system performance.
The mined information can be used to statistically model the most frequent transactions
occurring in a system. Statistical modeling includes the analysis of the transactions based on
their probabilities of occurrences and probability distributions. High probabilities indicate
heavily used modules or frequently occurring transactions. This will help to optimize the
system from a transaction point of view. Other parameters that can be improved include the
following —

1. Object Pooling or Caching
Identification of the heavily shared objects in the system can help to better design the
system so that performance is increased and response time is decreased.

2. Allocation of Processing Power
Processing power is a limited resource when the system is under heavy loads. In such
situations the decision to allocate processing power to which task or module becomes
important

3. Bandwidth Allocation
Identification of modules that are frequently used or accessed by majority of clients
can help with the decision of whether to allocate more bandwidth to some modules
than others. This will increase response time of the system.

4. Scheduling of maintenance jobs
Maintenance and system downtime have to be reduced to a minimum so that system
availability is high. It is preferable for the application to run most of the time without
suffering from any performance degradation.

1.2.1 Issues and Challenges involved

Some of the major challenges encountered during the course of the project are discussed
below —

1. It has been observed that the log files for an application generated for a single day can
contain up to 10 million records each. Processing of such voluminous data falls under

15

the category of Data Mining and Big Data and requires its own set of algorithms. We
have to ensure that System.OutOfMemory Exceptions and memory leaks are avoided
when dealing with such large datasets. Data cleaning or preprocessing becomes
important if we want to avoid bugs inherently present in the logs (such as presence
of ‘ character that prevents proper parsing of a date-time object).

2. The literature and scientific community describe many different types of log files.
Based on the content of the log files, we can have structured data (e.g. – data organized
as a table which can be queried for information) or unstructured data (e.g. – news
articles and email body). However, the log files fromABSuite Runtime are considered
as semi-structured data, consisting of both a structured part and an unstructured part.
Processing of such data is a problem that has to be carefully dealt with.

3. ABSuite Runtime generates many different types of log files, each with its own set
of attributes. We have to carefully identify which log files are relevant for analysis,
which set of attributes have to be considered and which set or records are relevant for
the analysis.

4. Open sourced tools like Hadoop and Weka are suitable for structured data like web
logs. We have to decide whether they work for our semi structured logs with minor
modifications.

5. ABSuite Runtime generates various kinds of logs during the execution of an
application. Each of the generated logs have unique formats different from each
other. The format of each log file is specific and unique to Unisys corporation. This
uniqueness in format introduces new challenges to the processing task.

6. Different stages of the analysis process give us different results. It is a big challenge
to identify which combinations of those results will help us in adopting better design
strategies for the application. It is also a big task to formulate and verify hypothesis
inferred from different combinations of the results.

Chapter 2

Literature Survey

In the domain of computer science, Log Analysis is a scientific technique seeking to make
sense out of computer-generated records (also called log or audit trail records). A log
typically comprises of time sequenced stream of messages which are either stored on files
or directed as a network stream to a log collector. Logs are the output of a process known as
Data Logging. Data logging is a feature added to most systems and applications in order to
check the runtime behavior of the system and to collect information about different events of
the system. In the field of Databases and Transaction Management, data logging especially
plays a crucial role in error recovery and data backup.

Logs are produced by various systems like - operating systems, database systems,
networking devices, security systems, websites, e-commerce applications, banking
applications, health care applications, and etc. These log files often contain large heaps of
varied information. The log files of a particular system are a great source of knowledge if one
wishes to analyze the runtime behavior of the system. However, the information contained
in the logs is so huge that it is not possible to manually identify useful patterns and events.
Standard techniques often fail when processing such large sources of information. Thus, the
task of analyzing such vast amounts of data falls under the category of data mining. There are
many articles and books available that describe data mining. [1] presents a comprehensive
study of data mining from a database researcher’s point of view. It discusses various issues
related to data mining and various uses of data mining in different domains. [2] discusses
various concepts and approaches used in data mining in detail. [3] discusses fundamental
theory and goals of log file analysis. It also presents the current state of technology and
practices in log file analysis and discusses various limitations and drawbacks of current log
analysis products. Case studies relating to the analysis of Cisco NetFlow and HTTP server
logs are also presented. The paper also proposes the requirements and design strategy of a
universal log analyzer that uses data mining concepts to generate useful analysis.

The scientific community has a plethora of literature relating to log analysis. The most
common among them relate to the analysis of web server logs which are produced by
website servers. These logs are of various types and contain immense information like
user preferences, usage patterns, search preferences and etc. There are many techniques
to mine user profiles, preferences and behavioral aspects from historical data stored in Web

