Indo. J. Chem., 2007, 7 (2), 190-196

1D AND 2D NMR STUDIES OF 2–(2–(BENZYLOXY)–3–METHOXYPHENYL)–1*H*–BENZIMIDAZOLE

Mohammed Hadi Al–Douh, Shafida Abd Hamid* and Hasnah Osman

School of Chemical Sciences, Universiti Sains Malaysia (USM), Minden 11800, Pinang, Malaysia

Received 20 March 2007; Accepted 20 May 2007

ABSTRACT

The reaction of Benzyl o–vanillin **1** and o–phenylene diamine **2** in dichloromethane produced new benzimidazole, **3**. The complete assignments of 3 were made using 1D and 2D NMR including COSY, HMQC and HMBC NMR in CDCl₃ and acetone–d₆. The coupling constants J are reported in Hertz, and the differences in the peak splittings using both solvents are discussed.

Keywords: ¹H NMR; ¹³C NMR; 2D NMR; Benzimidazole.

INTRODUCTION

Hobrecker prepared the first benzimidazole in 1872, when he reduced 2-nitro-4-methylacetanilide a to obtained the tautomers 2, 5 (or 2, 6)-dimethyl (Scheme benzimidazole b 1) [1-2]. Since benzimidazoles have a similar structure to purines, whose derivatives play important roles in biological systems, substituted benzimidazoles show interesting Many benzimidazoles biological activities. are pharmaceutical agents and are used widely in biological system applications [3-8]. Recently, some derivatives of benzimidazole were reported and used as antiviral [5-6], topoisomerase I inhibitors [9-11], antiproliferative [12], antiprotozoal activity of Acanthamoeba castellanii [13],

Scheme 1. First benzimidazole **b**, prepared by Hobrecker in 1872 [1].

Scheme 2. Synthesis of new benzimidazole **3**, I) DCM, MgSO₄, 2hr.

* Corresponding author, tel/fax : 604–653–3888/604–657–4854 Email: shafida@usm.my antibacterial [14-16], anthelmintics activity of *Trichinella spiralis* [17], anti–inflammatory against [18-19], anti– HIV [20-24] and also as anticancer [3-4, 25-30]. Meanwhile, phenolic and anisolic benzimidazole derivatives have been synthesized and evaluated for vasodilator and antihypertensive activity [30], while other alkyloxyaryl benzimidazole derivatives have been tested for the spasmolytic activity [31].

Recently, we synthesized and characterized 2–(2-(benzyloxy)-3-methoxyphenyl)-1H-benzimidazole **3** by FTIR, GC-MS, ¹H and ¹³C NMR spectra from the reaction of benzyl *o*-vanillin **1** and *o*-phenylene diamine **2** in dichloromethane (DCM) (Scheme 2).

We also obtained the crystal of **3**, and its structure was determined and studied by X-ray crystallography [32-34]. In this work, the complete assignments of **3** were made using 1D and 2D NMR including APT, DEPT-135, COSY, HMQC and HMBC NMR in CDCl₃ and acetone- d_6 . The coupling constants *J* were reported in Hertz and the differences in the peak splittings using both solvents were discussed.

EXPERIMENTAL SECTION

All NMR experiments were performed on Bruker Avance 400 UltrashieldTM NMR for ¹H operating at 400.123 MHz, and Avance 300 NMR spectrometers for ¹³C operating at 71.478 MHz in CDCl₃ and acetone– d_6 at 298 K using Bruker XWINNMR software equipped with a 5 mm BBI inverse gradient probe [35-36]. Chemical shifts were reported downfield in parts per million (ppm) from a tetramethylsilane (TMS) reference, and coupling constants (*J*) were measured in Hz. The concentration of solute molecule was 100 mg in 1.0 mL CDCl₃ or acetone– d_6 .

RESULTS AND DISCUSSION

The new benzimidazole **3** was synthesized from the reaction of **1** and **2** in DCM as a solvent (Scheme 2). The benzimidazole **3** was obtained as single crystals with melting point of 135–136 °C, (Fig 1 and 2) [15–17]. 1D ¹H and ¹³C NMR along with 2D COSY, HMQC and HMBC experiments were performed to assign all proton and carbon chemical shifts. The splitting patterns for the aromatic protons of **3** were obtained from the spectra acquired using 400 MHz ¹H NMR. The ¹H and ¹³C NMR chemical shift and coupling constants data in CDCl₃ and acetone– d_6 are listed in Table 1, while Table 2 shows the HMQC and HMBC signals of **3**. Figure 2 shows the chemical structure and the NMR numbering scheme of the new benzimidazole **3**.

¹H NMR

The ¹H NMR spectrum of **3** was obtained and shown in Figure 3. Proton H₆ displayed doublet of a doublet at $\delta = 8.16-8.14$, (J = 8.03 and 1.49 Hz) in CDCl₃ and 8.03-8.01 ppm, (J = 7.03 and 2.50 Hz) in acetone- d_6 due to its coupling with H₅ and N-H.

Fig 1. The crystal structure of benzimidazole **3**, showing 50% probability displacement ellipsoids and the atom-numbering scheme, the dashed line indicates an intramolecular hydrogen bond.

Fig 2. The chemical structure and the NMR numbering scheme of the benzimidazole 3.

Table 1.	¹ H and	¹³ C NMR	chemical	shifts	and	coupling
constants	s of 3 in	CDCl ₃ an	d acetone	$-d_6$		

	¹ H NMR (ppm)			¹³ C NMR (ppm)		
Atom No.	CDCl_3	$J({ m Hz})$	acetone $-d_6$	$J\left(\mathrm{Hz}\right)$	CDCl_3	acetone- d_6
CH_3	4.01, s	-	3.99, s	-	56.49	56.85
CH_2	5.18, s	-	5.23, s	-	76.85	76.57
N–H	7.25, d	1.06	7.24, s	-	-	-
1	_	-	_	-	123.37	124.90
2	_	-	_	-	146.53	147.07
3	-	-	-	-	153.26	154.46
4	7.28, s	-	7.21, s	-	114.44	115.44
5	$7.09-7.07, \\ dd$	8.16, 1.43	$7.21-7.19, \\ dd$	8.09, 2.39	125.29	125.74
6	8.16-8.14, dd	8.03, 1.49	8.03-8.01, dd	7.03, 2.50	121.98	122.73
1`	-	-	-	-	136.99	138.31
2`	7.49–7.47	х	$7.47-7.45, \\ dd$	9.41, 3.52	129.40	130.22
3`	7.45-7.43, t	3.25	7.30, d	2.54	129.32	129.57
4`	7.46	х	7.31, t	0.99	129.35	129.54
2``	_	-	_	-	149.62	150.25
4``	7.44, d	3.09	7.61-7.60, dd	6.02, 3.19	123.10*	123.58^{*}
5`` & 6``	7.27-7.26, t	3.01	7.23-7.22, t	3.03		
7``	7.51–7.49, dd	7.14, 3.71	7.61–7.60, dd	6.02, 3.19	114.44	116.42
3a`` & 7a``	-	-	-	-	_**	139.72

x not clearly observed

* overlap. ** not observed.

