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ABSTRACT 
 

 Field-oriented control and direct torque control are fast becoming necessities of modern 

industrial setups for induction motor drive control. Induction motors are considered as the 

beginning part to create any electrical drive system to be subsequently utilized for several 

industrial requirements. So now a day due to its high application the need to control the 

performance of the induction motor is gaining importance. In modern control system, IM is 

analyzed by different mathematical models mainly depending on its applications. Vector 

control method is suitably applied to induction machine in 3-phase symmetrical or in 2-phase 

unsymmetrical version. For vector control IM is realized as DC motor having its characteristics. 

This dissertation work is aimed to give a detailed idea about the speed control and variations in 

an induction motor through vector control technique thereby showing its advantage over the 

conventional scalar method of speed control. It also focusses on the speed estimation techniques 

for sensorless closed loop speed control of an IM relying on the direct field-oriented control 

technique. The study is completed through simulations with use of MATLAB/Simulink block 

sets allowing overall representation of the whole control system arrangement of the Induction 

motor. The performance of different sensorless schemes and comparison between them on 

several parameters like at low speed, high speed etc. is also provided emphasizing its 

advantages and disadvantages. The analysis has been carried out on the results obtained by 

simulations, where secondary effects introduced by the hardware implementations have not 

been considered. The simulations and the evaluations of different control techniques are 

executed using parameters of a 50 HP, 60 Hz induction motor which is fed by an inverter. 



  

vi 

 

CONTENTS 
SUPERVISOR’S CERTIFICATE……………………………………………………...…...ii 

ACKNOWLEDGEMENT…………………………………………………………………...iv 

ABSTRACT…………………………………………………………………………………...v 

LIST OF FIGURES………………………………………………………………………...viii 

ABBREVIATION……………………………………………………………………………ix 

 

1 INTRODUCTION ..........................................................................................................1 

1.1 Introduction ..............................................................................................................1 

1.2 Need of electric drive ...............................................................................................2 

1.3 Control principle ......................................................................................................4 

1.4 Evolution of drives ...................................................................................................4 

1.4.1 DC Drive ...........................................................................................................5 

1.4.2 Scalar frequency Control ...................................................................................5 

1.4.3 Field Oriented Control (FOC) ............................................................................5 

1.5 Literature Review .....................................................................................................7 

1.6 Objective ..................................................................................................................8 

1.7 Dissertation Outline ..................................................................................................9 

2 MODELLING & FIELD ORIENTED CONTROL OF INDUCTION MOTOR ............ 10 

2.1 Introduction ............................................................................................................ 10 

2.2 Induction motor modelling ..................................................................................... 10 

2.2.1 Steady state modelling ..................................................................................... 10 

2.2.2 Dynamic modelling of Induction machines ...................................................... 13 

2.3 Induction machine control ...................................................................................... 16 

2.4 Field Oriented Control ............................................................................................ 17 

2.4.1 Direct Vector Control ...................................................................................... 19 

2.4.2 Indirect Field Orientation Control .................................................................... 21 

2.5 Conclusion ............................................................................................................. 23 

3 SENSORLESS VECTOR CONTROL OF INDUCTION MOTOR ............................... 24 

3.1 Introduction ............................................................................................................ 24 

3.2 Speed Estimation Schemes ..................................................................................... 25 



  

vii 

 

3.2.1 Estimation of synchronous and slip speed ........................................................ 25 

3.2.2 Direct synthesis of speed from state equations ................................................. 27 

3.2.3 Model Reference Adaptive Systems estimator ................................................. 28 

3.2.4 Adaptive Observer........................................................................................... 31 

3.3 Conclusion ............................................................................................................. 32 

4 SIMULATIONS AND RESULTS ................................................................................ 33 

4.1 Introduction ............................................................................................................ 33 

4.2 Vector Control Simulation Results ......................................................................... 33 

4.2.1 Direct Vector Control ...................................................................................... 34 

4.2.2 Indirect Vector Control .................................................................................... 35 

4.2.3    Stator Oriented Control ................................................................................ 36 

4.3 Sensorless Vector Control Simulation Results ........................................................ 36 

4.3.1 Estimation of synchronous and slip speed ........................................................ 36 

4.3.2 Direct synthesis of speed from state equations ................................................. 38 

4.3.3 MRAS Estimator ............................................................................................. 39 

4.3.4 Adaptive Speed Observer ................................................................................ 41 

4.4 Performance comparison of Sensorless speed estimation schemes .......................... 41 

4.4.1 Estimation of synchronous and slip speed ........................................................ 42 

4.4.2 Direct synthesis of speed from state equations ................................................. 42 

4.4.3 MRAS Estimator ............................................................................................. 43 

4.4.4 Adaptive Speed Observer ................................................................................ 43 

4.5 Conclusion ............................................................................................................. 43 

5 CONCLUSION AND FUTURE SCOPE ...................................................................... 44 

5.1 Conclusion ............................................................................................................. 44 

5.2 Scope for future work ............................................................................................. 44 

6 References .................................................................................................................... 45 

7 APPENDIX .................................................................................................................. 47 

 

 



  

viii 

 

LIST OF FIGURES 
 

Figure 1-1 Application of induction motor in flow control (IM runs at constant speed and flow is 

controlled through Throttle) ................................................................................................................ 3 

Figure 1-2 Application of induction motor in flow control (IM runs at variable speed to control flow) 3 

Figure 1-3 Evolution of drives ............................................................................................................ 5 

Figure 2-1Equivalent circuit of IM in steady state ............................................................................. 11 

Figure 2-2 Vector Control Analogy .................................................................................................. 17 

Figure 2-3 Block Diagram of FOC .................................................................................................... 18 

Figure 2-4 Direct field oriented drive system .................................................................................... 18 

Figure 2-5 Indirect field oriented drive system .................................................................................. 19 

Figure 2-6 Direct vector control phasor ............................................................................................. 20 

Figure 2-7Indirect vector control phasor ........................................................................................... 21 

Figure 3-1 Vector control diagram .................................................................................................... 25 

Figure 3-2 Synchronous speed estimation block ................................................................................ 25 

Figure 3-3 Slip speed calculation ...................................................................................................... 26 

Figure 3-4 Slip speed estimation scheme .......................................................................................... 28 

Figure 3-5 MRAS based speed estimator .......................................................................................... 29 

Figure 4-1 Speed Response of Direct Vector Control ........................................................................ 34 

Figure 4-2 Torque Response of Direct Vector Control ...................................................................... 34 

 Figure 4-3 Waveform of stator current ,I I   ................................................................................... 35 

Figure 4-4 Waveform of Stator current , , ca b
I I I  ............................................................................. 35 

Figure 4-5 Speed Response of Indirect Vector Control ...................................................................... 35 

Figure 4-6 Speed Response of Stator Oriented Vector Control .......................................................... 36 

Figure 4-7 Waveform of Stator Currents ,I I   ................................................................................. 36 

Figure 4-8 Speed Response of sensorless slip estimator scheme ........................................................ 36 

Figure 4-9 Torque response of sensorless speed estimator scheme .................................................... 37 

Figure 4-10 Waveform of Stator Currents ,I I   ............................................................................... 37 

Figure 4-11 Waveform of Stator Currents , , ca b
I I I  ........................................................................ 37 

Figure 4-12 Speed response of open loop estimator scheme .............................................................. 38 

Figure 4-13 Torque response of open loop estimator scheme............................................................. 38 

Figure 4-14 Waveform of Stator Current ,I I  ................................................................................. 39 

file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376382
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376383
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376384
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376385
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376386
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376396
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376399


  

ix 

 

Figure 4-15 Waveform of Stator Current , , ca b
I I I  .......................................................................... 39 

