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Abstract:  

While many groups demonstrated the formation of new muscle tissue after muscle precursor 

cells(MPCs) injection, the capacity of these cells to heal muscle damages, e.g. urinary-sphincter in 

stress-urinary-incontinence, in long-term is still limited. Therefore, the first goal of our project was to 

optimize the functional regenerative potential of hMPC by genetic modification to overexpress human-

peroxisome-proliferator-activated-receptor-gamma-coactivator-alpha(hPGC-1α), key regulator of 

exercise-mediated adaptation. Moreover, we aimed at establishing a feasible methodology for non-

invasive visualization of implanted cells and their microenvironment in muscle crush injury model using 

positron-emission-tomography(PET). PGC-1α-bioengineered muscles showed enhanced markers 

expression for myogenesis(α-actinin, MyHC, Desmin), vascularization(VEGF), neuronal(ACHE) and 

mitochondrial(COXIV) activity. Consistently, use of hPGC-1α_hMPCs produced significantly 

increased contractile force one-to-three weeks after injury. PET imaging showed distinct differences in 

radiotracers signal ([18F]Fallypride, [11C]Raclopride(both targeting dopamine2receptors(D2R)), 

[64Cu]NODGA-RGD(targeting neo-vascularization)) between GFP_hMPCs and hD2R_hPGC-

1α_hMPCs. After muscle harvesting, we found that inflammation levels were in parallel to radiotracer 

uptake-amount, with significantly lower uptake in hPGC-1α-overexpressing samples. In summary, we 

facilitated early functional muscle tissue regeneration, introducing a novel approach to improve skeletal 

muscle regeneration. Besides successful tracking of hMPCs in muscle crush injuries, we could show 

that in high-inflammation-areas the specificity of radioligands might be significantly reduced, 

addressing a possible bottleneck of neo-vascularization PET-imaging. 
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Introduction 

A promising treatment option for various muscle-related diseases, e.g. stress urinary incontinence, is the 

use of autologous stem cells for restoration of damaged muscle fibers, e.g. in the urinary sphincter. 

Muscle precursor cells (MPCs) represent the cell population, that has been shown to be indispensable 

for skeletal muscle regeneration[1]. Due to their potential to differentiate into myoblasts and the ability 

to later form new contractile myofibers, MPCs are being investigated for muscle tissue engineering and 

reconstruction in the treatment of a variety of muscle diseases[2-4]. Still, two main concerns about their 

successful and save clinical application are unsolved: the volumetric loss of the bioengineered tissues 

over time and the missing tools for non-invasive imaging of the fate of the implanted cells.  

A major shortcoming of the implantation of hMPCs is their decreased growth capacity in the aged 

population[5-7]. This challenge for autologous cell therapy may be addressed by exercise and/or 

therapeutic regulation of gene expression, which enhances the ability of MPCs to restore muscle fibers. 

Reduced physical activity is linked to many chronic diseases. The understanding of the molecular 

mechanisms behind regeneration of impaired muscle tissue (e.g. damaged urinary sphincter) is vital for 

the development of proper treatment strategies. One key player in the regulation of exercise-mediated 

adaptations and of neuromuscular activity of skeletal muscles is the transcriptional coactivator 

peroxisome proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α)[8, 9]. Its expression in 

muscle tissue is proportional to the amount of exercise and has been shown to counteract atrophy[10]. 

Atrophy is a major limitation hindering skeletal muscle tissue bioengineering. PGC-1α plays an essential 

role in the regulation of cellular differentiation, development and metabolism (carbohydrate, lipid, 

protein) of higher organisms[10, 11]. PGC-1α is further regulating the mitochondrial biogenesis and is 

adapting the oxidative state in muscles. In skeletal muscle, PGC-1α is abundant and particularly enriched 

in slow-twitch, oxidative muscle fibers, containing a large number of mitochondria. Importantly, 

oxidative muscle fibers are the dominant type in the external urinary sphincter[12]. It has been shown, 

that increased levels of PGC-1α can promote a shift in the fiber composition toward high-endurance 

muscle fibers[13],[14]. Furthermore, this muscle phenotype is characterized by pronounced tissue 

vascularization[15], increased myoglobin levels and enhanced import of glucose, lipids and lactate[16]. 