Table 2. 2D	¹ H– ¹³ C HMQC	and HMBC	correlations for	зr
3 in acetone-	-de:			

Atom Infine (a) (a) (b) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b		HMQC (ppm)	HMBC [J(C,H)] (ppm)			
CH ₃ 56.85 - 154.46, C ₃ 115.44, C ₄ CH ₂ 76.57 138.31, C ₁ 130.22, C ₂ 129.57, C ₃ N-H - 139.72, C _{7a} 116.42, C ₇ 122.73, C ₆ 124.90, C ₁ 123.58, C ₄ 123.58, C ₄ 123.58, C ₄ C ₄ H ₄ 115.44 154.46, C ₃ 122.73, C ₆ 124.90, C ₁ 123.58, C ₄ H ₄ 115.44 154.46, C ₃ 122.73, C ₆ 124.90, C ₁ 123.58, C ₄ H ₅ 125.74 115.44, C ₄ 124.90, C ₁ 147.07, C ₂ 124.90, C ₁ H ₅ 125.74 115.44, C ₄ 124.90, C ₁ 147.07, C ₂ 154.46, C ₃ H ₆ 122.73 124.90, C ₁ 147.07, C ₂ 154.46, C ₃ H ₇ 130.22 129.57, C ₃ 76.57, CH ₂ 129.57, C ₃ H ₃ 129.57 130.22, C ₂ 138.31, C ₁ 130.22, C ₂ H ₄ 129.54 129.57, C ₃ 130.22, C ₂ 138.31, C ₁ H ₄ 123.58 123.58, C ₅ 123.58, C ₆ x H ₄ 123.58	Atom	1.J	2. I	3.I	4.1	
CH3 30.33 $ 134.40, C_3$ $1154.40, C_3$ $1154.40, C_4$ CH2 76.57 $138.31, C_{\Gamma}$ $130.22, C_2$ $147.07, C_2$ $129.57, C_3$ N-H $ 139.72, C_{7a^*}$ $116.42, C_{T^*}$ $124.90, C_1$ $139.72, C_{3a^*}$ $122.73, C_6$ C_{4^*}, C_{6^*} H4 115.44 $154.46, C_3$ $122.73, C_6$ $147.07, C_2$ $124.90, C_1$ $147.07, C_2$ H5 125.74 $115.44, C_4$ $122.73, C_6$ $124.90, C_1$ $154.46, C_3$ $147.07, C_2$ H6 122.73 $124.90, C_1$ $150.25, C_2^*$ $154.46, C_3$ H2 130.22 $129.57, C_3^*$ $76.57, CH_2$ $129.54, C_4^*$ $129.57, C_3^*$ H3 129.57 $130.22, C_2^*$ $129.57, C_4^*$ $138.31, C_{\Gamma}$ $130.22, C_2^*$ H4' 129.54 $129.57, C_3^*$ $123.58, C_6^*$ $139.72, C_{7a^*}^*$ x H5'' 123.58 $123.58, C_{4^*}, C_{6^*}^*$ $116.42, C_7^*$ $139.72, C_{7a^*}^*$ $139.72, C_{7a^*}^*$	CH.	56.85	0	154 46 Ca	115 44 C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OII_3	00.00	-	154.40, 03	115.44, 04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100.00.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CH_2	76.57	138.31, C_1	$130.22, C_2$	$129.57, C_3$	
N-H- $139.72, C_{7a^{**}}$ $116.42, C_{7}$ $124.90, C_{1}$ $122.73, C_{6}$ $123.58, C_{4^{*}}, C_{6^{**}}$ H4115.44154.46, C_{3} $122.73, C_{6}$ $147.07, C_{2}$ $124.90, C_{1}$ H5125.74 $115.44, C_{4}$ $122.73, C_{6}$ $124.90, C_{1}$ $147.07, C_{2}$ $147.07, C_{2}$ H6122.73 $124.90, C_{1}$ $122.73, C_{6}$ $147.07, C_{2}$ $154.46, C_{3}$ H7 130.22 $129.57, C_{3}$ $76.57, CH_{2}$ $129.54, C_{4^{*}}$ $129.57, C_{3^{*}}$ H3 129.57 $130.22, C_{2^{*}}$ $129.57, C_{4^{*}}$ $138.31, C_{1^{*}}$ $130.22, C_{2^{*}}$ H4 129.54 $129.57, C_{3^{*}}$ $130.22, C_{2^{*}}$ $138.31, C_{1^{*}}$ H4^{*} 123.58 $123.58, C_{5^{*}}$ $139.72, C_{7a^{*}}$ x H5^{*} 123.58 $123.58, C_{4^{*}}, C_{6^{*}}$ $116.42, C_{7^{*}}$ H5^{*} 123.58 $123.58, C_{4^{*}}, C_{6^{*}}$ $139.72, C_{7a^{*}}$	-		, -	$147.07, C_2$, -	
N-H-139.72, $C_{7a^{*}}$ 116.42, $C_{7^{*}}$ 122.73, C_{6} H4115.44154.46, C_{3} 122.73, C_{6} 123.58, $C_{4^{*}}, C_{6^{*}}$ H4115.44154.46, C_{3} 122.73, C_{6} 124.90, C_{1} H5125.74115.44, C_{4} 124.90, C_{1} 147.07, C_{2} H6122.73124.90, C_{1} 147.07, C_{2} 154.46, C_{3} H2130.22129.57, $C_{3^{*}}$ 76.57, CH_{2} 129.54, $C_{4^{*}}$ 129.57, $C_{3^{*}}$ H3129.57130.22, $C_{2^{*}}$ 138.31, $C_{1^{*}}$ 130.22, $C_{2^{*}}$ H4129.54129.57, $C_{3^{*}}$ 130.22, $C_{2^{*}}$ 138.31, $C_{1^{*}}$ H4^{*}123.58123.58, $C_{5^{*}}$ 123.58, $C_{6^{*}}$ 139.72, $C_{7a^{*}}$ xH5^{*}123.58123.58, $C_{4^{*}}, C_{6^{*}}$ 139.72, $C_{7a^{*}}$						