Figure 4-16 Speed response of MRAS .............................................................................................. 39 

Figure 4-17 Torque response of MRAS ............................................................................................ 40 

Figure 4-18 Waveform of Stator Current ,I I  ................................................................................. 40 

Figure 4-19 Waveform of Stator Current , , ca b
I I I  .......................................................................... 40 

Figure 4-20 Speed Response of Adaptive Observer ........................................................................... 41 

Figure 4-21 Speed Response of Slip Estimation Scheme ................................................................... 42 

Figure 4-22  Speed Response of Open loop estimator........................................................................ 42 

Figure 4-23 Speed Response of MRAS scheme ................................................................................ 43 

Figure 4-24 Speed Response of Adaptive speed Observer ................................................................. 43 

file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376410
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376411
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376412
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376413
file:///C:/Users/SONY/Desktop/performance%20comparison.docx%23_Toc452376414


x 

 

LIST OF SYMBOLS & ABBREVIATION 

FOC Field oriented control 

DTC Direct torque control 

AC Alternating Current 

r                                                          Rotor mechanical speed(rad/s) 

*

r                                                          Reference or command speed (rad/s) 

e                                                            Speed of the reference frame or synchronous 

speed (rad/s) 

sl                                                         Electrical slip speed (rad/s) 

,dr qr     d – axis and q – axis rotor flux linkages       

,s s

dr qr   Component of rotor flux linkage vector in 

stationary (𝛼-β) reference frame 

,s s

ds qs   Component of stator flux linkage vector in 

stationary (𝛼-β) reference frame 

𝐼a∗,𝐼b∗,𝐼c∗     Reference current for abc phase of inverter  

Td Electromagnetic torque developed by motor 

TL Load torque 

,ds qsv v  d and q – axis stator voltages 

Rs ,Rr Resistance per phase of stator and rotor    

referred to stator    

𝐿𝑠,𝐿𝑟  Stator and rotor per phase inductance 

referred to stator 

Lm Magnetizing inductance per phase referred 

to stator 

f Supply frequency in Hz 

J Polar moment of inertia of the motor 

X State vector 

Y Output vector      



1 

 

CHAPTER 1 

1 INTRODUCTION 
 

1.1 Introduction 

 Induction machine possesses many significant advantages in comparison to several numerous 

different types of electrical machines. Induction machine is valued so much because they are 

inexpensive and rugged. They don’t require periodic maintenance and don’t possess brushes 

like Direct control (DC) machines and their packed structure makes then impervious to different 

environment conditions. Therefore, in the present scenario much importance is provided to 

controlling methods of induction machines but owing to their complex mathematical model and 

given non-linearity, an IM requires more sharp control technique as in comparison to DC 

motors. For several decades, open loop v/f control technique which alter itself to uniform volts-

per-Hertz proportion of stator voltage has been implemented. But owing to unsatisfactory 

dynamic results of this given type of control method resulting in saturation effect along with 

the variation of electrical parameter with temperature has forced to turn to other control 

techniques. Now a days brisk and swift switching semiconductor power switches available in 

power electronics and their improvement in power loss have paved the way for powerful digital 

signal processors on controller technology which are really fast to be applied for advanced 

control techniques of IM drives. 

In the drive applications it has been the dream to run squirrel cage induction motor as a 

conventional separately excited dc motor and give the desired performance. Despite the latest 

researches in Vector control/Field oriented control (FOC) there is high room for improvement 

as there we have not been quite able to bridge the gap between the dream and reality. Although 

Direct Torque Control has further simplified the Control circuitry to a greater extent. The 

availability of cheap microprocessors coupled with advancement in Artificial Intelligence (AI), 

Genetic Algorithm (GA), Fuzzy Logic (FL) etc. have really influenced the design, monitoring 

and operation of modern industrial electric drives. 

A lot of studies in the last decade and so has been put to test to iron out several diverse possible 

solutions of IM drives control with sole objectives of quick and accurate torque and flux control 
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along with the reduction of the algorithms complexity involved in FOC etc. This chapter 

presents brief idea about the Necessity of electric drives, Basic control principles and their 

classification along with evolution of electric drives. A brief introduction to the FOC has been 

given in present chapter which is the main focus of the dissertation work. 

1.2 Need of electric drive 

There are numerous issues which are involved in the driving of the induction machine. 

Previously motors were designed for only driving specific loads i.e. maximum times the 

generated torque was greater than the required load torque, which as a result provided 

inefficient driving system as it led to substantial amount of power loss. As we know the in the 

induction machine the steady state operating region lies in the range of 80% to 100% of the 

rated speed because of constant supply frequency and fixed number of poles. During starting, 

the absence of back emf allows the IM to draw a very high amount of inrush current resulting 

in high power loss and can occasionally cause insulation failure of burning of the motor parts. 

The performance of the other electrical appliances in the same line can similarly be affected 

because it causes high voltage dip in the supply line. The power factor of induction machine is 

quite low (as low as 0.1) at light load (i.e. open shaft) condition. The main reason is that at light 

load IM draws highly inductive current. Although with gradual increase in load power factor 

improves as it increases thereafter. When induction machine runs at less than unity power 

factor, the current withdrawn is non- sinusoidal in nature which lowers the supply line power 

quality and degrades performance of several other utilities connected to the same line. Now a 

day’s distribution company penalizes those customers who draws power at lower PF than 

specified. Also, an induction motor which is operating at lower PF draws currents which are 

rich in harmonics causing higher rotor loss affecting motor life and thus may lead to pulsating 

torque resulting in jerky motion affecting the life of motor bearings and may lead to permanent 

failure of system. 

In applications like hoist, crane etc. it often becomes necessary to stop and reverse quickly. It’s 

evident that quality and productivity of the system could be improved by improving the 

accuracy of stopping and reversing operation. Earlier mechanical brakes were mainly used for 

all of the stopping and reversing operation of the IM, which were insufficient as they require 

continuous maintenance. A lot of the other important application of IM like fan, blower, pump 
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etc. often need to control speed too. Consider the figure 1.1 and 1.2 in these type of loads, the 

torque and power is related to speed as: 

                                   
2

1( )Torque k speed   and  
3

1( )Power k speed  

 

Figure 1-1 Application of induction motor in flow control (IM runs at constant speed and flow 

is controlled through Throttle) 

 

 

Figure 1-2 Application of induction motor in flow control (IM runs at variable speed to control 

the flow) 

Hence, depending upon the load Variable speed control could provide good amount of energy 

saving. As can be seen from the above expressions that with reduction of 20% in the operating 

speed will eventually amount to 50% reduction in the input power to the induction machine. 

However, it can’t not be possible for those systems in which motor is connected directly to the 

supply in place of being connected to line through a power converter. Thus Fig 1.2 can be 

understood as an appreciable power saving scheme. 
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Thus inferring from the previously mentioned points, the need for intelligent motor control can 

be understood. Hench with advancement in solid state devices (SSD) technology like IGBT, 

BJT, SCR, MOSFET etc. and technologies like IC fabrication technology, microcontrollers, 

microprocessors, AI methods which are capable of executing real-time complex algorithms it 

is now possible to realize Intelligent drive control. 

1.3 Control principle  

The speed of Induction machine can be demonstrated in terms of slip, frequency and pole 

numbers as:                                
4

(1 ) (1 )s
m s

f
s s

P


      

The speed of the IM rotor can be varied or controlled by changing slip, frequency and the 

number of poles. Changing the pole numbers is done by pole amplitude modulated motors 

which is mainly achieved with a change in winding connections which requires relays and 

circuit. The variation of applied voltage or insertion of external resistors in stator or rotor affects 

the slip speed control. The inverter-driven induction motor with the help of variable frequency 

operation achieves speed control. To keep the air gap flux constant not only the frequency but 

the applied voltage also needs to be varied which further doesn’t let it saturate. A number of 

speed control strategies have been implemented by modern age variable frequency drive (VFD) 

which remains the main aim of this dissertation and will be discussed in further sections.  