In addition, PGC-1α tightly links muscle and nerve by regulating neuromuscular junction genes and by 
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promoting clustering of acetylcholine receptors (ACHR) at the motor end plate[17]. It has been 

proposed, that PGC-1α controls muscle plasticity and suppresses a broad inflammatory response[18]. 

There is further evidence suggesting that oxidative metabolism and inflammation counteract each other 

in muscle tissue, outlining the central function of PGC-1 α in muscle recovery. Therefore, emphasizing 

the use of PGC-1α alteration opens up for novel muscle tissue engineering approaches[19] and possible 

clinical applications [20] in urology and beyond. 

Besides the volumetric loss of bioengineered tissues, another shortcoming in the field is the missing 

tools for non-invasive imaging of this cell therapy. Research towards the non-invasive imaging of 

autologous stem cell therapies is of high importance as both repeated biopsy and access to many organs 

are often not clinically feasible. Several modalities are being investigated for their applicability in cell 

tracking and cell metabolism read-outs[21]. While MRI has lower sensitivity compared to radionuclide-

based tools and bioluminescence has poor spatial resolution, PET/CT is a system with both high 

sensitivity and resolution[21]. Additionally, although imaging reporter genes are available for 

fluorescence, bioluminescence and MRI, only radionuclide-based reporter genes are currently 

investigated for use in patients[22-27]. In our previous work, we developed a feasible method for in vivo 

tracking of subcutaneously injected hMPCs using [18F]Fallypride, a well-established dopamine 2 

receptor (hD2R) PET ligand[28]. After the successful generation of adenoviruses for overexpression of 

a signalling-deficient hD2R in hMPCs, we were able to establish an ex situ model for imaging of 

bioengineered muscle tissue[28]. This encouraged us to concentrate our further investigations towards 

the applicability of these methods in an in situ muscle crush model studying skeletal muscle 

regeneration, thereby coming closer to a model for studying urinary sphincter muscle restoration. 

In this regard, we aimed at examining the influence of genetically modified hPGC-1α-overexpressing 

hMPCs, injected in a skeletal muscle after crush-injury, specifically investigating the effect on tissue 

regeneration and muscle contractility. We expected to improve the cellular therapy for clinical 

implementation in stress urinary incontinence patients in future, restoring the functionality of the 

external urinary sphincter (predominantly oxidative type fibers[12]).  Moreover, we used a method for 

non-invasive PET tracking by ectopic hD2R expression in the implanted cells[28] and visualization of 

the neo-vascularization in the regenerating muscle tissue. We hypothesize that by enhancing the hPGC-
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1α expression in hMPCs, we can improve the regeneration capacity and contractility of the injured 

muscles. 

 

Materials and Methods  

Isolation and expansion of hMPCs 

Human muscle biopsies from the M. rectus abdominis were collected upon ethical approval and with 

informed consent of 6 hospitalized patients undergoing abdominal surgery under general anesthesia. 

The patients were selected according to strict in-/and exclusion criteria, assuring optimal quality of the 

muscle biopsy (e.g. no muscular dystrophy/hormonal therapy/chronic infectious diseases). The samples 

were processed according to established protocols[29]. Briefly, each muscle biopsy was first minced 

and digested with collagenase Type I 0.2% (w/v) (Sigma) and dispase 0.4% (w/v) (Gibco). The 

enzymatic reaction was terminated with medium containing 10% FBS. Individual fibers were then 

liberated by rigorous pipetting and filtered through a strainer with a pore size of 100 μm. After 

centrifugation the pellet was re-suspended in culture medium and the muscle fibers transferred into 35 

mm dishes coated with collagen type I (1mg/ml) (BD). The culture medium consisted of DMEM/F12, 

1% Penicillin/Streptomycin, 18% FBS, 10 ng/ml hEGF (Sigma), 1 ng/ml hbFGF (Sigma), 10 μg/ml 

human insulin (Sigma) and 0.4 μg/ml dexamethasone (Sigma) [29]. After 24 h a fibroblast reduction 

step was performed by re-plating the cells. The cultured hMPCs were characterized as published before 

[14],[29]. 

