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Abbreviations and symbols 

AFM atomic Force Microscopy 

ATR attenuated total reflection 

FWHM full-width half maxima 

IR infrared (spectroscopy) 

iTO in-plane transverse optical 

LO longtitudinal 

LSPR localized surface plasmon resonance 

µm micrometer 

NIR near-infrared (spectroscopy) 

nm nanometer 

PHB polyhydroxybutyrate 

PDLLA poly(D,L)lactic acid 

PS polystyrene 

PVP polyvinylpyrrolidone 

SERS surface enhanced Raman scattering 

SiC silicon carbide 

SNOM scanning near field optical microscopy 

TERS tip-enhanced Raman scattering 

UV ultraviolet 

 

E electric field/energy 

ε dielectric constant 

γ Grüneisen parameter 

H Planck constant 

I intensity 

λ wavelength 

n refractive index 

NA numerical aperture 

ω angular frequency 



 
 

General introduction 

This thesis explores the use of near field probe, e.g. silver nanotips and hierarchical 

silver microparticles to investigate nanoscale features of graphene and polymer blends. The 

main underlying reason of the near-field probes is the limited spatial resolution of 

conventional Raman spectroscopy, which is diffraction limit of light,1 and in the case of 

Raman spectroscopy in polymer, the laser spot expansion from refraction.2 Diffraction limit is 

dependent on various factors which will be discussed in the following sections, but is 

practically around 300 nm.3 This limit is a great hindrance to the characterization of 

nanomaterials, since many important nanoscale features has the size of less than 100 nm. The 

resolution limit larger than the features means each features cannot be probed individually, 

and preventing the study of some ‘hidden’ properties of the nanomaterials. Many researchers 

developed creative and promising methods to break through this limit, which will be 

discussed in this chapter. Tip-enhanced Raman spectroscopy, a class of techniques among the 

diffraction limit-breaking methods, is a focus of this thesis, and it was used to attain nanoscale 

characterization of nanofeatures on novel materials such as graphene. Another focus of this 

thesis is about 3D SERS imaging on symmetric 3D SERS substrate, which not only improves 

spatial resolution in polymer, but also provides the 3D vibrational information in polymer 

systems. 

 

Raman spectroscopy 

Raman spectroscopy relies on the effect of Raman scattering, which is a scattering 

interaction between electromagnetic wave and chemical bond vibration. Since each molecule 

has unique bond formations, the interaction is unique for each chemical. This characteristic 

provides distinctive Raman spectrum and allows characterizations of samples.4 

The principle of Raman scattering process is well-covered elsewhere.4–6 Briefly, 

chemical bond vibrations can be represented as anharmonic dipole oscillator. Due to the 

wave-particle duality, the allowed energy levels of the vibration are quantized. The allowed 
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level can be presented by the equation: 
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where  is vibrational quantum number,  is base vibration frequency,  is Planck constant, 

and   denotes magnitude of anharmonicity.5 

Raman scattering is a scattering process of photon with bonds. In most case, the 

scattering is elastic and results in Rayleigh scattering. However, if there is energy transfer in 

the process (i.e. inelastic scattering), the bond vibrational level would change, and the 

scattered photon would loss or gains the corresponding energy.7 The selection rule of this 

process is Δ 1 and Δ 0, 2 , where  is rotational quantum number. The energy level 

diagram for a comparison of Raman scattering to other spectroscopic process is shown in 

Figure 1. 

 

 

Figure 1 Energy level diagram of simple spectroscopic process. Drawn using MS Powerpoint with Figure 1 of 

Reference 8 as an example. 

 

In classical physics viewpoint, electric field of photon induces dipole moment in 
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molecule. The magnitude of induced dipole is proportional to electrical polarizability of 

molecule. By considering the vibration as a combination of orthogonally normal vibration 

modes, the scattering effect on each vibration can be considered separately. The scattering 

process is often represented by this equation:7–9  
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where 	is the induced dipole moment,  is polarizability,  is the initial polarizability 

without vibration,  is the electric field amplitude of photon,  is frequency of photon,  is 

frequency change after the scattering,  is the position in normal coordinate of the vibration, 

and  is the initial (middle) position in the coordinate of the vibration. 

One can see that the photon frequency changes (i.e. energy transfer) only in the second 

and third term. If the vibration does not change polarizability of molecule, the term  

would be zero, and the second and third term would be disappeared, and there would be no 

energy transfer. Thus, the first term represent Rayleigh scattering (elastic). The second term 

where photon loss energy represent Stoke Raman scattering, while the third term represent 

anti-stoke Raman scattering. This criterion of polarizability change is useful to explain the 

reason that some vibrational modes appear in infrared absorption spectra, but not in Raman 

spectra.7–9 

In practice, Raman spectroscopy is much less problematic when encountering sample 

with water content, comparing to infrared absorption spectroscopy.  The optic setup for 