N-H - $139.72, C_{7a^{**}}$ $124.90, C_1$ $123.58, C_{4^{**}}, C_{6^{**}}$ H_4 115.44 154.46, C_3 $122.73, C_6$ $124.90, C_1$ H_5 125.74 $115.44, C_4$ $124.90, C_1$ $147.07, C_2$ H_6 122.73 $124.90, C_1$ $147.07, C_2$ $147.07, C_2$ H_6 122.73 $124.90, C_1$ $147.07, C_2$ $154.46, C_3$ H_6 122.73 $124.90, C_1$ $147.07, C_2$ $154.46, C_3$ H_7 130.22 $129.57, C_3^{**}$ $76.57, CH_2$ $129.57, C_3^{**}$ H_3 129.57 $130.22, C_2^{**}$ $138.31, C_1^{**}$ $130.22, C_2^{**}$ H_4^{**} 123.58 $123.58, C_5^{**}$ $130.22, C_2^{**}$ $138.31, C_1^{**}$ H_4^{**} 123.58 $123.58, C_5^{**}$ $123.58, C_6^{**}$ x H_5^{**} 123.58 $123.58, C_4^{**}, C_6^{**}$ $139.72, C_{7a^{**}}$ x				$116.42, C_{T^{*}}$	$122.73, C_6$	
139.72, $C_{3a^{\times}}$ $C_{4^{\circ}}, C_{6^{\circ}}$ H4115.44154.46, C_3 $122.73, C_6$ 124.90, C_1 H5125.74 $115.44, C_4$ 124.90, C_1 147.07, C_2 H6122.73124.90, C_1 147.07, C_2 154.46, C_3 H7130.22129.57, C_3 76.57, CH2 129.54, C_4 129.57, C_3° H3129.57130.22, C_2° 129.57, C_4° 138.31, C_1° 130.22, C_2° H4129.54129.57, C_3° 130.22, C_2° 138.31, C_1° 130.22, C_2° H4129.54129.57, C_3° 130.22, C_2° 138.31, C_1° 130.22, C_2° H4^{\circ}123.58123.58, C_5° 139.72, $C_{7a^{\circ}}^{\circ}$ x149.72, $C_{7a^{\circ}}^{\circ}$	N-H	-	$139.72, C_{7a}$	$124.90, C_1$	123.58,	
H_4 115.44154.46, C_3 $\begin{array}{c} 122.73, C_6\\ 147.07, C_2\end{array}$ 124.90, C_1 H_5 125.74 $\begin{array}{c} 115.44, C_4\\ 122.73, C_6\end{array}$ $\begin{array}{c} 124.90, C_1\\ 154.46, C_3\end{array}$ 147.07, C_2 H_6 122.73124.90, C_1\\ 150.25, C_2^{\cdots}\end{array}154.46, C_3 H_2 130.22129.57, C_3^{\circ} $\begin{array}{c} 76.57, CH_2\\ 129.54, C_4\end{array}$ 129.57, C_3^{\circ} H_3 129.57 $\begin{array}{c} 130.22, C_2^{\circ}\\ 129.57, C_4^{\circ}\end{array}$ 138.31, C_1^{\circ}130.22, C_2^{\circ} H_4° 129.54129.57, C_3^{\circ}130.22, C_2^{\circ}138.31, C_1^{\circ}130.32, C_2^{\circ} H_4° 123.58 $\begin{array}{c} 123.58, C_5^{\circ}\\ 139.72, C_{3a^{\circ}}\end{array}$ 123.58, C_6^{\circ}\\ 139.72, C_{7a^{\circ}}\end{array}x H_5° 123.58123.58, C_4^{\circ}, C_6^{\circ}\end{array}139.72, C_{7a^{\circ}}139.72, C_{7a^{\circ}}				139.72, C _{3a} ``	C_{4} , C_{6}	
H_4 115.44154.46, C_3 $\begin{array}{c} 122.73, C_6\\ 147.07, C_2\end{array}$ 124.90, C_1 H_5 125.74 $\begin{array}{c} 115.44, C_4\\ 122.73, C_6\end{array}$ 124.90, C_1 147.07, C_2 H_6 122.73124.90, C_1 $\begin{array}{c} 147.07, C_2\\ 150.25, C_{2^{-1}}\end{array}$ 154.46, C_3 H_2 130.22129.57, C_3 76.57, $CH_2\\ 129.54, C_4\end{array}$ 129.57, C_3 H_3 129.57 $\begin{array}{c} 130.22, C_2\\ 129.57, C_4\end{array}$ 138.31, C_1 130.22, C_2 H_4 129.54129.57, C_3 130.22, C_2 138.31, C_1 130.22, C_2 $H_4^{}$ 123.58 $\begin{array}{c} 123.58, C_5^{}\\ 139.72, C_{3a^{}}\end{array}$ 123.58, $C_6^{}\\ 139.72, C_{7a^{}}\end{array}$ x $H_5^{}$ 123.58123.58, $C_4^{-}, C_6^{}$ 116.42, $C_7^{}\\ 139.72, C_{7a^{}}\end{array}$ 139.72, $C_{7a^{}}$						
H_4 115.44 $134.46, C_3$ $147.07, C_2$ $124.90, C_1$ H_5 125.74 $115.44, C_4$ $124.90, C_1$ $147.07, C_2$ H_6 122.73 $124.90, C_1$ $147.07, C_2$ $147.07, C_2$ H_6 122.73 $124.90, C_1$ $147.07, C_2$ $154.46, C_3$ H_2 130.22 $129.57, C_3$ $76.57, CH_2$ $129.57, C_3$ H_3 129.57 $130.22, C_2$ $138.31, C_1$ $130.22, C_2$ H_4 129.54 $129.57, C_3$ $130.22, C_2$ $138.31, C_1$ H_4^{-1} 123.58 $123.58, C_5^{-1}$ $123.58, C_6^{-1}$ x H_5^{-1} 123.58 $123.58, C_4^{-1}, C_6^{-1}$ $116.42, C_7^{-1}$ $139.72, C_{7a^{-1}}$	тт	115 44	1E4 4C C	$122.73, C_6$	194.00 C	