 

Adenoviral design and transduction  

The AdEasy System was used as a tool for recombinant adenovirus generation. For the first construct, 

N-terminal HA-tagged human PGC-1α was cloned into an adenoviral vector that codes for CMV 

promoter-driven green fluorescent protein (GFP). The expression of hPGC-1α was also under the control 

of a CMV promoter, thereby ensuring its robust, constitutive expression[14]. For the second construct, 

phenylalanine 411 of the human D2R was mutated into alanine (F411A) to obtain a signalling-deficient 

human dopamine D2 receptor that still binds ligands in a normal manner but will not activate 

intracellular signalling upon ligand binding[28, 30]. As control for viral infection a GFP adenovirus was 
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used. The viral titer was increased through additional amplification steps and quantified by fluorescent 

microscopy. The optimal multiplicity of infection (MOI) was measured by serial titrations of the viral 

vectors on hMPCs and simultaneous determination of fluorescent cells, cell toxicity and cell viability 

and proliferation. Detailed descriptions of the performed assays were published before[14, 28]. Finally, 

the transduced hMPCs were expanded for 2 days after infection and were injected at the injured site in 

nude mice.  

 

Animal experimentation 

All animal experiments were approved by and performed according to the local commission for animal 

experiments. A total of 49 female 8-week-old, nude mice (Charles River, Germany) received hind limb 

lateral incisions on both sides (from the inferior tibiofibular joint up to the knee joint) under general 

anesthesia (3 % isoflurane) and aseptic conditions, according to a modified published protocol [31]. 

Briefly, a coronal-plane beneath the Tibialis anterior (TA) was opened, separating the muscle from the 

tibia. The lower jaw of non-serrated forceps was gently inserted below the TA. Crush injury was 

performed by closing the forceps to its first stage for 3 seconds. The forceps was gently removed, the 

hMPC-collagen suspension was injected and the wound was closed. Each injection contained 6x106 

transduced hMPCs, which were gently mixed with 100 μl collagen type I carrier (final concentration: 2 

mg/ml) (BD) prior to injection. A volume of 30 μl of the collagen-cell suspension could be injected 

without leakage. The muscles were harvested 9±1 days (early), 18±3 days (mid-term), or 31±3 days 

(late) after injection. The deviation in time-periods was mandatory due to a complex regimen in 

repetitive PET imaging with different tracers in the same animal. 

 

Radiosynthesis of [11C]Raclopride 

The radiosynthesis of [11C]Raclopride was successfully accomplished using an established procedure in 

our lab. Briefly, cyclotron produced [11C]CO2 gas was reacted with H2 using Ni catalyst to afford 

[11C]CH4, which was passed through an I2 column to yield [11C]CH3I. [11C]CH3I was then reacted with 

the desmethyl precursor for 5 min at 90 °C. After HPLC purification and SPE extraction, 

[11C]Raclopride was obtained in 99% radiochemical purity with a maximal specific activity of 239 
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GBq/μmol. A total of 1.09 – 1.72 GBq of [11C]Raclopride was obtained in an injectable solution of 5% 

EtOH in 0.15 M PBS. PET scans with [11C]Raclopride were acquired from 0 – 60 min p.i. and time 

frames were averaged for data analysis. 

 

Radiosynthesis of [64Cu]NODAGA-RGD  

In order to image neo-vascularization, we used [64Cu]NODAGA‐RGD to target the growth factor 

integrin αvβIII. Ammonium ascorbate (0.5 M, pH 5.5) was added to [64Cu]CuCl2 (50 μl in 0.05 N HCl) 

obtained commercially or produced at Paul Scherrer Institute (PSI), followed by addition of 40 μl of 

NODAGA peptide (NODAGAc(RGDfk), 1mM in H2O). Labeling was carried out at 95 °C for 15 

minutes. According to analytical HPLC, 90% of 64Cu‐activity was chelated and only 10% [64Cu]CuCl2 

remained unreacted. To bind this remaining fraction, 5 μl DTPA (1 g/15 ml) were added. The resulting 

[64Cu]DTPA complex is known to be easily excreted through the renal pathway. Animals were injected 

with 5 – 10 MBq [64Cu]NODAGA‐RGD in the tail vein and were imaged 17 – 22 h p.i. 

 

Standardized Uptake Value (SUV) 

SUV is a semi-quantitative parameter representing radioactivity concentration in tissue. It is 

mathematically defined as the ratio of tissue radioactivity concentration to injected radioactivity per 

kilogram body weight at a certain point during the PET studies. 

