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An advancedmethod using block backward differentiation formula (BBDF) is introducedwith efficient strategy in choosing the step
size and order of the method. Variable step and variable order block backward differentiation formula (VSVO-BBDF) approach is
applied throughout the numerical computation.The stability regions of the VSVO-BBDFmethod are investigated and presented in
distinct graphs.The improved performances in terms of accuracy and computation time are presented in the numerical results with
different sets of test problems. Comparisons are made between the proposed method and MATLAB’s suite of ordinary differential
equations (ODEs) solvers, namely, ode15s and ode23s.

1. Introduction

Many studies on solving the equations of stiff ordinary
differential equations (ODEs) have been done by researchers
or mathematicians specifically. With the numbers of numer-
ical methods that currently exist in the literature, extensive
research has been done to unveil the comparison between
their rate of convergence, number of computations, accuracy,
and capability to solve certain type of test problems [1]. The
well-known numericalmethods that are usedwidely are from
the class of BDFs or commonly understood as Gear’s Method
[2]. However, many other methods that have evolved to this
date are for solving stiff ODEs which arise in many fields
of the applied sciences [3–6]. The problems considered in
this paper are for the numerical solution of the initial value
problem,

𝑦
󸀠
= 𝑓 (𝑥, 𝑦) (1)

with given initial values 𝑦(𝑎) = 𝑦
0
in the given interval 𝑥 ∈

[𝑎, 𝑏].
The existing numerical methods have often been com-

pared to one another to find the best approximation and
the best method. MATLAB ODE suite is one of the most

preferred solvers to be used for comparison purposes [7, 8].
Stiff ODE solvers that are available in MATLAB ODE suite
are ode15s and ode23s which are based on the numerical
differentiation formulas [8, 9] and the modified Rosenbrock
formula of order 2, respectively [8].

An improved method has been identified in [10], which
was expanded from the method incorporated with BDF
proposed by Gear. Since then, the study on producing block
approximations𝑦

𝑛+1
, 𝑦
𝑛+2
, 𝑦
𝑛+3
, . . . , 𝑦

𝑛+𝑘
also known as Block

BackwardDifferentiation Formulae (BBDF) [11] has attracted
much attention. BBDF method by using variable step size in
[12] demonstrates the competency of computing concurrent
solution values at different points. Consequently, study in
[13, 14] is an extension of a previous study in a way that
the accuracy is improved by increasing the order of the
method up to order 5. Thus, these studies lead to enhancing
the existing method to become Variable Order Variable Step
Block Backward Differentiation Formula of order 3 until 5
(VSVO-BBDF).

In Section 2, we introduce the general formulation of
VSVO-BBDF of order 3 to 5. Order conditions are listed in
Section 3 while in Section 4, we consider the implementation
of VSVO-BBDF.The analysis of stability regions is illustrated
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Figure 1: VSVO-BBDF method of order (𝑃3–𝑃5).

in Section 5. This is followed by the strategy in choosing the
step size and order of VSVO-BBDF in Section 6. Numerical
results are presented in Section 7.The appendix describes the
algorithm applied for VSVO-BBDF method.

2. VSVO-BBDF Method Formulation

Two values of 𝑦
𝑛+1

and 𝑦
𝑛+2

were computed simultaneously
in block by using earlier blocks with each block containing a
maximum of two points (Figure 1). The orders of the method
(𝑃3, 𝑃4, and 𝑃5) are distinguished by the number of back
values contained in total blocks. The ratio distance between
current (𝑥

𝑛
) and previous step (𝑥

𝑛−1
) is represented as 𝑟 and

𝑞 in Figure 1. In this paper, the step size is given selection
to decrease to half of the previous steps or increase up to a
factor of 1.9. For simplicity, 𝑞 is assigned as 1, 2, and 10/19
for the case of constant, halving and increasing the step size,
respectively. The zero stability is achieved for each of these
cases and explained in the next section.

We find approximating polynomials 𝑃
𝑘
(𝑥), by means of

a 𝑘-degree polynomial interpolating the values of 𝑦 at given
points, that are (𝑥

𝑛−3
, 𝑦
𝑛−3
), (𝑥
𝑛−2
, 𝑦
𝑛−2
), (𝑥
𝑛−1
, 𝑦
𝑛−1
), . . . ,

(𝑥
𝑛+2
, 𝑦
𝑛+2
):

𝑃
𝑘
=

𝑘

∑

𝑗=0

𝑦 (𝑥
𝑛+1−𝑗

) ⋅ 𝐿
𝑘,𝑗
(𝑥) , (2)

where

𝐿
𝑘,𝑗
(𝑥) =

𝑘

∏

𝑖=0

𝑖 ̸= 𝑗

(𝑥 − 𝑥
𝑛+1−𝑖

)

(𝑥
𝑛+1−𝑗

− 𝑥
𝑛+1−𝑖

)
for each 𝑗 = 0, 1, . . . , 𝑘.

(3)

Predictors for the first point 𝑦𝑝
𝑛+1

and second point 𝑦𝑝
𝑛+2

were computed using back values as the interpolating points.
The resulting Lagrange polynomial for each order was given
as follows.