Raman spectroscopy also relatively easy since the electromagnetic wave in the process is in in 

visible Region. Raman spectroscopy have been used in many fields of research and industry, 

including but not limited to organic chemistry10–13, materials science14,15, biological 

sciences16–18, polymers19–21, and also graphene and related materials22–28. 
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Diffraction Limit 

Many modern Raman spectrometers (and also similar spectrometer such as IR, NIR) 

are equipped with microscope to acquire the signal from a small spot. Obviously, any simple 

aberrations of optical microscope (e.g. spherical aberration, coma, distortion, etc.) would also 

apply to the Raman spectrometer as well, and thus the quality of optic setup would limit the 

spatial resolution.29 Nevertheless, even with the ideal setup with minimal aberration, there is 

another barrier, which is the diffraction of light. Ernst Abbe in 1873 and Hermann  von 

Helmhotz in a year later made a mathematical approach of this limit using objective lens and 

grating (Figure 1). 

 

 

Figure 2 Schema of the setup in Abby’s consideration of diffraction limit. Objective lens and grating (A), 

together with the consideration in the case of (B) perpendicular illumination and (C) angled 

illumination. Drawn using MS Powerpoint with Figure 4 of Reference 29 as an example. 

 

Abbe argue that each unit of grating could be resolved by the microscope if one could 

detect the first diffraction maxima (aside from central maxima).30 When considering 

illumination perpendicular to grating plane (Figure 1B), the minimum grating spacing (d) 

which the first maxima can be detected is denoted by: 
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 where λ is the wavelength of the illumination, n is the refractive index of the objective lens, θ 

is the half angle of light cone, and NA is the numerical aperture of the objective lens.30 

However, when considering angled illumination (Figure 1C), the smaller d can be acquired. 

When the same lens is used in both illumination and signal collection, the equation becomes 

the Abby’s formula of diffraction limit: 

 

2
 

 

With 555 nm illumination and objective lens with 0.9 NA, the diffraction limit is about 

308 nm, thus the practical diffraction limit around 300 nm previously stated. 

Since the diffraction is a fundamental property of light waves, this limit cannot be 

overcome with conventional setup of optical parts. No matter how much the magnification is, 

the detail of samples smaller than this limit cannot be resolved, and the output image just 

appears larger without additional details. The magnification beyond this useful point is often 

called ‘empty magnification’.31 

In microscopy, this limit was easily surpassed by replacing light wave with electron. 

Electron wavelength in picometers scale can be attained by standard electron microscope.32  

However, in Raman spectroscopy, the wavelength around visible region is needed, and thus 

other methods are required to break through this limit and achieve nanoscale characterization 

of material with Raman spectroscopy. 

 

Super-resolution Raman spectroscopy  

From the equation of diffraction limit, the two simple pathways to decrease the limit 
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are to increase NA of objective lens and decrease wavelength. High-NA objectives lens are 

commercially available in the form of oil-immersion lens, with NA as high as 1.4 being very 

feasible. The use of high NA lens is a basic which can be combined with following resolution-

improving technique.33–35 The other basic pathway, decreasing wavelength, have been realized 

in UV-Raman. With the smaller wavelength of ultraviolet light, a spatial resolution of 150 nm 

was demonstrated.35 Attenuated total reflection (ATR) mode Raman spectroscopy also reduces 

wavelength of visible excitation laser by using high refractive index medium such as ZnSe (n 

= 2.6), and thus improving spatial resolution.36 It should be mentioned that although UV and 

ATR Raman spectroscopy can improve spatial resolution, it is not the main purpose of the 

techniques. Ultraviolet excitation allows resonance Raman effect for samples with high 

energy gap between electronic ground state and excitation state (e.g. polycyclic aromatic 

hydrocarbon and amino acids).37 ATR mode penetrates only small depth from surface of the 

sample, allowing surface and interface study.36 

To further improve the spatial resolution, near-field techniques were utilized.38 By 

placing the illumination or collection very close to the probing spot, diffraction can be 

restrained. A notable method without using complex mechanism is to use dielectric 

microsphere as a near-field lens, which demonstrates the Raman measurement with spatial 

resolution of 80 nm.39  Scanning near-field optical microscopy (SNOM), also called as Near 

field scanning optical microscopy (NSOM) is one of the few techniques which provide spatial 

resolution for Raman spectroscopy down to single molecular level.40,41 The principle of 

SNOM is to utilize the nanoscale manipulation capability of scanning probe microscopy 

(SPM) such as scanning tunneling microscopy (STM) or atomic force microscope (AFM) by 

control tips with nanometers size apex to the target, then use the geometry of the tips to 

confine probing area of optical microscope.40–44 Figure 2 presents a basic view of SNOM, the 

diffracted light is blocked (in the case of aperture SNOM) or prevented from the light path 

(ATR SNOM or scattering SNOM).  
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Figure 3 Examples of typical setups of SNOM. (A) Aperture SNOM, (B) ATR SNOM, and (C) scattering 

SNOM. Noted that the SNOM approach can be used in just illumination, just collection, or both. 

Drawn with MS Powerpoint using explanation from Reference 39-43. 