 

Immuno-/Histological assessment 

The harvested TA muscles were embedded in cryo-preservative (OCT embedding medium, Cell Path) 

immediately after isolation. Cryostat sections were prepared (10 μm) and further processed. For 

immunohistological analysis the tissues were fixed (4% PFA, 10 min), permeabilized (0.5% TritonX-

100, 20 min), blocked for 30 min (5% BSA + 0.1% TritonX-100 in PBS), and finally stained with anti-

sarcomeric α-actinin (1:200, Sigma), F4/80 (1:100, abcam) over night at 4 oC. After washing with PBS, 

the tissues were incubated with Cy3 anti-mouse IgG secondary antibody (1:1000, Sigma) and DAPI 

(1:100, Sigma) for 1 h at room temperature, washed again and finally mounted (Dako). Images were 
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acquired with Leica-Imager Type DM6000B at exposures normalized to unstained controls (secondary 

antibody and DAPI only). 

 

Macrophage Staining Analysis 

A computer-assisted approach was used to quantify macrophage (F4/80) immunolabelling. Longitudinal 

TA muscle sections were imaged using Leica-Imager Type DM6000B and the images used for analysis 

were captured from the crushed (central) region of the harvested muscles. For evaluation of the signal 

(% area) 5-20 High-Power-Fields (HPF, 20x) were analyzed by ImageJ per time point and per group. 

 

Real-time PCR 

For analysis of PGC-1α downstream-regulated genes and skeletal contractile muscle genes in the 

regenerating tissue by RTPCR, the middle of the crushed region of each harvested TA muscle was 

excised, pulverized in liquid nitrogen and suspended in RNA lysis buffer. Total RNA was isolated using 

the SV Total RNA Isolation System kit (Promega) according to the manufacturer's protocol, including 

a DNase digestion. RNA was reverse transcribed with random primers (High-Capacity cDNA reverse 

transcription, Life Technologies). Pre-designed primers for human PPARGC1 (Hs01016719_m1), 

D2DR (dopamine 2 receptor, Hs00241436_m1), VEGF (vascular endothelial growth factor, 

Hs00900055_m1), MyH1 (myosin heavy chain 1, Hs00428600_m1), MyH2 (myosin heavy chain 2, 

Hs00430042_m1), Desmin (Hs00157258_m1), α-actinin (Hs00998100_m1), COXIV (cytochrome c 

oxidase subunit 4 ,Hs00971639_m1), vWf (Mm00550375_m1), TNF-α (tumor necrosis factor alpha, 

Mm00443258_m1) and ACHE (acetyl choline esterase, Hs00241307_m1) were purchased from Life 

Technologies. 18S rRNA (4319413E) was used to normalize cDNA concentrations. For quantification, 

the expression of each gene was normalized to the 18S, expression in the corresponding sample.  

 

Organ bath (Myography) 

The muscles were isolated at different time points after the lesion and the posttraumatic functional 

recovery was quantitatively assessed by organ bath. After harvesting, the tissues were kept under tension 

with constant oxygenation (95% O2 and 5% CO2) in Krebs solution at 25 ºC. TA muscles were fastened 
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with vicryl into the myograph-chambers (DMT, Denmark) and allowed to equilibrate under 15 mN (1.5 

g) for 20 min, adjusting the tension periodically and replacing Krebs solution every 5 min. The samples 

were stimulated by electrical-field stimulation (EFS) (80V, 80Hz) and 3 measurements per sample were 

considered for analysis. Native TA muscle (TA nat) was used as control and the contraction force was 

set to 100%. Forces of injured muscles were calculated relatively as percentage of maximum. The 

maximum tension under tetanic contraction was registered and normalized to the sample weight (mg/mg 

tissue). All data were collected using a LabChart v7.0 (AD instruments, Spechbach, Germany) and 

expressed as mean ± S.E.M.  

 

Statistics 

For statistical analysis IBM SPSS v22.0 (SPSS Inc,) was used and graphics were drawn with GraphPad 

Prism v5.04 (GraphPad Software, Inc.). All data were analyzed by Student’s t-tests, Mann Whitney or 

one-way ANOVA with Bonferroni or LSD post-hoc analysis (p<0.05 was considered significant). All 

presented data are expressed as means with corresponding standard error of the mean (±SEM). 

