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a b s t r a c t

Only 21% of American adults achieve recommended levels of physical activity. Urban trails
are popular venues both to engage in recreational physical activities and for active com-
muting. The Rails-to-Trails Conservancy's Trail Modeling and Assessment Platform (T-
MAP) is a multi-year research project to develop data-driven trail planning and man-
agement tools.

We surveyed over 3000 trail users on 14 US urban trails. The survey was developed
specifically to inform health impact calculation, including items on trail use and other
physical activity. We calculate health impacts in terms of six chronic diseases and mor-
tality, and use treatment costs and Value of Statistical Life (VSL) for monetization, re-
spectively.

Regular trail use prevents 36 hospitalizations due to chronic diseases and 182 pre-
mature deaths per 100,000 trail users and year, worth $2,1 million in avoided treatment
costs and $1,7 billion based on VSL, respectively.

Compared to VSL, avoided treatment costs provide more tangible estimates of health
impacts, but challenges with data availability and comparability call for cautious inter-
pretations. Our estimates for chronic disease cases are limited to hospitalization dis-
charges and treatment costs, resulting in considerably lower figures than those for re-
duction in mortality risk.

Trail users are a highly active population. 40% achieve physical activity re-
commendations even without trail use, and with trail use, 87% do. Health benefits would
be more than double if inactive subjects would take up the same amount of trail use as
observed in our sample.
& 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Walking and cycling have enjoyed increasing popularity and interest in recent years, both as sustainable modes of
transport and promising sources of exercise. Regular physical activity has been associated with a number of positive health
outcomes, such as increase in life expectancy and reduced risks in cardiovascular diseases, diabetes, colon and breast cancer,
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among others (Physical Activity Guidelines Advisory Committee, 2008). Only 21% of American adults currently achieve the
recommended levels of 150 min of moderate to vigorous physical activity per week (CDC, 2016a).

Walking and cycling shares for transportation trips remain low in the US, around 10%, compared to other areas of the
world, where active modes can reach shares as high as 50% (Buehler et al., 2011; Götschi et al., 2015b). Lack of traffic safety
and lack of access to high-quality infrastructure and open spaces are meaningful barriers to increasing walking, and in
particular cycling (Buehler et al., 2016). Over the past decades, the establishment of multi-use trails for both pedestrians and
cyclists, by a growing number of communities with substantial support by trail advocacy organizations, such as the Rails-to-
Trails Conservancy (RTC), has developed into an important tool to provide people with safe and pleasant opportunities to
engage in walking, running or cycling, for both recreational and utilitarian purposes.

In 2013 RTC launched a major research initiative to support a more systematic approach to trail development by
monitoring and valuing trail activity, the Trail Modeling and Assessment Platform (T-MAP). This initiative included the
establishment of a US national network of over 50 automated, continuous trail traffic monitoring stations. In addition, in the
summer of 2015 we conducted the first national intercept survey of American trail users. The purpose of T-MAP is to develop
new tools for trail planning, such as the network analysis tool described by Lowry et al. (2016) and the trail-user intercept
survey described by Cohn et al. (2016), and more generally, to build a substantive evidence base to improve our under-
standing of trail use (e.g. Lindsey et al., 2016). As such, health impact modeling (i.e. the quantitative assessment of health
impacts; independent of, or as part of broader health impact assessments (Hebert et al., 2012) is an important element of
T-MAP.

Health impact modeling of active transportation has made great strides in recent years (Brown et al., 2016; Doorley et al.,
2015; Mueller et al., 2015). Overall, findings show that health benefits from physical activity through active transportation
are substantial, and generally outweigh risks. However, a number of methodological limitations remain, often driven by
available data, more so than a lack of know-how (Doorley et al., 2015; Götschi et al., 2016, 2015b; Mueller et al., 2015).

The aim of the T-MAP health impact calculation was to apply state of the art methods and expand the scope of health
impact modeling within the context of health impacts of trail use in the US.

2. Methodology

The development of the T-MAP methodology focused on addressing three common limitations of health impact studies:
First, health impact studies predominantly focus on mortality and years of life lost, or a combination of mortality and

disease impacts, such as disability adjusted life years (DALYs) (IHME, 2013). However, there is an increasing interest in
assessing more short term effects on specific diseases independent of mortality.

Second, Value of Statistical Life (VSL) is a commonly used measure to value (avoided) deaths, years of life lost, or DALYs in
transport and environmental appraisals (Lindhjem et al., 2016; US Department of Transportation, 2015). However, VSL is
based on willingness-to-pay and produces high monetary values that are difficult to relate to tangible savings in spending
(i.e. transportation budgets, infrastructure costs, health care costs, etc.). On the other hand, assessments of treatment costs
or health care savings provide more tangible, albeit less comprehensive alternatives, which results in much lower figures
(e.g. Gotschi, 2011). For a review of approaches applied in health impact assessments of active transportation (see Brown
et al., 2016).

Third and finally, a major limitation of health impact studies of active transportation are the nature and quality of input
data on walking and cycling. Robust estimates of walking or cycling are typically only available from large population
surveys, which are ill suited for assessments of small areas, or of changes over time. Health impact calculations therefore
usually evaluate counterfactual cases based on hypothetical scenarios (Doorley et al., 2015; Mueller et al., 2015).

Therefore in T-MAP data collection on trail activity was part of the same research effort and designed to optimize health
impact modeling. And in addition to mortality outcomes, impacts on prevented disease cases were estimated and mon-
etized using treatment costs.

2.1. Study setting

The T-MAP trail user intercept survey included 14 trails in 12 urban areas. The trails were selected to provide a diversity
of trail types within the American urban context (see Table 1).