 

By mostly eliminate the effects from diffraction, the spatial resolution is improved 

dramatically. SNOM based Raman spectroscopy have been used to perform nanoscale 

characterizations of human cells45,  fossils46, damaged silicon wafer47, CVD-diamond layers48, 

and carbon nanomaterials49, all with spatial resolutions of 100 nm or better. SNOM can be 

used with other microscopy and spectroscopy as well as Raman.40,41 

Localized surface plasmon resonance (LSPR) is an interaction between electron cloud 

in material and electric field of incoming light wave.50 For electromagnetic wave in visible 

region, LSPR is easily achievable by nanoparticles/nanostructure of noble metal such as silver 

and gold.50 LSPR produces two important effects to this topic, immense enhancement in 

nanoscale distance from the metal surface50,51 and wavelength contraction52, both effects, with 

proper environment, can greatly improve spatial resolution in Raman measurement.1,3,53 The 

plasmon resonance enhancement-assisted Raman spectroscopy is the basic of surface enhance 

Raman scattering spectroscopy (SERS), while scattering SNOM with SERS is the principle of 

tip-enhanced Raman scattering spectroscopy (TERS). These two techniques are the main 

focus of this thesis. With TERS, spatial resolution down to few nanometers or even sub-

nanometers is feasible.54–58 

It is worthy to note that SNOM with LSPR can also be used with techniques other than 
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Raman spectroscopy. For example, visible/IR optical microscopy with spatial resolution of 10 

nm was demonstrated.59,60 

 

Surface-enhanced Raman scattering spectroscopy (SERS) 

Surface-enhanced Raman scattering spectroscopy is a technique which relies on an 

enhancement effect when target molecule is in a vicinity of certain materials. There are two 

mechanism which is involved in Raman signal enhancement, electromagnetic enhancement 

mechanism and chemical enhancement mechanism.61 The materials which can enhance the 

Raman signal are called SERS substrate. Since the enhancement can be as high as million to 

billion times, SERS allows ultrasensitive detection of chemical and biological substance.  

Trace contaminant with concentration as low as 10-15 M can be detected using SERS.62 

Trinitrotoluene (TNT)63, DNA64, mercury65, and proteins66 with concentration in nanomolar to 

attomolar range can be detected using SERS. 

Fleischmann, Hendra and McQuillan observed SERS effect on 1974, but they 

explained as it was high surface area that provided unusually high Raman signal of pyridine 

on unsmooth silver substrate.67,68 Jeanmaire and Van Duyne69, and also Albrecht and 

Creighton70 later clarified that the high signal was a result of electric field enhancement by 

silver structure. The origin of electric field enhancement is LSPR between light and electron 

cloud in metal nanostructure as explained in the previous section. SERS was solely explained 

by electromagnetic enhancement mechanism until the discovery of chemical enhancement 

mechanism.71–73 Some molecules have been found to have 10-1000 times enhancement factor 

compare to the others, and this phenomenon is substrate dependent, such as pyridine and 

piperidine on silver.74 The process of chemical enhancement mechanism is explain as when 

molecules adsorbed on a substrate, charge-transfer between energy level of molecules and the 

substrate is possible via Herzberg-Teller vibronic coupling. This allows a resonance Raman-

like effect, which enhance scattering signal.61,74 This mechanism allows SERS effect on other 

interesting material beside noble metal, for example, semiconductor.48,75 
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The magnitude of LSPR electric enhancement around spherical metallic nanoparticle 

can be represent by the equation50,76: 

 

, , ̂
2

̂ 3
̂  

 

where  is the enhanced electric field vector,  is the magnitude of electric field of 

incoming photon,  is complex dielectric constant of metal,  is complex dielectric 

constant of the surrounding medium,  is particle size, x, y, and z is position in the 

corresponding axis, and , , and ̂ is unit vector in the corresponding axis. 

This equation provides many useful physical meanings. First, if the real part of  is 

close to 2  and its imaginary part is near-zero, the 2  in the denominator 

would approaches zero, resulting in extremely high value of the overall term. This is possible 

in the case when the particle is silver or gold, as the two metals provide negative real part of 

dielectric constant in visible wavelength region. Since dielectric constant is highly dependent 

on wavelength, only small region of wavelength would give near-zero 2  value 

and extreme field enhancement. This is the background of the word “resonance” in the 

process name. For small metal particle in water, the resonance wavelength is around 400 nm 

for silver and 520 nm for gold. Second, enhancement from LSPR is strongly geometry 

dependent. The size of particle  has power of 3 in the equation. The shape of particle also 

crucial because the form of the equation would change drastically in the case of non-spherical 

particles. Third, the term  and  in the denominator indicate the field enhancement is very 

strong near the particle surface and is quickly weaken as the distance from the particle 

increases. 