17

Literature Survey

Logs. [4] discusses identification of user sessions from server access logs of a website to
personalize web content according to different users. It uses a new clustering algorithm
- Competitive Agglomeration for Relation Data - to group similar users based on different
criteria. [5] presents similar work and discusses a framework for mining web user navigation
patterns in order to develop personalization and recommender systems. [6] describes a
dynamic approach to usage-based web personalization taking into account the full spectrum
of Web mining techniques and activities. [7] introduces click stream data and proposes an
effective and scalable technique for web personalization based on association rule mining
from web usage data. [8] introduces the concept of frequent pattern mining from web logs
to obtain information about the navigational behavior of the users. This paper introduces
three pattern mining approaches based on page sets, page sequences and page graphs. [9]
presents a survey of the use of Web mining for Web personalization. The paper also
reviews some of the most common methods used, along with a brief overview of the
most popular tools and applications available from software vendors. [10] introduces the
problem of retrieval of irrelevant, redundant and inaccurate results when a user queries for
a particular topic of interest on the World Wide Web. It defines and uses Web Mining to
extract useful information and behavioral aspects of users using the website. [11] introduces
search log data in relation to a web search. It discusses a way to mine major subtopics
of a user query to a search engine so that more accurate search results are presented to
the user. Specifically, the paper presents two concepts - ”one subtopic per search” and
”subtopic clarification by keyword” - and describes a novel clustering algorithm that uses
these concepts to mine major subtopics of a user query. [12] presents an in-depth analysis
of Web Logs of NASA website to find information like top errors, potential visitors and
etc. which help the system administrator and Web designers to improve their system by
determining occurred system errors, corrupted and broken links and etc. [13] demonstrates
the capabilities of Correspondence Analysis (a novel data analysis method) on web log
statistics for the examination of user behavior and preferences. Detection of user navigation
paths is discussed in [14]. The paper explains the design and implementation of a profiler
to capture client’s selected links. It also uses a novel clustering algorithm to cluster
information gained by profiling different users. [15] presents a similar work for net traffic
analysis, economical web site administration, website modifications, system improvement
and personalization and business intelligence. [16] studies the problem of mining access
patterns (similar to user navigation patterns) from Web logs efficiently. The paper discusses
a novel data structure, called Web Access Pattern Tree to efficiently mine access patterns
from web logs. Web Server Logs are usually noisy and hence require a preprocessing stage.
After preprocessing the logs are ready for the actual analysis step. [17], [18], [19], [21]
and [22] discuss various preprocessing and data preparation methods for web usage mining.
[20] discusses several data preparation techniques in order to identify unique users and
user sessions. The paper also presents a method to divide user sessions into semantically

18

meaningful transactions.
There are literatures that deal with log files other than Web Server Log Files like

Transaction Logs, logs generated by a Security System, logs generated at a network device,
logs generated by a library management system and etc. [23] presents a case study conducted
at North Carolina State University. In this study, transaction logs of patrons searching
an on-line catalog were analyzed to determine failure rates, usage patterns and causes of
problems. This work is most closely related to our work in terms of the objective of log
file analysis. [24] presents a related work to identify related journals through log analysis.
[25] presents Event Logs obtained from various devices using the BSD sysLog protocol and
discusses techniques of fault detection and anomaly detection using profiling.[26] presents
error log analysis to demonstrate the presence of atleast two error processes in the logs.
[27] discusses system logs generated by a system and categorization of different operating
conditions for automatic system management. [28] discusses an interesting application of
log file analysis to study the thought process of students playing educational games. Most of
the above works require that analysts know what they are looking for in the logs beforehand,
however this is not the case always. [29] presents an example of a security system where
the analyst does not have prior domain specific knowledge and thus does not know what to
look for. The authors present a method to mine interesting patterns in such a situation.

As part of our literature survey, we have gone through some of the commonly available
log analysis products, including open sourced, proprietary and products hosted as a service.
Most of the products like AWStats, Open Web Analytics, Piwik, Webalizer, Mint, Sawmill,
Splunk, Urchin, Adobe Analytics, Google Analytics and etc. perform comprehensive
analysis of only web server logs like access logs, error logs and etc. The advantages of
these products is that they can be easily configured for any type of server logs like W3C’s
Common Log Format, Apache Server Logs (XLF or ELF), IIS Log formats and etc. These
products differ in the technology used to perform the analysis. For example some of the
products use Cookies and Javascript to track user interaction while others are web logs
based and still others use a combination of PHP and Page Tagging. The results obtained are
used to optimize web based applications, perform Web Usage Mining and deduce valuable
information related to how the website is being used by different users. Some of the products
like AWStats provide support for custom logs, however for such situations one has to provide
the schema definition of each log file in a language (like Pearl) that is supported by the
product. Using these type of products thus has three issues - First is the prior knowledge of
the log files, Second is the product specific knowledge and operation conditions and third is
the heterogeneous nature of log files. Detailed comparison of different products is provided
in the table 2.1 below —

Literature Survey

Table 2.1: Product Survey
PRODUCT DEVELOPER ANALYSIS METHOD PLATFORM WEBSITE
AWStats Open Sourced Web Logs based Perl awstats.org

Open Web Analytics Open Sourced Javascript or PHP Page Tag PHP -
PiWik Open Sourced Javascript or PHP Page Tag PHP -

or Web Logs based
Webalizer Open Sourced Web Logs based C -
Mint Mint Cookies via Javascript PHP -

Sawmill FlowerFire Inc. Cookie via Javascript Windows -
or Web Logs based or Linux

Splunk Splunk Inc. Web Logs based Windows splunk.com
or Linux

Urchin Google Cookies and Logs Windows google.com
or Linux

Adobe Analytics Adobe Systems Cookies via Javascript SaaS adobe.com
Google Analytics Google Cookies via Javascript SaaS google.com

20

Chapter 3

Proposed Algorithms

3.1 General Methodology

The ABSuite Runtime treats all user interaction with the application as transactions. For
example, if a user wants to check his bank account balance then hewill have to submit a query
using a front-end client like Windows Forms, ASP.Net and etc. This query will be treated by
the Runtime as a transaction that gets executed against a runtime database. Internally each
transaction is represented by a unique Ispec (Interface Specification). The logs generated by
the ABSuite Runtime capture all transactions in the form of their respective Ispecs. For our
analysis, we have used two kinds of log files —

1. Audit Logs
These files maintain information on how the application is used by the customers. For
example – what attributes are sent by the user as input to perform an insert operation
in the database. These files are responsible for keeping track of all ABSuite elements
that interact with the Runtime Application DB including – Ispecs, Reports, HUB
transactions and etc. Typical usage of an application results in audit logs that are
approximately 500 MB in size and consisting of 10 million records. The structure of
an audit log is shown in Figure 3.1

Figure 3.1: A record present in the Audit log of an ABSuite application

Following are the major attributes of the audit files used in our analysis —

A) Timestamp

21

Chapter 3 Proposed Algorithms

The timestamp represents the date and time at which the transaction occurred.
It follows the yyyy-mm-dd hh:mm: ss.fff format. This format is application
specific.