H_5 125.74 $\begin{array}{c} 115.44, C_4\\ 122.73, C_6\end{array}$ $\begin{array}{c} 124.90, C_1\\ 154.46, C_3\end{array}$ $\begin{array}{c} 147.07, C_2\\ 150.25, C_2^{\circ}\end{array}$ H_6 122.73124.90, C_1 $\begin{array}{c} 147.07, C_2\\ 150.25, C_2^{\circ}\end{array}$ 154.46, C_3\\ 129.57, C_3^{\circ}\end{array} H_2° 130.22129.57, C_3^{\circ} $\begin{array}{c} 76.57, CH_2\\ 129.54, C_4^{\circ}\end{array}$ 129.57, C_3^{\circ}\\ 129.57, C_4^{\circ}\end{array} H_3° 129.57 $\begin{array}{c} 130.22, C_2^{\circ}\\ 129.57, C_4^{\circ}\end{array}$ 138.31, C_1^{\circ}\\ 130.22, C_2^{\circ}\end{array}130.22, C_2^{\circ}\\ 138.31, C_1^{\circ}\end{array} H_4° 129.54129.57, C_3^{\circ}\\ 139.72, C_{3a^{\circ\circ}}\end{array}123.58, C_6^{\circ\circ}\\ 139.72, C_{7a^{\circ\circ}}\end{array}x $H_5^{\circ\circ}$ 123.58123.58, C_4^{\circ}, C_6^{\circ}\\ 139.72, C_{3a^{\circ\circ}}\end{array}139.72, C_{7a^{\circ\circ}}	\mathbf{H}_4	115.44	$154.46, C_3$	$147.07, C_2$	$124.90, C_1$	
H_5 125.74 $\begin{array}{c} 115.44, C_4\\ 122.73, C_6\end{array}$ $\begin{array}{c} 124.90, C_1\\ 154.46, C_3\end{array}$ $\begin{array}{c} 147.07, C_2\\ 150.25, C_2^{-r}\end{array}$ $\begin{array}{c} 147.07, C_2\\ 150.25, C_2^{-r}\end{array}$ H_6 122.73124.90, C_1\\ 150.25, C_2^{-r}\end{array}154.46, C_3 H_2 130.22129.57, C_376.57, CH_2\\ 129.54, C_4\end{array}129.57, C_3 H_3 129.57130.22, C_2^{-r}\\ 129.57, C_4^{-r}\end{array}138.31, C_1130.22, C_2^{-r} H_4 129.54129.57, C_3130.22, C_2^{-r}138.31, C_1^{-r} H_4^{-r} 123.58123.58, C_5^{-r}\\ 139.72, C_{3a^{-r}}123.58, C_6^{-r}\\ 139.72, C_{7a^{-r}}x H_5^{-r} 123.58123.58, C_4^{-r}, C_6^{-r}\\ 139.72, C_{7a^{-r}}139.72, C_7a^{-r}				,		
H_5 125.74122.73, C6154.46, C3147.07, C2 H_6 122.73124.90, C1147.07, C2154.46, C3 H_6 122.73124.90, C1147.07, C2154.46, C3 H_2 130.22129.57, C376.57, CH2129.57, C3 H_3 129.57130.22, C2'138.31, C1'130.22, C2' H_4 129.54129.57, C3'130.22, C2'138.31, C1' H_4^{-1} 123.58123.58, C5''123.58, C6''x H_5^{-1} 123.58123.58, C4'', C6''116.42, C7''139.72, C7a''			115.44. C4	124.90, C ₁		
H6122.73124.90, C1147.07, C2 150.25, C2 $^{\circ}$ 154.46, C3H2130.22129.57, C376.57, CH2 129.54, C4129.57, C3H3129.57130.22, C2 129.57, C4138.31, C1130.22, C2H4129.54129.57, C3130.22, C2138.31, C1H4129.54129.57, C3130.22, C2138.31, C1H4123.58123.58, C5 $^{\circ}$ 139.72, C3a $^{\circ}$ 123.58, C6 $^{\circ}$ 139.72, C7a $^{\circ}$ xH5 $^{\circ}$ 123.58123.58, C4 $^{\circ}$, C6 $^{\circ}$ 139.72, C7a $^{\circ}$ 139.72, C7a $^{\circ}$	H_5	125.74	122 73 Ce	154 46 C ₂	$147.07, C_2$	
H_6 122.73124.90, C_1 $\begin{array}{c} 147.07, C_2\\ 150.25, C_{2^{-1}}\end{array}$ 154.46, C_3 H_2 130.22129.57, C_3 $\begin{array}{c} 76.57, CH_2\\ 129.54, C_4\end{array}$ 129.57, C_3 H_3 129.57 $\begin{array}{c} 130.22, C_2\\ 129.57, C_4\end{array}$ 138.31, C_1 130.22, C_2 H_4 129.54129.57, C_3130.22, C_2 138.31, C_1 130.22, C_2 H_4^{-1} 123.58123.58, C_5^{-1} 123.58, C_6^{-1} x H_5^{-1} 123.58123.58, C_4^{-1}, C_6^{-1} 139.72, $C_{7a^{-1}}$ 139.72, $C_{7a^{-1}}$			122.10, 00	101.10, 03		
H_6 122.73124.90, C_1 111.01, C_2 150.25, $C_2^{}$ 154.46, C_3 H_2 130.22129.57, $C_3^{}$ 76.57, CH_2 129.54, $C_4^{}$ 129.57, $C_3^{}$ $H_3^{}$ 129.57130.22, $C_2^{}$ 129.57, $C_4^{}$ 138.31, $C_1^{}$ 130.22, $C_2^{}$ $H_4^{}$ 129.54129.57, $C_3^{}$ 130.22, $C_2^{}$ 138.31, $C_1^{}$ 130.22, $C_2^{}$ $H_4^{}$ 123.58123.58, $C_5^{}$ 139.72, $C_{3a^{}}^{}$ 139.72, $C_{7a^{}}^{}$ x $H_5^{}$ 123.58123.58, $C_4^{}, C_6^{}$ 116.42, $C_7^{}$ 139.72, $C_{7a^{}}^{}$				147 07 Co		
H2 130.22 129.57, C_3° 76.57, CH_2 129.57, C_3° H3 129.57 130.22, C_2° 138.31, C_{Γ} 130.22, C_2° H4 129.54 129.57, C_4° 138.31, C_{Γ} 130.22, C_2° H4^{\circ} 129.54 129.57, C_3° 130.22, C_2° 138.31, C_{Γ} H4^{\circ} 123.58 123.58, C_5° 123.58, C_6° x H5^{\circ} 123.58 123.58, C_4° , C_6° 116.42, C_7° 139.72, $C_{7a^{\circ}}$	H_6	122.73	$124.90, C_1$	150.25 Car	$154.46, C_3$	