2.2. Data collection: survey and counts

Our survey included a typical travel survey adapted to the trail context, and questions related to health and physical
activity. The development and testing of the survey instrument and sampling plan are described in detail elsewhere (Cohn
et al., 2016). At each location, the survey was administered for a total of 24 h, segmented into eight three-hour shifts, in the
summer and fall of 2015. A sampling schedule was customized for each trail based on the distribution of trail user traffic in
the two weeks preceding the survey start to capture a representative sample of trail users by habitual time of day of trail use
while also maximizing the survey response rate. For example, if 10% of the trail user traffic was on weekdays from 7–10 a.m.,
then �10% of the survey schedule was allocated to that slot (e.g. one shift).
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2.3. Background on health impact calculation

Health impact calculations use well established relationships between an exposure and an outcome from epidemiologic
research (i.e. relative risks) to quantify impacts of changes in exposure in a specific population. In our case, the population is
trail users, exposure is trail use (or active transportation or physical activity), and outcomes are various disease incidents,
and all-cause mortality. Health impact calculation use a comparative risk assessment approach in which a relative risk is
scaled to represent a specific exposure contrast – in our case, trail use vs. no trail use. This is then applied to disease or
mortality risks of a population. The difference between baseline risk, and reduced risk due to trail use, applied to a specific
population (i.e. number of people) produces what is referred to as health impacts.

For a more in-depth discussion of health impact calculations of active transportation (see Götschi et al., 2015a).
Defining the scope of a health impact calculation is an important first step and equally influential for the meaning of the

results as are methodological aspects further down in the process.

2.4. Scope of the TMAP health impact calculation

2.4.1. Selected pathways
This health impact calculation is limited to health benefits from physical activity gained from trail use. Trail use may also

present risks, namely from exposure to air pollution and injury risk. In previous health impact studies of active transpor-
tation both air pollution and crash risks have been shown to be of less relevance compared to physical activity (Doorley
et al., 2015; Mueller et al., 2015). In particular, impacts from increased exposure to air pollution due to higher ventilation
rates are small, compared to benefits from physical activity, even for high pollution environments (Tainio et al., 2016). Crash
data was not available for the investigated trails, however, it can be assumed that trails are safer and cleaner environments,
compared to urban on-road settings typically studied in health impact studies of active transportation (Doorley et al., 2015;
Mueller et al., 2015).

2.4.2. Health outcomes assessed
We calculate impacts in terms of premature deaths avoided, monetized by VSL, and prevented disease cases, monetized as

avoided treatment costs, because we are particularly interested in (non-fatal) health outcomes and valuations of benefits that
relate with stakeholders in the health sector, and more generally, result in more tangible results.

Based on epidemiological evidence reviewed for earlier work (Götschi et al., 2015b) and publicly available data for the US
we identified the following diseases as suitable for our calculation: heart disease (i.e. cardio-vascular diseases), diabetes,
colon cancer, breast cancer, and depression, in addition to all-cause mortality.

Table 1
TMAP trail data.

Trail City State Miles Surface Bicycle
AADT

Pedestrian
AADT

% Cyclists % Weekend SCF Survey re-
sponse rate

N

Back Cove Trail Portland ME 3.6 Paved 176 738 19% 58% 1 67% 218
Bayshore Bikeway San Diego CA 17.1 Paved 427 2339 15% 51% 1 50% 171
Burke-Gilman Trail Seattle WA 18.8 Paved 1107 384 74% 63% 0.6 n/a 63
Crystal City
Connector

Arlington VA 0.4 Paved 517 509 50% 50% 1 34% 407

Elliott Bay Trail Seattle WA 3.4 Paved 1236 2451 34% 68% 1 n/a 50
Jefferson Davis
Parkway

New Orleans LA 1.5 Paved 376 357 51% 48% 1 39% 294

Kiwanis Trail Billings MT 2.1 Paved 30 132 19% 48% 1 87%a 110
Monon Trail Indianapolis IN 19.7 Paved 1330 333 80% 52% 0.65 n/a 357
M-Path Miami FL 9.4 Paved 177 82 68% 47% 0.65 12% 59
Paseo del Nordeste
Trail

Albuquerque NM 3.1 Paved 120 194 38% 54% 1 75% 167

Pikes Peak
Greenway

Colorado Springs CO 16 Crushed
limestone

162 686 19% 54% 0.55 42% 161

Trinity River Trail
Network

Fort Worth TX 40 Paved 551 469 54% 57% 0.75 31% 149

Washington and Old
Dominion Trail

Arlington VA 45 Paved 1100 585 65% 53% 0.55 n/a 397

West River Parkway
Trail

Minneapolis MN 8.9 Paved 916 450 67% 56% 0.75 n/a 504

AADT=Annual Average Daily Traffic; SCF¼spatial correction factor (see Methodology 2.5.2.4.).
a Response rate estimate may not be reliable on this trail.
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2.5. T-MAP health impact calculation

2.5.1. General approach
This study uses a comparative risk assessment framework, which compares disease risk with and without trail use. The

health impact calculation consists of a sequence of calculations that combine various parameters, namely epidemiologic
evidence (i.e. relative risks and dose-response parameters); population data (i.e. disease and mortality rates, and treatment
costs); and data on the exposure of interest (i.e. information on trail use from our own survey). Further, as part of the health
impact calculation, data that initially may come in disaggregated form (i.e. per individual), or partly aggregated (i.e. means
per age group) is used to produce aggregated results, e.g. average health benefits per trail.

First we describe the data used, afterwards how they were aggregated.

2.5.2. Data sources and preparation
2.5.2.1. Data from epidemiologic literature. Relative risk estimates, including corresponding exposures (i.e. “doses”), were
obtained from the literature as part of earlier work (Götschi et al., 2015b) and are listed in Table 2.