B) Process ID : Thread ID

Every transaction executes as a process hosted by a DLL. This combination
of process and thread Ids represents the thread and the containing process Id
responsible for executing the transaction.

C) Mode of Transaction

This field represents whether a transaction performs a request operation to (IN
Mode) or a reply operation (OUT Mode) from the Runtime DB. This field can
also be used to determine whether a transaction is caused by an Ispec or due to
any other element like a report.

D) Element Name

This field represents the name of the element performing the transaction. For
Ispecs and reports, this value represents the unique name of the element. For
HUB transactions, this value is set to ”HUB”.

E) Session ID

This value represents the unique session Id of the session during which the
transaction is performed. In one particular session, we can have many different
transactions being performed. But since each transaction is atomic, we will have
the entire request-reply cycle in one session only i.e. It is not possible to have an
Ispec with its IN mode in one session and OUT mode in a different session.

F) Other fields present in the Figure include login name of the user, station name
of the user, IP address of the terminal used (if present), body of the transaction
performed and etc.

2. System Logs
System logs maintain information on how the application interacts with the
deployment environment. For example – whether the system failed for a transaction
because of insufficient system resources (like a printer not being available) or whether
the transaction failed due to invalid input from the user. The first kind of error
information will be found in the system logs whereas the second type of error messages
will be found in the audit logs. The structure of a system log is shown in Figure 3.2

Some of the important attributes of the System logs are discussed below —

A) Timestamp

22

Chapter 3 Proposed Algorithms

Figure 3.2: A record present in the System log of an ABSuite application

The timestamp represents the date and time at which the event (whether normal
processing or generation of exception condition) occurred. It follows the
yyyy-mm-dd hh:mm: ss.fff format. This format is application specific.

B) Process ID: Thread ID

Every transaction executes as a process hosted by a DLL. This combination
of process and thread Ids represents the thread and the containing process
Id responsible for executing the transaction (whether normal processing or
generation of exception condition).

C) For transactions that completed successfully, the System logs maintain
information on how the application interacted with the deployment environment
(or the underlying operating system). For transactions resulting in exceptions,
the System logs also contain information on the exception like – exception name
and message, corresponding stack trace and etc as shown in Figure 3.2

The ABSuite Log Analyzer is a tool that extracts transaction information by analyzing
the Ispec information present in the generated logs in three steps. We briefly discuss the
general methodology for each analysis step below.

The first step in the analysis process is the gathering of basic Ispec information such as
number of different Ispecs present in the system, the number of times each Ispec triggered
during the span of the log files, probability distribution of each Ispec and etc. This
information helps in identifying system load and peak loading conditions, system usage
patterns and most commonly occurring transactions. This step uses the Audit logs only.

Mean Time to respond (MTTR) is an important parameter to measure the performance
of any system. The second stage of our analysis is Response Time Analysis which plays a
crucial role in evaluating the responsiveness and availability of the systems developed using
ABSuite. MTTR is defined as the time duration between sending the request to the runtime
server and receiving the corresponding reply from the runtime server. For our applications,
Ispecs are responsible for performing all transactions. These transactions occur in the form
of request-reply pairs in the audit logs of the system. For Example – if a client wants to

23

Chapter 3 Proposed Algorithms

see the number of products available in his inventory then this query is fired as an Ispec
sending a request to the server (IN mode). The reply from the server is also obtained from
the same Ispec (OUT mode) thus constituting a transaction. We will use the audit logs for
this stage of analysis since they contain the required information like when a request was
made by an Ispec, which process was hosting the Ispec, which client triggered the request,
what information was passed to the server, when did the server reply back, what information
was transmitted by the server and etc (Refer Figure 3.1).

One of our key motivations is to track Ispecs or transactions that have caused exceptions
in the system. These exceptions can occur due to reasons like improper implementation of
the Ispec, unavailability of system resources, missing DLLs and references and etc. The
third stage deals with mapping exceptions to their corresponding Ispecs which will help us
to identify “faulty” Ispecs that result in abnormal behavior of the overall system. In addition,
we can also get information like - how many exceptions were caused by a transaction, what
was the type and severity of each exception, how many exceptions were caused due to lack
of system resources, Is there a need to increase system resources and etc. Based on the
above information we can make high level decisions like can we improve system design to
minimize exceptions, how many additional resources of each type are needed to minimize
exceptions due to unavailability of system resources and etc. For this stage of analysis, we
require both System logs and Audit logs. The System logs are responsible for tracking any
exceptions that the system throws during runtime (Refer Figure 3.2). For example – for a
particular transaction request if it is found that the application server is off-line then Runtime
generates an exception which gets logged in the System logs. Both System and Audit logs
have a time stamp value and the Id of the host process which can be used to map exceptions
(in Systems logs) to the potential Ispec (in the audit log) that caused it.