For VSVO-BBDF of order 𝑃3 (𝑃 = 3)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ) =
(𝑟 + 1 + 𝑠)

𝑟
𝑦
𝑛
+
(1 + 𝑠)

−𝑟
𝑦
𝑛−1
. (4)

For VSVO-BBDF of order 𝑃4 (𝑃 = 4)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ)

=
(2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠)

2𝑟2
𝑦
𝑛
+
(2𝑟 + 1 + 𝑠) (1 + 𝑠)

−𝑟2
𝑦
𝑛−1

+
(𝑟 + 1 + 𝑠) (1 + 𝑠)

2𝑟2
𝑦
𝑛−2
.

(5)

For VSVO-BBDF of order 𝑃5 (𝑃 = 5)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ)

=
(𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠)

(2 (𝑞 + 2𝑟)) 𝑟2
𝑦
𝑛

+
(𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (1 + 𝑠)

− (𝑞 + 𝑟) 𝑟2
𝑦
𝑛−1

+
(𝑞 + 2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠)

(2𝑞𝑟2)
𝑦
𝑛−2

+
(2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠)

−𝑞 (−𝑞 − 𝑟) (−𝑞 − 2𝑟)
𝑦
𝑛−3
.

(6)

Substituting 𝑠 = 0 and 𝑠 = 1 gives the predictor for the
first and second points, respectively. Therefore by letting 𝑟 =
1, 𝑞 = 1, 𝑟 = 2, 𝑞 = 2 and 𝑟 = 1, 𝑞 = 10/19. This produced
the following coefficients (Tables 1, 2, and 3) for the first
and second points of predictor formulae for VSVO-BBDF
method.

The interpolating polynomial of the function 𝑦(𝑥) using
Lagrange polynomial in (2) gives the following corrector for
the first point 𝑦𝑝

𝑛+1
and second point 𝑦𝑝

𝑛+2
. The resulting

Lagrange polynomial for each order was given as follows.
For VSVO-BBDF of order 𝑃3 (𝑃 = 3)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ)

=
(𝑟 + 1 + 𝑠) (𝑠 + 1) (𝑠)

2𝑟 + 4
𝑦
𝑛+2

+
(𝑟 + 1 + 𝑠) (𝑠 + 1) (𝑠 − 1)

−1 − 𝑟
𝑦
𝑛+1

+
(𝑟 + 1 + 𝑠) (𝑠 − 1) (𝑠)

2𝑟
𝑦
𝑛

+
(1 + 𝑠) (𝑠 − 1) (𝑠)

−𝑟 (−1 − 𝑟) (−𝑟 − 2)
𝑦
𝑛−1
.

(7)

For VSVO-BBDF of order 𝑃4 (𝑃 = 4)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ)

=
(2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠) (𝑠)

2 (2𝑟 + 2) (𝑟 + 2)
𝑦
𝑛+2

+
(2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠) (𝑠 − 1)

− (2𝑟 + 1) (𝑟 + 1)
𝑦
𝑛+1

+
(2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (𝑠) (𝑠 − 1)

4𝑟2
𝑦
𝑛

+
(2𝑟 + 1 + 𝑠) (1 + 𝑠) (𝑠) (𝑠 − 1)

−𝑟2 (−𝑟 − 1) (−𝑟 − 2)
𝑦
𝑛−1

+
(𝑟 + 1 + 𝑠) (1 + 𝑠) (𝑠) (𝑠 − 1)

2𝑟2 (−2𝑟 − 1) (−2𝑟 − 2)
𝑦
𝑛−2
.

(8)
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Table 1: Coefficients for the first and second point of predictor formulae for VSVO-BBDF when 𝑟 = 1, and 𝑟 = 1, 𝑞 = 1.

Order 𝑦
𝑛

𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

𝑃 = 3
ℎ𝑓
𝑛+1

2 −1

ℎ𝑓
𝑛+2

3 −2

𝑃 = 4
ℎ𝑓
𝑛+1

3 −3 1

ℎ𝑓
𝑛+2

6 −8 3

𝑃 = 5
ℎ𝑓
𝑛+1

4 −6 4 −1

ℎ𝑓
𝑛+2

10 −20 15 −4

Table 2: Coefficients for the first and second point of predictor formulae for VSVO-BBDF when 𝑟 = 2, and 𝑟 = 2, 𝑞 = 2.

Order 𝑦
𝑛

𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

𝑃 = 3
ℎ𝑓
𝑛+1

3

2
−
1

2

ℎ𝑓
𝑛+2

2 −1

𝑃 = 4
ℎ𝑓
𝑛+1

15

8
−
5

4

3

8

ℎ𝑓
𝑛+2

3 −3 1

𝑃 = 5
ℎ𝑓
𝑛+1

35

16
−
35

16

21

16
−
5

16

ℎ𝑓
𝑛+2

−1 4 −6 4

For VSVO-BBDF of order 𝑃5 (𝑃 = 5)

𝑃 (𝑥) = 𝑃 (𝑥
𝑛+1

+ 𝑠ℎ)

= (((𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠) 𝑠)

×(2 (𝑞 + 2𝑟 + 2) (2𝑟 + 2) (𝑟 + 2))
−1

) 𝑦
𝑛+2

+ (((𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠)

× (1 + 𝑠) (𝑠 − 1))

× (− (𝑞 + 2𝑟 + 1) (2𝑟 + 1) (𝑟 + 1))
−1

) 𝑦
𝑛+1

+
(𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) 𝑠 (𝑠 − 1)