Dose-response function is only available for physical activity and mortality (Woodcock et al., 2011). We assume that its
shape applies to all outcomes associated with physical activity. Based on Woodcock et al. (2011), we fit the following dose-
response function to the disease-specific relative risks to scale the protective effects resulting from trail use:

⎛
⎝⎜

⎞
⎠⎟= − ( )RR RR1 1OBS EPI

PA
PA

OBS
EPI

0.5

where RROBS is the relative risk reduction (i.e. protective effect) in the local observation (i.e. in trail users); RREPI is the
relative risk estimate from epidemiologic literature with corresponding exposure PAEPI, and PAOBS is the observed exposure
(i.e. physical activity gained from trail use).

Intensities of trail activities, i.e. walking, bicycling and running, by various speeds, were obtained from the Compendium
of Physical Activities (Ainsworth et al., 2011). Linear regressions were fit to predict intensities of trail use by speed and mode
(Supplementary materials, Section 7.1).

2.5.2.2. Population data. All-cause mortality rates by 10-year age groups for the US-standard population were obtained from
the National Vital Statistics Reports (Kochanek et al., 2012).

Disease incidence rates are not readily available for the US population. Instead, CDC provides rates for hospital discharges,
hospital outpatient department visits, physician office visits and some other categories (CDC, 2016b). We use hospital
discharge rates as the best approximation to a case definition that corresponds with epidemiologic studies, which focus on
more severe cases (CDC/NCHS, 2010) (Table 2).

2.5.2.3. Cost data. Value of Statistical Life of $9.4 million is used to monetize avoided premature deaths (US Department of
Transportation, 2015).

We use Treatment costs from CDC's Chronic Disease Cost Calculator (CDC, 2016c), which provides state-level estimates of
medical expenditures and absenteeism costs for selected diseases by age groups for 2010. These figures include all types of
treatment and prescription drugs, which is a much broader case definition than in the relative risks and the hospital dis-
charge rates we use. We therefore approximate cost estimates as follows:

For heart disease, the largest disease group, hospital discharges represent 21% of all cases, when counting outpatient
department (11%) and physician visits (68%). Thus, we assume hospital discharges represent the 20% most severe cases, and
assume this applies to all outcomes.

Consulting the distribution of US health care costs per person, the top 20% (i.e. “severe patients”) are responsible for
81.2% of all costs, which corresponds to an average cost per person of $32,596 (i.e. per “severe patient”), compared to an
average cost of $8149 when averaged across all persons (Stanton, 2006). In other words, the 20% most costly health care
recipients cost on average 4 times more than the average person. We thus multiply average treatment costs provided by the
CDC chronic disease cost calculator by this same factor of 4.

Further, disease cost estimates reflect annual costs of treatment. We multiply these with estimates of duration of
treatment of 1 year for heart disease, 5 years for diabetes, 3 years for colon cancer, 4 years for breast cancer, and 10 years for
depression. For details, see Supplementary materials, Section 7.2.

Finally, we inflate treatment cost estimates by 16%, reflecting inflation in US health care costs from 2010 to 2015 (Patton,
2015) (Table 3).

Further, we also use Absenteeism costs from CDC's Chronic Disease Cost Calculator (CDC, 2016c), which we inflate by 10%,
reflecting inflation in general US consumer price index for 2010–2015.

2.5.2.4. Trail data
Trail length in miles. AADT, i.e. annual average daily trail counts obtained from continuous counters installed at one

location per trail. If not available by mode (i.e. bicycles vs. pedestrians), we use mode split from the survey to estimate mode
specific AADT's. In the same way, we split AADT for pedestrians between walking and running.
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Spatial correction factor: We introduce a spatial correction factor to correct for spatial heterogeneity in trail use. We
assume that the AADT represents a peak value on the trail and that trail use declines linearly across trail segments to reach
as little as 10% of the peak value for the segment with the lowest trail use.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

= × = × +
−

( )
AADT AADT SCF AADT DT

DT1
2 2

corr min
min

where: AADTcorr is the corrected AADT, SCF is the spatial correction factor applied, and DTmin is an estimate of the average
daily trail count on the least frequented trail segment, measured as a fraction of AADT. Estimates for DTmin for the T-MAP
trails are listed in Table 1.

More elaborate assessments of spatial distribution of trail use, i.e. counts at multiple locations, are subject to future work
(Rails-to-Trails Conservancy, 2015).

2.5.2.5. Trail survey data. The T-MAP trail user intercept survey provides information on trail use in terms of duration,
distance, and mode, both for the actual activity on the trail, as well as the access trip to the trail. When accessed by active
modes, we include the access segment in the health impact calculation. We also include the full trip distance, even if it
exceeds the length of the assessed trail. The survey further includes questions about physical activity in general (i.e. baseline

Table 2
All-cause mortality and disease incidence rates (hospital discharges).

Outcome Age group Rate

All-cause mortality 15–24 65/100,000
Deaths (all-causes) 25–34 106/100,000
RR¼0.81/11 MET-hours per week (Woodcock et al., 2011) 35–44 172/100,000

45–54 406/100,000
55–64 860/100,000
65–74 1802/100,000
75–84 4648/100,000

Heart disease 15–24 1.4/100,000
Hospital discharges 25–34 5.1/100,000
RR¼0.84/5.4 MET-hours per week (Hamer and Chida, 2008) 35–44 17.3/100,000

45–54 54.4/100,000
55–64 125.1/100,000
65–74 264.4/100,000
75–84 741.9/100,000

Diabetes 15–24 0.3/100,000
Hospital discharges 25–34 1.2/100,000
RR¼0.83/5.6 MET-hours per week (Jeon et al., 2007) 35–44 3.7/100,000

45–54 10.4/100,000
55–64 25.5/100,000
65–74 52.7/100,000
75–84 112.1/100,000

Colon cancer 15–24 0/100,000
Hospital discharges 25–34 0.2/100,000
RR¼0.83/23.7 MET-hours per week (Harriss et al., 2009) 35–44 0.8/100,000