3.2 Proposed Algorithm for Basic Ispec Analysis

The algorithm used at this stage of analysis is shown in Algorithm 1 below —
The input to the algorithm is the complete path of the directory which contains the

required audit logs. The algorithm starts with a preprocessing method which addresses two
issues —

1. Cleaning each record of the audit files and handling improper parsing of time stamp
values due to the presence of extra characters.

2. Obtaining a list of distinct Ispecs present in the Audit logs.

For each Ispec, the algorithm finds out how many records of the Audit logs belong to
that Ispec. The output of this algorithm is a list of Ispecs with their associated count values.
The count values represent how many times a particular Ispec was triggered during the span

24

Chapter 3 Proposed Algorithms

Algorithm 1 Algorithm for Basic Ispec Analysis
Input: Audit log directory path.
Output: Trigger Count for each Ispec.

Initialize IspecList during preprocessing
for all ISPEC in IspecList do
triggerCount← 0
for all AUDIT_FILE in AUDIT_LOGS do
for all RECORDS in AUDIT_FILE do
if ((RECORD.MODE = ”IN” OR RECORD.MODE = ”OUT”) AND
(RECORD.NAME = ISPEC)) then

triggerCount← triggerCount+ 1
end if

end for
end for

end for

of the Audit logs. They also represent how many times the transaction related to the Ispec
was performed by the users of the application. Hence, we obtain the usage pattern of each
transaction present in the audit logs. The next sub-sections presents some more parameters
derived from the usage patterns like transaction frequency and distribution.

3.3 Proposed Algorithm for Response Time Analysis

The algorithm used at this stage of analysis is shown in Algorithm 2 below —
The input to the algorithm is the complete path of the directory which contains the

required audit logs. The algorithm starts with a preprocessing method which addresses three
issues —

1. Cleaning each record of the audit files and handling improper parsing of time stamp
values due to the presence of extra characters.

2. Obtaining a list of distinct Ispecs present in the Audit logs.

3. For each Ispec, create lists of processes that host the Ispec. For example - If an Ispec
is hosted by n processes then this step creates n lists belonging to each process. These
list are used to store Ispecs with IN mode (transaction requests).

The algorithm proceeds by segregating transaction details for each Ispec according to
the processes hosting the transactions. For example – let there be an Ispec I which is hosted
by different processes say – P1, P2…, Pn. Create n lists for the n processes of I and then
calculate response times for each process from the n lists. For Example - let process Pi have

25

Chapter 3 Proposed Algorithms

x transactions with response times – t1, t2,…, tx. Then

MTTR(Pi) =
1

x
∗

x∑
i=1

ti

After finding MTTR values for each of the n processes of the Ispec I, we can find the
MTTR value of the Ispec I as

MTTR(I) =
1

n
∗

n∑
i=1

MTTR(Pi)

The benefit of this approach is that it enables us to find MTTR values in terms of the
processes hosting the Ispec transactions thus enabling better (process level) granularity. This
helps us to find out which processes contribute more to the MTTR values of the Ispec thus
identifying those processes as “abnormal”.

Algorithm 2 Algorithm for Response Time Analysis
Input: Audit log directory path.
Output: List of response times for each contributing process of the Ispec.

Initialize IspecList during preprocessing
Initialize ProcessList for all Ispecs during preprocessing
for all ISPEC in IspecList do
for all AUDIT_FILE in AUDIT_LOGS do
for all RECORDS in AUDIT_FILE do
if ((RECORD.MODE = ”IN”) AND (RECORD.NAME = ISPEC)) then
Add RECORD in ProcessList where ProcessList =
RECORD.PROCESS_ID

end if
if ((RECORD.MODE = ”OUT”) AND (RECORD.NAME = ISPEC))
then
Get nearest IN_RECORD in ProcessList where ProcessList =
RECORD.PROCESS_ID
Calculate ResponseT ime ← RECORD.TIMESTAMP −
IN_RECORD.TIMESTAMP
Remove IN_RECORD from ProcessList where ProcessList =
RECORD.PROCESS_ID

end if
end for

end for
end for

3.4 Proposed Algorithm for Exception to Ispec Mapping

The algorithm used at this stage of analysis is shown in Algorithm 3 below —

26

Chapter 3 Proposed Algorithms

Algorithm 3 Algorithm for Exception to Ispec Mapping
Input: Audit log directory path and System log directory path.
Output: List of exceptions tagged with their corresponding elements.

Create ExceptionsList during preprocessing of System Logs
Initialize IspecList during preprocessing of Audit Logs
for all EXCEPTION in ExceptionsList do
exceptionT imestamp← EXCEPTION.TIMESTAMP
processId← EXCEPTION.PROCESS_ID
for all AUDIT_FILE in AUDIT_LOGS do
for all RECORDS in AUDIT_FILE do
Get Record closest to exceptionT imestamp where
RECORD.PROCESS_ID = processId
if (RECORD.MODE = ”IN” OR RECORD.MODE = ”OUT”) then
Tag RECORD as Exception caused due to ispec

end if
Tag RECORD as Exception caused due to other elements

end for
end for

end for

The algorithm at this stage of analysis first uses a preprocessing step to read the System
logs of a deployed system and extract all exceptions into a temporary file. A snapshot of this
temporary file is shown in Figure 3.3 below —.

This temporary file serves as a dictionary and contains information on various exceptions
that were generated. Another use of this file is to provide time stamp and process Ids needed
formapping the exception to the corresponding Ispec or non - Ispec elements. The exceptions
are then mapped to their corresponding elements in the audit logs.

27

Chapter 3 Proposed Algorithms

Figure 3.3: A snapshot of the temporary file showing exception details for a system.