Since LSPR is highly localized and SERS signal is immensely high compared to 

normal Raman scattering, the signal from sample within small area of enhanced electric field 

can overwhelm the signal from neighbor area. This spot is called “hot spot”.76,77 This effect 
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can provide a very high spatial resolution if the exact position of hot spot is known. However, 

even though SERS can provide Raman signal from spot smaller than diffraction limit, if there 

are many hot spot together in large groups, diffraction limit cannot be exceeded because the 

signal is an average from spots over a large area. Moreover, even in the case of SERS with 

single nanoparticle (i.e. single hot spot), if the precise position of the particle is not certain, 

one need to do SERS mapping to find the position. In this case, hot spot would appear as large 

as diffraction limit because Abby’s criterion also applies for self-luminous sample.30 In order 

to realize and control the position of hotspot, SERS probe can be attached to SPM, and this is 

the origin of TERS. 

There are studies of using SERS to get improved spatial resolution. Tracking of free-

floating gold nanoparticles in cells and repeating SERS measurement provides Raman spectra 

of intracellular pathway.78 In Chapter 3 of this thesis, SERS effect is used to improved spatial 

resolution in Z axis, which is a problem for Raman spectroscopy within polymers. These two 

studies achieve good spatial resolution, but not surpassing diffraction limit. 

 

Tip-enhanced Raman scattering spectroscopy (TERS) 

TERS is a combination of SERS and SNOM, but SERS substrate in a form of nanotips 

connected to SPM instrument is used instead of nanoparticles/nanostructure under samples. 

As in SERS, the Raman signal enhancement arises from near-field enhancement of electric 

field via LSPR interaction between metallic nanostructures and incident light. In the case of 

TERS, the nanostructures are nano-sized apex of metallic tip. From the equation of LSPR 

near-field enhancement, one can see that the enhancement is very strong in the small distance 

near the enhancing surface, but decrease drastically as the distance increase. Thus, 

enhancement by nanotips is confined to the small volume at the tip apex. ‘Lighting rod effect’ 

also contributes to the electric field enhancement and confinement at the tip apex.79 Due to the 

confinement, this enhancement can provide SERS signal with nanoscale spatial resolution, 
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exceeding diffraction limit of light. Resolution of 1.7 nm can archived in ambient condition 

(room temperature, normal pressure).54 With ultrahigh vacuum and low temperature, even 

subnanometer resolution is possible.  

Since the enhancement mechanism of TERS is the same as SERS, all principle of 

SERS also applies. The material of the tip must be compatible with the wavelength of incident 

laser. For example, silver tips are normally used in TERS experiment with 514 nm or 532 nm 

excitation lasers while gold tips are compatible with laser wavelength in the region of 600-

700 nm (often 632.8 nm helium-neon laser). Topology of tips also drastically affects the 

enhancement factor.80,81 

An advantage of TERS is that it provides both topological information from SPM and 

molecular vibration from Raman spectroscopy. The correlation between the two information 

is highly valuable for nanomaterial characterization. With the exceeding spatial resolution, 

TERS have been used to study nanoscale photocatalytic reaction82, sub-molecular 

photochemistry57, adsorbed species on single-crystal surface83, and nanomaterial such as GaN 

nanowires1, nanotransistors84, polymer nanocomposite27,85, carbon nanotube3,54,86–88, and 

graphene34,89–100. 

In practice, TERS experiments come with various setup and instrumentation. The 

illumination mode can be from top, side, or bottom. The tip control scheme can be AFM, 

which is compatible with almost all sample, or STM, which can adjust tip-sample distance. 

The material of the tip can be gold for chemical stability or silver for slightly higher 

enhancement. Tip can also be etched bulk metal tip or metal-coated AFM tip. A notable setup 

is gap mode TERS, which is performed by placing the sample on SERS-active substrate 

(usually gold or silver flim) and position TERS tip on the top. The gap created by the tip and 

substrate provides additional enhancement about 100 times to TERS signal.1,53,86 Figure 4 

represent electric field enhancement in gap-mode TERS from finite-difference time-domain 

calculation with 40 nm tip apex, 3 nm silver tip-silver plate distance, and 514 nm excitation 

wavelength. 
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Figure 4 FDTD calculation showing electric field enhancement in gap-mod TERS 

 

Recent advances in TERS development includes low-temperature low-pressure 

TERS57,101, which significantly reduce the problem from thermal drift,  high-enhancement 

advance tips such as rough surface tips80 and bowtie nanoantenna tip with self-producing gap 

mode81, synchronize tip tapping- Raman measurement which allows near-field and far-field 

measurement in a single run33,  Wave-guided tip102, pressure-assisted TERS56,  and 

electrochemical TERS103,104. 

The studies in this thesis do not involved in the development of TERS, but an application of 

TERS in a characterization of nanomaterial was demonstrated. In Chapter 1, TERS was used 

to reveal the properties and formation mechanism of nanostructures on epitaxial graphene. In 

Chapter 2, similar structures were studied, but on graphene micoisland, which allows a further 

discussion of established and alternate mechanism for nanostructures formation. 

 

Grapene and graphene nanostructure 

Graphene is a novel nanometerials with a large number of unique and interesting properties. 