4 (𝑞 + 2𝑟) 𝑟2
𝑦
𝑛

+
(𝑞 + 2𝑟 + 1 + 𝑠) (2𝑟 + 1 + 𝑠) (1 + 𝑠) 𝑠 (𝑠 − 1)

−𝑟2 (𝑞 + 𝑟) (−𝑟 − 1) (−𝑟 − 2)
𝑦
𝑛−1

+
(𝑞 + 2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠) 𝑠 (𝑠 − 1)

2𝑞𝑟2 (−2𝑟 − 1) (−2𝑟 − 2)
𝑦
𝑛−2

+ (((2𝑟 + 1 + 𝑠) (𝑟 + 1 + 𝑠) (1 + 𝑠) 𝑠 (𝑠 − 1))

× (−𝑞 (−𝑞 − 𝑟) (−𝑞 − 2𝑟)

× (−𝑞 − 2𝑟 − 1) (−𝑞 − 2𝑟 − 2))
−1

) 𝑦
𝑛−3
.

(9)
Linear Multistep Method (LMM) given in [15] is given in

the definition below.

Definition 1. The linear 𝑘-step method can be represented in
standard form by an equation ∑𝑘

𝑗=0
𝛼
𝑗
𝑦
𝑛+𝑗

= ℎ∑
𝑘

𝑗=0
𝛽
𝑗
𝑓
𝑛+𝑗

,

where 𝑦
𝑛+𝑗

≈ 𝑦(𝑥
𝑛+𝑗
) and 𝑓

𝑛+𝑗
≡ 𝑓(𝑥

𝑛+𝑗
, 𝑦
𝑛+𝑗
), coefficients

𝛼
𝑗
, 𝛽
𝑗
are suitably chosen constants subject to conditions

𝛼
𝑘
= 1, |𝛼

0
| + |𝛽

0
| ̸= 0, and 𝑘 is defined as the order of

the particular method employed. This method is said to be
explicit if 𝛽

𝑘
= 0 and implicit otherwise.

Substituting 𝑠 = 0 and 𝑠 = 1 gives the corrector for the
first and second points, respectively. Therefore by letting 𝑟 =
1, 𝑞 = 1, 𝑟 = 2, 𝑞 = 2 and 𝑟 = 1, 𝑞 = 10/19. This produced
the following coefficients (Tables 4, 5, and 6), as
in Definition 1 for the first and second points of VSVO-
BBDF method.

3. Order Conditions for General VSVO-BBDF

As similar to analysis for order of Linear Multistep Method
(LMM) given in [15], we use the following to determine the
order of VSVO-BBDF method.

Definition 2. The LMM [15] and the associated difference
operator 𝐿 defined by

𝐿 [𝑧 (𝑥) ; ℎ] =

𝑗

∑

𝑘=0

[𝛼
𝑘
𝑧 (𝑥 + 𝑘ℎ) − ℎ𝛽

𝑘
𝑧
󸀠

(𝑥 + 𝑘ℎ)] (10)

are said to be of order 𝑝 if 𝑐
𝑜
= 𝑐
1
= ⋅ ⋅ ⋅ = 𝑐

𝑝
= 0, 𝐶

𝑝+1
̸= 0.

The general form for the constant 𝐶
𝑞
is defined as

𝐶
𝑞
=

𝑗

∑

𝑘=0

[𝑘
𝑞
𝛼
𝑘
−

1

(𝑞 − 1)!
𝑘
𝑞−1
𝛽
𝑘
] , 𝑞 = 2, 3, . . . 𝑝 + 1.

(11)

Consequently, BBDF method can be represented in standard
form by an equation ∑𝑘

𝑗=0
𝐴
𝑗
𝑦
𝑛+𝑗

= ℎ∑
𝑘

𝑗=0
𝐵
𝑗
𝑓
𝑛+𝑗

, where 𝐴
𝑗

and 𝐵
𝑗
are 𝑟 by 𝑟 matrices with elements 𝑎

𝑙,𝑚
and 𝑏

𝑙,𝑚
for



4 Mathematical Problems in Engineering

Table 3: Coefficients for the first and second point of predictor formulae for VSVO-BBDF when 𝑟 = 10/19, and 𝑟 = 1, 𝑞 = 10/19.

Order 𝑦
𝑛

𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

𝑃 = 3
ℎ𝑓
𝑛+1

29

10
−
19

10

ℎ𝑓
𝑛+2

24

5
−
19

5

𝑃 = 4
ℎ𝑓
𝑛+1

1131

200
−
741

100
−
551

200

ℎ𝑓
𝑛+2

348

25

551

25

228

25

𝑃 = 5
ℎ𝑓
𝑛+1

67

16
−
201

29

67

10
−
67

32

ℎ𝑓
𝑛+2

43

4
−
688

29

129

5
−
6859

580

Table 4: Coefficients for the first and second point of VSVO-BBDF when 𝑟 = 1, and 𝑟 = 1, 𝑞 = 1.