 

Results 

PGC-1α overexpressing hMPCs enhance the levels of contractile muscle markers during tissue 

regeneration 

After successful isolation, expansion and characterization of hMPC from six patient biopsies[14] [28], 

we evaluated the effects of PGC-1α overexpressing hMPCs in a TA crush injury model. To directly 

assess the role of PGC-1α in myofiber formation, immunofluorescent microscopy and RTPCR analysis 

of the regenerating crushed muscle tissue were performed (Fig. 1). The participation of transduced GFP-

positive cells in the myotube formation (α-actinin, Cy3) over time could be visualized by fluorescent 

microscopy in GFP-infected samples (Fig. 1 A) and in PGC-1α-infected samples (Fig. 1 B). In line with 

our previous ex situ results[14], PGC-1α overexpressing engineered muscle tissue showed increased 

relative expression also at gene level for sarcomeric α-actinin (3.47±1.45, n=6, p=0.5476), MyHC1 

(6440.64±1370.88, n=6, p=0.0238), MyHC2 (7.51±2.03, n=6, p=0.0238) and Desmin (4.78±1.76, n=6, 

p=0.0476) at early time points in the regenerating tissue, relative to GFP samples (Fig. 1 C). 
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While the Desmin and MyHC2 gene expression reached equivalent levels in PGC-1α and GFP samples 

over time (Fig. 1 E, 1.28±0.29, n=12, p=0.5425, 0.55±0.18, n=18, p=0.0546), the expression of α-actinin 

and MyHC1 remained significantly higher in PGC-1α samples at late time points (Fig. 1 E, 96.15±24.43, 

n=15, p=0.0092, 312.22±132.8, n=18, p=0.015), suggesting a hPGC-1α-induced shift towards slow-

twitch type fibers.  

 

Increased muscle contraction through PGC-1α overexpressing hMPCs injection after crush 

injury 

Encouraged by the enhanced gene expression of contractile markers in the regenerating muscles (Fig. 

1) with increased PGC-1α levels, we decided to analyze the expression of further markers, known to be 

involved in muscle regeneration. The crushed/regenerating tissue was investigated by RTPCR for the 

expression of factors connected to vascularization (VEGF-A), mitochondrial activity (COXIV) and 

neuronal activity (ACHE). The overexpression of hD2R and hPGC-1α was sustained over time (Fig. 2 

A-C). Notably, the PGC-1α “native” expression in GFP-infected samples increased at the latest time 

point (Fig. 2 C). Increased levels of VEGF-A in hPGC-1α overexpressing samples, relative to GFP (Fig. 

2 A-C) were detected at early (8-10d) (A: 2.26±0.49, n=6, p=0.0476), mid-term (14-21d) (B: 7.18±2.46, 

n=21, p=0.1475) and late (28-35d) (C: 204.65±49.7, n=18, p=0.0124) time points. Similarly, the PGC-

1α downstream-regulated mitochondrial activity was enhanced (COXIV) (A: 4.32±1.02, n=6, p=0.0238; 

B: 88.87±38.06, n=21, p=0.1475; C: 1595.35±547.55, n=18, p=0.003). Finally, the gene expression 

levels of ACHE illustrated the expected increase in the PGC-1α modified regenerating tissues (A: 

3.96±1.04, n=6, p=0.0238; B: 10.52±3.51, n=18, p=0.0012; C: 9.99±2.89, n=12, p=0.0032). In line with 

the enhanced gene expression of markers for contractility, vascularization and neurons, we observed an 

increased muscle contraction in hPGC-1α overexpressing muscles. Organ bath measurement at 80V and 

80Hz revealed significantly elevated contraction force at early (PGC-1α: 43.75±5.27, n=6; GFP: 

28.36±2.89, n=13, p=0.0337) and mid-term (PGC-1α: 89.49±6.14, n=33; GFP: 69.85±7.12, n=18, 

p=0.0435) time points in hPGC-1α treated muscles (Fig. 2 D). At late time points both, hPGC-1α and 

GFP overexpressing muscles contracted at similar levels (PGC-1α: 82.33±3.73, n=21; GFP: 70.52±5.17, 
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n=9, p=0.0830) as TA native control. All measurements are relative to contraction of TA native, set as 

100%. 