1.4  Evolution of drives 

The motivation behind the evolution of drives from DC to various form of AC drives has been 

driven by continuous need of reliability, simplicity, performance, ruggedness, cost and 

availability. In practice, these needs have often resulted in covering mutually specific goals. 

New research now a day often bring out techniques with certain advantages and disadvantages. 

Figure 1.3 shows evolution of basic drives as for assessment purposes this viewpoint is simple 

and useful.  
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                                                                 Figure 1-3 Evolution of drives                                 

1.4.1 DC Drive 

One of the significant advantage of DC drive is that both direct flux and direct torque control 

are available. In a dc motor flux is controlled by field control and armature current controls the 

motor torque. A PWM inverter which is connected at its terminal provides the required flux and 

voltage to control the torque and speed. The poor accuracy control results due to absence of 

encoder and field orientation. Even if it’s simpler in construction and possesses low cost but it 

provides very poor performance and less accuracy. 

1.4.2 Scalar frequency Control  

 
A block diagram for the scalar control has been shown in figure 1.4. Although, this type of 

drives uses all the advantages of IM but torque and flux neither directly nor indirectly could be 

controlled. A PWM invertor connected at its terminal provides the require voltage and flux to 

control speed and torque. The accuracy of control is very poor due to absence of encoder and 

field orientation. Although it has simple construction and low cost but it provides very less 

accuracy and poor performance.  

1.4.3  Field Oriented Control (FOC) 

The most familiar control scheme used for induction motor drive control is the field oriented 

control (FOC). This control comprises of stator currents being controlled and represented by a 

vector. FOC control scheme is mainly based on the principles which transform a 3-phase time 

as well as speed dependent system into a 2 coordinate system (d and q) which are time invariant 

system. The major idea behind the vector control of IM is to have an electric drive which 

possesses superior performance than separately excited DC motor. The squirrel cage induction 
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motor with FOC shows a good level of dynamic performance and stability of the system is a 

long term phenomenon through the closed loop control of this drive. FOC is separately called 

‘Independent or Decoupled control’ wherein flux and torque current vectors are controlled. In 

the field control stator current are expressed in the rotating coordinate system and are further 

resolved into two components which produce the torque and flux in the motor and are 

orthogonal in nature. This arrangement is similar to the DC motor in which flux and torque are 

controlled independently. To control flux and torque (thereby speed) independently in the 

induction machine, there is necessity to control the phase and magnitude of three phase stator 

currents with the help of fast inverter like CC-VSI (current control voltage source inverter). 

These control algorithms are highly complex and involved and to realize this aim fast acting 

microcontrollers and other processors are used. 

 The main disadvantage of Field oriented control is compulsory use of ‘Encoder”. The process 

of voltage and frequency reference takes good amount of time, thereby limiting the ability to 

achieve rapid flux and torque. In the FOC for rotor flux regulation, flux position is also required, 

which is either sensed or estimated. Speed and flux estimation are the main problems of the 

field orientation in the recent years. The induction machine drive without the speed sensors give 

the advantage of low cost and high reliability. Estimation of magnitude and spatial orientation 

of flux in the stator or rotor is also necessary for such type of drives. 

Rotor flux orientation is mainly categorized in two parts which are the direct field orientation 

relying on measurement and direct measurement of rotor magnitude and angle and other being 

the indirect orientation in which slip speed relation is utilized. The scenario of Indirect field 

orientation is a feedforward approach and is very much sensitive to parameters particularly to 

the rotor time constant. Due to this several parameter adapting strategies have been developed 

[8]. 

Direct field oriented control (DFOC) utilizes the flux angle Ɵe which is obtained or calculated 

by sensing the air gap flux with the help of flux sensing coils. This arrangement adds to the 

complexity and the cost of the drive system. So for the last decades many different type of 

algorithms has been proposed to avoid the use of these flux sensors on the induction machine 

drive systems to estimate both the rotor flux vector and rotor shaft speed. The most recent trend 
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can be directed toward the use of speed sensors and using algorithms based on the terminal 

quantities of the machine for the estimation of the fluxes. 

One of the preferred flux and speed estimation technique (algorithm) is saliency based with 

fundamental or high frequency signal injection. The advantage that this saliency based method 

offers is that the saliency is not sensitive to actual motor parameters. Although this method also 

suffers of insufficient performance at low and zero speed level. Also when it is subjected to 

high frequency signal injection this method has shown to cause torque ripples, audible noise 

and vibration. 

1.5 Literature Review  

Now a day for industrial applications induction machines associated with high performance 

drives are used. The history of inductions machines as well as uses have been quite broad. It 

finds numerous use in commercial, industrial and domestic applications as adjustable speed 

drives. In present section a literature review has been presented as a means to show the 

exploration and work of several researchers to make Induction machine very precise, quick and 

of high performance. A lot of work has been done to develop the technique and to reach the 

best efficiency of induction motor drive (IMD), many new techniques of control has been 

developed in the last few years.  

Almost 40 years ago, very first paper, in 1971 F. Blaschke [1] presented field oriented control 

(FOC) of induction motor. A lot of work has been done after that time to develop the technique 

as now a days FOC drives are an industrial reality and are readily available in the market 

manufactured by different companies with desired performance and other requirements. 

In recent decades much effort has been made to get rid of conventional speed transducer from 

its use in adjustable induction motor drives. By making the use of voltage and current this aim 

has been fulfilled. A very good effort was made by Brennen and Abbondanti in 1975 in form 

of an analog slip calculator which was based on the processing of the motor quantities such as 

current and voltage [2].In 1979 the same work on sensorless technique was highlighted by 

Ishida et al [3] who made the use of rotor slot harmonic voltages in slip frequency control. 
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William L. Erdman and R. G. Hoft in 1990 described airgap and stator field orientation (FOC) 

methods as an alternative to the familiar rotor orientation process. The advantages of stator and 

airgap decoupling lie principally in estimating or measuring the corresponding flux. The airgap 

flux is directly measurable, and the stator flux is closely related to stator terminal quantities. 

The rotor flux is the most difficult to estimate and for this reason, stator and/or airgap flux 

implementations may be more robust under parameter and environmental disturbances [4]. 

Several years later, in 2003 S. Xepapas presented a way for estimation of rotor speed, rotor flux 

and its angular position as well as the motor torque from the measured terminal currents and 

voltages. It used nonlinear sliding control technique for control at both low and high speeds [5]. 

Thereafter Ahmad Razani Haron, Nik Rumzi Nik Idris, in 2006 discussed the performance of 

the rotor flux based MRAS (RF-MRAS) and back e.m.f based MRAS (BEMF-MRAS) for 

estimating the rotor speed. Both schemes use the stator equation and rotor equation as the 

reference model and the adjustable model [6]. 

M. S. Zaky, M. Khater, H. Yasin, and S. S. Shokralla  in 2008 discussed about study of the 

different speed estimation techniques and their corresponding merits and demerits as well as 

their feasibility for estimating the rotor speed. Many factors remain important to evaluate the 

effectiveness of the different schemes proposed for speed estimation. Among them are steady 

state error, dynamic behavior, noise sensitivity, low speed operation, parameter sensitivity, 

complexity, and computation time [7]. 