Graphene have been shown to have zero band gap105,106, tunable band gap107,108, quantum hall 
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effects109,110, ballistic transport111, extremely high tensile strength and Young’s modulus112, 

Raman enhancement capability113–115, large surface area116, transparency117, etc. Due to these 

impressive properties, graphene have been demonstrate to be a promising material in high-

speed electronics116, ultrafast photodetector118, very high-frequency transistor119, and 

supercapacitor120–122. 

In order to build high-quality graphene device, a production of large amount of high-quality 

graphene sheet is a crucial key factor.  The most well-known method for graphene synthesis, 

the “scotch tape” exfoliation of highly ordered pyrolysis graphene provide graphene sheet 

with minimal defect, but it can only produce small flake of graphene.111,123 Scotch tape 

peeling also require a lot of manual labor which is difficult to practice in large-scale. The 

liquid oxidation exfoliation method convert graphite into graphite oxide, cleaving between the 

flakes of graphene oxide and then reduces them back into graphene.124–126 This method can 

produces large number of graphene sheet but contains large amount of defects. Chemical 

vapor deposition of methane on metal and on-SiC epitaxial growth can produce low-defect, 

wafer-size graphene sheet. Both method can also easily scale up to mass scale. However, 

epitaxial-grown graphene has an advantage over CVD graphene, as SiC is an electrical 

insulator. Thus, graphene grown on SiC does not need a substrate transfer process to be used 

in electric circuit. 

TERS have been used to characterize graphene in nanoscale level. Number of layers34,92–

94,96,98, defects91,95, stress change28, Raman modes suppression97, edges99,100, and deposited 

foreign chemical of graphene89,90,127 have all been investigated with great spatial resolution. 

However, before the studies in this thesis, there is no TERS study on important nanostructures 

of graphene such as nanoridges and nanosteps. 

The instrument used in TERS studies in this thesis is special and very suitable for 

nanostructures study, as it control TERS tip by non-contact mode AFM.  STM-TERS is not 

suitable for this study because undoped SiC is not conductive. TERS measurement of the 

structures by contact or tapping mode AFM TERS is also disputable because tip-graphene 
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interaction might interfere the true nature of graphene. 
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Abstract 

Step, ridge, and crack sub-micro/nanostructures of epitaxial graphene on 4H-SiC 

(0001) were characterized using tip-enhanced Raman scattering (TERS) spectroscopy. The 

nanostructures were created during graphene synthesis due to a difference in the thermal 

expansion coefficient of graphene and SiC. These structures are a distinctive property of 

epitaxial graphene, together with other desirable properties, such as large graphene sheet and 

minimal defects. The results of this study illustrate that the exceptional spatial resolution of 

TERS allows spectroscopic measurements of individual nanostructures, a feat which normal 

Raman spectroscopy is not capable of. By analyzing TERS spectra, the change of local strain 

on the nanoridge and decreased graphene content in the sub-micrometer crack were detected. 

Using G' band positions in the TERS spectra, the strain difference between ridge center and 

flat area was calculated to be 1.6 × 10-3 and 5.8 × 10-4 for uniaxial and biaxial strain, 

respectively. This confirms the proposed mechanism in previous researches that nanoridges 

on epitaxial graphene form as a relief against compressive strain. With this study, we 

demonstrate that TERS is a powerful technique for the characterization of individual local 

nanostructures on epitaxial graphene. 

 

Introduction 

Graphene is considered as a future material for chemical sensors, biosensors, and 

electronic devices due to its outstanding properties including, but not limited to, tremendous 

carrier mobility and a unique band gap.1–4 Among various types of graphene, epitaxial 

graphene grown on SiC has garnered considerable attention because of its large sheet area, 

minimal defects, and the electrical insulation properties of SiC, which allow the application in 

electronic circuits without the need of substrate transfer processes.5,6 The transparency of SiC 

under visible light can also be advantageous in graphene-based opto-electronic device.7 

Graphene grown on either face of SiC does have differing properties: while graphene grown 

on Si face (0001 face) of SiC attaches strongly to the SiC surface, graphene grown on the C-
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face (0001 face) has a weaker attraction to the SiC substrate due to the presence a carbon 

buffer layer.8 This allows some unique features of graphene on C face to occur, such as stack 

disordering of multilayer graphene, which allows extremely high mobility and unique 

nanostructures on the graphene sheet, which alters physical and electronic properties.9 It has 

been known that nanostructures can affect band gap10, electron mobility11, and internal 

strain12 of graphene. Therefore, it is possible to use strain engineering to control and 

manipulate the nanostructures and produce interesting products such as large band gap 

graphene.13 

To characterize nanostructures of graphene grown on C-face and understand their 

forming mechanism, many groups have used atomic force microscopy (AFM)12, scanning 

tunneling microscope (STM)11,14,15, and angle-resolved photoemission spectroscopy 