Order 𝛼
𝑘,0

𝛼
𝑘,1

𝛼
𝑘,2

𝛼
𝑘,3

𝛼
𝑘,4

𝛼
𝑘,5

𝑃 = 3
ℎ𝑓
𝑛+1

1

6
−1

1

2

1

3

ℎ𝑓
𝑛+2

−
1

3

3

2
−3

11

6

𝑃 = 4
ℎ𝑓
𝑛+1

−
1

12

1

2
−
3

2

5

6

1

4

ℎ𝑓
𝑛+2

1

4

−
4

3
3 −4

25

12

𝑃 = 5
ℎ𝑓
𝑛+1

1

12
−
1

2

7

6
−
1

3
−
5

4

5

6

ℎ𝑓
𝑛+2

−
5

6

61

12
−13

107

6
−
77

6

15

4

𝑙, 𝑚 = 1, 2, . . . , 𝑟. Since VSVO-BBDF for variable order (𝑃)
is a block method, we extend the Definition 2 in the form of

𝐿 [𝑧 (𝑥) ; ℎ] =

𝑗

∑

𝑘=0

[𝐴
𝑘
𝑧 (𝑥 + 𝑘ℎ) − ℎ𝐵

𝑘
𝑧
󸀠

(𝑥 + 𝑘ℎ)] . (12)

And the general form for the constant 𝐶
𝑞
is defined as

𝐶
𝑞
=

𝑗

∑

𝑘=0

[𝑘
𝑞
𝐴
𝑘
−

1

(𝑞 − 1)!
𝑘
𝑞−1
𝐵
𝑘
] , 𝑞 = 2, 3, . . . 𝑝 + 1.

(13)

𝐴
𝑘
is equal to the coefficients of 𝑦

𝑘
, where 𝑘 = 𝑛 = (𝑃 −

2), . . . , 𝑛 + 1, 𝑛 + 2 and 𝑃 = 3, 4, 5.

4. Implementation of VSVO-BBDF Method

Throughout this section, we illustrate the effect of Newton-
type scheme which in a general form of

𝑦
(𝑖+1)

𝑛+1,𝑛+2
− 𝑦
(𝑖)

𝑛+1,𝑛+2
= −[(𝐼 − 𝐴) − ℎ𝐵

𝜕𝐹

𝜕𝑦
(𝑦
(𝑖)

𝑛+1,𝑛+2
)]

−1

×[(𝐼 − 𝐴) 𝑦
(𝑖)

𝑛+1,𝑛+2
−ℎ𝐵𝐹 (𝑦

(𝑖)

𝑛+1,𝑛+2
)−𝜉] .

(14)

The general form of VSVO-BBDF method is

𝑦
𝑛+1

= 𝛼
1
ℎ𝑓
𝑛+1

+ 𝜃
1
𝑦
𝑛+2

+ 𝜓
1
,

𝑦
𝑛+2

= 𝛼
1
ℎ𝑓
𝑛+2

+ 𝜃
1
𝑦
𝑛+1

+ 𝜓
2
,

(15)

with 𝜓
1
and 𝜓

2
are the back values. By setting,

𝐼 = [
1 0

0 1
] , 𝑦

𝑛+1,𝑛+2
= [

𝑦
𝑛+1

𝑦
𝑛+2

] , 𝐵 = [
𝛼
1

0

0 𝛼
2

] ,

𝐹
𝑛+1,𝑛+2

= [
𝑓
𝑛+1

𝑓
𝑛+2

] , 𝜉
𝑛+1,𝑛+2

= [
𝜓
1

𝜓
2

] .

(16)

Equation (15) in matrix-vector form is equivalent to

(𝐼 − 𝐴) 𝑦
𝑛+1,𝑛+2

= ℎ𝐵𝐹
𝑛+1,𝑛+2

+ 𝜉
𝑛+1,𝑛+2

. (17)

Equation (17) is simplified as

𝑓
𝑛+1,𝑛+2

= (𝐼 − 𝐴) 𝑦
𝑛+1,𝑛+2

− ℎ𝐵𝐹
𝑛+1,𝑛+2

− 𝜉
𝑛+1,𝑛+2

= 0. (18)

Newton iteration is performed to the system 𝑓
𝑛+1,𝑛+2

= 0;
by taking the analogous form of (14) where 𝐽

𝑛+1,𝑛+2
=

(𝜕𝐹/𝜕𝑌)(𝑌
(𝑖)

𝑛+1,𝑛+2
) is the Jacobian matrix of 𝐹 with respect
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Table 5: Coefficients for the first and second point of VSVO-BBDF when 𝑟 = 2, and 𝑟 = 2, 𝑞 = 2.

Order 𝛼̂
𝑘,0

𝛼̂
𝑘,1

𝛼̂
𝑘,2

𝛼̂
𝑘,3

𝛼̂
𝑘,4

𝛼̂
𝑘,5

𝑃 = 3
ℎ𝑓
𝑛+1

1

24
−
3

4

1

3

3

8

ℎ𝑓
𝑛+2

−
1

12
1 −

8

3

7

4

𝑃 = 4
ℎ𝑓
𝑛+1

−
1

80

5

48
−
15

16

8

15

5

16

ℎ𝑓
𝑛+2

1

30
−
1

4

3

2
−
16

5

23

12

𝑃 = 5
ℎ𝑓
𝑛+1

1

168
−
1

24

1

8

17

24
−
12

7

11

12

ℎ𝑓
𝑛+2

−
23

336

1

2
−
43

24

37

6
−
160

21

45

16

Table 6: Coefficients for the first and second point of VSVO-BBDF when 𝑟 = 10/19, and 𝑟 = 1, 𝑞 = 10/19.