 

Tracking of hMPC in a TA muscle crush injury by PET/CT 

A crush injury was introduced to the TA muscle of nude mice (Fig. 3 A). The injected hD2R_hMPCs 

were successfully tracked in the crush injury region using the specific D2R radiotracer [18F]Fallypride 

(early time-point), resulting in a virus-dose-dependent signal (Fig. 3 B). The injection of 50% hD2R-

positive cells in the damaged tissue led to an increased radiotracer uptake, compared to the injection of 

25% positive cells. No signal could be detected in the crush only controls. To exclude signal 

contamination from 18F-fluoride in the tibial bone, [11C]Raclopride was used as an alternative high-

affinity D2R ligand for further experiments. For these experiments a viral combination of hD2R and 

hPGC-1α, compared to GFP-control infected cells was used (Fig. 3 C and D). Uptake of [11C]Raclopride 

could be detected in hD2R_hPGC-1α_hMPCs at early time points only (Fig. 3 C). Further analysis 

indicated an unspecific radiotracer uptake at the site of injury also when GFP_hMPCs were used (Fig. 

3 D). Importantly, the accumulation of the radiotracer in the intestines, urinary bladder and joints (18F-

fluoride) is a known PK (pharmacokinetic) property of the radiotracer and should be considered as 

physiologic and non-specific accumulation for the current application. 

 

PGC-1α overexpressing hMPCs reduce the pro-inflammatory response after muscle crush injury 

Initially aiming at imaging of neo-angiogenesis with the specific αvßIII radiotracer [64Cu]NODAGA-

RGD, we observed a highly increased accumulation of the tracer in TA crush only in the early periods 

after injury, when compared to native TA and to the crushed muscles with injected hMPCs (Fig. 4 A, 

early). At later time points, no PET signal was detectable (Fig. 4 A, mid-term and late). Furthermore, 

immunohistological analysis of harvested muscles with a macrophage expression marker (F4/80, Cy3) 

demonstrated 1) a highly increased macrophage accumulation in crushed TA compared to native (Fig. 

4 B and C, early); 2) a decreased signal in the hD2R_hPGC_hMPCs compared to GFP_hMPCs (Fig. 4 

B and C, early). The latter effect was observed also at later time points (Fig. 4 B and C, mid-term and 

late). RTPCR analysis of the pro-inflammatory cytokine TNF-α in the crushed/regenerating tissue 
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confirmed the highly increased signal in TA crush versus TA native (Fig. 4 D early, 44.73±4.52, n=3, 

0.57±0.19, n=6, p<0.0001) and the decreased expression in PGC-1α overexpressing tissues compared 

to GFP (Fig. 4 D early, 0.443±0.11, n=3, 0.98±0.07, n=3, p=0.0177). The PGC-1α-related reduction of 

inflammation was sustained also at mid-term (Fig. 4 D, 0.23±0.03, n=15, 1.35±0.30, n=3, p<0.0001), 

and late time points (Fig. 4 D, 0.15±0.02, n=9, 0.84±0.24, n=3, p=0.0005). 

 

Discussion 

Autologous stem cell therapy is on the doorstep to successful clinical application and represents a novel 

treatment option for various muscle-related pathologies, including urinary and anal incontinence, vocal 

cord dysfunction and reflux. Muscle precursor cells, or activated satellite cells, are responsible for the 

regeneration in postnatal skeletal muscles. In the past decades, these cells have been investigated for 

muscle tissue bioengineering approaches, allowing the growth of new myofibers[2, 3, 32, 33]. However, 

there are certain limitations in quality of the de-novo engineered constructs. The process of proliferation 

and differentiation of these cells is largely driven by growth factors, and altered by tissue injury or 

exercise[34, 35]. To address this matter we designed a model for facilitated muscle regeneration after 

injury, by inducing overexpression of hPGC-1α in the injected hMPCs in the injured skeletal muscles. 

Intensive research has shown that the natural process after muscle injury follows a highly conserved 

sequence of steps, leading to the restoration of tissue architecture, and importantly also function[36]. A 

crucial step in the process of forming new muscle tissue is the capacity of MPCs to differentiate into 

myotubes. Consistent with the previously reported facilitated in vitro and in vivo ex situ differentiation 

of hPGC-1α_hMPCs [14], the regenerating TA muscles with hPGC-1α overexpression demonstrated 

earlier myotube formation in situ. This would facilitate the functional regeneration in patients with 

damaged urinary sphincter. The injection of hPGC-1α_hMPC in the crush injury also significantly 

increased the expression of contractile proteins at all time points after the injury, indicating facilitated 

restoration compared to GFP infected controls.  Importantly, the expression of MyHC1 was significantly 

increased in the hPGC-1α_hMPC samples, correlating with our goal to bioengineer predominantly slow-

twitch muscle fibres, such as in the external urinary sphincter[12].  In line with our in vivo observations, 

others have shown that an increased VEGF release in a hypoxic environment leads to enhanced 
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differentiation of muscle cells[37]. It has been demonstrated that secretion of various effectors by 

injected hMPCs contribute to optimization of the regenerative process (e.g. neovascularization)[32, 38, 