28

3.5 Implementation

We have used two sets of log files, each obtained from two different applications. One of
the applications represents a system that is heavily used during typical working hours (8 am
to 9 pm) while the other represents a system that is frequently used only for a small duration
(2 hours). We have used both sets of log files to compare the results of our ABSuite Log
Analyzer tool for two contrasting systems.

The ABSuite Log Analyzer is intended to run as a windows form application on windows
platform. Thus, C# was chosen as the programming language to perform analysis as it has
extensive support for string manipulation, date time object conversions and compatibility
with .Net Frameworkwhich is required to generate graphs. Microsoft Visual Studio was used
as the development environment because of its support for .Net framework and windows
form applications.

Chapter 4

Experimental Results and Observations

4.1 Experimental Results andObservations for Basic Ispec
Mapping

Basic Ispec Analysis deals with finding statistical parameters like trigger count, percentage,
trigger frequency and average ispecs triggered per day for each transaction. These values
are further used to estimate the distribution of each Ispec. Each of the above parameters are
defined as below —

1. Trigger Count

TriggerCount represents the number of times an Ispec triggered during the given log
span.

2. Percentage

Percentage = TriggerCounti/TotalIspecCount

where TriggerCount represents the number of times the Ispec triggered and
TotalIspecCount represents sum of TriggerCount for all Ispecs.

3. Trigger Frequency

Triggerfrequency = TriggerCounti/AuditLogSpan

where AuditLogSpan represents the duration for which the audit logs have been
created.

Trigger frequency for an Ispec measures how often a particular transaction or Ispec is
triggered. It is a measure of heavily used modules of the system.

4. Average number of Ispecs triggered per day

AvgIspecs = TotalIspecCount/AuditLogSpan

whereAvgIspecs quantifies the usage pattern on a daily basis. This parameter measures
the system load for a given day.

30

Chapter 4 Experimental Results and Observations

Figure 4.1: Ispec details for Application 1

Figure 4.2: Ispec details for Application 2

The results of this processing stage is shown in Figure 4.1 for Application 1 and Figure
4.2 for Application 2 above —

A table comparing the results of this analysis stage for the two applications is shown
below in Table 4.1 —

31

Chapter 4 Experimental Results and Observations

Table 4.1: Basic Ispec Analysis for System 1 vs. System 2.
PARAMETERS SYSTEM 1 SYSTEM 2

Audit log span (in days) 1 16
Number of files 275 55
Size of audit logs 2.62 GB 537 MB
Total Ispec activity 762760 255991

Number of distinct Ispecs 58 215
Avg. no. of Ispecs triggered per day 762760 15999.44

Number of frequent Ispecs 7 (out of 58: 12 %) 39 (out of 215: 18 %)
Most frequent Ispecs SSE15, EGE15, SSE21 INQAL, CASHI, WRKOR

Trigger Counts for frequent Ispecs 449667, 80272, 67404 34400, 18969, 17632
Percentage 58.9, 10.5, 8.8 13.4, 7.4, 6.8

Trigger frequency (times per day) 449667, 80272, 67404 2032.4, 1254.2, 1041.8

4.1.1 Observations for Basic Ispec Analysis

Our initial tests seem to suggest that both systems are heavily used with system 1 being more
heavily used. System 1 has only 7 frequent Ispecs whereas system 2 has 39 frequent Ispecs
(Frequent ispecs are those Ispecs that constitute 90% of the total Ispec activity of the system).
In both the systems only a small percentage of the Ispecs contribute to the overall load (about
19 %). This suggests that user activity is concentrated only in these Ispec activities. In order
to better visualize the above statistics, we provide the below graphs. Figure 4.3 and Figure
4.4 show the trigger count for each frequent Ispec in system 1 and system 2 respectively.

Figure 4.3: Frequent Ipecs for Application 1

To determine the distribution of Ispecs (or transactions) over time (24 hours) we present
the graphs below. Figures 4.5, 4.6 and 4.7 show the Ispec distribution for the three most
frequent Ispecs in system 1 whereas Figure 4.8, 4.9 and 4.10 show the same for system

32

Chapter 4 Experimental Results and Observations

Figure 4.4: Frequent Ipecs for Application 2

2. The x-axis shows the 24-hour time line whereas y-axis shows the trigger count. These
distributions were obtained for all frequent Ispecs and are primarily used to predict the
probability of occurrence of a particular transaction during a given time interval.

Figure 4.5: Ispec Distribution for SSE15 (System 1)

33

Chapter 4 Experimental Results and Observations

Figure 4.6: Ispec Distribution for EGE15 (System 1)

Figure 4.7: Ispec Distribution for SSE21 (System 1)

34

Chapter 4 Experimental Results and Observations

Figure 4.8: Ispec Distribution for INQAL (System 2)

Figure 4.9: Ispec Distribution for CASHI (System 2)

35

Chapter 4 Experimental Results and Observations

Figure 4.10: Ispec Distribution for WRKOR (System 2)

36

Chapter 4 Experimental Results and Observations

4.2 Experimental Results and Observations for Response
Time Analysis

The algorithm was tested for responsiveness against our two sample applications. Both
applications showed similar results as both of them were considered fairly responsive
systems. Figure 4.11 shows a snapshot of the results obtained after Response Time Analysis
of one of the systems. The results are obtained in descending order i.e. Ispec with larger
MTTR value is at the top. Each Ispec is broken down into its constituting process also sorted
in descending order. In addition, the number of processes hosting the Ispec transactions and
number of transactions used in calculating MTTR is also shown.