The proposed method in [14] estimates the velocity without the assumption that the speed varies 

slowly compares to electrical variables studied on non-linear method. So two estimator was 

constructed: main flux estimator and complementary flux estimator. The main flux estimator 

did not guarantee convergence for all the operating conditions. So start up complementary 

estimator is used in such operating conditions. In this method significant sensitivity to 

parameter uncertainty is observed. 

1.6 Objective 

The main aim of the project is to compare the performance of different sensorless vector 

controlled IM drives and provide a detailed study regarding different speed estimation 

methods and then their corresponding merits and demerits along with their feasibility to 

estimate speed of the rotor. The simulation study of results forms the basis of the conclusion 
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1.7 Dissertation Outline 

The dissertation has been organized as described below: 

Chapter 1 deals with the brief idea about the introduction, need, principle, classification and 

evolution of the variable frequency electric drives as well as the literature review and a short 

and brief introduction of the FOC. 

Chapter 2 includes the induction machine modelling and dynamical model of machine. This 

can be implemented to materialize various other equivalent models in difference frame of 

reference. Vector control technique of IM along with the direct and indirect control technique 

has been explained. 

Chapter 3 is devoted to the various speed estimation methods for sensorless direct field oriented 

control of the Induction machine. MRAS speed estimator, open loop speed estimator along with 

adaptive observer has been described. 

Chapter 4 demonstrates the simulations of the vector control techniques along with various 

sensorless speed estimation techniques for analyzing the comparison between there 

performance. 

Chapter 5 shows the performance comparison of these techniques and the preference on these 

techniques in various conditions. There is include proposal for further research work. 
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CHAPTER 2 

2 MODELLING & FIELD ORIENTED 

CONTROL OF INDUCTION MOTOR 
 

2.1 Introduction 

Induction machine with rotor cage configuration have always been the widely used machine at 

a particular fixed speed because of its efficiency, simplicity, reliability, ruggedness, 

compactness, low cost, and having economical and volume manufacturing advantage. Although 

in the recent year several developments regarding the field of varying speed drives have opened 

up possibility of application of variable speed induction motor drives at a larger scale. In 

comparison to separately excited DC motor Induction machine demands the use of extra 

complex control techniques because of its structure having nonlinear dynamic structure with 

strong coupling. 

Now any power electronics drive e.g. Induction motor drive, controllers are needed to control 

the system. This scenario requires mathematical modelling of the drive because of multivariable 

nature of the systems and its higher order nonlinearity. Thus design and development of the 

power electronics drive systems could be done by suitable mathematical modelling of the plant. 

The induction motor modelling is mostly performed by a 3-phase (a-b-c) to synchronously 

rotating (d-q) transformation with rotor flux linkages and stator current as the stator variables 

neglecting saturation. 

2.2 Induction motor modelling 
 

2.2.1 Steady state modelling 

The steady state equivalent circuit of an IM is very much identical to a transformer. With 

simple mathematical manipulation it is integrated into the circuit despite rotor currents being 

at slip frequency. An equivalent circuit (stator side referred) of induction motor is shown as in 

figure 2.1 
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Figure 2-1Equivalent circuit of IM in steady state 

 

Steady state performance equation: 

In this scenario the no-load current is viewed as the sum of the core-loss components and the 

magnetizing component of the current and accordingly is written as: 

                                                         o m cI I I                                                    (2.1) 

The magnetizing current in terms of the magnetizing reactance and air gap voltage is written 

as: 

                                                      1
m

m

E
I

jX
                                                       (2.2) 

Here, Xm is the magnetizing reactance and E1 is the airgap voltage 

Similarly, core loss component of the stator current is written as: 

                                                       1
c

c

E
I

R
                                                          (2.3) 

Where, Rc is the core loss accounting resistance 

The rotor phase current is given by: 

                                                1
r

r
lr

E
I

R
jX

s





                                                    (2.4) 

Where, Ir is phase current of rotor 

Then the phase current of stator is: 

                                                 as r oI I I                                                          (2.5) 
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In terms of stator parameters, stator current and induced emf the applied stator voltage is shown 

as the sum of the induced emf with the stator impedance voltage drop which is given as: 

                                       1 ( )as s s asV E R jX I                                       (2.6) 

Where Vas is the stator phase voltage 

The main variables in the machine comprise of air gap power, torque, mechanical and shaft 

output. The difference among the total input power with respect to copper losses in stator is 

expressed as real power transmitted from input to the air gap which is given as: 

                                        
23a i as sP P I R                                                (2.7) 

Neglecting the core losses, we have 

                                               23 r
a r

R
P I

s
                                              (2.8)  

Which could be written alternatively as 

                                       2 2 (1 )
3 3a r r r r

s
P I R I R

s


                                 (2.9) 

The Power Output Pm (mechanical) is given as: 

                                                   2 (1 )
3m r r

s
P I R

s


                                 (2.10) 

Alternatively, it can also be given in form of electromagnetic torque and rotor speed as: 

                                                          m e mP T                                        (2.11) 

Where Te is the internal or electromagnetic torque 

                                                     
23 (1 )r r

e

m

I R s
T

s


                                           (2.12) 

Substituting for the motor speed in terms of the slip and stator frequency, 

                                             
(1 )

2 2

sr
m

s

P P





                                              (2.13) 

The electromagnetic or air gap torque is obtained as: 

                                                   
2

3( 2) r r
e

s

I R
T P

s
                                            (2.14) 

The net output power of the machine Ps: 
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                                                       s m fwP P P                                                   (2.15) 

The friction and the windage losses are two different losses as they are proportional to the speed 

and the square of speed respectively. Therefore, for evaluation of variable speed performance 

of IM they have to be represented as function of speed. There are also other type of losses such 

as stray load losses which are caused due to stray magnetic fields in the machine. 

2.2.2 Dynamic modelling of Induction machines 

The above presented steady-state model and the corresponding equivalent circuit are important 

for studying the steady state performance of the machine. So basically its nota applied for 

transient operation where speed or torque variation is there. Thus the need is to find out 

dynamics of the variable speed drives which is fed by converter to evaluate the capability of 

the converter switches which are applied to a given motor and also their interaction which 

determines the excursions of the torque and current in motor. The instantaneous effect of the 

current and voltages along with the torque and frequency variations are considered in dynamic 

modelling. In the following section the dynamic modelling of the two phase induction motor 

has been by transforming 3 phase to two phase in direct as well as quadrature axes.  

In 3-  IM the voltage equations in synchronously rotating reference frame are: 

ds
ds s ds e qs

d
V R i

dt


                                                                                                         (2.16) 

qs

qs e ds s qs

d
V R i

dt


                                                                                                         (2.17) 

( )dr
dr e r qr r dr

d
V R i

dt


                                                                                                  (2.18) 

( )
qr

qr r qr e r dr

d
V R i

dt


                                                                                                  (2.19) 

The electromagnetic torque which develops is given by 

3
( )

4
e dr qs qr ds

P
T i i                                                                                                             (2.20)  

The torque balance equation is written as: 
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r
e l r

d
T T J

dt


                                                                                                               (2.21)              

Where voltage (V) and current (i) are transferred to synchronously rotating reference frame and 

then corresponding subscripts of d and q axis for the stator as well as rotor are ,s sd q and ,r rd q

so that sR is the per phase resistance of stator and rR  is the per phase rotor resistance  of the 

motor whereas e is the reference frame speed , r is the rotor’s mechanical speed ,   is  flux 

linkage. J is the MOI (moment of inertia), P is number of pole pairs and   is viscous friction 

coefficient. eT and lT  are the torque developed and the load torque. 

