1D AND 2D NMR STUDIES OF 2-(2-(BENZYLOXY)-3-METHOXYPHENYL)-1H-BENZIMIDAZOLE

Mohammed Hadi Al-Douh, Shafida Abd Hamid* and Hasnah Osman

School of Chemical Sciences, Universiti Sains Malaysia (USM), Minden 11800, Pinang, Malaysia

Received 20 March 2007; Accepted 20 May 2007

Abstract

The reaction of Benzyl o-vanillin 1 and o-phenylene diamine 2 in dichloromethane produced new benzimidazole, 3. The complete assignments of 3 were made using 1D and 2D NMR including COSY, HMQC and HMBC NMR in CDCl_{3} and acetone- d_{6}. The coupling constants J are reported in Hertz, and the differences in the peak splittings using both solvents are discussed.

Keywords: ${ }^{1} \mathrm{H}$ NMR; ${ }^{13} \mathrm{C}$ NMR; 2D NMR; Benzimidazole.

INTRODUCTION

Hobrecker prepared the first benzimidazole in 1872, when he reduced 2-nitro-4-methylacetanilide a to obtained the tautomers 2, 5 (or 2, 6)-dimethyl benzimidazole b (Scheme 1) [1-2]. Since benzimidazoles have a similar structure to purines, whose derivatives play important roles in biological systems, substituted benzimidazoles show interesting biological activities. Many benzimidazoles are pharmaceutical agents and are used widely in biological system applications [3-8]. Recently, some derivatives of benzimidazole were reported and used as antiviral [5-6], topoisomerase I inhibitors [9-11], antiproliferative [12], antiprotozoal activity of Acanthamoeba castellanii [13],

Scheme 1. First benzimidazole b, prepared by Hobrecker in 1872 [1].

Scheme 2. Synthesis of new benzimidazole 3, I) DCM, MgSO_{4}, 2 hr .
antibacterial [14-16], anthelmintics activity of Trichinella spiralis [17], anti-inflammatory against [18-19], antiHIV [20-24] and also as anticancer [3-4, 25-30]. Meanwhile, phenolic and anisolic benzimidazole derivatives have been synthesized and evaluated for vasodilator and antihypertensive activity [30], while other alkyloxyaryl benzimidazole derivatives have been tested for the spasmolytic activity [31].

Recently, we synthesized and characterized 2-(2-(benzyloxy)-3-methoxyphenyl)-1H-benzimidazole 3 by FTIR, GC-MS, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra from the reaction of benzyl o-vanillin 1 and o-phenylene diamine 2 in dichloromethane (DCM) (Scheme 2).

We also obtained the crystal of 3, and its structure was determined and studied by X-ray crystallography [32-34]. In this work, the complete assignments of 3 were made using 1D and 2D NMR including APT, DEPT-135, COSY, HMQC and HMBC NMR in CDCl_{3} and acetone $-d_{6}$. The coupling constants J were reported in Hertz and the differences in the peak splittings using both solvents were discussed.

EXPERIMENTAL SECTION

All NMR experiments were performed on Bruker Avance 400 Ultrashield ${ }^{\text {TM }}$ NMR for ${ }^{1} \mathrm{H}$ operating at 400.123 MHz , and Avance 300 NMR spectrometers for ${ }^{13} \mathrm{C}$ operating at 71.478 MHz in CDCl_{3} and acetoned_{6} at 298 K using Bruker XWINNMR software equipped with a 5 mm BBI inverse gradient probe [35-36]. Chemical shifts were reported downfield in parts per million (ppm) from a tetramethylsilane (TMS) reference, and coupling constants (J) were measured in Hz. The concentration of solute molecule was 100 mg in 1.0 mL CDCl_{3} or acetone $-d_{6}$.

RESULTS AND DISCUSSION

The new benzimidazole 3 was synthesized from the reaction of $\mathbf{1}$ and $\mathbf{2}$ in DCM as a solvent (Scheme

[^0]2). The benzimidazole 3 was obtained as single crystals with melting point of $135-136{ }^{\circ} \mathrm{C}$, (Fig 1 and 2) [15-17]. $1 \mathrm{D}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR along with 2D COSY, HMQC and HMBC experiments were performed to assign all proton and carbon chemical shifts. The splitting patterns for the aromatic protons of 3 were obtained from the spectra acquired using $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shift and coupling constants data in CDCl_{3} and acetone $-d_{6}$ are listed in Table 1, while Table 2 shows the HMQC and HMBC signals of $\mathbf{3}$. Figure 2 shows the chemical structure and the NMR numbering scheme of the new benzimidazole 3.