Figure 4.11: A snapshot showing the results of Response Time Analysis

For demonstration purposes we have also compared the Response Time Analysis of our
two sample applications whose results are summarized in the table 4.2 below —

37

Chapter 4 Experimental Results and Observations

Table 4.2: Response Time Analysis for System 1 vs. System 2.
PARAMETERS SYSTEM 1 SYSTEM 2

Audit log span (in days) 1 16
Number of files 275 55
Size of audit logs 2.62 GB 537 MB
Total Ispec activity 762760 255991

Number of distinct Ispecs 58 215
Processing Time (in hrs.) 1.75 3.00

Response Times for most frequent Ispecs INQAL – 1.16 mins SSE15 – 0.52 secs
CASHI – 50.75 mins EGE15 – 0.31 secs
WRKOR – 2.59 mins SSE21 – 2.96 secs
CUST1 – 3.26 mins SSE73 – 0.03 secs
WRKMT – 1.48 mins PSE15 – 0.57 secs

Response Times for least frequent Ispecs VLDIS – 0.046 secs EGA18 – 0.0065 secs
SEQSN – 0.39 secs AFE37 – 0.24 secs
ISCNW – 0.14 secs SSE02 – 0.014 secs
RPDFI – 0.45 secs SGE02 – 0.024 secs
CNSND – 0.11 secs SSE05 – 1.30 mins

No. of Ispecs with 0 MTTR 37 1

38

Chapter 4 Experimental Results and Observations

4.2.1 Observations for Response Time Analysis

We present some interesting observations that follow from Response Time Analysis —

1. HIGH RESPONSE TIMES

The Response Time Analysis produces an output file which contains the details of
Ispecs in descending order of Response Times (MTTR). The Ispecs occurring at the
top have larger Response Times. We have seen a trend that these values typically
correspond to those Ispecs which are triggered very rarely (relating to transactions
that are performed rarely); meaning there count values are very low when compared
with the count values of most frequent Ispecs. For example —Table 4.3 below lists
the Response Times for the first 16 Ispecs from the output file with the third column
representing the count values. The 2 highlighted Ispecs (INQL and CUST3) are
frequent Ispecs, i.e. they contribute to 90 % of the systems ispec activity as seen
in the audit logs, however their Response Times are fairly large.

Table 4.3: Ispecs with largest Response Times for System 1.
ISPEC NAME RESPONE TIME (In mins) TRIGGER COUNT

CNFFB 28.08 50
SERCH 24.32 515
CUMNT 22.60 245
TLSEL 17.62 94
TLMAS 13.97 82
RNTL1 13.90 48
CNPR1 13.85 991
INQRY 13.14 136
TLLS2 13.12 90
INQSL 8.59 7489
INQSD 6.67 1064
INTID 4.73 447
LOGON 4.62 3644
CNSVC 4.43 4855
CUST3 4.09 9643
CASHT 3.91 838

Hypothesis — Is it safe to say that Ispecs having large Response Times are triggered
less frequently and can be safely ruled out as Ispecs that have potentially encountered
an exception or a waiting situation? We still have to find out why infrequent Ispecs
have large Response Times. and whether this behavior is application or functionality
dependent.

2. OCCASIONAL LARGE RESPONSE TIMES FOR A PROCESS

39

Chapter 4 Experimental Results and Observations

During the analysis we found that for a particular Ispec, there are some contributing
processes that have large response times (some more than 40 mins). So, even though
themajority of the processes have very small Response Times (approx. 5 millisecond),
the introduction of even a single process with a large response time shoots up the
overall MTTR value for the ispec. This observation may explain why most frequent
Ispecs have fairly large Response Times however, we still need to find out the reason
of this abnormal behavior. For Example consider Figure 4.12 below:

Figure 4.12: A snapshot showing the processes that contribute to increasing Response Time
for RECON Ispec

Hypothesis — Could the highlighted processes be responsible for potential
faults/exceptions for RECON Ispec? These processes definitely give an indication
to potential abnormalities in the system.

3. RESPONSE TIMES FOR FREQUENT ISPECS

Table 4.4 below presents some of the most frequent Ispecs (Ispecs making 90 % of the
system activity) of the System 1 with their count values and Response Times - —

Table 4.4: Response Times for most frequent Ispecs of System 1.
ISPEC NAME RESPONE TIME (In mins) TRIGGER COUNT

INQAL 1.168 34400
CASHI 50.75 18969
WRKOR 2.59 17632
CUST1 3.26 14218
WRKMT 1.48 13147
CUST3 4.09 9643
INQWL 1.68 8345
CNSCH 53.76 7542
INQSL 8.59 7489

40

Chapter 4 Experimental Results and Observations

Most of the frequent Ispecs have reasonable Response Times —in the range of 5 mins
– although it is yet to be verified whether 5 mins is a reasonable estimate for Response
Time of an Ispec however, a few frequent Ispecs (like CASHI and CNSCH) have
abnormally high Response Times (approx. 50 mins). It is yet to be verified why a
particular frequent transaction suffers from such large Response Times.

4.3 Experimental Results and Observations for Exception
to Ispec Mapping

As a demonstration of our analysis, the Audit logs and the System logs of two sample
ABSuite applications were analyzed. The aim was to find out the Ispecs resulting in
exceptions, the total number of exceptions occurred during the span of the System logs, the
number and type of exceptions caused by non-Ispec elements and finally calculating MTTF
for various Ispecs. This will serve to identify frequently failing Ispecs and the reason for
their failures.