Order 𝛼
𝑘,0

𝛼
𝑘,1

𝛼
𝑘,2

𝛼
𝑘,3

𝛼
𝑘,4

𝛼
𝑘,5

𝑃 = 3
ℎ𝑓
𝑛+1

6859

13920
−
29

20

19

29

29

96

ℎ𝑓
𝑛+2

−
6859

6960

12

5
−
96

29

91

48

𝑃 = 4
ℎ𝑓
𝑛+1

−
6854

15600

89167

46400
−
1131

400

1292

1131

13

64

ℎ𝑓
𝑛+2

13718

9425
−
6859

1200

174

25
−
64

13

3095

1392

𝑃 = 5
ℎ𝑓
𝑛+1

2476099

8020704
−
7

8

124

87
−
47

96
−
80

67

851

1032

ℎ𝑓
𝑛+2

−
12380495

4010352

53

6
−
452

29

931

48
−
2692

201

165

43

to 𝑌. Equation (14) is separated to three different matrices
denoted as

𝐸
(𝑖+1)

1,2
= 𝑦
(𝑖+1)

𝑛+1,𝑛+2
− 𝑦
(𝑖)

𝑛+1,𝑛+2
,

𝐴 = (𝐼 − 𝐴) − ℎ𝐵
𝜕𝐹

𝜕𝑌
(𝑦
(𝑖)

𝑛+1,𝑛+2
) ,

𝐵 = (𝐼 − 𝐴) 𝑦
(𝑖)

𝑛+1,𝑛+2
− ℎ𝐵𝐹 (𝑦

(𝑖)

𝑛+1,𝑛+2
) − 𝜉
𝑛+1,𝑛+2

.

(19)

Two-stage Newton iteration works to find the approxi-
mating solution to (1) with two simplified strategies based on
evaluating the Jacobian (𝐽

𝑛+1,𝑛+2
) and LU factorization of 𝐴

[16]. Two-stage Newton iteration is carried out as follows.

Step 1. Compute the values for 𝑒(𝑖+1)
𝑛+1,𝑛+2

= 𝐴
−1
𝐵, where

𝐴 =
[
[
[

[

1 − 𝛼
1
ℎ
𝜕𝐹
𝑛+1

𝜕𝑦
𝑛+1

𝜃
1

𝜃
2

1 − 𝛼
2
ℎ
𝜕𝐹
𝑛+2

𝜕𝑦
𝑛+2

]
]
]

]

,

𝐵 = [

[

𝑦
(𝑖)

𝑛+1
+ 𝛼
1
ℎ𝐹
(𝑖)

𝑛+1
+ 𝜉
1

𝜃
1
𝑦
(𝑖)

𝑛+2

𝜃
2
𝑦
(𝑖)

𝑛+1
𝑦
(𝑖)

𝑛+2
+ 𝛼
2
ℎ𝐹
(𝑖)

𝑛+2
+ 𝜉
2

]

]

.

(20)

Step 2. Calculate the corrected value for 𝑦(𝑖+1)
𝑛+1,𝑛+2

with the
value 𝑒(𝑖+1)

𝑛+1,𝑛+2
from (1).

Step 3. Solve 𝑒(𝑖+1)
𝑛+1,𝑛+2

= 𝐴
−1
𝐵 for the second iteration.

Step 4. Let 𝑦(𝑖+1)
𝑛+1,𝑛+2

be equal to the second iteration of
𝑒
(𝑖+1)

𝑛+1,𝑛+2
= 𝐴
−1
𝐵.

The error is defined as

error = 󵄨󵄨󵄨󵄨󵄨𝑦approximate − 𝑦actual
󵄨󵄨󵄨󵄨󵄨
, (21)

and the maximum error is defined as

MAXE = (max
1<𝑖<TS

(max
1<𝑖<𝑛

(error))) , (22)

where TS is the total steps and 𝑛 is the number of equations.
Consequently, the rest of the method is carried out as the
appendix.

5. Stability Conditions for
VSVO-BBDF Method

To begin this section, we provide some definitions for the
stability conditions of VSVO-BBDF method as in (15).
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Table 7: Roots for different step sizes and orders.

Roots for different step size 𝑃 = 3 𝑃 = 4 𝑃 = 5

𝑟 = 1, and
𝑟 = 1, 𝑞 = 1

𝑡 =

−0.4347826087𝑒 − 1,
and 𝑡 = 1

𝑡 = −0.24414201370, 𝑡 = −0.9671746307𝑒 − 1,
𝑡 = 0.02079175991, 𝑡 = 0.01195305716,

and 𝑡 = 1 and 𝑡 = 1

𝑟 = 2, and
𝑟 = 2, 𝑞 = 2

𝑡 = −0.01315789474,
and 𝑡 = 1

𝑡 = −0.052708171410, 𝑡 = −0.06178960900,
𝑡 = 0.003257621961, 𝑡 = −0.001737052270,

and 𝑡 = 1 and 𝑡 = 1

𝑟 =
10

19
, and

𝑟 = 1, 𝑞 =
10

19

𝑡 = −0.1098846524,
and 𝑡 = −1

𝑡 = −0.93455113330, 𝑡 = −0.4375589404,
𝑡 = 0.08581158625, 𝑡 = −0.007529578675,

and 𝑡 = 1 and 𝑡 = 1

Definition 3. Amethod is said to be zero stable if the roots of
the polynomial 𝜌(𝑧) = 𝜋(𝑧, 0) satisfy the condition 𝑧

1
= 1 ≤

|𝑧
2
|, 𝑧
2
̸= 1.