H_2 130.22129.57, C_3 76.57, CH_2 129.54, C_4 129.57, C_3 H_3 129.57 $130.22, C_2$ 129.57, C_4 138.31, C_1 130.22, C_2 H_4 129.54129.57, C_3 130.22, C_2 138.31, C_1 H_4^{-1} 123.58123.58, C_5^{-1} 139.72, $C_{3a^{-1}}$ 123.58, C_6^{-1} 139.72, $C_{7a^{-1}}$ x H_5^{-1} 123.58123.58, C_4^{-1}, C_6^{-1} 116.42, C_7^{-1} 139.72, $C_{7a^{-1}}$ 139.72, $C_{7a^{-1}}$				100.20, 02		
H_2 130.22 129.57, C_3 76.57, $C12_2$ 129.57, C_3 H_3 129.57 130.22, C_2 138.31, C_1 130.22, C_2 H_4 129.54 129.57, C_4 138.31, C_1 130.22, C_2 H_4 129.54 129.57, C_3 130.22, C_2 138.31, C_1 H_4 129.54 129.57, C_3 130.22, C_2 138.31, C_1 H_4 123.58 123.58, C_5° 123.58, C_6° x H_5° 123.58 123.58, C_4° , C_6° 116.42, C_7° 139.72, $C_{7a^{\circ}}$				76 57 CH		
H3129.57 $130.22, C_{2^{\circ}}$ 129.57, C4138.31, C_{\Gamma}130.22, C2H4129.54129.57, C3130.22, C2138.31, CrH4"123.58123.58, C5" 139.72, C3a"123.58, C6" 139.72, C7a"xH5"123.58123.58, C4", C6" 139.72, C7a"139.72, C7a"	${ m H}_{2}$	130.22	$129.57, C_{3}$	$10.57, 011_2$	$129.57, C_{3}$	
H_3^{-} 129.57 $\begin{array}{c} 130.22, C_2^{-}\\ 129.57, C_4^{-}\end{array}$ 138.31, C_{Γ} 130.22, C_2^{-} H_4^{-} 129.54129.57, C_3^{-} 130.22, C_2^{-} 138.31, C_{Γ}^{-} $H_{4^{-}}$ 123.58123.58, $C_5^{}$ 123.58, $C_6^{}$ x $H_{4^{}}$ 123.58123.58, $C_{4^{}}, C_{3a^{}}^{}$ 139.72, $C_{7a^{}}^{}$ x $H_{5^{}}$ 123.58123.58, $C_{4^{}}, C_6^{}$ 116.42, $C_7^{}$ 139.72, $C_{7a^{}}^{}$				$129.34, 0_4$		
H_3^{-1} 129.57 $130.22, C_2^{-1}$ 138.31, C_1^{-1} 130.22, C_2^{-1} H_4^{-1} 129.54 129.57, C_3^{-1} 130.22, C_2^{-1} 138.31, C_1^{-1} H_4^{-1} 123.58 123.58, C_5^{-1} 123.58, C_6^{-1} x H_5^{-1} 123.58 123.58, C_4^{-1}, C_6^{-1} 116.42, C_7^{-1} 139.72, C_7a^{-1} H_5^{-1} 123.58 123.58, C_4^{-1}, C_6^{-1} 116.42, C_7^{-1} 139.72, C_7a^{-1}			100.00.0			
H4 129.57, C4 129.57, C3 130.22, C2 138.31, Cr H4 123.58 123.58, C5 ⁺⁺ 123.58, C6 ⁺⁺ x H4 ⁺⁺ 123.58 123.58, C5 ⁺⁺ 123.58, C6 ⁺⁺ x H5 ⁺⁺ 123.58 123.58, C4 ⁺⁺ , C6 ⁺⁺ 139.72, C7a ⁺⁺ x	H_{3}	129.57	$130.22, C_{2}$	138.31. C ₁	$130.22. C_{2}$	
H_4 129.54 129.57, C_3 130.22, C_2 138.31, C_1 H_4 123.58 123.58, C_5 123.58, C_6 x H_4 123.58 123.58, C_{3a} 139.72, C_{7a} x H_5 123.58 123.58, C_4 116.42, C_7 139.72, C_{7a}	0		$129.57, C_{4^{\circ}}$,	, - 2	
H_4^{-} 129.54 129.57, C_3^{-} 130.22, C_2^{-} 138.31, C_1^{-} H_4^{-} 123.58 123.58, C_5^{-} 123.58, C_6^{-} x $H_{4^{-}}$ 123.58 123.58, $C_{4^{-}}, C_{3a^{-}}$ 139.72, $C_{7a^{-}}$ x $H_5^{}$ 123.58 123.58, $C_{4^{-}}, C_{6^{-}}$ 116.42, $C_7^{}$ 139.72, $C_{7a^{-}}$						
$H_{4^{\sim}}$ 123.58 $L_{5^{\sim}}$ 123.58 $C_{5^{\sim}}$ 123.58 $C_{6^{\sim}}$ x $H_{5^{\sim}}$ 123.58 123.58 $C_{4^{\sim}}, C_{6^{\sim}}$ 139.72 $C_{7a^{\sim}}$ x $H_{5^{\sim}}$ 123.58 123.58 $C_{4^{\sim}}, C_{6^{\sim}}$ 116.42 $C_{7^{\sim}}$ 139.72 $C_{7a^{\sim}}$	\mathbf{H}_{4}	129.54	$129.57, C_{3}$	$130.22, C_{2^{\circ}}$	$138.31, C_{1}$	
$H_{4^{\circ\circ}}$ 123.58 123.58, C_{5^{\circ\circ}} 123.58, C_{6^{\circ\circ}} x $H_{4^{\circ\circ}}$ 123.58 139.72, C_{3a^{\circ\circ}} 139.72, C_{7a^{\circ\circ}} x $H_{5^{\circ\circ}}$ 123.58 123.58, C_{4^{\circ\circ}}, C_{6^{\circ\circ}} 116.42, C_{7^{\circ\circ}} 139.72, C_{7a^{\circ\circ}}						
H_4 120.50 139.72, $C_{3a^{\times}}$ 139.72, $C_{7a^{\times}}$ A H_5^{\times} 123.58 123.58, $C_{4^{\times}}, C_{6^{\times}}$ 116.42, $C_{7^{\times}}$ 139.72, $C_{7a^{\times}}$	Hes	123 58	$123.58, C_{5}$	$123.58, C_{6}$	v	
H ₅ 123.58 123.58, C ₄ , C ₆ $\frac{116.42}{139.72}$, C ₇ 139.72, C ₇	114	120.00	139.72, C _{3a} ``	139.72, C _{7a} ``	А	
H ₅ . 123.58 123.58, C_{4} , C_{6} , $\frac{116.42}{139.72}$, C_{7} , C_{7a} , C_{7a						
Π_{5} 125.08 123.08, U_{4} , U_{6} 139.72, U_{7a} 139.72, U_{7a}	TT	100 50	100 50 0 0	116.42, C7	190 79 C	
159.72, 03a	\mathbf{H}_{5}	123.58	123.38, U4~,C6~	139.72, C _{3a} .	$139.72, C_{7a}$	