Figure 4.13 shows the exception to Ispec mapping obtained for system 1 whereas Figure
4.14 shows the same for System 2. The highlighted entries show an example of a model
element to which a particular exception is mapped. A detailed comparison of the two systems
is shown in table 4.5 below:

Figure 4.13: A snapshot showing different exceptions of System 1 mapped to their elements.

41

Figure 4.14: A snapshot showing different exceptions of System 2 mapped to their elements.

Table 4.5: Exception to Ispec Mapping results for System 1 and System 2.
PARAMETERS SYSTEM 1 SYSTEM 2

Audit log span (in days) 1.5 1
No. of files in audit logs 4 275
Total size of audit logs 156 MB 2.62 GB

System log span (in days) 2.5 0.67
No. of files in System logs 5 3
Total size of system logs 195 MB 18 MB

No. of exceptions 54 13
No. of exceptions due to Ispecs 10 1

No. of exceptions due to other elements 36 0
Ispecs mapped to exceptions SY001 SSE15

EP711
SA999
SY000
IV230

Exception count for each Ispec 4 1
2
2
1
1

4.3.1 Observations for Exception to Ispec Analysis

According to our analysis of the sample applications, we find that most of the exceptions
are generated due to non-ispec elements suggesting the fact that Ispecs are not the primary
cause of exceptions i.e. user transactions are not responsible for system exceptions. One

Chapter 4 Experimental Results and Observations

possible reason for non-ispec elements like reports generating exceptions is suspected to be
their asynchronous nature and simultaneous need for similar system resources.

43

Chapter 5

Conclusions

ABSuite log files are produced by the ABSuite Runtime during the execution of an
application developed using ABSuite. Each log file has its own format and contains valuable
information that can be used to enhance performance issues, minimize exceptions, manage
system resources better and adopt better design strategies. Our proposed ABSuite Log
Analyzer works in three stages. Each stage is responsible for one analysis task. We were
successfully able to derive valuable information from the Audit and System logs for two
sample applications developed using ABSuite. The two sample applications had some
characteristics which were known beforehand like - Usage pattern of System 1 represents
typical business hours whereas System 2 is used only for two hours during any day, however
in those two hours System 2 is used more heavily than System 1. These characteristics were
used to verify the results of our analysis.

The first stage of our analysis finds basic Ispec (or transaction) information. In this stage,
we successfully compared and verifed basic Ispec details like trigger counts, distribution of
transactions, trigger frequency, usage patterns and etc. for our two sample applications. The
information from this stage is used to find out most frequent transactions and usage patterns
of the system and transaction distributions over time.

The second stage of our analysis find process level Response times for each transaction
of the system. In this stage, we were successfully able to extract Response Times for each
Ispec present in both of our sample applications. The analysis showed similar trends for both
systems and revealed some observations that were previously unknown. The fact that the
overall Response Time depends on the Response Times of the contributing processes gives
deeper insight into the analysis stage. Our study enables us to study process level Response
Times and isolate the causes of high latencies of a particular transaction.

The third stage of our analysis tries to find out the causes of exception in our system.
Exceptions can occur during the runtime of the system due to many reasons like missing
DLLs, missing references and files, unavailability of system resources, SQL Server being
off-line, processes getting deadlocked and etc. This stage maps various exceptions of our
system to the elements that are most likely to have caused them. We were able to test our
ABSuite Log Analyzer on two sample applications and were able to successfully identify
elements that caused exceptions during runtime. The results of our experiments show that

44

most of the exceptions are related to Reports and HUB transactions. Only a few transactions
actually result in exceptions, however we are yet to verify the severity of each exception.
The results of this stage of analysis along with the information of Basic Ispec Analysis stage
can help us to predict the time of exception for a particular transaction. This information can
be used to reduce system downtime. In case of severe exceptions, appropriate preventive
measures can be taken beforehand. This will lead to increase in system availability.

Scope for Further Research

Our work sheds light on the immense information captured in the Audit logs. With proper
analysis we can infer more than just usage patterns and transaction distributions. In this
thesis we have demonstrated the preliminary stages of ABSuite log analysis. We have found
the number of distinct Ispecs that make up a particular system. We have also showed the
distribution of Ispecs over time. This work need to be extended to include other non Ispec
elements like Reports since these type of elements also play a crucial rule in the proper
functioning of the system. We also need to investigate how these elements interact with the
ABSuite Runtime to better approximate system performance.

Our thesis also describes the Response times for all Ispecs. As revealed by Response
Times Analysis, Ispecs that are infrequent tend to have large response times. This hypothesis
needs to be verified further and the cause of this hypothesis needs to be analyzed. It has also
been seen that some processes for most of the Ispecs contribute a large value towards the
overall Response Time of the Ispec. These processes have to be identified for potential
exception causing conditions or any other abnormal behavior. We have to look further into
this and analyze the cause of such behavior.

Our ABSuite Log Analyzer is also able to determine the Ispec that causes an exception
during runtime by mapping Ispec information from Audit logs to exception information
in System logs. Mapping exceptions to Ispecs will help us to create a list of common
exceptions that result when a particular transaction is triggered. In the future, this list can
also be analyzed to calculate the failure times for all model elements present in the system.
This analysis is designed to map exceptions caused due to Ispecs. However, as seen from
the System logs, a large number of exceptions are caused by “non Ispec” components like
Reports. We have to do a thorough analysis for such elements to get a more accurate analysis.
In addition, it is also required to analyze the severity of the generated exceptions. We also
need to find out whether we can minimize exceptions by increasing system resources. If so
then which resources should be increased and by how much.