${ }^{1} \mathrm{H}$ NMR

The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 was obtained and shown in Figure 3. Proton H_{6} displayed doublet of a doublet at $\delta=8.16-8.14$, $(J=8.03$ and 1.49 Hz$)$ in CDCl_{3} and $8.03-8.01 \mathrm{ppm},(\mathrm{J}=7.03$ and 2.50 Hz$)$ in acetone $-d_{6}$ due to its coupling with H_{5} and $\mathrm{N}-\mathrm{H}$.

Fig 1. The crystal structure of benzimidazole 3, showing 50% probability displacement ellipsoids and the atomnumbering scheme, the dashed line indicates an intramolecular hydrogen bond.

Fig 2. The chemical structure and the NMR numbering scheme of the benzimidazole 3.

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts and coupling constants of 3 in CDCl_{3} and acetone- d_{6}

Atom No.	${ }^{1} \mathrm{H}$ NMR (ppm)			${ }^{13} \mathrm{C}$ NMR (ppm)		
	CDCl_{3}	$J(\mathrm{~Hz})$	acetone- d_{6}	$J(\mathrm{~Hz})$	CDCl_{3}	$\begin{gathered} \text { acetone- } \\ d_{6} \\ \hline \end{gathered}$
CH_{3}	4.01, s	-	3.99, s	-	56.49	56.85
CH_{2}	5.18, s	-	5.23, s	-	76.85	76.57
$\mathrm{N}-\mathrm{H}$	7.25, d	1.06	7.24, s	-	-	-
1	-	-	-	-	123.37	124.90
2	-	-	-	-	146.53	147.07
3	-	-	-	-	153.26	154.46
4	7.28, s	-	7.21, s	-	114.44	115.44
5	$\begin{gathered} 7.09-7.07 \\ d d \end{gathered}$	8.16, 1.43	$\begin{gathered} 7.21-7.19 \\ d d \end{gathered}$	$\begin{aligned} & 8.09 \\ & 2.39 \end{aligned}$	125.29	125.74
6	$\begin{gathered} 8.16-8.14 \\ d d \end{gathered}$	8.03, 1.49	$\begin{gathered} 8.03-8.01 \\ d d \end{gathered}$	$\begin{aligned} & 7.03 \\ & 2.50 \end{aligned}$	121.98	122.73
1	-	-	-	-	136.99	138.31
2	7.49-7.47	x	$\begin{gathered} 7.47-7.45 \\ d d \end{gathered}$	$\begin{gathered} 9.41, \\ 3.52 \end{gathered}$	129.40	130.22
3	7.45-7.43, t	3.25	7.30, d	2.54	129.32	129.57
4	7.46	x	7.31, t	0.99	129.35	129.54
2"	-	-	-	-	149.62	150.25
$4{ }^{\prime \prime}$	$7.44, d$	3.09	$\begin{gathered} 7.61-7.60 \\ d d \end{gathered}$	$\begin{gathered} 6.02, \\ 3.19 \end{gathered}$	123.10*	123.58*
5 - 6 6"	7.27-7.26, t	3.01	7.23-7.22, t	3.03		
7 「	$\begin{gathered} 7.51-7.49 \\ d d \end{gathered}$	$7.14,3.71$	$\begin{gathered} 7.61-7.60 \\ d d \end{gathered}$	$\begin{gathered} 6.02, \\ 3.19 \end{gathered}$	114.44	116.42
$\begin{gathered} 3 \mathrm{a}^{\prime \prime} \& \\ 7 \mathrm{a}^{\prime \prime} \end{gathered}$	-	-	-	-	-**	139.72
x not clea * overlap. ** not obs	rly observed erved.					