${ m H}_{6}$	123.58	$110.42, C_{7}$ 123.58, C ₅	$125.58, C_{4}$ 139.72, C _{7a}	139.72, C _{3a} ``	
${ m H}_{7}$	116.42	123.58, C6`` 139.72, C7a``	123.58, C5`` 139.72, C3a``	123.58, C4 ^{\\}	
(; pot observed					

x: not observed.

While the doublet of a doublet observed in CDCl₃ at $\delta = 7.09-7.07$ ppm (J = 8.16 and 1.43 Hz) is assigned to H₅ coupling to H₄ in the trisubstituted ring. This proton was shown doublet of a doublet and shifted a bit downfield in acetone– d_6 . It was also observed that in CDCl₃ and acetone– d_6 H₄ appeared as a singlet at $\delta = 7.28$ and 7.21 ppm, respectively. Additionally, the proton of N–H observed as singlet and resonated at $\delta = 7.24$ ppm in acetone– d_6 , and it appeared as doublet in CDCl₃ to $\delta = 7.25$ ppm, (J = 1.06 Hz). In acetone– d_6 , the coupling between N–H and H₆ was observed most probably due to the interaction of the solvent with the compound.

We suggested the triplet of signal in acetone– d_6 at δ = 7.23–7.22 ppm, (J = 3.03 Hz) and at δ = 7.27–7.26 ppm, (J = 3.01 Hz) in CDCl₃ to be assigned to H₅. and H₆. in the benzimidazole ring due to coupling with H₄. and H₇. The difference in chemical shift of H₄. and H₇. is also apparent in both solvents. In CDCl₃, H₇. and H₄. signal were found to be separated; H₇. appeared as doublet of a doublet at δ = 7.51–7.49 ppm, (J = 7.14 and 3.71 Hz), while H₄. appeared as doublet at δ = 7.44 ppm, J cannot be determined exactly due to peaks overlapping. However, in acetone– d_6 both protons shown signal as doublet of a doublet at δ = 7.61–7.60 ppm (J = 6.02 and 3.19 Hz).

Fig 3. ¹H NMR spectra of **3** in a) CDCl₃ and b) in acetone– d_6 .

From Figure 3, the signal of the benzyl ring protons H₂: appeared as doublet of a doublet at $\delta = 7.47-7.44$ ppm, (J = 9.41 and 3.52 Hz) in acetone– d_6 although the peaks were not clearly shown in CDCl₃. The H₄: splitting patterns in CDCl₃ was not clear due to that overlapping of the peaks but it appeared as a triplet at $\delta = 7.31$ ppm, (J = 0.99 Hz) in acetone– d_6 . On the other hand, the protons of H₃: displayed the signal as a triplet at $\delta = 7.45-7.43$ ppm, (J = 3.25 Hz) in CDCl₃, and as doublet at $\delta = 7.30$ ppm, (J = 2.54 Hz) in acetone– d_6 . The methoxy OMe and methylene CH₂ protons were observed in CDCl₃ at $\delta = 4.01$ and 5.18 ppm, and at $\delta = 3.99$ and 5.23 ppm in acetone– d_6 , respectively. Table 1 shows the chemical shift values of **3** in both solvents.

We found both spectra of the benzimidazole **3** were differed in splitting patterns for some of the aromatic protons, which may be due to the solubility of **3** in both solvents, including some effect from that six-membered illusory ring, which was formed from the intramolecular hydrogen bonding between N-H in the benzimidazole ring and the oxygen atom in the benzyl ring (Figure 1). ¹H-¹H COSY and HMBC experiments were performed to further confirm that assigned peaks.

¹³C NMR

The ¹³C NMR spectra of **3** were obtained and shown in Figure 4. The quaternary carbons in **3** were identified and recognized by APT and or DEPT-135 NMR experiments in both solvents. The quaternary carbon signals for C₃, C₂, C₁, C₂, C₁, and C₁ in CDCl₃ were observed at δ = 153.26, 149.62, 146.53, 136.99 and 123.37 ppm, respectively. In acetone-*d*₆ these values were found to be shifted slightly downfield. The signals of the quaternary carbons C_{3a}, and C_{7a}, were absent in CDCl₃, but, APT NMR experiment showed the existing of this peak at δ = 138.87 ppm in acetone-*d*₆. A NMR solid state study by Claramunt *et al.* showed that these signals appeared at δ = 136.9 ppm [37].The CH₂ and OMe signals in both solvents were found at about δ = 76.60 and 56.50 ppm, respectively.

The spectra showed that some of the carbons in the benzimidazole ring overlapped with the other carbons in trisubstituted ring. For example, in CDCl₃ C₇, signal overlapped with C₄ at $\delta = 114.44$ ppm, while the peaks were separated clearly in acetone–d₆, (Figure 4). Similarly, carbons C₄, C₅, and C₆, appeared at the same chemical shift in both solvents. The carbons in trisubstituted ring C₆ and C₅ were resonated in CDCl₃ at $\delta = 121.98$ and 125.29 ppm, respectively, while the benzyl ring carbons were observed at $\delta = 129.40$, 129.35 and 129.32 ppm for C₂, C₄ and C₃ in CDCl₃, respectively. Table 1 summarizes the chemical shift values discussed.

To confirmed of the assignment signals and the overlapping between the aromatic carbons, the proton

Fig 4. ¹³C NMR spectra of **3** in a) CDCl₃ and b) in acetone– d_6 .

coupled ¹³C NMR spectra of the benzimidazole **3** were also conducted. Additionally, the HMQC and HMBC experiments done, further aid in assigning the peaks.

¹H–¹H COSY

The signals of **3** are also assigned with an aid by the COSY experiment. Figure 5 shows the ¹H–¹H COSY NMR spectra of **3** in CDCl₃ and acetone– d_6 . The signal in both solvents at $\delta = 4.01$ -3.99 ppm, was assigned to the methoxy protons, OMe and it showed correlations with CH₂ at $\delta = 5.18$ -5.23 ppm. As expected, proton H₅ was correlated with H₄ and H₆ in CDCl₃ at $\delta = 7.25$ and 8.16–8.14 ppm, respectively. Besides H₅ and H₄, proton H₆ show correlations clearly with H₄ and N–H although this correlation is not observed in acetone– d_6 . H₅⁻⁻, H₆⁻⁻ were observed to be correlated with both protons H₇⁻⁻ and H₄⁻⁻ at $\delta = 7.51$ – 7.49 and 7.43 ppm in CDCl₃ and at $\delta = 7.61$ –7.60 ppm in acetone– d_6 .