45–54 2.7/100,000
55–64 5.9/100,000
65–74 11.4/100,000
75–84 23/100,000

Breast cancer 15–24 0/100,000
Hospital discharges 25–34 1.3/100,000
RR¼0.94/3.5MET-hours per week (Monninkhof et al., 2007) 35–44 7.2/100,000

45–54 20.3/100,000
55–64 33.2/100,000
65–74 34.1/100,000
75–84 29.9/100,000

Depression 15–24 1.3/100,000
Hospital discharges 25–34 1.7/100,000
RR¼0.96/0.8 MET-hours per week (Paffenbarger Jr. et al., 1994) 35–44 2.2/100,000

45–54 2.2/100,000
55–64 1.2/100,000
65–74 2.9/100,000
75–84 1.2/100,000
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physical activity), trail use frequency (summer and winter), potential alternative activities if subjects would not have used
the trail, as well as age and gender to fine tune the health impact calculation (see Supplementary materials for full T-MAP
Intercept Survey, p. 12 or Section 7.3.).

2.5.3. Health impact calculation steps
2.5.3.1. Calculating long term physical activity from trail use. From survey data on distance and duration, we calculate speed. To
remove unrealistic values due to propagation of errors in distance and duration estimates, values for speed were capped at
the 90th percentile, namely at 29 km/h for cycling, 14 km/h for running, and at 12 km/h for walking.

Using mode specific extrapolation formulas for intensity (see Supplementary materials p. 10 or Supplementary materials,
Section 7.1).), we predict intensity of trail activity (measured in MET, Metabolic Equivalent of Task) based on speed. MET
values were also capped at the 90th percentile.

Intensity of the trail activity is then multiplied by duration to receive physical activity of the trail visit, measured in MET-
hours. If mode to access the trail was the same (active) mode as the trail activity itself, the time accessing the trail was added
to the trail activity.

Long term physical activity behavior is typically measured in average MET-hours per week. We use the average of trail
use frequency in summer and winter to scale physical activity from the observed trail visit to obtain an estimate of annual
average physical activity from trail use per week, measured in MET-hours/week.

We also asked respondents about how likely they would have engaged in other exercise if they had not visited the trail.
Based on their responses we create substitution probabilities (very likely¼0.8; likely¼0.6; undecided¼0.4; unlikely¼0.2;
very unlikely¼0), by which we discount their physical activity from trail use, to obtain net physical activity from trail use. We
use net physical activity as a sensitivity measure in comparison to all (gross) physical activity from trail use.

Health benefits do not solely depend on how much exercise people get from trail visits, but also on their general level of
physical activity (i.e. baseline physical activity). People who are less active will benefit more from the same amount of trail
activity than people who already pursue very active lifestyles. To assess respondents’ baseline physical activity, they were
asked on how many days in a typical week they were moderately active for at least 30 min (Wanner et al., 2014). For each
reported active day we accounted 2 MET-hours (equivalent to 30 min of moderate physical activity) towards their baseline
physical activity level.

2.5.3.2. Calculating health benefits from long term trail use per 100,000 trail users. The relative risk reduction from regular trail
use is calculated using a comparative risk assessment formula, which basically scales the relative risk from the epidemio-
logic literature to subjects’ physical activity levels with and without trail use. The resulting difference is the risk reduction
attributable to trail use.

Table 3
Treatment costs for chronic diseases by age groups (based on CDC chronic disease cost calculator average costs per treated person and year, adjusted for
diseases duration and “severe case” (i.e. x 4, see Section 2.5.2.3.).

Disease Age group Annual cost per patient Duration Cost per case

Heart disease (CVD) 18–44 $13,758 1 $13,758
45–64 $23,201 1 $23,201
65þ $46,581 1 $46,581
All $32,855 1 $32,855

Diabetes 18–44 $11,274 5 $56,369
45–64 $16,683 5 $83,415
65þ $34,154 5 $170,769
All $23,065 5 $115,323

Colon cancer 18–44 $16,175 3 $48,526
45–64 $29,806 3 $89,418
65þ $54,305 3 $162,914
All $40,895 3 $122,686

Breast cancer 18–44 $16,175 4 $64,702
45–64 $29,806 4 $119,225
65þ $54,305 4 $217,218
All $40,895 4 $163,582

Depression 18–44 $7058 10 $70,585
45–64 $11,972 10 $119,723
65þ $27,000 10 $270,000
All $13,166 10 $131,662
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where RRTU is the relative risk reduction (i.e. protective effect) resulting from trail use, RREPI is the relative risk estimate from
epidemiologic literature with corresponding exposure PAEPI, PABL is the baseline exposure in the trail users (i.e. physical
activity level without trail use), and PATU is the exposure contrast due to trail use (i.e. physical activity gained from trail use).

The relative risk estimates from the epidemiologic literature are listed in Table 2.
The resulting risk reductions due to regular trail use are then applied to the corresponding baseline disease and mortality

risks (Table 2).

= − × ( )AC IR IR RR 4out out out TU

where ACout are avoided cases of a specific outcome, per 100’000 trail users, IRout is the baseline risk (incidence rate) of that
outcome, and RRTU is the risk reduction resulting from trail use for that same outcome.

This provides us with estimates of health benefits per 100,000 trail users. This format may be of use public health
advocates that aim to reach out to potential trail users, for example as part of a health promotion campaign. However, for
planners and decision makers who would like to assess the value of a specific trail, or trail project, benefit rates based on
trail counts may be more useful.