39]. The hPGC-1α-related regeneration enhancement was further promoted by an increase in factors for 

mitochondrial (COXIV) and neuromuscular (ACHE) activity, which are known to be vital for successful 

muscle tissue bioengineering. Further supporting evidence suggested an increased expression of 

mitochondrial and other metabolic genes as a plausible mechanism for rescuing a damaged muscle[18]. 

All these factors support the observed facilitated contraction force production by the regenerating 

muscles injected with hPCG-1α_hMPC. At the later time-points there was no significant difference 

between the contraction forces of the two groups. This was expected, as the regeneration of the muscles 

at later stages was completed, and there was no difference to native TA contraction. Although the 

functional results (organ bath) suggest a diminished difference between the two groups in long-term, the 

data support our main aim for designing a model for significantly facilitated muscle regeneration. One 

has to consider certain limitations of the approach, e.g. the use of young mice brings along fast self-

regeneration that might not be the best comparison model to the real situation in elderly patients. 

Nevertheless, we could show significant improvement of the regeneration speed even in a highly-self-

regenerative environment. We expect to observe even more prominent effect on facilitated muscle 

regeneration in patients. Moreover, GFP_hMPCs injected muscles showed increased PGC-1α gene 

expression levels at the latest stages, comparable to these in hPGC-1a_hMPCs samples.  

While resistance training combined with adequate nutrition remains the most effective intervention to 

diminish the functional decline in muscles, there is a certain age-linked barrier to obtaining full benefits 

from this therapy[40]. PGC-1α would be a promising “exercise molecule”, which controls skeletal 

muscle metabolism and has potential therapeutic effects. Therefore, we believe that by inducing hPGC-

1α overexpression in the injected hMPCs, we are able to mediate muscle-healing effects for structural, 

metabolic and functional restoration, irrespective of physical status and age of the patient. This makes 

the current pre-clinical approach a good candidate for regenerating the urinary sphincter in patients 

suffering from stress urinary incontinence in near future.  

Besides improving the quality of the engineered skeletal tissues, we aimed at establishing a method to 

non-invasively image the cell fate after implantation, circumventing the need for a tissue biopsy. 
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Molecular imaging with PET is gaining increasing importance in regenerative medicine due to the 

possibility for non-invasive metabolic read-outs. A recent study described the feasibility of imaging 

human Na/I symporter (NIS) expression in two mouse models of muscular dystrophy and vascular 

disease by bioluminescence and PET imaging[41]. This study demonstrated that luciferase - and NIS - 

engineered skeletal muscle could successfully be imaged. In our present study, we presented a method 

for non-invasive visualization of the implanted cells in the TA crush injury using PET/CT imaging of 

hD2R. Tracking of hMPCs via ectopic expression of a signalling-deficient hD2R was previously 

reported in an ex situ muscle tissue formation model[28]. We were able to visualize the cells in a viral 

dose-dependent manner in the injured TA muscles of the animals using the highly-specific hD2R 

radiotracer [18F]Fallypride. Nevertheless, the proximity of the muscle injury to the tibial bone led to 

unspecific signal uptake due to possible de-fluorination of the radiotracer. To circumvent this problem, 

we used [11C]Raclopride as an alternative hD2R PET imaging agent. 

Interestingly, animals injected with GFP-only hMPCs showed higher [11C]Raclopride uptake, compared 

to the regenerating muscles with injected hD2R_hPGC-1α_hMPCs. This was also true for other tracers 

investigated in the study (e.g. [18F]FDG, data not shown). Additionally, while aiming at visualizing neo-

vascularization using [64Cu]NODAGA-RGD, a relatively high amount of radioactivity was detected in 

the TA crushed only, where no cells were injected. These observations led to the assumption that the 

recorded signals were rather related to inflammation, than to vascularization or specific hD2R detection. 