Table 2. 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMQC and HMBC correlations for 3 in acetone- d_{6} :

Atom	HMQC (ppm)	HMBC [$J(\mathrm{C}, \mathrm{H})$] (ppm)		
	${ }^{1} J$	${ }^{2} J$	3 J	${ }_{4}$ J
CH_{3}	56.85	-	154.46, C 3	115.44, C_{4}
CH_{2}	76.57	138.31, C_{1}	$\begin{aligned} & 130.22, \mathrm{C}_{2} \\ & 147.07, \mathrm{C}_{2} \end{aligned}$	129.57, С 3
N-H	-	139.72, $\mathrm{C}_{7 \mathrm{a}}{ }^{\text {a }}$	$\begin{gathered} 116.42, \mathrm{C}_{7 ゙} \\ 124.90, \mathrm{C}_{1} \\ 139.72, \mathrm{C}_{3 \mathrm{a}} \end{gathered}$	$\begin{gathered} 122.73, \mathrm{C}_{6} \\ 123.58 \\ \mathrm{C}_{4 \cdots}, \mathrm{C}_{6} \end{gathered}$
H_{4}	115.44	154.46, C ${ }_{3}$	$\begin{aligned} & 122.73, \mathrm{C}_{6} \\ & 147.07, \mathrm{C}_{2} \end{aligned}$	124.90, C_{1}
H_{5}	125.74	$\begin{aligned} & 115.44, \mathrm{C}_{4} \\ & 122.73, \mathrm{C}_{6} \end{aligned}$	$\begin{aligned} & 124.90, \mathrm{C}_{1} \\ & 154.46, \mathrm{C}_{3} \end{aligned}$	147.07, C_{2}
H_{6}	122.73	124.90, C_{1}	$\begin{aligned} & 147.07, \mathrm{C}_{2} \\ & 150.25, \mathrm{C}_{2} \end{aligned}$	154.46, С ${ }_{3}$
H_{2}	130.22	129.57, C_{3}	$\begin{aligned} & 76.57, \mathrm{CH}_{2} \\ & 129.54, \mathrm{C}_{4} \end{aligned}$	129.57, C_{3}
H_{3}	129.57	$\begin{aligned} & 130.22, \mathrm{C}_{2} \\ & 129.57, \mathrm{C}_{4} \end{aligned}$	138.31, C_{1}	$130.22, \mathrm{C}_{2}$
H_{4}	129.54	129.57, C_{3}	130.22, C_{2}	138.31, C_{1}
$\mathrm{H}_{4}{ }^{\text {²}}$	123.58	$\begin{aligned} & 123.58, \mathrm{C}_{5} \\ & 139.72, \mathrm{C}_{3 a} \end{aligned}$	$\begin{aligned} & 123.58, \mathrm{C}_{6} \\ & 139.72, \mathrm{C}_{7 \mathrm{a}} \end{aligned}$	x
$\mathrm{H}_{5}{ }^{\prime}$	123.58	123.58, C_{4}, $\mathrm{C}_{6}{ }^{\text {c }}$	$\begin{aligned} & 116.42, \mathrm{C}_{7} \\ & 139.72, \mathrm{C}_{3 \mathrm{a}} \end{aligned}$	139.72, $\mathrm{C}_{7 \mathrm{a}}{ }^{\text {" }}$

$\mathrm{H}_{6}{ }^{\text {" }}$	123.58	$\begin{aligned} & 116.42, \mathrm{C}_{7} \\ & 123.58, \mathrm{C}_{5} \end{aligned}$	$\begin{aligned} & 123.58, \mathrm{C}_{4} \\ & 139.72, \mathrm{C}_{7 \mathrm{a}} \end{aligned}$	139.72, $\mathrm{C}_{3 \mathrm{a}}{ }^{\text {" }}$
H_{7}	116.42	$\begin{aligned} & 123.58, \mathrm{C}_{6 "} \\ & 139.72, \mathrm{C}_{7 \mathrm{a}} \end{aligned}$	$\begin{aligned} & 123.58, \mathrm{C}_{5} \\ & 139.72, \mathrm{C}_{3 a} \end{aligned}$	$123.58, \mathrm{C}_{4}$