2.5.3.3. Calculating health benefits from long term trail use per 1000 trail counts (AADT). Converting users to counts (or vice
versa): To extrapolate health benefits from individuals (i.e. per 100,000 trail users per year) to trails we use AADT (annual
average daily trail counts) obtained from continuous counters installed at one location per trail. The conversion from AADT
to trail users requires a number of “corrections”:

= × = ×
× ×

× × ( )
TU AADT U C AADT

SCF

Loops Freq
/

365

52 5
mode mode a d mode

TL
Dist

week

mean

where TUmode is the number of trail users by mode and year; AADT is the annual average daily trail count by mode; Ua/Cd is
the annual users to daily counts ratio; 365 is the factor to obtain an estimate per year; TL is the trail length, which is divided
by Distmean, the average distance of a trail visit (as such, this accounts for the trail segment covered by a single counter. Not
applied if Distmean4TL); SCF is the spatial correction factor taking into account spatial heterogeneity of trail use; Loops
accounts for the proportion of trail visits that are return trips (a factor between 1 and 2); Freqweek is the average weekly
frequency of trail visits per user, and 52 is a correction factor to obtain annual frequency.

Health impact rates per 100,000 users are divided by the users-to-counts ratio (Ua/Cd) and divided by 100 to obtain rates
per 1000 AADT. These estimates are then scaled to a trail length of 10 miles, based on the average length of trail visits (i.e.
9.4 miles) and the proportion of loop trips (78%) in our sample.

2.5.3.4. Calculating health benefits from long term trail use for specific trails. To quantify the health benefits for specific trails,
the trail specific AADT's are multiplied with the users-to-counts ratio (Ua/Cd) and the rates per 100,000 trail users, divided
by 100,000.

2.5.3.5. Monetization of health benefits. To obtain monetized health impacts, avoided premature deaths are multiplied with
the VSL and avoided disease cases are multiplied by annual treatment costs and disease duration, and by annual ab-
senteeism cost and disease duration, respectively.

2.5.4. Aggregation of data throughout the health impact calculation
Trail survey data is unique for each trail user surveyed, while disease and mortality risks, and treatment costs are

averaged by age groups, and yet some other parameters represent global averages per mode or trail attributes that apply to
all trail users equally. As part of the calculation these different levels of aggregation need to be harmonized and aggregated
to the format of the final results. Because of many non-linearities in the calculation and data, the method of aggregation has
an influence on the final estimates. Most influential are the correlations of age with key parameters, such as baseline disease
risks, trail use and physical activity.

At which point in the calculation data should be aggregated is not obvious, a priori. Keeping data disaggregated
maintains a more realistic reflection of the distribution and individual-level combinations of attributes. However, calcula-
tions using disaggregate data are susceptible to outliers and propagation of errors, which are smoothed over by aggregating
the data. Throughout the calculation we therefore apply three parallel approaches to calculate health impacts:

A. Disaggregate approach Keep data disaggregated for as long as possible, such as aggregate only at the end of the calculation
to obtain final estimates.
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B. Stratified approach Aggregate data immediately to subgroups defined by combining gender, age groups, and activity
(mode). Aggregate estimates for subgroups at the end of the calculation to obtain final estimates.

C. Aggregate approach Aggregate data immediately to means for the entire trail user population (independent of age and
gender; but stratified by activity). Run calculation to obtain final estimates without any further aggregation.

Fig. 1 illustrates the concept. Findings are somewhat sensitive to which approach is taken, final estimates are therefore pre-
sented as the average of the three approaches, with the lowest and highest estimate reported as percent deviation from the mean.

3. Results

3.1. Trail and trail user characteristics

Across 14 trails surveyed, 5922 trail users were approached, of which 3169 agreed to participate in the on-site survey
(53%), 413 preferred to fill out an online survey (7%, not included in this analysis), and 2340 (40%) declined to participate. On
6 trails, non-participants were not recorded reliably. Excluding these, average response rate was 40%. 3107 participants
provided valid surveys. Sample distribution across trails is shown in Table 1, along with other trail attributes. In total, the
trails span a length of almost 200 miles, and see an average of over 500 cyclists and 700 pedestrians every day.

Descriptive statistics of the survey participants are shown in Table 4, a comprehensive summary is available in Sup-
plementary Table 1. The surveyed trail users were on average 45 years old, in the majority male (58%) and predominantly
cyclists (53%). The average time spent on a trail was just over an hour, and in summer, half of all users frequented the trail
three times per week (in winter 30%). The trail users reported to be in good to excellent health, and to be generally very
active (80% report 4 or more active days per week). The vast majority of trail use was for recreational purposes (77%), as
compared to 22% utilitarian (i.e. transportation).

3.2. Health impacts of trail use

Our health impact analysis produces a wealth of results. Besides the main results presented here, more detailed tables
are available as part of Supplementary materials. All estimates are per year.

Regular trail use reduces disease risks between 7 and 13% in the surveyed population. Mortality risk is reduced by 11%
(Supplementary Table 2).

Regular trail use prevents 36 hospitalizations, and about $2.1 million, due to the five assessed chronic diseases per
100,000 trail users and year (Table 5). The majority of these are attributable to heart disease (28 cases, and $985,000/
100,000� year; Supplementary Table 3). Cost savings due to prevented absenteeism (i.e. days missed at work) are much

Fig. 1. Data aggregation approaches applied in the T-MAP health impact calculation.
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smaller at approx. $25,000 per 100,000 trail users and year (Supplementary Table 6).
Converted to rates per trail counts, every year, one chronic disease case is prevented for approx. every 13 miles of trail

with an AADT of 1,000, equivalent to annual treatment cost savings of $59,000.
On average, cycling makes up for almost half (46%), walking for one third (33%) and running for one fifth (21%) of all

health impacts, although these splits vary considerably across the T-MAP trails.
Naturally, estimates for mortality are substantially higher. The case definition, and therefore the underlying all-cause

mortality risk is much broader, compared to hospital discharges, and VSL is much higher than even the most expensive
treatment costs per case. Regular trail use prevents 182 premature deaths, valued at about $1.7 billion, per 100’000 trail
users every year (Table 6). Every 2.6 miles of trail with an AADT of 1,000 prevent one premature death per year, or $9.4
million in terms of VSL.