(ARPES)16 to study the morphology, occurrence frequency, synthesis temperature 

dependence, and effects on band structure of the most common nanostructures, e.g. ridges and 

steps. Among several techniques, Raman spectroscopy is considered as an ideal technique for 

graphene characterization because it provides robust information about defects17–21, internal 

strain22–26, stacking configuration27,28, number of layers27,29–32, and doping7,24,33. There are 

some publications about using Raman spectroscopy to characterize nanostructures on 

epitaxial graphene with insightful results, e.g. occurrences of defect in some types of 

nanostructures.9,34,35 However, the spatial resolution of normal Raman spectroscopy is limited 

by the diffraction of light, generally no better than a few hundred nanometers. Meanwhile, 

sizes of nanostructures and distances between them can be smaller than one hundreds 

nanometers.34,35 Therefore, Raman signals in those studies came from domains of 

nanostructures rather than individual structure, and the effects of individual nanostructures on 

the properties of graphene still have not been deeply investigated. 

Tip-enhanced Raman scattering (TERS) spectroscopy is a technique that employs 

near-field enhancement from a metallic nanotip to obtain Raman spectra with spatial 

resolution surpassing the diffraction limit.36–41 To achieve a good enhancement, the size, 
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shape, and material of the tips must be carefully chosen to ensure plasmon resonance with the 

excitation laser light.42,43 The evanescent field from this resonance is confined to a small area 

around the tip, resulting in the improvement of spatial resolution.36 This characteristic of 

TERS is very useful in graphene studies.30 Saito et al., Hoffmann et al., and Ghislandi et al. 

used TERS to determine number of layers on exfoliated and CVD graphene with nano-scale 

resolution.30–32 Stadler et al. demonstrated the capability of TERS in the detection of chemical 

contamination on CVD graphene.17 Furthermore, some other groups explored lattice defects, 

edge defects, and gap mode of exfoliated graphene with a remarkable resolution using 

TERS.44–47 TERS spectra of epitaxial graphene on 6H–SiC also show selective suppression of 

SiC E1 mode.42 In our previous paper, we found a nano-scale position dependence of strain in 

epitaxial graphene by using TERS.48 Nevertheless, to the best of our knowledge, there are still 

no published reports about the quantitative analysis of strain using TERS on nanostructures of 

epitaxial graphene. In this study, we correlate TERS spectra from epitaxial graphene 

nanostructures to the corresponding AFM topology and demonstrate that TERS is an excellent 

technique for characterization of nanostructures on C-face grown epitaxial graphene. With the 

spatial resolution better than one hundred nanometers, the Raman spectrum of each graphene 

nanostructure can be acquired individually. With this capability, we can use TERS to 

quantitatively measure the effect of ridge structure on strain. We also found that TERS can 

detect the absence of graphene in small crack structure that normal Raman spectroscopy 

cannot.  

 

Experimental Section 

Epitaxial graphene was synthesized by annealing 4H-SiC (0001) in ultrahigh vacuum 

at 1800 °C for 15 minutes using semi-closed TaC containers. The sublimation of Si from SiC 

was regulated by an adjustment of Si vapor pressure inside the container, resulting in precise 

control of graphene growth rate, number of layers, and domain size. The synthesis details are 

well-documented in our previous paper.5 
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TERS spectra were measured by Photon Design Nanostar NFRSM800 with the 514.5 

nm line of an argon ion laser (Spectra Physics Stabilite 2017) as an excitation source. The 

setup was top-illumination and top-collection using the same objective lens (×90 

magnification, 0.71 NA). For each TERS measurement, the spectra were acquired in a tip-

attached position and then in a tip-retracted position. The tip-attached spectrum was 

subtracted by tip-retracted spectrum to provide the TERS spectrum. When signal from the far-

field component is subtracted out, the TERS spectrum solely represents the near-field 

component (signal from the small area around the tip). Surface topology was acquired by non-

contact mode AFM (UNISOKU Co. LTD) with 45° angle between tip and sample surface. 

The AFM tips (UNISOKU Co. LTD) were silver bulk tips made by electrochemical etching 

process with ~75 nm tip radius. The estimated tip-sample separation in the non-contact mode 

was < 1 nm, according to the manufacturer. Calibration procedure of Z-axis piezoelectric 

element was done using standard grating with 90 nm depth structure. 

Results and discussion 

TERS spectra of epitaxial graphene 

Tip-attached, tip-retracted, and subtracted (TERS) spectra of single-layer epitaxial 

graphene on the C-face of SiC are shown in Figure 1. Band assignments are summarized in 

Table 1. One of the two most prominent peaks, the G band, is the only band of graphene that 

originates from normal first-order Raman scattering. This band arises from a doubly 

degenerate in-plane transverse optical phonon (iTO phonon) and a longitudinal phonon (LO 

phonon) around the Γ point in the first Brillouin zone. Another intense peak, the G' band (also 

called the 2D band), is contributed by a double resonance process of two iTO phonons around 

the K point.27 The spectra in Figure 1 give typical features of single layer graphene such as a 

high intensity ratio between the G'/G bands (> 1) and a small FWHM of the G' band (~23 cm-