x: not observed.
While the doublet of a doublet observed in CDCl_{3} at $\delta=$ $7.09-7.07 \mathrm{ppm}\left(\mathrm{J}=8.16\right.$ and 1.43 Hz) is assigned to H_{5} coupling to H_{4} in the trisubstituted ring. This proton was shown doublet of a doublet and shifted a bit downfield in acetone- d_{6}. It was also observed that in CDCl_{3} and acetone- $d_{6} \mathrm{H}_{4}$ appeared as a singlet at $\delta=7.28$ and 7.21 ppm , respectively. Additionally, the proton of $\mathrm{N}-\mathrm{H}$ observed as singlet and resonated at $\delta=7.24 \mathrm{ppm}$ in acetone- d_{6}, and it appeared as doublet in CDCl_{3} to $\delta=$ 7.25 ppm , ($J=1.06 \mathrm{~Hz}$). In acetone $-d_{6}$, the coupling between $\mathrm{N}-\mathrm{H}$ and H_{6} was observed most probably due to the interaction of the solvent with the compound.
We suggested the triplet of signal in acetone $-d_{6}$ at $\delta=$ $7.23-7.22 \mathrm{ppm},(\mathrm{J}=3.03 \mathrm{~Hz})$ and at $\delta=7.27-7.26 \mathrm{ppm}$, ($\mathrm{J}=3.01 \mathrm{~Hz}$) in CDCl_{3} to be assigned to H_{5} " and H_{6} " in the benzimidazole ring due to coupling with $\mathrm{H}_{4}{ }^{\prime \prime}$ and $\mathrm{H}_{7}{ }^{\prime \prime}$. The difference in chemical shift of H_{4} " and $\mathrm{H}_{7}{ }^{*}$ is also apparent in both solvents. In $\mathrm{CDCl}_{3}, \mathrm{H}_{7 \text { " }}$ and H_{4} " signal were found to be separated; H_{7} " appeared as doublet of a doublet at $\delta=7.51-7.49 \mathrm{ppm},(J=7.14$ and 3.71 Hz), while H_{4} " appeared as doublet at $\delta=7.44 \mathrm{ppm}$, J cannot be determined exactly due to peaks overlapping. However, in acetone- d_{6} both protons shown signal as doublet of a doublet at $\delta=7.61-7.60 \mathrm{ppm}(\mathrm{J}=6.02$ and 3.19 Hz).

Fig 3. ${ }^{1} \mathrm{H}$ NMR spectra of 3 in a) CDCl_{3} and b) in acetone- d_{6}.

From Figure 3, the signal of the benzyl ring protons H_{2} appeared as doublet of a doublet at $\delta=$ $7.47-7.44 \mathrm{ppm}$, $\left(J=9.41\right.$ and 3.52 Hz) in acetone- d_{6} although the peaks were not clearly shown in CDCl_{3}. The H_{4}. splitting patterns in CDCl_{3} was not clear due to that overlapping of the peaks but it appeared as a triplet at $\delta=7.31 \mathrm{ppm},(J=0.99 \mathrm{~Hz})$ in acetone $-d_{6}$. On the other hand, the protons of H_{3} displayed the signal as a triplet at $\delta=7.45-7.43 \mathrm{ppm},(J=3.25 \mathrm{~Hz})$ in CDCl_{3}, and as doublet at $\delta=7.30 \mathrm{ppm},(J=2.54 \mathrm{~Hz})$ in acetone $-d_{6}$. The methoxy OMe and methylene CH_{2} protons were observed in CDCl_{3} at $\delta=4.01$ and 5.18 ppm , and at $\delta=3.99$ and 5.23 ppm in acetone $-d_{6}$, respectively. Table 1 shows the chemical shift values of 3 in both solvents.

We found both spectra of the benzimidazole 3 were differed in splitting patterns for some of the aromatic protons, which may be due to the solubility of 3 in both solvents, including some effect from that sixmembered illusory ring, which was formed from the intramolecular hydrogen bonding between $\mathrm{N}-\mathrm{H}$ in the benzimidazole ring and the oxygen atom in the benzyl ring (Figure 1). ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC experiments were performed to further confirm that assigned peaks.