The majority of trail users state that they would engage in other physical activities, if they had not been able to visit the
trail (47% very likely, 25% likely). Based on the substitution probabilities assigned to these categories, on average 57% of trail
activity would have been substituted by other exercise. In other words, every hour of trail use only leads to a net gain of
26 min of physical activity. Accordingly, health impacts based on net physical activity gained from regular trail use are 19
prevented disease cases or $1,085,000 in saved treatment costs, and 95 premature deaths avoided valued at $893 million, all
per 100,000 trail users. Additional results for net gain in physical activity are available in Supplementary Table 4 and
Supplementary Table 5.

Comparisons across the three aggregation approaches applied (disaggregate, stratified, aggregate) reveal that results can
be quite sensitive to the chosen approach (Supplementary Table 6). For bicycling the stratified analysis yields the highest
estimates, although all three approaches are within a narrow range of 710%. For walking and running, however, the ag-
gregate approach leads to estimates as much as 70% higher than the mean of all three, and more than twice as high than
disaggregate or stratified approaches.

Table 4
TMAP trail user intercept survey descriptive statistics.

Variable Category Value Confidence interval (95%) N

Duration of activity (min; incl. access if same mode as on trail) 71.05 (69–73.1) 3150
Distance (miles, incl. access) 10.99 (10.53–11.45) 3149
Age 45.07 (44.55–45.59) 3150
Gender 3149

Female 42% (40–43%) 1323
Male 58% (57–60%) 1826

Trail activity (mode) 3132
Bike 53% (51–55%) 1660
Walk 31% (29–32%) 971
Run 16% (14–8%) 501
Other 1% (0–10%) 31

Trail use summer 3150
More than 3 times per week 53% (51–55%) 1669
2–3 times per week 22% (20–4%) 693
Once a week 9% (7–1%) 284
2–3 times a month 5% (4–7%) 158
Once a month 4% (2–6%) 126
Less than once a month 3% (2–6%) 94
Never 5% (3–7%) 158

Physically active days per week 3120
0 1% (0–%) 31
1 2% (1–2%) 62
2 4% (3–4%) 125
3 12% (12–12%) 374
4 16% (16–16%) 499
5 24% (24–25%) 749
6 16% (16–16%) 499
7 25% (25–26%) 780

Health status 3150
Excellent 34% (32–6%) 1071
Very good 40% (38–42%) 1260
Good 22% (20–24%) 693
Fair 4% (3–6%) 126
Poor 0% (0–23%) 0
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Table 5
Health impacts from trail use for all diseases combined (avoided hospital cases and treatment costs, per year).

Hospital cases, treatment
costs

All modes Bicycling Walking Running

Impact measure/
Trail

Trail
length
(miles)

Avoided
cases

Avoided costs AADT Bike Avoided
cases

Avoided
costs

Range % AADT
Walk

Avoided
cases

Avoided
costs

Range % AADT Run Avoided
cases

Avoided
costs

Range %

Estimates per
100,000 trail
users

36.18 $2,113,411 13.83 $856,958 �13,þ11 11.21 $700,823 �17,þ30 11.14 $555,630 �33,þ58

Estimates per trail
count of 1000
(AADT)

10 0.82 $48,261 0.36 $22,311 �13,þ11 0.25 $15,807 �16,þ27 0.21 $10,143 �33,þ58

Back Cove Trail 3.6 0.22 $13,150 176 0.02 $940 �21,þ34 844 0.16 $10,482 �10,þ6 243 0.04 $1,728 �27,þ37
Bayshore Bikeway 17.1 1.60 $77,433 427 0.21 $12,660 �5,þ6 2380 0.65 $19,822 �75,þ148 1444 0.74 $44,951 �41,þ60
Burke Gilman Trail 18.8 0.18 $10,811 1107 0.12 $7,243 �10,þ8 433 0.04 $2,446 �17,þ29 268 0.02 $1,122 �45,þ81
Crystal City
Connectora

0.4 0.15 $7,813 517 0.05 $2,567 �8,þ9 602 0.05 $3,112 �11,þ15 451 0.04 $2,134 �21,þ32

Elliott Bay Trail 3.4 0.76 $45,398 1236 0.08 $3,929 �23,þ32 2892 0.53 $34,592 �6,þ8 1153 0.15 $6,877 �32,þ49
Jefferson Davis
Parkway

1.5 0.04 $1,992 376 0.02 $868 �9,þ9 391 0.02 $868 �15,þ27 158 0.01 $256 �37,þ50

Kiwanis Trail 2.1 0.04 $2,814 30 0.01 $377 �28,þ19 148 0.03 $2,032 �22,þ39 54 0.01 $405 �41,þ70
M-Path 9.4 0.03 $1,536 177 0.02 $1,162 �10,þ15 86 0.01 $322 �31,þ38 11 0.00 $52 �27,þ55
Monon Trail 19.7 0.17 $10,317 799 0.09 $5,647 �15,þ15 536 0.05 $2,733 �24,þ44 324 0.03 $1,937 �32,þ50
Paseo Del Nordeste
Trail

3.1 0.07 $4,559 120 0.02 $1,469 �17,þ14 209 0.04 $2,776 �27,þ49 46 0.01 $314 �42,þ82

Pikes Peak
Greenway

16 0.25 $16,318 162 0.02 $1,465 �28,þ19 946 0.11 $8,205 �11,þ19 1211 0.12 $6,648 �27,þ46

Trinity River Trail
Network

40 0.35 $19,051 551 0.20 $11,320 �15,þ9 542 0.09 $5,173 �16,þ29 432 0.06 $2,558 �49,þ96

Washington & Old
Dominion Trail

45 0.43 $26,291 1100 0.27 $17,523 �27,þ18 765 0.07 $4,622 �19,þ32 1029 0.09 $4,146 �32,þ61

West River Park-
way Trail

8.9 0.29 $17,777 916 0.17 $10,944 �13,þ11 487 0.08 $4,973 �29,þ56 249 0.04 $1,860 �45,þ86

a Note: impacts based on reported trip distance including trail-activities beyond trail length of 0.4 miles.
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Table 6
Health impacts from trail use for all-cause mortality (avoided premature deaths, VSL, per year).