The voltage and electromagnetic torque equations can also be represented in matrix form as 

given below: 

0 0

0 0

ds ds ds dss e

qs qs qs qss e

V iR d

V iR dt

 

 

          
            
          

                                                         (2.22) 

0 ( )0

( ) 00

dr dr dr dre rr

qr qr qr qre rr

V i pRd

V i pRdt

  

  

          
           

          
                              (2.23) 

3
[ ]

4

qs

e dr qr

ds

iP
T

i
 

 
  

 
                                                                                                     (2.24) 

As the rotor windings are short circuited hence the voltages will be 0dr qrV V   

Ignoring the iron loss, flux equations are also displayed in the matrix form  

0 0

0 0

ds ds drs m

qs qs qrs m

i iL L

i iL L





        
         
        

                                                                          (2.25) 

0 0

0 0

dr ds drm r

qr qs qrm r

i iL L

i iL L





        
         

       
                                                                          (2.26) 

Where ,s rL L are self inductances of stator and rotor respectively, whereas mL  is basically 

mutual inductance 

From equation (2.26) we can write 
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1
0 0

1
0 0

m

dr dr dsr r

qr qr qsm

r r

L

i iL L

i iL

L L





  
       
        
       
  

   

                                                                         (2.27) 

Substituting equation (2.27) in (2.25) 

0
0

0
0

m

ds ds drrs

qs qs qrs m

r

L

i LL

iL L

L

 

 

 
                
       
 
 

                                                                (2.28) 

Where 
2

1 m

s r

L

L L
   = leakage coefficient 

Taking the rotor voltages zero and substituting (2.27) in (2.23) we get 

0 0
0 ( )

( ) 0
00

r m r

dr ds dr drr r e r

qr qs qr qre rr m r

rr

R L R

iL L pd

i pR L Rdt

LL

   

   

   
                          

               
  

 

5 4

5 4

0

0

dr ds drsl

qr qs qrsl

ia ad

ia adt

 

 

        
         

        
                                                              (2.29) 

Where 
5 4,r m r

r r

R L R
a a

L L
   and sl r ep      

Taking equations (2.28), (2.22) and (2.29) we can find 

1 2 3

1 3 2

0

0

ds ds dr dse r

qs qs qr qse r

i i va a pa cd

i i va pa a cdt

 

 

            
              

              
                         (2.30) 

Where 

2

1 2

1
( )m

s r

s r

L
a R R

L L
   

2

2 2

1 m
r

s r

L
a R

L L
  

3
m

s r

L
a

L L
 ,     

1

s

c
L
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Relating equations (2.29) and (2.30) we get the state space model of induction motor as: 

1 2 3

1 3 2

5 4

5 4

0

0

0 0 0

0
0 0

ds dse r

qs qs dse r

qssldr dr

slqr qr

ci ia a pa

ci i va pa ad

va adt

a a

 

 

 

 

 
      
                                          

 

                                   (2.31) 

The electromagnetic torque can similarly be written in state space variables as 

 

3
[ ]

4

qs

e dr qr

ds

iP
T

i
 

 
  

 
                                                                                                       (2.32) 

 

2.3 Induction machine control 

The induction machine drives speed control requires the use of controllers which can be traced 

to two major types of control: scalar control and vector control. Scalar control includes several 

way of speed control techniques one of most used being the volts per hertz i.e. v/f control which 

are of low cost conventionally. In this control, the voltage as well as frequency magnitude are 

kept in regular proportion. But v/f control performances has been not been found satisfactory 

because the rate of voltage change as well as frequency is needed to be kept low. Any sudden 

change in deceleration or acceleration of the frequency or voltage lead to a transient current 

change, which later leads to severe problems. Although many concrete works and 

manipulations have been made to control performance of v/f method, still not any of those 

improvements could provide an effective v/f controlled drive system and so this limitation 

allowed the DC motor undisputed & permanent choice in case of various variable speed 

requirements. This scenario started changing when the concept regarding field orientation 

theory was suggested by Hasse and Blaschke. The complications are much more in field 

oriented control than the control of DC motor. Even as the most successful class of the 

controllers which are very popular use vector control method as it regulates magnitude and the 

phase of AC excitation. So the given particular method results in particular space orientation of 

field and torque which are orthogonal in nature and are thus called Field Oriented Control 

(FOC). 
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2.4 Field Oriented Control 

The vector control technique helps induction machine to be driven with dynamic performances 

of direct control motor. This particular technique decouples the stator current components in 

which one provides the air gap flux and another one producing torque so that the control 

characteristics are linearized. Since they are orthogonal the given two fluxes doesn’t show any 

particular interaction to each other. Thus after adjustment of field current we can control flux 

of the DC machine and then the machine torque can be regulated independently by armature 

current adjustments. Since any alternating current machine is complicated due to interaction 

between rotor and the stator fields and their orientation are not held at 90° and they vary with 

changing operating conditions. Thus suffice to say DC machine like performance can be 

obtained by keeping a orthogonal as well as fixed orientation among the fields in any given AC 

machine by orientating the stator current with regard to rotor flux so as to obtain independently 

controlled torque and flux. Such a method is called Vector Control or Field Oriented Control.  

 

Figure 2-2 Vector Control Analogy 

The two components essential for vector control are dsi corresponding to d-axis armature 

current and qsi  corresponding to q-axis field current of a dc motor which is separately excited. 

The rotor flux linkage is aligned with the d-axis which is the elementary condition for vector 

oriented control. 

At this condition: 

                              0qr          Rotor flux                 0qs       stator flux  

                              dr r        orientation                 ds r    orientation   
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Considering the above scenario, the block diagram for vector control can be shown as follows: 

 

Figure 2-3 Block Diagram of FOC 

The angle Ɵ can be obtained by indirect field orientation control (IFOC) or otherwise also by 

direct field orientation control (DFOC). Henceforth controllers which are applied in this 

scenario insures that it can obtain the decoupled torque and flux control and thus are known as 

field oriented controller. 

 

 

Figure 2-4 Direct field oriented drive system 
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Both different techniques of vector control named direct and indirect field oriented control 

depend upon the basic flux acquisition method. 

2.4.1 Direct Vector Control  

The use of particular flux coils and sensors can be discontinued by estimation of the rotor flux 

from the stator terminal quantities which are voltage and currents [9]. Direct method includes 

the measurement of airgap flux directly incorporating the help of search coils. Sensors or 

sensors, taped stator windings or it can be done by measurement from machine terminal 

variables such as stator current, voltage and speed. Now the impossible scenario of direct 

sensing procedure of rotor flux directs it to be obtained from the directly sensed airgap flux. 

Rotor flux angle is measured directly through flux measurement and estimation. The very 

serious drawback of this direct scheme arises is at low speed when the IR drop of the machine 

is dominating which is difficult to neglect and it also the requirement of integration of signal 

makes the measurement of airgap flux difficult. This thinking procedure requires the knowledge 

of stator as well as rotor leakage inductances, magnetizing inductances and there is also need 

of stator resistance. This procedure is normally referred as Voltage Model Flux Observer 

(VMFO). Hence in stationary frame the stator flux can be obtained by the equations: 

                                           
s

s s

qs qs s qsV r i


                                                      (2.33) 

                                          
s

s s

ds ds s dsV r i


                                                       (2.34) 

     

Figure 2-5 Indirect field oriented drive system 
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 Also the rotor flux can be obtained as: 

     ( )s s sr
dr ds ds

m

L
L i

L
                          (2.35)       

    ( )s s sr
qr qs qs

m

L
L i

L
                           (2.36) 

       Where  
2( / )s m rL L L L    is the transient 

leakage reactance 

 
                                                                                                 

 

 

                                                                                                    

Voltage Model Flux Observer uses the measured current and voltages of the stator and requires 

a pure integration without the use of any feedback. Thus it is found harder to be implemented 

for frequencies of low excitation because of offset also and initial condition problems. Thus in 

actual practice low pass filter is also used often to give stability due to the lack of filter which 

is necessary for convergence. Accuracy of this model is totally independent to rotor resistance 

but is found as being most sensitive with respect to stator resistance particularly at low 

velocities. At high speed the stator resistance (IR) drop sensitivity to speed voltage is low which 

reduces sensitivity to stator resistance. The sensitivity to the parameters study depicts that 

leakage inductance very much affects the performance of the system in regard to dynamic 

response, stability and utilization of inverter and the machine. 