Fig 5. ${}^{1}\text{H}{-}^{1}\text{H}$ connectivities in the COSY a) in CDCl₃, b) in acetone– d_6 and c) the most important correlations observed in COSY and NOESY spectrum of **3**.

195

Fig 6. ${}^{1}\text{H}-{}^{13}\text{C}$ connectivities of **3** in acetone– d_6 a) in the HMQC, b) in the HMBC and c) the most important correlations observed.

¹H–¹³C HMQC NMR

The 2D HMQC NMR spectrum was conducted to determine which hydrogens are connected to which carbons. The HMQC NMR spectrum for **3** was shown in Figure 6a, and it confirms the attachments between all hydrogens and their corresponding carbons. In acetone– d_6 , the signals owing to C₄, C₇, C₆, C₅, C₄, C₃ and C₂ atoms are observed at the respective $\delta = 115.44$, 116.42, 122.73, 125.74 and 129–130 ppm, while the signals of the one bond ¹³C–¹H connectivities are also well observed for OMe and CH₂ atoms whereby the cross peaks appear at $\delta = 56.85$ and 76.57 ppm, respectively. Table 2 shows the summarized value for HMQC of **3**.

¹H–¹³C HMBC spectra

The 2D HMBC NMR spectrum was conducted to examine the long-range ${}^{1}H^{-13}C$ connectivities. The HMBC NMR spectrum for **3** was shown in Figure 6b. The aromatic quaternary carbons are established through the connectivities between the carbon and its neighboring proton by using a long-range correlated HMBC experiment. The signal in acetone– d_6 of methoxy protons showed ${}^{3}J$ -correlation with C₃ at δ = 154.46 ppm and ${}^{4}J$ -correlation with C₄ at δ = 115.44 ppm. While the protons of CH₂ were observed ${}^{2}J$ -correlation with C₁⁺ and ${}^{3}J$ -correlation with C₂⁻ and C₂ at δ = 138.31, 130.22 and 147.07 ppm, respectively.

Additionally, the long–range HMBC cross peaks of the quaternary carbon C₃ with H₅ appeared at δ = 7.21–7.19 ppm and was correlated with H₆ at δ = 8.03–8.01 ppm. Proton H₆ was demonstrated to correlate with C₂. and C₂. H₄ and H₅ were also observed to be correlated with C₂. The spectrum also shows that C_{3a} and C_{7a} were correlated with N–H, H₆ and H₅ at δ = 7.24–7.22 ppm and with H₇ and H₄ at δ = 7.61–7.60 ppm. The chemical shifts of the HMBC of **3** are summarized in Table 2.

CONCLUSION

We have reported the complete assignments of the benzimidazole **3** using ¹H, ¹³C, COSY, HMQC and HMBC NMR in both CDCl₃ and acetone- d_6 . Although the APT and DEPT-135 spectra were not shown, that experiments were performed and the results were discussed. Combination of the information gathered from experiments done in both solvents helps in assigning peak splittings of compound **3**. The differences in the peak splittings can be seen in a few cases. For example, in CDCl₃, H₇^{\circ} displayed doublet of a doublet at $\delta = 7.51$ -

7.49 ppm and H₄ signal was overlapped at δ = 7.44 ppm. While in acetone- d_6 both protons shown the signal as doublet of doublet at δ = 7.61-7.60 ppm. The quaternary carbon peaks of $C_{3a^{\sim}}$ and $C_{7a^{\sim}}$ were absent in CDCl₃, but they were observed clearly in acetone- d_6 at δ = 139.72 ppm, and confirmed by APT NMR experiment. The cause of these differences may be due to the solubility of 3 in both solvents, including some effect from that six-membered illusory ring, which it was formed from the intramolecular hydrogen bonding between N-H in the benzimidazole ring and the oxygen atom in the benzyl ring. Overall, experiments done in acetone- d_6 demonstrated clearer peak splittings than in CDCl₃. Further reactions using the compound to synthesis biologically important compounds are in progress.

ACKNOWLEDGEMENTS

We thank the Malaysian Government and Universiti Sains Malaysia (USM) for IRPA short-term grant [304/PKIMIA/638007] to conduct this work. M.H. Al-Douh thanks Yemen Government and Hadhramout University of Science and Technology (HUST) for financial scholarship.

REFERENCES

- 1. Wright, J.B., 1951, Chem. Rev., 48, 397-541
- 2. Hofmann, K., 1953, *The Chemistry of Heterocyclic Compounds Imidazole and Its Derivatives Part I*, Interscience, London, 247–324.
- 3. Craigo, W.A., LeSueur, B.W. and Skibo, E.B., 1999, *J. Med. Chem.*, 42, 3324–3333
- White, A.W., Curtin, N.J., Eastman, B.W., Golding, B.T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K.A., Skalitzky, D.J., Webber, S.E., Yu, X.H. and Griffin, R.J., 2004, *Bioorg. Med. Chem. Lett.*, 14, 2433– 2437.
- Gudmundsson, K.S., Tidwell, J., Lippa, N., Koszalka, G.W., van Draanen, N., Ptak, R.G., Drach, J.C. and Townsend, L.B., 2000, *J. Med. Chem.*, 43, 2464–2472
- 6. Cheng, J., Xie, J. and Luo, X., 2005, *Bioorg. Med. Chem. Lett.*, 15, 267–269.
- Townsend, L.B. and Revankav, G.R., 1970, Chem. Rev., 70, 389–438
- 8. Trivedi, R., De, S.K. and Gibbs, R.A., 2006, *J. Mol. Cata. A: Chem.*, 245, 8–11.
- Kim, J.S., Gatto, B., Yu, C., Liu, A., Liu, L.F. and LaVoie, E.J., 1996, *J. Med. Chem.*, 39, 992–998
- Rangarajan, M., Kim, J.S., Sim, S.P., Liu, A., Liub, L.F. and LaVoiea, E.J., 2000, *Bioorg. Med. Chem.*, 8, 2591–2600
- 11. Mekapati, S.B. and Hansch, C., 2001, *Bioorg. Med. Chem.*, 9, 2885–2893.