All-cause mortality,
VSL

All modes Bicycling Walking Running

Impact mea-
sure/Trail

Trail
length
(miles)

Avoided
cases

Avoided costs AADT Bike Avoided
cases

Avoided costs Range% AADT
Walk

Avoided
cases

Avoided costs Range% AADT Run Avoided
cases

Avoided costs Range%

Estimates per
100,000
trail users

182.23 $1,712,989,760 69.44 $652,754,752 �13,þ11 55.03 $517,252,352 �16,þ27 57.76 $542,982,656 �36,þ64

Estimates per
trail count
of 1000
(AADT)

10 4.12 $38,742,313 1.81 $17,026,330 �14,þ11 1.24 $11,665,611 �14,þ24 1.07 $10,050,372 �36,þ64

Back Cove
Trail

3.6 1.06 $9,945,611 176 0.08 $797,061 �22,þ38 844 0.78 $7,356,313 �13,þ7 243 0.19 $1,792,237 �33,þ49

Bayshore
Bikeway

17.1 8.09 $76,031,536 427 1.07 $10,046,352 �6,þ6 2380 3.33 $31,288,424 �82,þ161 1444 3.69 $34,696,760 �42,þ61

Burke Gilman
Trail

18.8 0.92 $8,673,290 1107 0.61 $5,696,000 �8,þ7 433 0.20 $1,899,346 �15,þ25 268 0.11 $1,077,944 �43,þ76

Crystal City
Connectora

0.4 0.77 $7,241,530 517 0.25 $2,358,024 �8,þ9 602 0.28 $2,637,182 �10,þ13 451 0.24 $2,246,324 �22,þ34

Elliott Bay
Trail

3.4 3.77 $35,409,969 1236 0.44 $4,104,150 �25,þ38 2892 2.55 $23,941,838 �4,þ4 1153 0.78 $7,363,981 �38,þ63

Jefferson Da-
vis
Parkway

1.5 0.23 $2,118,577 376 0.09 $821,264 �9,þ10 391 0.10 $907,193 �16,þ28 158 0.04 $390,120 �36,þ48

Kiwanis Trail 2.1 0.22 $2,021,904 30 0.03 $263,411 �32,þ21 148 0.15 $1,380,694 �21,þ37 54 0.04 $377,799 �46,þ81
M-Path 9.4 0.13 $1,223,611 177 0.10 $905,240 �9,þ14 86 0.03 $266,722 �31,þ38 11 0.01 $51,649 �34,þ67
Monon Trail 19.7 0.89 $8,400,988 799 0.48 $4,513,007 �14,þ14 536 0.23 $2,172,504 �24,þ45 324 0.18 $1,715,477 �31,þ47
Paseo Del
Nordeste
Trail

3.1 0.36 $3,408,401 120 0.12 $1,135,289 �15,þ12 209 0.21 $1,929,551 �28,þ51 46 0.04 $343,561 �50,þ99

Pikes Peak
Greenway

16 1.22 $11,442,087 162 0.11 $1,025,827 �29,þ19 946 0.52 $4,918,837 �3,þ5 1211 0.58 $5,497,423 �31,þ55

Trinity River
Trail
Network

40 1.78 $16,750,480 551 1.00 $9,420,313 �14,þ9 542 0.44 $4,098,649 �11,þ20 432 0.34 $3,231,518 �51,þ99

Washington
& Old Do-
minion
Trail

45 2.14 $20,125,024 1100 1.34 $12,570,692 �28,þ19 765 0.36 $3,409,600 �17,þ28 1029 0.44 $4,144,732 �36,þ69

West River
Parkway
Trail

8.9 1.42 $13,363,887 916 0.82 $7,716,663 �14,þ11 487 0.39 $3,711,933 �30,þ58 249 0.21 $1,935,291 �49,þ95

a Note: impacts based on reported trip distance including trail-activities beyond trail length of 0.4 miles.
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4. Discussion and conclusions

The T-MAP trail intercept survey is an unprecedented effort into understanding urban trail use behavior, both in its scope
and detail. The health impact modeling methodology developed for this project benefited in several ways from the tailored
survey and count efforts (Cohn et al., 2016; Lindsey et al., 2016). In particular, the calculation goes beyond state-of-the-art by
considering individual level data on trail use, such as derived speed and intensity of activity; more realistic estimates of long
term behavior based on summer and winter frequency of use; and the assessment of baseline physical activity and possible
substitution behavior. Modeling prevented disease cases and avoided treatment costs provides a tangible alternative to
mortality-based outcomes which are usually monetized based on VSL. Our parallel calculations using disaggregated, stra-
tified and aggregated data provide methodological insights of relevance to health impact modeling beyond trail use.

Survey respondents consist of a very active population. Summing up self-reported trail use and general physical activity
(active days) suggests that 87% fulfill WHO's recommendations of physical activity (WHO, 2010). Based on active days alone,
only 42% achieve this benchmark, but this is still twice as many than in the general US population (CDC, 2016a).

The reduction in health risks that trail users achieve through regular trail use, around 10%, is substantial. It is important
to note, however, that if inactive persons would start to engage in a similar level of trail use, their benefits would be
considerably higher (risk reduction of 25%), due to the non-linear relationship between physical activity and health.