${ }^{13} \mathrm{C}$ NMR

The ${ }^{13} \mathrm{C}$ NMR spectra of 3 were obtained and shown in Figure 4. The quaternary carbons in 3 were identified and recognized by APT and or DEPT-135 NMR experiments in both solvents. The quaternary carbon signals for $\mathrm{C}_{3}, \mathrm{C}_{2}{ }^{\text {" }}, \mathrm{C}_{2}, \mathrm{C}_{1}$ and C_{1} in CDCl_{3} were observed at $\delta=153.26,149.62,146.53,136.99$ and 123.37 ppm , respectively. In acetone $-d_{6}$ these values were found to be shifted slightly downfield. The signals of the quaternary carbons $\mathrm{C}_{3 \mathrm{a}}$ " and $\mathrm{C}_{7 \mathrm{a}}$ " were absent in CDCl_{3}, but, APT NMR experiment showed the existing of this peak at $\delta=138.87 \mathrm{ppm}$ in acetone $-d_{6}$. A NMR solid state study by Claramunt et al. showed that these signals appeared at $\delta=136.9 \mathrm{ppm}$ [37]. The CH_{2} and OMe signals in both solvents were found at about $\delta=$ 76.60 and 56.50 ppm , respectively.

The spectra showed that some of the carbons in the benzimidazole ring overlapped with the other carbons in trisubstituted ring. For example, in $\mathrm{CDCl}_{3} \mathrm{C}_{7}$ " signal overlapped with C_{4} at $\delta=114.44 \mathrm{ppm}$, while the peaks were separated clearly in acetone- d_{6}, (Figure 4). Similarly, carbons C_{4} ", $\mathrm{C}_{5 \text { " }}$ and C_{6} " appeared at the same chemical shift in both solvents. The carbons in trisubstituted ring C_{6} and C_{5} were resonated in CDCl_{3} at $\delta=121.98$ and 125.29 ppm , respectively, while the benzyl ring carbons were observed at $\delta=129.40$, 129.35 and 129.32 ppm for $\mathrm{C}_{2}, \mathrm{C}_{4}$ and C_{3} in CDCl_{3}, respectively. Table 1 summarizes the chemical shift values discussed.

To confirmed of the assignment signals and the overlapping between the aromatic carbons, the proton

Fig 4. ${ }^{13} \mathrm{C}$ NMR spectra of 3 in a) CDCl_{3} and b) in acetone- d_{6}.
coupled ${ }^{13} \mathrm{C}$ NMR spectra of the benzimidazole 3 were also conducted. Additionally, the HMQC and HMBC experiments done, further aid in assigning the peaks.

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY

The signals of 3 are also assigned with an aid by the COSY experiment. Figure 5 shows the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectra of 3 in CDCl_{3} and acetone $-d_{6}$. The signal in both solvents at $\delta=4.01-3.99 \mathrm{ppm}$, was assigned to the methoxy protons, OMe and it showed correlations with CH_{2} at $\delta=5.18-5.23 \mathrm{ppm}$. As expected, proton H_{5} was correlated with H_{4} and H_{6} in CDCl_{3} at $\delta=7.25$ and $8.16-8.14 \mathrm{ppm}$, respectively. Besides H_{5} and H_{4}, proton H_{6} show correlations clearly with H_{4} and $\mathrm{N}-\mathrm{H}$ although this correlation is not observed in acetone- $d_{6} . \mathrm{H}_{5}$ ", H_{6} " were observed to be correlated with both protons H_{7} " and H_{4} " at $\delta=7.51-$ 7.49 and 7.43 ppm in CDCl_{3} and at $\delta=7.61-7.60 \mathrm{ppm}$ in acetone- d_{6}.

Fig 5. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ connectivities in the COSY a) in CDCl_{3}, b) in acetone $-d_{6}$ and c) the most important correlations observed in COSY and NOESY spectrum of 3.

Fig 6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectivities of $\mathbf{3}$ in acetone $-d_{6}$ a) in the HMQC, b) in the HMBC and c) the most important correlations observed.