To overcome these difficulties caused by leakage inductance changes and also due to stator 

resistance mainly at low speed as an alternative approach Current Model Flux Observer 

(CMFO) has been proposed.  

This flux model can be measured or estimated as:  

                         
1

s

s s sm
dr dr r qr ds

r r

L
i

T T
  


                                          (2.37) 

                     
1

s

s s sm
qr qr r dr qs

r r

L
i

T T
  


                                              (2.38) 

Figure 2-6 Direct vector control phasor 
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This current model uses the stator current which is measured and speed of the rotor. The 

dependency on speed of the current model is considered as disadvantage as this implies that 

although use of the estimated flux obviously eliminates the flux sensor, the requirement of 

position sensor is still there. Furthermore, even at low or zero speed operation rotor flux 

magnitude response is sensitive to particularly to the rotor resistance, the phase angle is 

insensitive to all the parameters. Near rated slip, both the quantities are particularly sensitive to 

magnetizing inductance and resistance of the rotor. In the whole speed range the rotor leakage 

resistance totally has no effect on accuracy. 

2.4.2 Indirect Field Orientation Control  

The indirect field orientation of the IM, the rotor vector dr  instantaneous speed is same as 

that of the synchronous speed e  and as that of d-q coordinate system where d axis is directly 

locked on the rotor flux vector as has been case for rotor flux vector orientation. This scenario 

helps to control the flux by magnetizing current dsi  through alignment of total flux with the d 

axis and also aligning the other torque generating current component with q axis. Henceforth 

after decoupling of the torque producing and the rotor flux currents the torque can be easily 

regulated with the current qsi . 

 

The rotor angle is found out with use of these described 

equations:  

*
0 r mr

dr dr ds

r r

R LR d
i

L dt L
     

1

m
dr ds

r

L
i

T s
 


 

0 ( )r qr e r drR i                  m
qr qs

r

L
i i

L
   

 

*

*

r m
sl qs

r dr

R L
i

L



                         (2.39)                 

Figure 2-7Indirect vector control phasor 
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( )e e r sl r sldt dt                                                                                  (2.40)     

The Indirect field oriented control is a feedforward control which is basically open loop control 

and in this method the slip frequency is fed forward which very much guarantees the field 

orientation. This particular controlling operation is sensitive to rotor open circuit time constant 

r which has to be known for achieving a decoupled control of flux and torque components by 

control of the currents. When r  is not set correctly, the machine is described as detuned and 

its performance becomes very sluggish because of decoupled control loss. Hence, the 

measurement of the time constant of the rotor, its effects on the system performance along with 

its adaptive tuning with the variations which mainly result during the machine operation have 

been extensively studied and monitored. The rotor time constant is also affected by the changes 

in temperature which affects the torque capability of the induction motor. This effect of 

detuning becomes of high severity mainly in the field weakening region. It also gives results as 

steady state error and transient oscillation in the rotor torque and flux. 

Thus the concept of indirect field orientation was developed and studied by many researchers 

in last two-three decades. The indirect control is the most original and dominant choice for the 

rotor flux orientation. Also the IFO control can be simulated or implemented using stator 

orientation or the air gap flux as well. In air gap orientation the flux as well as slip relations are 

coupled equations. In this case d-axis current does not control the flux independently as done 

earlier in orientation along rotor flux. It has been found that in case of orientation along air gap 

flux, the maximum produced torque is 20% lesser in comparison to the other methods. 

Particularly in the scenario of orientation along stator flux, the transient reactance is a coupling 

factor which vary regularly with the operating conditions of the machine [19]. In addition Nasar 

also showed that in these three types rotor orientation possess linear torque curve and thus is a 

very obvious choice for indirect oriented control.  
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2.5 Conclusion  

The modelling of IM with the help of mathematical equations has been discussed with 

equations. Taking stator current as well as rotor flux components as some variables motor 

differential equations has been expressed in stationary as well as synchronously rotating(d-q) 

reference frame. Its steady state operations have also been shown in brief. Basic vector control 

of induction motor which includes direct and indirect vector control have been detailed. The 

speed measured in these control has been done by sensors which has to be eliminated for the 

cost and efficiency purpose the idea which next chapter carries forward. 
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CHAPTER 3 

3 SENSORLESS VECTOR CONTROL OF 

INDUCTION MOTOR 
 

3.1 Introduction 

The main aim of this chapter is select a configuration based on the review of different methods 

for field orientation of induction motor which is suitable for high performance sensorless drive. 

As discussed earlier we have two methods of field oriented vector control namely direct and 

indirect. The use of speed sensor in speed estimation makes the whole arrangement costly and 

less reliable. The voltage and current sensors can be used as they are very less costly. Verghese 

did approach speed estimation problem from the view point of parameter identification [13]. 

The main idea is to take the speed as a constant and unknown parameter, and to find that desired 

speed which fits the calculated or measured data to the dynamic equations of the motor. 

However due to the significant impact on the performance of the estimator due to the parameter 

variations. State resistance variation is also a possibility due to ohmic heating results in 

performance deterioration. Hence with the idea of having speed estimation without the use of 

sensors many techniques have been proposed each having its own advantages and 

disadvantages. Some of these techniques have been discussed here and there efficiency verified 

with simulation results. Hench in sensorless vector control of induction motor voltage and 

current sensors are retained but speed or position sensors are eliminated as with voltage and 

current sensors speed can be sensed although reverse is not possible. 

Some of the Induction motor speed estimation techniques are as follows:  

(a) Slip calculation  

(b) Direct synthesis from rotor flux observer  

(c) Model reference adaptive system (MRAS)  

(d) Speed adaptive flux observer (Luenberger observer)  

(e) Extended Kalman filter  

(f) Slot harmonics  
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3.2 Speed Estimation Schemes 

3.2.1 Estimation of synchronous and slip 

speed 
The equations for speed estimation can be written as: 

            
^ ^ ^

slr e                                            (3.1) 

Where 
^

r = estimated speed 

            
^

e  = synchronous speed 

&      
^

sl  = slip speed 

      
s

s s

dsds s dsV R i 


                                       (3.2) 

     
s

s s

qsqs s qsV R i 


                                        (3.3)                       

     ( )s s s

ds ds s dsV r i dt                                 (3.4)       

    ( )s s s

ds ds s dsV r i dt                                  (3.5)  

 

Figure 3-2 Synchronous speed estimation block 

The corresponding flux equations for speed estimation can be written as: 

Figure 3-1 Vector control diagram 
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^

2

( ) ( )s s s s s s

ds qs s qs qs ds s ds

e

s

v R i v R i 




  
                                                           (3.6)  

^

2

s s s s

qs ds ds qs

e

s

   




 


                                                                                      (3.7)  

Algorithm 

1. We sense the phase voltages , ,a b cV V V  and currents , ,a b cI I I . 

2. Using the transformation we get ,s s

ds qsV V  and ,s s

ds qsI I . 