Immunohistological analysis with macrophage marker F4/80 and the TNF-α gene expression levels in 

the harvested samples correlated with [64Cu]NODAGA-RGD tracer uptake in the injury region. In line 

with our observations, another study revealed that in addition to neo-vessels and myofibroblasts, 

macrophages have also been shown to express αvβIII integrin[42]. However, the relative amounts of 

integrin in these cell types have not been followed over time. Importantly, we were able to show, that 

hPGC-1α overexpression in the hMPCs could significantly reduce pro-inflammatory cytokine 

expression (TNF-α) and enhance the healing process. A relation between hPGC-1α and suppression of 

the broad inflammatory response has previously been reported[18].  

 

Conclusions 
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Based on the findings above, hPGC-1α overexpressing hMPCs hold promise for the enhanced repair of 

skeletal muscle tissue. They demonstrated capacities to amplify the expression of contractile markers, 

to facilitate the contraction force generation in the regenerating muscles and to decrease the 

inflammatory response after crush injury. Additionally, we were able to track the implanted cells in the 

crushed muscles using PET radioligands. Nonetheless, several challenges remain which need to be 

overcome in order to establish a feasible method for metabolic imaging of this cellular therapy. 
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Figures  

 

Figure 1. PGC-1α induces upregulation of the expression of contractile genes in regenerating 

muscle. Immunohistological assessment of newly-build muscle fibers (green), stained with sarcomeric 

α-actinin antibody (Cy3, red) over time (A: GFP, B: PGC-1α). RTPCR analysis showed enhanced α-

actinin, MyHC1, MyHC2 and Desmin gene expression when PGC-1α was overexpressed at (C) early 

(9±1d), (D) mid-term (18±3d) and (E) late (31±3d) time points after the TA crush injury. TAcr: Tibialis 

anterior crushed 
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Figure 2. PGC-1α_hMPCs induce expression of genes related to vascularization, mitochondrial 

and neuronal activation, and enhance the contractility at early and mid-term time points after TA 

crush injury during regeneration. RTPCR analysis confirmed the sustained overexpression of hPGC-

1α and the signaling-deficient hD2R genes at the crush injury site over time. Relative VEGF-A, COXIV 

and ACHE gene levels were enhanced in the corresponding samples, compared to control GFP_hMPC 

at (A) early, (B) mid-term and (C) late time points of regeneration. (D) PGC-1α overexpression led to 

increased TA contractile force at early and mid-term time points. Native TA muscle (TA nat) was used 

as control and the contraction force was set to 100%. Forces of injured muscles were calculated relatively 

as percentage of maximum. VEGF-A: vascular endothelial growth factor-a, COXIV: Cytochrome c 

oxidase subunit 4, ACHE: acetylcholine esterase 
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Figure 3. PET/CT tracking of hD2R_hMPCs in a TA crush injury model.  

(A) Nude mice were subjected to a TA crush injury, followed by injection of cell-collagen suspension. 

(B) Feasible tracking of hD2R_hMPCs with [18F]Fallypride in a virus-dose-dependent manner (25% vs. 



 

21 
 

50% hD2R-positive cells). No tracer uptake in the crush only (cr) TA. (C) [11C]Raclopride accumulation 

in hD2R_hPGC-1α_hMPCs at early time-points, but not at mid-term and late. (D) Enhanced 

accumulation of [11C]Raclopride at GFP_hMPCs injection site, compared to hD2R_hPGC-1α_hMPCs. 

SUV: standardized uptake value (same scale used for all), cr: crush only. 

 

 

Figure 4. PGC-1α overexpression in hMPCs reduces the inflammatory response in the crush 

injury. (A) Unspecific accumulation of neo-vascularization radiotracer [64Cu]NODAGA-RGD in the 

early time-points after the injury. (B) Immunohistological assessment of macrophage (F4/80, red) 

invasion in the injured region with and without hMPCs (green). (C) Evaluation of the fluorescent 

intensity showed increased F4/80 signal in TA crush only, compared to TA native (early) and reduced 

signal at the site of injection of hD2R_hPGC-1α infected cells, compared to GFP (early). The latter trend 

was visible also at later time points (mid-term, late). (D) RTPCR analysis of the relative TNF-α gene 

expression in the crushed tissue could further confirm the anti-inflammatory effect of PGC-1α 

overexpressing hMPCs, sustained over time. SUV: standardized uptake value, TAnat: Tibialis anterior 

native, TAcr: Tibialis anterior crushed 
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