1). Note that not every area in this sample provides the spectrum of single layer graphene, 

which is correlated with a sample average of 1.7 layers measured using visible light 

absorption. The D band (~1350 cm-1), which emerges from the double resonance process of 
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defects and iTO phonons around the K point,27 is absent in the spectra, indicating high quality 

graphene sheet with minimal defects. By considering the ratio of probe areas between TERS 

and far-field Raman spectroscopy (1:180), the enhancement factor in Figure 1 can be 

evaluated to be ~55 for graphene G' band and ~32 for SiC E2 band. Nevertheless, the 

enhancement factor is greatly dependent on the tip quality. We recently reported an 

enhancement factor up to 1000 using the same instrument and a similar sample.48 The larger 

enhancement in graphene bands compared to SiC bands is due to the influence of the carbon 

buffer layer on the C-face (0001 face) of SiC. The effect of buffer layer on the difference in 

enhancement factor was discussed in our previous paper.48 

 

Table 1. Band assignments for the spectra in Figure 1. 

Raman shift (cm-1) assignments27,49,50 

776 SiC E2 (TO)
982 SiC A1 (LO) 
1528 SiC (optical branch) 
1590 graphene G band (E2g LO, iTO) 

1692,1710 SiC (optical branch) 
2459 graphene G* band (LA + iTO) 
2708 graphene G' band (iTO + iTO)
3249 graphene 2D' band (LO + LO)

 

TERS spectra of step and ridge nanostructures 

The epitaxial graphene forms patch-like areas throughout the sample. Data from AFM 

topology suggests that most areas are very flat (a few nanometers in height variation). 

However, in some areas, the epitaxial graphene shows unusual features that are not found in 

graphene from mechanical cleavage; for example, a step nanostructure is shown in Figure 2a. 

This step is about 2 nm high and originates from the step-terrace structure initially present on 

the SiC substrate. Figure 2b shows the G' band region of far-field Raman (tip retracted) and 

TERS (tip attached minus tip retracted) spectra obtained from five points across the step 

shown in Figure 2a.  They all provide high IG/IG' ratios (> 1) and small FWHM of G' band (18 
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– 23 cm-1), which are characteristics of single-layer graphene. Although twisted double-layer 

graphene with G and G' bands similar to single layer graphene is commonly seen on epitaxial 

graphene,51 our Raman spectra do not show the characteristic I band (~1375 cm-1) of twisted 

double layers.28 This confirms that the step structure does not arise from a difference in the 

number of graphene layers, but rather from the inherent structure of the substrate. This 

structure, however, does not affect the G' band position significantly in both far-field Raman 

and TERS spectra (Figure 2c). The absence of a phonon frequency change implies that there 

is no significant strain difference between graphene on either side of the step. 

A different nanostructure, on the contrary, alters the strain and causes the position of 

the G' band to change. Figure 3a depicts an AFM image of a ridge nanostructure. This ridge is 

the result of a difference in thermal expansion coefficients between graphene (measured: -1 × 

10-6 K-1 @ 300 K, calculated: negative throughout 0–2000 K) and the SiC substrate (4.5 × 10-

6 K-1).52,53 Upon cooling from the synthesizing temperature, SiC shrank faster than graphene. 

Thus, the graphene sheet experienced compression. When the compressive strain is greater 

than critical buckling strain, some parts of the graphene sheet are pushed out of the plane to 

form a ridge.54 This compression-induced ridge-forming mechanism is well-explained in 

many papers.11,12,14,15 The AFM topology image in Figure 3a shows the ridge to have a ~6 nm 

height and a ~ 150 nm width. Far-field Raman and TERS spectra shown in Figure 3b were 

obtained from seven points across the ridge. Since the points are not exactly on a straight line, 

the distances shown in Figure 3c, 3d, and 3e were measured using the point on the line nearest 

to each measurement point. Every TERS and far-field Raman spectrum in this area exhibits 

the G' band FWHM and IG/IG' ratio of single-layer graphene. For the points on the ridge, the 

graphene G' bands in the TERS spectra (Figure 3b) have lower Raman shifts compared to 

bands in far-field spectra. The plot of peak position from Lorentzian fitting in Figure 3c 

clearly demonstrates the capability of improved spatial resolution with TERS. In TERS 

spectra, the G' band shows a Raman shift reduced by 8.7 cm-1 on the ridge compared to the 

flat area. Since the tip was controlled by non-contact mode AFM, the spectral change is 
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certainly not from a deformation caused by the tip. Therefore, the lower Raman shifts must 

come from the nanostructure. In the far-field Raman spectra, the peak shift caused by the 

ridge is very small because the spatial resolution of far-field Raman is larger than the 

nanoridge, and thus the signal from the ridge is obscured by the signal from the large 

neighboring flat area. Our Raman microscope has a spatial resolution of 1 µm, while the 

spatial resolution of TERS is in the same magnitude with the tip radius.36,37 (The tip used in 

this experiment had a tip radius of 75 nm.)  