Definition 4. A method is said to be absolutely stable in a
region 𝑅 for a given ℎ𝜆 if for that ℎ𝜆 all the roots 𝑟

𝑠
of the

stability polynomial 𝜋(𝑟, ℎ𝜆) = 𝜌(𝑟) − ℎ𝜆𝜎(𝑟) = 0 satisfy
|𝑟
𝑠
| < 1, 𝑠 = 1, 2, . . . , 𝑘.

Definition 5. Amethod is said to be stiffly stable ifR
1
andR

2

are contained in the absolute stability region, and it is accurate
for all ℎ ∈ R

2
when applied to the scalar test equation 𝑦󸀠 =

𝜆𝑦; 𝜆 is a complex constant with 𝑅𝜆 < 0, where R
1
= {ℎ𝜆 |

𝑅ℎ𝜆 < −𝑡},R
2
= {ℎ𝜆 | −𝑡 ≤ 𝑅ℎ𝜆 ≤ 𝑢, −𝑣 ≤ ∐ℎ𝜆 < 𝑣}, and

𝑡, 𝑢, and 𝑣 are positive constants.

The stability polynomial, 𝑅(𝑡, ℎ̂) associated with the
method of (15), is given by det(𝐴𝑡2−𝐵𝑡−𝐶), while the absolute
stability region of this method in the ℎ𝜆 plane is determined
by solving det(𝐴𝑡2 −𝐵𝑡−𝐶 = 0). Consequently, to determine
zero stable, we substitute ℎ̂ = ℎ𝜆 = 0 to 𝑅(𝑡, ℎ̂) for each order
of VSVO-BBDF method.

Hence, the roots for the three different step size and order
(𝑃) selections obtained by using Maple are listed in Table 7.

The stability region was given by the set of points deter-
mined by the boundary 𝑡 = 𝑒𝑖𝜃, 0 ≤ 𝜃 ≤ 2𝜋. We obtained the
stability region by finding the region for which |𝑡| < 1. Since
all of the roots in Table 7 have modulus less than or equal to
1, the method (15) is said to be zero stable. Figure 2 shows the
stability for orders 𝑃3, 𝑃4, and 𝑃5 of VSVO-BBDF method,
respectively.The stability regions lie outside the closed region
for each case.

Based on Figure 2, VSVO-BBDF method possesses the
region absolute stability, which contains almost the whole of
the half-plane Re(ℎ𝜆) < 0.

6. Choosing Order and Step Size

To increase the efficiency in BBDF algorithm, VSVO-BBDF
algorithm is designed to have the capacity to vary not only
the step size, but also the order of the method employed.
The importance of choosing the step size is to achieve
reduction in computation time and number of iterations.

Meanwhile changing the order of the method is designed for
finding the best approximation. The essential components of
VSVO-BBDF algorithm are the local truncation error (LTE),
strategies for deciding when to change step size and order,
and techniques for changing the step size and order. Strategies
proposed in [17] are applied in this study for choosing the
step size and order. The strategy is to estimate the maximum
step size for the following step. Methods of order 𝑃 − 1, 𝑃,
and 𝑃 + 1 are selected depending on the occurrence of
every successful step. Consequently, the new step size ℎnew is
obtained from which order produces the maximum step size.

The user initially will have to provide an error tolerance
limit, TOL, on any given step and obtain the LTE for each
iteration. The LTE is obtained from

LTE
𝑘
= 𝑦
(𝑃+1)

𝑛+2
− 𝑦
(𝑃)

𝑛+2
, 𝑃 = 3, 4, 5, (23)

where 𝑦(𝑃+1)
𝑛+2

is the (𝑃+1)th order method and 𝑦(𝑃)
𝑛+2

is the 𝑘th
order method. By finding the LTEs, the maximum step size is
defined as

ℎ
𝑃−1

= ℎold × (
TOL

LTE
𝑃−1

)

1/𝑃

,

ℎ
𝑃
= ℎold × (

TOL
LTE
𝑃

)

1/(𝑃+1)

,

ℎ
𝑃+1

= ℎold × (
TOL

LTE
𝑃+1

)

1/(𝑃+2)

,

(24)

where ℎold is the step size from previous block and ℎmax is
obtained from the maximum step size given in the above
equations.

There are 3 cases of the possibilities in choosing the step
size.

Case 1. From order 3 to order 4 and from order 4 to order 3,
the step size is allowed to increase, decrease, or bemaintained,
that is, (𝑟 = 1), (𝑟 = 2) or (𝑟 = 10/19).

Case 2. From order 3 to order 5 and from order 4 to order 5,
the step size is allowed to decrease, or be maintained, that is,
(𝑟 = 1) (𝑞 = 1), (𝑟 = 2) (𝑞 = 2), or (𝑟 = 1) (𝑞 = 10/19).
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Figure 2: Stability regions for order (a) 𝑃3, (b) 𝑃4, and (c) 𝑃5.

Case 3. From order 5 to order 3 and from order 5 to order 4,
the step size is allowed to decrease, or be maintained, that is,
(𝑟 = 1) (𝑟 = 2) or (𝑟 = 10/19).