Currently our ABSuite Log Analyzer performs the analysis steps as three isolated stages.
As part of the bigger picture, we want to develop a tool that will identify major issues and
perform the complete analysis by combining results/inferences from multiple stages.

References

[1] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: An overview from database perspective,” national
Taiwan University, Simon Fraser University and IBM T.J. Research Center.

[2] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson Education, 2006.

[3] J. Valdman, “Log file analysis,” Ph.D. dissertation, University of West Bohemia, Czech Republic, July
2001. [Online]. Available: http://www.kiv.zcu.cz/publications/

[4] O. Nasraoui, H. Frigui, A. Joshi, and R. Krishnapuram, “Mining web access logs using relational
competitive fuzzy clustering,” university of Missouri, University of Memphis, University of Maryland
and Colorado School of Mines.

[5] P.Weichbroth, M. Owoc, andM. Pleszkun, “Web user navigation patterns discovery fromwww server log
files,” Federated Conference on Computer Science and Information Systems, pp. 1207 – 1212, September
2012.

[6] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization based on web usage mining,”
dePaul University, USA and University of Minnesota, USA.

[7] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective personalization based on association rule
discovery from web usage data,” dePaul University, USA.

[8] R. Ivancsy and I. Vaj, “Frequent pattern mining in web log data,” budapest University of Technology and
Economics, Hungary.

[9] M. Eirinaki andM. Vazirgiannis, “Web mining for web personalization,” athens University of Economics
and Business, Greece.

[10] V. Verma, A. K. Verma, and S. S. Bhatia, “Comprehensive analysis of web log files for mining,”
International Journal of Computer Science Issues, vol. 8, no. 3, pp. 199 – 202, November 2011.

[11] Y. Hu, Y. Qian, H. Li, D. Jiang, J. Pei, and Q. Zheng, “Mining query subtopics from search log data,”
microsoft Research Asia, Xian University and Simon Fraser University.

[12] K. R. Suneetha and R. Krishnamoorthi, “Identifying user behavior by analyzing web server access log
file,” International Journal of Computer Science and Network Security, vol. 9, no. 4, April 2009.

[13] N. Koutsoupia, “Exploring web access logs with correspondence analysis,” aristotle University of
Thessaloniki , Greece.

[14] C. Shahabi, A. M. Zarkesh, J. Adibi, V. Shah, C. Shahabi, A. M. Zarkesh, J. Adibi, and V. Shah,
“Knowledge discovery from users web-page navigation,” university of Southern California, USA and
Quad Design Technology, USA.

[15] S. Siddiqui and I. Qadri, “Mining web log files for web analytics and usage patterns to improve
web organization,” International Journal of Advanced Research in Computer Science and Software
Engineering, vol. 4, June 2014.

[16] J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu, “Mining access patterns effciently from web logs,” simon
Fraser University, Canada.

46

References

[17] V. Chitraa and A. S. Davamani, “A survey on preprocessing methods for web usage data,” International
Journal of Computer Science and Information Security, vol. 7, no. 3, 2010.

[18] V. Losarwar and M. Joshi, “Data preprocessing in web usage mining,” Data Preprocessing in Web Usage
Mining, July 2012.

[19] N. M. A. El-Yazeed, “An overview of preprocessing of web log files for web usage mining,” port Said
University, Egypt.

[20] R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for mining world wide web browsing
patterns,” university of Minnesota, USA.

[21] P. Kherwa and J. Nigam, “Data preprocessing: A milestone of web usage mining,” International Journal
of Engineering Science and Innovative Technology (IJESIT), vol. 4, March 2015.

[22] G. T. Raju and P. S. Satyanarayana, “Knowledge discovery fromweb usage data: Complete preprocessing
methodology,” b.M.S. College of Engineering, India and Visvesvaraya Technological University, India.

[23] R. N. Hunter, “Successes and failures of patrons searching the online catalog at a large academic library:
A transaction log analysis,” 2003.

[24] Z. Lu, N. Xie, and W. J. Wilbur, “Identifying related journals through log analysis,” 2009.

[25] R. Vaarandi, “A data clustering algorithm for mining patterns from event logs,” in Proceedings of the
2003 IEEE Workshop on IP Operations and Management, Tallinn, Estonia, 2003.

[26] T.-T. Y. Lin and D. P. Siewiorek, “Error log analysis: Statistical modeling and heuristic trend analysis,”
IEEE Transactions on Reliability, vol. 39, no. 4, October 1990.

[27] W. Peng, T. Li, and S. Ma, “Mining logs files for data-driven system management,” florida International
University, USA and IBM T.J. Research Center, USA.

[28] D. Kerr, G. K. W. K. Chung, and M. R. Iseli, “The feasibility of using cluster analysis to examine log
data from educational video games,” cRESST and University of California, USA.

[29] A. Chuvakin, “Log data mining,” 2003.

47

Index

Benefits of Agile Business
Suite, 2

Components of Agile
Business Suite, 4

Elements of an ABSuite
Model, 7

Experimental Results and
Observations for
Basic Ispec
Mapping, 30

Experimental Results and
Observations for
Exception to Ispec
Mapping, 41

Experimental Results and
Observations for
Response Time
Analysis, 37

Generation of Applications
using ABSuite, 6

Implementation, 29
Issues and Challenges

involved, 15

Methodology, 21
Model Driven Architecture,

3

Proposed Algorithm for
Basic Ispec
Analysis, 24

Proposed Algorithm for
Exception to Ispec
Mapping, 26

Proposed Algorithm for
Response Time
Analysis, 25

System Modeler
Development
Environment, 4

Transaction Processing, 10