3. We apply equation 4.2 to 4.5 to get the desired flux and their derivatives. 

4. Then the synchronous speed is estimated using the equation 4.6 & 4.7.  

5. The motor speed can be calculated from equation 4.1 

Where  
^

sl  is the slip speed whose value is:- 

     
^

qsr m
sl

r r

iR L

L



                        For rotor flux orientation                  (3.8)  

    
^ (1 )

( )

r s qs

sl

r ds s ds

sT L i

T L i




 





              For stator flux orientation                (3.9) 

 

                       

 

                                 Figure 3-3 Slip speed calculation 
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This method of speed estimation is one of the simplest method to execute and it also run into 

some disadvantages. When speed is of less values (e.g. frequency is less) the voltage values 

,s s

ds qsV V are quite less so then the integration of flux signal derivatives give offset and do not 

provide desired accurate estimation. Furthermore, at very high speed of the machine (high 

frequency) slip is very less. So speed estimation depends on the parameter like ,r rR L . So these 

values should be accurate otherwise it leads to inaccurate estimation. 

3.2.2 Direct synthesis of speed from state equations 

The observed stator currents and voltages are thereby used to estimate/measure flux linkages 

components which are used to find out the speed. The mathematical expression for the rotor 

speed by the equation
^ ^ ^

slr e    . The corresponding equation for this speed estimation 

technique are: 

             ( )
s

s sr r
dr ds s s ds

m m

L L
V R L s i

L L
 


                                                                                       (3.10) 

              ( )
s

s sr r
dr ds s s ds

m m

L L
V R L s i

L L
 


                                                                                      (3.11) 

These mentioned equations are state equations. These are used to estimate rotor flux 

components 
s

dr and
s

qr from sensed voltages and currents. Now the current model is used and 

is written as: 

                                  
1

s

s s sm
dr dr ds r qr

r r

L
i

T T
  


                                                                       (3.12) 

                                  
1

s

s s sm
qr qr r dr qs

r r

L
i

T T
  


                                                          (3.13) 

Using these relations, we find out the synchronous speed as: 

                                  
2

s s s s

qr dr dr qr

e

r

   




 


                                                                   (3.14) 
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The above equations are used to calculate the speed which is finally given as 

                                
^ ^

2

s s s s

dr qs qr dsm
er

r

i iL

Tr

 
 




                                                              (3.15) 

    Where                
^

2

s s s s

dr qs qr dsm
sl

r

i iL

Tr

 





                                                                      (3.16) 

 

Figure 3-4 Slip speed estimation scheme 

This speed estimation scheme follows the same set of steps as mentioned earlier. As evident 

the hypothesis is highly sensitive to machine parameters that’s it tends to provide poor and low 

accuracy of estimation. 

3.2.3 Model Reference Adaptive Systems estimator 

The open loop estimator accuracy which is derived from state equations depends strongly on 

machine parameters. By using closed loop estimator’s accuracy can be increased to a good 

amount by using closed loop estimators. Speed estimator which is based on MRAS is studied 

in [15]. In this method a comparison in general is usually made among the two estimators 

output. As a reference model for the induction machine that estimator is chosen which don’t 

contain the quantity to be measured. The other one is referred as adjustable model as this 

contains the estimated quantity. The input to the adaptation mechanism depends on input from 

obtained error after comparison between the estimators. In sensorless algorithm control the 
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rotor speed is the element which separate the adjustable model from a reference model. 

Whenever rotor speed changes in the adjustable model happens in a way that the difference 

among the two estimators finally converges to zero asymptotically, then actual rotor speed 

becomes equal to estimated speed of the rotor. In [16] reference model is taken from the voltage 

model and the current model is taken as the adjustable model and the rotor flux which is 

estimated is assumed as the reference parameter which is finally compared. Then main 

differences occurring among these state variables is finally utilized in another adaptation 

mechanism (PI controller), which then estimates the net desired value of the speed of the rotor 

keeps on adjusting the adaptive model until a final satisfactory performance is achieved. 

 

Figure 3-5 MRAS based speed estimator 
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Reference model makes the use of measured stator voltage and current to finally find out the 

rotor flux as described: 

                     
1

( )s s s sr
dr ds s ds s ds

m

L d
V R i L i

L s dt
                                                         (3.17) 

                     
1

( )s s s sr
qr qs s qs s qs

m

L d
V R i L i

L s dt
                                                         (3.18) 

The adjustable model calculates/measures the same amount of flux using the estimated speed 

and the measured current as depicted: 

                       
1

( )
s

s s sm dr
dr ds r qr

r r

L
i

s T T


                                                                (3.19) 

                       
1

( )

s

qrs s sm
qr qs r dr

r r

L
i

s T T


                                                                (3.20) 

 

In [17] similar type of speed estimators has been taken which is dependent on MRAS and then 

a secondary variable has been taken as a reference quantity through passage of the rotor flux 

through a first order delay instead of a pure integration for nullifying the offset. Still as it can 

be seen that their proposed algorithm produces estimated speed which is inaccurate whenever 

the excitation frequency is kept underneath a certain level. Apart from these algorithms also 

undergoes from the uncertainties in parameters of the because of the reference model because 

parameter variation in the reference can’t be modified or corrected. Although [18] suggests an 

alternative technique of MRAS which is mainly based upon the electromotive force instead of 

the rotor flux which is considered as reference quantity for estimation of speed and in this 

method problem of the integration has been successfully overcome to good extent. Further in 

this a new variable is proposed which basically signifies the instantaneous reactive power for 

optimizing the magnetizing current. So in this MRAS algorithm the role of stator resistance 

eventually disappears from major of the equations making the algorithm robust to that particular 

parameter. 
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3.2.4 Adaptive Observer 

Any state observer is basically a model based state estimator which could be utilized for the 

state estimation of a non-linear dynamic system. The states are first predicted through the 

calculations with use of a mathematical model, but these state which are predicted undergoes 

continuous correction by using a feedback correction scheme. The Stator and rotor equations 

of the induction machine which are expressed in stator coordinates which are used to obtain a 

full order speed observer. A full order observer uses the machine electrical model in
s sd q

frame, where the state variables are stator currents are 
s

dsi and s

qsi and the rotor fluxes are 
s

dr

and s

qr . 

The Rotor voltage equations can be written as: 

                                           
1

s

s s sm
dr dr r qr ds

r r

L
i

T T
  


                                                           (3.21) 
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   Equating (4.10) with (4.20) we can get 
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                             (3.24) 

 

Thus these equations constitute the desired equation which can be written in the form of any 

general stare equation as  

                                           
d

X AX BU
dt
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Thus the input voltage signals are measured from the machine terminal. Now if speed parameter 

in A matrix is known we can find out the fluxes and the current from the state equations. 

However, if speed is not correct then there is bound to be deviations between the actual and the 

estimated value. Thus in the end estimated currents are compared with the actual machine 

terminal currents and error is injected into the speed estimating algorithms so that this error 

vanishes. 

The speed algorithm used for the speed estimation in this technique is 

                                   
^ ^ ^ ^ ^

( ) ( )r p i s r i s r i i s r i s rk e e k e e dt                                             (3.25) 

 

3.3 Conclusion 

In this chapter different Sensorless speed estimation techniques have been described along with 

their speed estimation ways which has also been described in brief. These techniques utilize the 

sensed voltage and current values and thus with this the speed is estimated. The experimental 

verification of these equations have been shown in chap 4 thus establishing the advantages of 

drive operations without speed sensors. 
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CHAPTER 4 

4 SIMULATIONS AND RESULTS 
 

4.1 Introduction 

The three phase induction motor with suitable rating has been simulated by using 

Matlab/Simulink model for its speed estimation. The speed tracking performance has been 

shown with vector control which first includes the use of speed sensor and then without it as 

required in the sensorless control schemes. A number of speed estimation techniques have been 

taken into consideration and their performance is verified by simulation results along with its 

torque variation waveforms. The specification of the IM used for sensorless estimation schemes 

is 50 HP, 4 pole, 3-phase with parameters: Rs = 0.087 ohm, Rr= 0.228 ohm, Ls= Lr = 0.0355 

H, Lm= 0.0347 H, J= 1.662 Kg.m2, B= 0.1 Nm.sec 

 

4.2 Vector Control Simulation Results 

 Different operating conditions were investigated in order to validate the direct vector control 

model and to demonstrate the effectiveness of the system modelling and simulation. The speed 

waveform of the direct vector control shows the reference and actual motor speeds at t =0.5 sec, 

motor speed is raised from 0 to 70 rad/sec then at t =1 sec it is further decreased to 120 rad/s in 

reverse direction and so on varied with time to check the effectiveness of the system. 