${ }^{1} \mathrm{H}^{13}{ }^{13} \mathrm{C}$ HMQC NMR

The 2D HMQC NMR spectrum was conducted to determine which hydrogens are connected to which carbons. The HMQC NMR spectrum for 3 was shown in Figure 6a, and it confirms the attachments between all hydrogens and their corresponding carbons. In acetoned_{6}, the signals owing to $\mathrm{C}_{4}, \mathrm{C}_{7^{\prime \prime}}, \mathrm{C}_{6}, \mathrm{C}_{5}, \mathrm{C}_{4}, \mathrm{C}_{3}$ and C_{2} atoms are observed at the respective $\delta=115.44$, 116.42, 122.73, 125.74 and $129-130 \mathrm{ppm}$, while the signals of the one bond ${ }^{13} \mathrm{C}^{-1} \mathrm{H}$ connectivities are also well observed for OMe and CH_{2} atoms whereby the cross peaks appear at $\delta=56.85$ and 76.57 ppm , respectively. Table 2 shows the summarized value for HMQC of 3 .

${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectra

The 2D HMBC NMR spectrum was conducted to examine the long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ connectivities. The HMBC NMR spectrum for 3 was shown in Figure 6b. The aromatic quaternary carbons are established through the connectivities between the carbon and its neighboring proton by using a long-range correlated HMBC experiment. The signal in acetone $-d_{6}$ of methoxy protons showed ${ }^{3} \mathrm{~J}$-correlation with C_{3} at $\delta=154.46 \mathrm{ppm}$ and ${ }^{4} J$-correlation with C_{4} at $\delta=115.44 \mathrm{ppm}$. While the protons of CH_{2} were observed ${ }^{2} \mathrm{~J}$-correlation with C_{1}. and ${ }^{3} \mathrm{~J}$-correlation with C_{2}. and C_{2} at $\delta=138.31,130.22$ and 147.07 ppm , respectively.

Additionally, the long-range HMBC cross peaks of the quaternary carbon C_{3} with H_{5} appeared at $\delta=7.21$ 7.19 ppm and was correlated with H_{6} at $\delta=8.03-8.01$ ppm. Proton H_{6} was demonstrated to correlate with $\mathrm{C}_{2}{ }^{\prime \prime}$ and $\mathrm{C}_{2} . \mathrm{H}_{4}$ and H_{5} were also observed to be correlated with C_{2}. The spectrum also shows that $\mathrm{C}_{3 a^{\prime \prime}}$ and $\mathrm{C}_{7 \mathrm{a}^{\prime \prime}}$ were correlated with $\mathrm{N}-\mathrm{H}, \mathrm{H}_{6 "}$ and H_{5} "at $\delta=7.24-7.22$ ppm and with $\mathrm{H}_{7} "$ and H_{4} "at $\delta=7.61-7.60 \mathrm{ppm}$. The chemical shifts of the HMBC of 3 are summarized in Table 2.

CONCLUSION

We have reported the complete assignments of the benzimidazole 3 using ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY, HMQC and HMBC NMR in both CDCl_{3} and acetone- d_{6}. Although the APT and DEPT-135 spectra were not shown, that experiments were performed and the results were discussed. Combination of the information gathered from experiments done in both solvents helps in assigning peak splittings of compound 3. The differences in the peak splittings can be seen in a few cases. For example, in $\mathrm{CDCl}_{3}, \mathrm{H}_{7}$ - displayed doublet of a doublet at $\delta=7.51$ -
7.49 ppm and H_{4} " signal was overlapped at $\delta=7.44$ ppm . While in acetone- d_{6} both protons shown the signal as doublet of doublet at $\delta=7.61-7.60 \mathrm{ppm}$. The quaternary carbon peaks of $\mathrm{C}_{3 \mathrm{a}}$ " and $\mathrm{C}_{7 \mathrm{a}^{\prime}}$ were absent in CDCl_{3}, but they were observed clearly in acetone- d_{6} at $\delta=139.72 \mathrm{ppm}$, and confirmed by APT NMR experiment. The cause of these differences may be due to the solubility of 3 in both solvents, including some effect from that six-membered illusory ring, which it was formed from the intramolecular hydrogen bonding between $\mathrm{N}-\mathrm{H}$ in the benzimidazole ring and the oxygen atom in the benzyl ring. Overall, experiments done in acetone- d_{6} demonstrated clearer peak splittings than in CDCl_{3}. Further reactions using the compound to synthesis biologically important compounds are in progress.

ACKNOWLEDGEMENTS

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for IRPA short-term grant [304/PKIMIA/638007] to conduct this work. M.H. Al-Douh thanks Yemen Government and Hadhramout University of Science and Technology (HUST) for financial scholarship.