- 12. Hong, S.Y., Chung, K.H., You, H.J., Choi, I.H., Chae, M.J., Han, J.Y., Jung, O.J., Kang, S.J. and Ryu, C.K., 2004, *Bioorg. Med. Chem. Lett.*, 14, 2563–3566.
- Kopanska (n. Zastapilo), K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. and Bretner, M., 2004, *Bioorg. Med. Chem.*, 12, 2617– 2624.
- 14. Ozden, S., Atabey, D., Yildiz, S. and Goker, H., 2005, *Bioorg. Med. Chem.*, 13, 1587–1597
- Nezhad, A.K., Rad, M.N.S., Mohabatkar, H., Asraria, Z. and Hemmateenejada, B., 2005, *Bioorg. Med. Chem.*, 13, 1931–1938
- 16. Kazimierczuk, Z., Andrzejewska, M., Kaustova, J. and Klimesova, V., 2005, *Eur. J. Med. Chem.*, 40, 203–208.
- 17. Mavrova, A.T., Anichina, K.K., Vuchev, D.I., Tsenov, J.A., Kondeva, M.S. and Micheva, M.K., 2005, *Bioorg. Med. Chem.*, 13, 5550–5559.
- Sondhi, S.M., Sharma, V.K., Verma, R.P., Singhal, N., Shukla, R., Raghubir, R. and Dubey, M.P., 1999, *Synthesis*, 5, 878–884
- Sondhi, S.M., Singh, N., Kumar, A., Lozach, O. and Meijer, L., 2006, *Bioorg. Med. Chem.*, 14, 3758– 3765.
- Roth, T., Morningstar, M.L., Boyer, P.L., Hughes, S.H., Bukheit, R.W. and Michejda, C.J., 1997, *J. Med. Chem.*, 40, 4199–4207
- Porcari, A.R., Devivar, R.V., Kucera, L.S., Drach, J.C. and Townsend, L.B., 1999, *J. Med. Chem.*, 41, 1251–1262
- 22. Rao, A., Chimirri, A., Clercq, E.D., Monforte, A.M., Monforte, P., Pannecouque, C. and Zappala, M., 2002, *II Farmaco*, 57, 819–823
- Rao, A., Chimirri, A., Ferro,S., Monforte, A.M., Monoforte, P. and Zappala, M., 2004, ARKIVOC, v, 147–155
- 24. Rida, S.M., El–Hawash, S.A.M., Fahmy, H.T.Y., Hazzaa, A.A. and El–Meligy, M.M.M., 2006, *Arch. Pharm. Res.*, 29, 826–833.
- 25. Kumar, D., Jacob, M.R., Reynolds, M.B. and Kerwin, S.M., 2002, *Bioorg. Med. Chem.*, 10, 3997–4004
- Demirayak, S., Mohsen, U.A. and Karaburun, A.C., 2002, *Eur. J. Med. Chem.*, 37, 255–260
- Andrzejewska, M., Mulia, L.Y., Rivera, R.C., Tapia, A., Vilpo, L., Vilpo, J. and Kazimierczuk, Z., 2002, *Eur. J. Med. Chem.*, 37, 973–978
- Kupchinsky, S., Centioni, S., Howard, T., Trzupek, J., Roller, S., Carnahan, V., Townes, H., Purnell, B., Price, C., Handl, H., Summerville, K., Johnson, K., Toth, J., Hudson, S., Kiakos, K., Hartley, J.A. and Lee, M., 2004, *Bioorg. Med. Chem.*, 12, 6221–6236
- 29. Huang, S.T., Hsei, I.J. and Chen, C., 2006, *Bioorg. Med. Chem.*, 14, 6106–6119.

- Soto, S.E., Molina, R.V., Crespo, F.A., Galicia, J.V., Diaz, H.M., Piedra, M.T. and Vazquez, G.N., 2006, *Life Science*, 79, 430–435.
- Vazquez, G.N., Diaz, H.M., Crespo, F.A., Rivera, I.L., Molina, R.V., Muniz, O.M. and Soto, S.E., 2006, *Bioorg. Med. Chem. Lett.*, 16, 4169–4173.
- 32. Al–Douh, M.H., Hamid, S.A., Osman, H., Ng, S.L. and Fun, H.K., 2006, *Acta Cryst. E*, 62, o3954– o3956.
- 33. Al–Douh, M.H., Hamid, S.A. and Osman, H., in preparation.
- 34. Crystal data of 3: $C_{21}H_{18}N_2O_2$, $M_r = 330.37$, monoclinic, $P2_1/c$, a = 9.54170 (1), b = 18.4590 (3), c = 11.0653 (2) Å, $\beta = 123.814$ (1)°, V = 1619.27(4) Å³, Z = 4, $\mu = 0.088 \text{ mm}^{-1}$, $d_x = 1.355 \text{ g cm}^{-3}$ F(000) = 696, GOF = 1.062. A total of 54869 reflections were collected and 8446 are unique (R_{int} = 0.0539), R = 0.0501, $\omega R = 0.1282$ for 227 parameters and 8446 reflections $(I > 2\sigma (I))$. Residual electron density extremes were 0.613 and -0.326 e Å⁻³. The intensity data was collected at 297 K on SMART APEX2 CCD area-detector diffractometer with graphite-monochromated Mo_{Ka} radiation (0.71073 Å), θ range 2.21 to 37.50° [38]. All absorption corrections were performed by using SADABS the multiscan program [38]. The structure was solved and refined by SHELXTL against F^{2} [39]. The H atoms were refined as riding and the Uiso values were freely refined, they were placed in calculated positions, with C-H = 0.93-0.97 Å and N-H = 0.89 Å. The software was used SHELXTL [39] and PLATON [40]. These data can be obtained free of charge from International Union of Crystallography IUCr cv2101 or The Cambridge Crystallographic Data Centre CCDC 620951. Reference: (doi:10.1107/S160053680603251X).
- 35. Bruker program 1D WIN–NMR (release 6. 0) and 2D WIN–NMR (release 6.1).
- 36. Berger, S. and Braun, S., 2004, 200 and More NMR Experiments, A Practical Course, Wiley– VCH, Weinheim.
- 37. Claramunt, R.M., Lopez, C. and Elguero, J., 2006, *ARKIVOC*, v, 5–11.
- APEX2 (Version 1.27), SAINT (Version 7.12A), and SADABS (Version 2004/1), 2005, Bruker AXS Inc., Madison, Wisconsin, USA.
- 39. Sheldrick, G.M., *SHELXTL.* (Version 5.1), 1998, *Program for the Solution of Crystal Structures*, Bruker AXS Inc., Madison, Wisconsin, USA.
- 40. Spek, A.L., 2003, J. Appl. Cryst., 36, 7–13.