The successful step is dependent on the condition LTE <

TOL. If this condition fails, the values of 𝑦
𝑛+1

, 𝑦
𝑛+2

are
rejected, and the current step is reiterated with step size
selection (𝑞 = 2). On the contrary, the step size increment
for each successful step is defined as

ℎnew = 𝑐 × ℎmax and if

ℎnew > 1.9 × ℎold then ℎnew = 1.9 × ℎold,

where 𝑐 is the safety factor, 𝑝 is the order of the method while
ℎold and ℎnew is the step size from previous and current block,
respectively. In this paper, 𝑐 is set to be 0.8 so as to make sure
the rejected step is being reduced.

7. Numerical Results

We carry out numerical experiments arising from problems
in physics to compare the performance of VSVO-BBDF
method with stiff ODE solvers in MATLAB version 7 in
Windows XP or later.The syntax for using ode15s and ode23s
is similar for every test problem. For example,

[𝑋, 𝑌] = ode15s (“odefun”, int, init, options) , (25)

where odefun is a function stored that evaluates the right
side of the differential equations, int is a vector of the
integration interval, [𝑥

𝑜
, 𝑥end], init is a column vector of

initial conditions, [𝑦
0
], and options is an adjustable format

of optional parameters to change the default integration
properties.

We created the above option structure to vary the relative
tolerance (RelTol) and absolute tolerance (AbsTol) according
to specific error tolerance.These test problems are performed
under different conditions of error tolerances—(a) 10−2, (b)
10−4, and (c) 10−6.
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Table 8: Numerical results for Problem 1.

TOL MTD TS AVEE MAXE TIME

10−2
VSVO-BBDF 21 2.9370𝑒 − 005 2.8298𝑒 − 004 0.0103

ode15s 28 1.3000𝑒 − 003 8.4000𝑒 − 003 0.0313
ode23s 19 1.0000𝑒 − 003 4.5000𝑒 − 003 0.1406

10−4
VSVO-BBDF 48 1.0716𝑒 − 006 3.2212𝑒 − 006 0.0105

ode15s 60 3.0358𝑒 − 005 1.6621𝑒 − 004 0.0156
ode32s 42 1.1285𝑒 − 004 2.5683𝑒 − 004 0.0313

10−6
VSVO-BBDF 164 1.6733𝑒 − 008 3.1232𝑒 − 008 0.0115

ode15s 100 7.2564𝑒 − 007 2.7506𝑒 − 006 0.0313
ode23s 143 7.3558𝑒 − 006 1.2514𝑒 − 005 0.0469

Table 9: Numerical results for Problem 2.

TOL MTD STs AVEE MAXE TIME

10−2
VSVO-BBDF 22 7.1459𝑒 − 005 2.5736𝑒 − 004 0.0106

ode15s 29 9.0287𝑒 − 004 5.2000𝑒 − 003 0.0781
ode23s 25 3.3626𝑒 − 004 1.1000𝑒 − 003 0.0781

10−4
VSVO-BBDF 54 7.4173𝑒 − 006 3.7659𝑒 − 004 0.0111

ode15s 55 1.7139𝑒 − 005 8.5506𝑒 − 005 0.1250
ode32s 118 1.3783𝑒 − 005 6.9774𝑒 − 005 0.2031

10−6
VSVO-BBDF 194 6.3429𝑒 − 009 3.2882𝑒 − 008 0.0143

ode15s 197 2.1320𝑒 − 007 1.0790𝑒 − 006 0.2344
ode23s 773 3.3163𝑒 − 007 2.8081𝑒 − 006 0.4531

The test problems and solutions are listed below.

Problem 1. Consider,

𝑦
󸀠
= −100 (𝑦 − 𝑥) + 1, 𝑦 (0) = 1, 0 ≤ 𝑥 ≤ 10, (26)

with solution

𝑦 (𝑥) = 𝑒
−100𝑥

+ 𝑥. (27)

Problem 2. Consider,
𝑦
󸀠

1
= −1002𝑦

1
+ 1000𝑦

2

2
, 𝑦
1
(0) = 1, 0 ≤ 𝑥 ≤ 10,

𝑦
󸀠

2
= 𝑦
1
− 𝑦
2
(1 + 𝑦

2
) , 𝑦

2
(0) = 1,

(28)

with solution
𝑦
1
= 𝑒
−2𝑥

,

𝑦
2
= 𝑒
−𝑥
.

(29)

See Kaps [18].

Problem 3. Consider,
𝑦
󸀠

1
= −2𝑦

1
+ 𝑦
2
+ 2 sin (𝑥) , 𝑦

1
(0) = 2, 0 ≤ 𝑥 ≤ 10,

𝑦
󸀠

2
= 998𝑦

1
− 999𝑦

2
+ 999 (cos (𝑥) − sin (𝑥)) , 𝑦

2
(0)=3,

(30)

with solution
𝑦
1
(𝑥) = 2𝑒

−𝑥
+ sin (𝑥) ,

𝑦
2
(𝑥) = 2𝑒

−𝑥
+ cos (𝑥) .

(31)

See Lambert [15].

This paper considers the comparison of four different fac-
tors, namely, number of steps taken, average error, maximum
error, and computation time. From Table 8, among the three
methods tested, our method, VSVO-BBDF method, requires
the shortest execution time, smallest maximum error, and
average error for each given tolerance level. From Figure 3,
we can see more clearly that VSVO-BBDF gives the lowest
maximum error for every tolerance level.