REFERENCES

1. Wright, J.B., 1951, Chem. Rev., 48, 397-541
2. Hofmann, K., 1953, The Chemistry of Heterocyclic Compounds Imidazole and Its Derivatives Part I, Interscience, London, 247-324.
3. Craigo, W.A., LeSueur, B.W. and Skibo, E.B., 1999, J. Med. Chem., 42, 3324-3333
4. White, A.W., Curtin, N.J., Eastman, B.W., Golding, B.T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K.A., Skalitzky, D.J., Webber, S.E., Yu, X.H. and Griffin, R.J., 2004, Bioorg. Med. Chem. Lett., 14, 24332437.
5. Gudmundsson, K.S., Tidwell, J., Lippa, N., Koszalka, G.W., van Draanen, N., Ptak, R.G., Drach, J.C. and Townsend, L.B., 2000, J. Med. Chem., 43, 2464-2472
6. Cheng, J., Xie, J. and Luo, X., 2005, Bioorg. Med. Chem. Lett., 15, 267-269.
7. Townsend, L.B. and Revankav, G.R., 1970, Chem. Rev., 70, 389-438
8. Trivedi, R., De, S.K. and Gibbs, R.A., 2006, J. Mol. Cata. A: Chem., 245, 8-11.
9. Kim, J.S., Gatto, B., Yu, C., Liu, A., Liu, L.F. and LaVoie, E.J., 1996, J. Med. Chem., 39, 992-998
10. Rangarajan, M., Kim, J.S., Sim, S.P., Liu, A., Liub, L.F. and LaVoiea, E.J., 2000, Bioorg. Med. Chem., 8, 2591-2600
11. Mekapati, S.B. and Hansch, C., 2001, Bioorg. Med. Chem., 9, 2885-2893.
12. Hong, S.Y., Chung, K.H., You, H.J., Choi, I.H., Chae, M.J., Han, J.Y., Jung, O.J., Kang, S.J. and Ryu, C.K., 2004, Bioorg. Med. Chem. Lett., 14, 2563-3566.
13. Kopanska (n. Zastapilo), K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. and Bretner, M., 2004, Bioorg. Med. Chem., 12, 26172624.
14. Ozden, S., Atabey, D., Yildiz, S. and Goker, H., 2005, Bioorg. Med. Chem., 13, 1587-1597
15. Nezhad, A.K., Rad, M.N.S., Mohabatkar, H., Asraria, Z. and Hemmateenejada, B., 2005, Bioorg. Med. Chem., 13, 1931-1938
16. Kazimierczuk, Z., Andrzejewska, M., Kaustova, J. and Klimesova, V., 2005, Eur. J. Med. Chem., 40, 203-208.
17. Mavrova, A.T., Anichina, K.K., Vuchev, D.I., Tsenov, J.A., Kondeva, M.S. and Micheva, M.K., 2005, Bioorg. Med. Chem., 13, 5550-5559.
18. Sondhi, S.M., Sharma, V.K., Verma, R.P., Singhal, N., Shukla, R., Raghubir, R. and Dubey, M.P., 1999, Synthesis, 5, 878-884
19. Sondhi, S.M., Singh, N., Kumar, A., Lozach, O. and Meijer, L., 2006, Bioorg. Med. Chem., 14, 37583765.
20. Roth, T., Morningstar, M.L., Boyer, P.L., Hughes, S.H., Bukheit, R.W. and Michejda, C.J., 1997, J. Med. Chem., 40, 4199-4207
21. Porcari, A.R., Devivar, R.V., Kucera, L.S., Drach, J.C. and Townsend, L.B., 1999, J. Med. Chem., 41, 1251-1262
22. Rao, A., Chimirri, A., Clercq, E.D., Monforte, A.M., Monforte, P., Pannecouque, C. and Zappala, M., 2002, II Farmaco, 57, 819-823
23. Rao, A., Chimirri, A., Ferro,S., Monforte, A.M., Monoforte, P. and Zappala, M., 2004, ARKIVOC, v, 147-155
24. Rida, S.M., El-Hawash, S.A.M., Fahmy, H.T.Y., Hazzaa, A.A. and El-Meligy, M.M.M., 2006, Arch. Pharm. Res., 29, 826-833.
25. Kumar, D., Jacob, M.R., Reynolds, M.B. and Kerwin, S.M., 2002, Bioorg. Med. Chem., 10, 3997-4004
26. Demirayak, S., Mohsen, U.A. and Karaburun, A.C., 2002, Eur. J. Med. Chem., 37, 255-260