To put the benefits from physical activity from trail use in perspective, we compare them with another important public
health topic, air pollution, which affects similar health outcomes. To achieve mortality benefits similar to those from trail use
through a reduction in air pollution exposure, one would have to move from one of the most polluted US cities
(PM2.5�20 mg/m3) to a place with basically no air pollution (Hoek et al., 2013; WHO, 2016).

Our estimates of savings in treatment costs add a tangible dimension to the quantification of benefits from trails.
Nonetheless, and despite a number of refinements of our methods compared to earlier health impact calculations (Brown
et al., 2016), these figures need to be interpreted with caution.

Carlson et al. (2015) have estimated that annual health care expenditure is about $1,400 less in active adults
(4150 minutes of moderate physical activity per week), compared to inactive adults. Despite a comparable contrast in
physical activity in the trail users surveyed (compared to no trail use), we estimated savings in treatment costs for trail users
of only $11–$21 per capita and year. We consider several reasons that could explain this discrepancy.

First of all, our assessment is limited to hospital discharge rates. In combination with the limited selection of outcomes,
these only capture an unknown fraction of all healthcare costs. However, for some diseases, like cardio-vascular disease or
diabetes, multiple hospitalizations per year may inflate the disease rates relative to the corresponding cost data, which is per
year.

Secondly, we investigate a relatively young population. 90% of trail users are less than 65 years old. Average health care
expenses are more than three times higher in elderly (Keehan et al., 2004). In our calculation, this age effect manifests itself
both in terms of baseline diseases risks and treatment costs per case. Baseline disease risks among 65–74 year olds are about
15 times higher for heart disease, colon cancer and diabetes, and about 5 times higher for breast cancer, compared to 35–44
year olds. Disease risk rates for depression are similar across age groups. Treatment costs per case in patients 65 years and
older are about three to five times higher than in those 18–44 years old. We estimate that the combination of lower disease
rates and lower costs per case explain about half of the difference between avoided treatment costs in our sample compared
to total health care cost savings in active vs. inactive subjects of a representative population sample, as observed by Carlson
et al. (2015). For similar reasons, absentee costs are extremely low, although, these may in addition be deflated by less severe
cases, which we did not correct for. Our calculation does not account for any lag effects between current physical activity
and health benefits later in life. Although physiologically highly plausible, epidemiologic evidence is still limited to quantify
such considerations.

Thirdly, methodological decisions, assumptions, and uncertainties certainly lead to discrepancies in any comparison with
other studies. Some uncertainty to self-reported data is inherent. In the context of our health impact calculation the po-
tential influence of misclassification of physical activity variables is noteworthy, although difficult to assess. In contrast to
previous studies, we directly asked subjects to report not only on the activity of interest (i.e. trail use) but also on their usual
level of physical activity (baseline physical activity) and there likelihood to substitute trail use with another form of exercise
allowing us to assess net-gains in physical activity. Conceptually both baseline activity levels and consideration of sub-
stitution behavior should improve estimates of health benefits from trail use, but all three physical activity items represent
desirable behaviors which are prone to over-reporting. Over-estimation of trail use will inflate benefits, while over-esti-
mation of baseline activity and substitution will deflate benefits. In our survey, trail use is the only actually revealed be-
havior and is captured in fairly easily recalled concepts of self-reported duration, distance, and frequency, while baseline
activity and substitution behavior are more hypothetical and challenging to respondents, plus we need to make some
assumptions to quantify these, which introduces an additional source of misclassification.

We also had to take various assumptions throughout the calculation to address the lack of or incompatibility of data,
namely matching different definitions of age groups, and stratifying overall disease rates applying age distributions from
disease-specific mortality rates. We do not expect our estimates to be sensitive to assumptions at this level of detail.
However, aligning varying case definitions between epidemiological findings, publically available disease rates, and treat-
ment cost data remains a source of uncertainty of unknown magnitude.

Arguably our most arbitrary assumptions relate to the spatial correction factor for heterogeneity in trail use along trails,
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which we chose to take without any empirical grounds (other than the anecdotal reports that automated counters tend to
be installed at highly frequented locations). In applying spatial correction factors based on very crude assumptions we err on
the conservative side. Not applying any spatial correction factors would have led to approximately 25% higher estimates. To
base spatial correction on empirical data in the future, as part of T-MAP we developed the smartphone-based count app
“GoCounter” (Rails-to-Trails Conservancy, 2015), which facilitates efficient count data collection at numerous locations. An
online calculator to extrapolate short term counts to annual means is also part of the T-MAP tool box (Rails-to-Trails
Conservancy, 2016). Trails of course are fairly simple, linear objects to assess spatial heterogeneity. Implementing the same
concept for active transportation more broadly would call for area-wide active transportation demand models (Kuzmyak
et al., 2014).

Our calculation provides some long sought insights on the sensitivity of health impact estimates with regards to level of
data aggregation. Aggregate calculation approaches, such as for example WHO's HEAT tool (Cavill et al., 2012), are practice-
friendly because of their minimal data requirements, whereas disaggregate or stratified approaches, such as ITHIM
(Woodcock, 2014), promise more accurate estimates at a considerable cost in user burden. Our calculation suggests that
aggregate approaches may overestimate impacts considerably compared to stratified approaches. The disaggregate ap-
proach, however, produced very similar estimates as the stratified approach. However, these differences are noticeably less
pronounced for cycling, possibly because cycling in our sample is a more homogenous behavior. Without further exploration
of these findings it seems fair to suggest that health impact calculation should aspire to stratify by age.

As such our study demonstrated that tailored data collection can substantially improve health impact calculations, but
additional work is needed to refine our approach. In particular, a more comprehensive approach to quantifying impacts on
health care costs, including further harmonization of underlying disease incidence and treatment cost data, is warranted.
T-MAP intends to develop a practice-friendly platform to facilitate intercept surveys and health impact calculations in the
future.
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