Again by comparing the four factors mentioned earlier,
we can see VSVO-BBDF in Table 9 gives the minimum
maximumerror for every tolerance level except for TOL 10𝑒−
4. However, our method prevails in terms of average error
for each given tolerance level. VSVO-BBDF once again
requires the shortest execution time for each given tolerance
level. Figure 4 illustrates the efficiency of VSVO-BBDF as
compared to ode15s and ode23s.

From Table 10, VSVO-BBDF method gives the shortest
execution time for every given tolerance level. While in
terms of average error and maximum error, VSVO-BBDF
method once again gives the best result as compared to ode15s
and ode23s. Figure 5 clarifies the efficiency of the proposed
method based on its total steps and tolerance level.

8. Conclusion

The objective is met when VSVO-BBDF method outper-
formed ode15s and ode23s in terms of average error as well
as maximum error. In most of the cases, VSVO-BBDF has
successfully managed to reduce the number of total steps
taken. As for the computation time wise, it gave lesser values
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Table 10: Numerical results for Problem 3.

TOL MTD TSs AVEE MAXE TIME

10−2
VSVO-BBDF 35 4.6584𝑒 − 005 3.0045𝑒 − 004 0.0111

ode15s 45 6.9000𝑒 − 003 1.4620𝑒 − 002 0.0156
ode23s 137 4.0745𝑒 − 004 3.0000𝑒 − 002 0.2031

10−4
VSVO-BBDF 84 2.5775𝑒 − 006 1.1002𝑒 − 005 0.3281

ode15s 93 7.6548𝑒 − 005 2.7591𝑒 − 004 0.0469
ode32s 1211 2.4915𝑒 − 005 6.3075𝑒 − 005 0.0156

10−6
VSVO-BBDF 380 2.4244𝑒 − 008 8.9627𝑒 − 008 0.0199

ode15s 186 2.1681𝑒 − 006 6.1936𝑒 − 006 0.0781
ode23s 2829 5.3155𝑒 − 007 1.5667𝑒 − 006 2.3281
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Figure 3: Efficiency curves for Problem 1.

for all cases. Therefore, we can conclude that VSVO-BBDF
can serve as an alternative solver for solving stiff ordinary
differential equations which arise in engineering and applied
sciences.

Appendix

The following notation is used in the algorithm of VSVO-
BBDF:

ℎ: step size,
𝜀: tolerance,
TS: total steps,
Order: order of the method,
JCBN: jacobian,
E: increment.

The algorithm for VSVO-BBDF code is given as follows.

Step 1. Let order = 3.

Step 2. Calculate initial step size (ℎ) and 𝜀.

Step 3. Calculate initial array 𝑦
1
, . . . 𝑦
𝑖
, 𝑖 = order − 1.

Step 4. Calculate the predictor values for 𝑦
𝑖+1

, 𝑦
𝑖+2

, 𝑖 =

order − 1.

Step 5. Calculate 𝐹
𝑖
for 𝑖 = 1, . . . , order + 1.

Step 6. Calculate the corrector values for 𝑦
𝑖+1

, 𝑦
𝑖+2

, 𝑖 =

order − 1.

Step 7. Calculate 𝐹
𝑖
for 𝑖 = 1, . . . , order + 1.
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Figure 4: Efficiency curves for Problem 2.
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Figure 5: Efficiency curves for Problem 3.
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Implementation of VSVO-BBDF.

Step 8. Calculate Jacobian (JACBN).

Step 9. Perform LU-Decomposition to calculate the incre-
ment 𝐸.

Consider,

𝐸
(𝑖+1)

1,2
= 𝑦
(𝑖+1)

𝑛+1,𝑛+2
− 𝑦
(𝑖+1)

𝑛+1,𝑛+2
, 𝑛 = order − 1. (A.1)

Test for convergence.

Step 10. If 𝐸 > 𝜀, convergence is false. Else go to Step 11.

Step 11. Calculate LTE
𝑖
, 𝑖 = order.

Change order.

Step 12. Let order equal 4 and order equal 5.

Step 13. Repeat from Step 2 until Step 11 for each order
correspondingly.

Step size and order control.

Step 14. Calculate ℎmax for choosing the new step size.
Consider,

ℎ
𝑘
= ℎold × (

TOL
LTE
2,𝑘

)

1/(𝑘+1)

. (A.2)

The final step size after a successful step (LTE < 𝜀) is given
by

ℎnew = 𝑐 × ℎold × (
TOL
LTE

)

1/𝑝

. (A.3)

The final step size after a failure step (LTE > 𝜀) is given by

ℎnew ≥
1

2
× ℎold. (A.4)

Step 15. If ℎnew ≥ 1.9 × ℎold then ℎnew = 1.9 × ℎold.
Else ℎnew = ℎold.

Step 16. Update values:

𝑦
𝑖
= 𝑦
𝑖+2
, 𝑥
𝑖
= 𝑥
𝑖+2

for 𝑖 = 1, . . . , order − 1. (A.5)

Step 17. Repeat Step 1 to Step 16 until ℎ = end point.

The Abbreviations Used in Figures 3–5
and Tables 8–10

TSs: The total number of steps taken
TOL: The initial value for the local error estimate
MAXE: The maximum error
AVEE: The average error
MTD: The method used
TIME: The total execution time (seconds).
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[4] A. S. Mahmood, L. Casasús, and W. Al-Hayani, “The decom-
position method for stiff systems of ordinary differential equa-
tions,”AppliedMathematics and Computation, vol. 167, no. 2, pp.
964–975, 2005.
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