27. Andrzejewska, M., Mulia, L.Y., Rivera, R.C., Tapia, A., Vilpo, L., Vilpo, J. and Kazimierczuk, Z., 2002, Eur. J. Med. Chem., 37, 973-978
28. Kupchinsky, S., Centioni, S., Howard, T., Trzupek, J., Roller, S., Carnahan, V., Townes, H., Purnell, B., Price, C., Handl, H., Summerville, K., Johnson, K., Toth, J., Hudson, S., Kiakos, K., Hartley, J.A. and Lee, M., 2004, Bioorg. Med. Chem., 12, 6221-6236
29. Huang, S.T., Hsei, I.J. and Chen, C., 2006, Bioorg. Med. Chem., 14, 6106-6119.
30. Soto, S.E., Molina, R.V., Crespo, F.A., Galicia, J.V., Diaz, H.M., Piedra, M.T. and Vazquez, G.N., 2006, Life Science, 79, 430-435.
31. Vazquez, G.N., Diaz, H.M., Crespo, F.A., Rivera, I.L., Molina, R.V., Muniz, O.M. and Soto, S.E., 2006, Bioorg. Med. Chem. Lett., 16, 4169-4173.
32. Al-Douh, M.H., Hamid, S.A., Osman, H., Ng, S.L. and Fun, H.K., 2006, Acta Cryst. E, 62, o395403956.
33. Al-Douh, M.H., Hamid, S.A. and Osman, H., in preparation.
34. Crystal data of 3: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}, M_{\mathrm{r}}=330.37$, monoclinic, $P 2_{1} / c, a=9.54170$ (1), $b=18.4590$ (3), $c=11.0653$ (2) $\AA, \beta=123.814$ (1) ${ }^{\circ}, V=1619.27$ (4) $\AA^{3}, Z=4, \mu=0.088 \mathrm{~mm}^{-1}, d_{\mathrm{x}}=1.355 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=696, G O F=1.062$. A total of 54869 reflections were collected and 8446 are unique ($R_{\text {int }}$ $=0.0539), R=0.0501, \omega R=0.1282$ for 227 parameters and 8446 reflections $(I>2 \sigma(I)$). Residual electron density extremes were 0.613 and -0.326 e \AA^{-3}. The intensity data was collected at 297 K on SMART APEX2 CCD area-detector diffractometer with graphite-monochromated $\mathrm{Mo}_{\text {ка }}$ radiation ($0.71073 \AA \hat{A}$), θ range 2.21 to 37.50° [38]. All absorption corrections were performed by using SADABS the multiscan program [38]. The structure was solved and refined by SHELXTL against $F^{2}[39]$. The H atoms were refined as riding and the Uiso values were freely refined, they were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.89 \AA$. The software was used SHELXTL [39] and PLATON [40]. These data can be obtained free of charge from International Union of Crystallography IUCr cv2101 or The Cambridge Crystallographic Data Centre CCDC 620951. Reference: (doi:10.1107/S160053680603251X).
35. Bruker program 1D WIN-NMR (release 6. 0) and 2D WIN-NMR (release 6.1).
36. Berger, S. and Braun, S., 2004, 200 and More NMR Experiments, A Practical Course, WileyVCH, Weinheim.
37. Claramunt, R.M., Lopez, C. and Elguero, J., 2006, ARKIVOC, v, 5-11.
38. APEX2 (Version 1.27), SAINT (Version 7.12A), and SADABS (Version 2004/1), 2005, Bruker AXS Inc., Madison, Wisconsin, USA.
39. Sheldrick, G.M., SHELXTL. (Version 5.1), 1998, Program for the Solution of Crystal Structures, Bruker AXS Inc., Madison, Wisconsin, USA.
40. Spek, A.L., 2003, J. Appl. Cryst., 36, 7-13.

[^0]: * Corresponding author, tel/fax : 604-653-3888/604-657-4854

 Email: shafida@usm.my