 

The speed dip at t=6s is due to load torque augmentation. Electromagnetic torque response is 

also illustrated. Load torque is increased at t=1s. Despite the presence of torque pulsations, the 

motor follows precisely the load torque value. At t=4s, motor speed is reduced from 60 to -120 

rad/s. We notice in both figures that in presence of disturbance the vector control responds 

adequately and brings back the controlled variable to its desired value. The other two speed 

control methods are the indirect control method and the stator oriented control methods and 

these are simulated for same set of reference speed as the direct oriented control. The speed 

response gets better in indirect control as compared to the direct one although the ripples in 

speed response are there but are of low magnitudes and thus overall system gives a good 
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performance. The stator oriented control in comparison shows more ripples and speed response 

is little less good than the indirect method still the response is very much fine. 

 

4.2.1 Direct Vector Control 

 

Figure 4-1 Speed Response of Direct Vector Control 

 

Figure 4-2 Torque Response of Direct Vector Control 
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                                  Figure 4-3 Waveform of stator current ,I I   

                               Figure 4-4 Waveform of Stator current , , ca b
I I I  

4.2.2 Indirect Vector Control 

 

Figure 4-5 Speed Response of Indirect Vector Control 
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4.2.3    Stator Oriented Control 

                                    Figure 4-7 Waveform of Stator Currents ,I I   

4.3 Sensorless Vector Control Simulation Results 

4.3.1 Estimation of synchronous and slip speed 

 

Figure 4-8 Speed Response of sensorless slip estimator scheme 

Figure 4-6 Speed Response of Stator Oriented Vector Control 
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                                            Figure 4-10 Waveform of Stator Currents ,I I   

 

Figure 4-11 Waveform of Stator Currents , , ca b
I I I  

Figure 4-9 Torque response of sensorless speed estimator scheme 
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4.3.2  Direct synthesis of speed from state equations 
 

 

           Figure 4-12 Speed response of open loop estimator scheme 

 

 

    Figure 4-13 Torque response of open loop estimator scheme 
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Figure 4-14 Waveform of Stator Current ,I I   

                                      Figure 4-15 Waveform of Stator Current , , ca b
I I I  

4.3.3   MRAS Estimator 

 

Figure 4-16 Speed response of MRAS 
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Figure 4-17 Torque response of MRAS 

 

Figure 4-18 Waveform of Stator Current ,I I   

 

Figure 4-19 Waveform of Stator Current , , ca b
I I I  
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4.3.4 Adaptive Speed Observer 

 

 

All sensorless speed estimation methods have been simulated for rotor flux orientation model. 

The motor is supplied a three phase supply and the measured stator and rotor currents are fed 

to the estimator as inputs. Different operating conditions were investigated in order to validate 

speed estimation model and to demonstrate the effectiveness of the system modelling and 

simulation. Whenever there is sudden speed change a torque ripple can be seen in the torque 

waveform. Despite the torque pulsation the speed waveform is found to be following the 

reference values. The speed is similarly varied and the speed waveform is found to be following 

the reference value with little error showing the effectiveness of the model. 

 

4.4 Performance comparison of Sensorless speed estimation 

schemes 

The speed estimation becomes difficult particularly at low speed because of the integration of 

the flux signal derivative gives offset values thus leading to the inaccurate estimation. Thus 

accuracy especially at low speed values deteriorates due to variation in parameter. Thus for 

comparison of these speed estimation techniques all these methods have been simulated from 

Fig 4.12 to 4.15 showing speed variation particularly at low speed. 

Figure 4-20 Speed Response of Adaptive Observer 
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4.4.1 Estimation of synchronous and slip speed 
 

 

 

4.4.2 Direct synthesis of speed from state equations 
 

 

                                     

Figure 4-21 Speed Response of Slip Estimation Scheme 

Figure 4-22  Speed Response of Open loop estimator 
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4.4.3 MRAS Estimator 

4.4.4 Adaptive Speed Observer 

 

4.5 Conclusion 

In this chapter vector control techniques which uses sensors namely direct, indirect and stator 

oriented control have been simulated to show the improved performance of the vector control 

of the induction machine in comparison to the scalar method. The obtained results have been 

perfect showing the efficiency of this techniques. Thereafter different sensorless speed 

estimation techniques have been simulated and for their performance comparison at low speed 

and steady state they have been simulated and compared accordingly. 

Figure 4-23 Speed Response of MRAS scheme 

Figure 4-24 Speed Response of Adaptive speed Observer 
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CHAPTER 5 

5 CONCLUSION AND FUTURE SCOPE 
 

5.1 Conclusion 

    In this dissertation the main focus has been on finding out the best speed estimation 

techniques for the sensorless operation of the induction motor. The majority of techniques of 

speed extraction rely on the induction machine which can also lead to inaccuracies in speed 

estimation. First mathematical System modelling and various simulations have been shown 

using Matlab/Simulink.  As described rotor flux can be found out by means of rotor flux 

observer where they are obtained by utilizing voltage and current equations of the IM in 

stationary reference frame. Similarly, with the help of voltage and current sensors speed is 

estimated for various sensorless schemes. For high performance drives different flux and 

speed estimation techniques can be used. 

 Among there presented schemes MRAS scheme shows best behavior at steady state operation 

as demonstrated in section 4.4. It can be seen it provides a very good response. The response 

is as good as direct vector control thus showing its effectiveness. The simulations show there 

is room for improvement in performance of the system particularly for low speed range. 

During regular change in loading system stability could be improved to achieve better vector 

control performance. 

 

5.2 Scope for future work 

    In this thesis the simulation work shows a great promise for the studied methods. Different 

estimator’s dynamic response and the estimation accuracy can be further improved by re-

tuning and also with the help of online parameter estimation techniques will facilitate 

observation of change of motor parameters during operation especially at low speed. Several 

other methods can also be applied like Extended Kalman Filter (EKF), neural network based 

estimators and sliding mode estimators.  
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7 APPENDIX 
FOC & Open loop simulation of IM: 

Power Rating: 3 HP  

Stator Voltage: 460 volt  

Frequency: 50 Hz  

Number of Poles: 4  

Stator Resistance: 0.6837 ohm/phase  

Stator leakage Inductance: 0.004152 H/phase  

Rotor Resistance: 0.451 ohm/phase  

Rotor leakage Inductance: 0.004152 H/phase  

Mutual Inductance: 0.1486 H  

Inertia: 0.05 kg m2  

 

Sensorless Vector Control: 

Power Rating: 50 HP  

Stator Voltage: 460 volt  

Frequency: 60 Hz  

Number of Poles: 4  

Stator Resistance: 0.087 ohm/phase  

Stator leakage Inductance: 0.0355 H/phase  

Rotor Resistance: 0.228 ohm/phase  

Rotor leakage Inductance: 0.0355/phase  

Mutual Inductance: 0.0347 H  

Inertia: 1.662 kg m2  

 

 