Generally, the shift of the G' band to a lower wavenumber is associated with a phonon 

softening process induced by bond lengthening from tensile (stretching) strain.25,55 

Nevertheless, if we compare the G' band positions of our study to the 2674 cm-1 of free-

standing graphene with no external strain (Beriaud et al., measured with the same excitation 

wavelength as in our experiment),56 the G' band on the ridge (2691 cm-1) is closer to free-

standing graphene than the G' band of nearby flat areas (2700 cm-1). Therefore, the band 

downshift observed on this nanostructure is the result of reduced compressive strain relative 

to the nearby area, rather than tensile strain. The strain presents on the ridge and flat area can 

be calculated by the relationship:24 

 

	 ∆ ∆ 	 1 	

 

where , , ∆ , and ∆  are the observed G' band position, unstrained and 

undoped G' band position, position shift cause by mechanical stain, and shift cause by carrier 

doping, respectively. The mechanical part then can be calculated by:23 

 

	 ∆ 1 	 2 	
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for uniaxial strain, where  is the Grüneisen parameter for the G' band,  is 

Poisson’s ratio for graphene or substrate and  is the strain of the graphene sheet. For biaxial 

strain, which assumes equivalent strain on both axes, the equation is: 

 

	 ∆ 2 	 3 	

 

Although the carrier doping term is difficult to evaluate, by assuming negligible 

doping difference between graphene on the ridge and the surrounding area, the doping term 

can be eliminated in the calculation of the strain difference between two measurement points. 

Relative strain on each point across the ridge in Figure 3d and 3e is calculated using 

2674	  from unstrained suspended graphene56, a Grüneisen parameter 

2.7 for uniaxial strain23,25, 2.8 for biaxial strain24, Poisson’s ratio 0.231 for 

SiC57 due to the attraction of graphene to the substrate25, and the TERS spectra on point 1 (flat 

area) as a reference. It is worth noting that many references report differing Grüneisen 

parameter values for G' band and Poisson’s ratio values for graphene/SiC.23–25,55,57–59 The 

details of the calculation, including calculated strain using different constant values, are 

available in the supporting information. 

With the results from the TERS spectra, the maximum strain difference is found on 

point 5 (ridge) with uniaxial strain of (1.6 ± 0.2) × 10-3 and biaxial strain of (5.8 ± 0.6) × 10-4. 

The positive values denote smaller compressive strain on the ridge (since compressive strain 

is assigned with negative value, a positive difference implies reduced compressive strain). 

This is an evidence for the proposed mechanism of Prakash et al.12 and Sun et al.11 that 

nanoridges of SiC-grown graphene form as a relief from the strain in epitaxial graphene 

grown on SiC. This is also the first time that strain on a nanoridge of epitaxial graphene was 

measured using TERS. Our calculated strain value for each point falls between the empirical 

minimum of 1 × 10-3 and the theoretical maximum of 8 × 10-3 reported by Ferralis et al.26 
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while Prakash et al. reported an unusually high value of 4.4 × 10-2 calculated from AFM 

topology.12 

If the peak positions from far-field Raman spectra are used, the calculated uniaxial and 

biaxial strain on the ridge are only (2.7 ± 1.7) × 10-4 and (1.0 ± 0.6) × 10-4 relative to flat area 

(Figure 3d and 3e), respectively. The lesser values compared to the TERS results can be 

attributed to the size of the ridge structure being smaller than the spatial resolution of normal 

Raman spectroscopy. This clearly demonstrates the limitations of far-field Raman 

spectroscopy on the characterization of graphene nanostructures.  

Regarding the strain direction, Schmidt et al. suggested that uniaxial strain would 

cause the G peak to split into two components. Therefore the strain should be biaxial when 

there is no splitting.24 However, any splitting (if exist) from small strain, such as in our case, 

is too small to be resolved.23 By positing that nanoridges are a result of strain relief in the 

direction across the width of the ridge, the actual strain in our sample should be between 

purely uniaxial and biaxial strain. 

Figure 3c, 3d and 3e can be discussed from another aspect. For each measurement 

point, band position and strain from TERS spectrum can be compared with the values from 

far-field spectrum to show the difference between graphene in the area near and far from the 

nanostructure. In overall, G' band positions are lower in TERS compared to far-field spectra, 

with the difference from around 3 cm-1 in the flat areas to as high as 11.1 cm-1 on the ridge. 

This indicate that the compressive strain of graphene is strongest in the outer region (which 

probed by far-field Raman spectroscopy but not TERS), a little weaker in the area around the 

ridge, and weakest on the ridge. 

 

TERS spectra of crack sub-microstructure 

Figure 4a represents an AFM image of a crack structure. From the AFM topology line 

profile in Figure 4a, one can see that this crack is roughly 200 nm wide and 20 nm deep. The 

measured depth is a minimal value since the TERS tip used in this experiment has a 75 nm tip 
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radius. The actual depth might be much greater if the deeper part of the crack is narrower than 

75 nm. Since graphene cannot be thicker than a few nanometers, this crack undoubtedly 

extends into the SiC substrate. Five TERS and far-field Raman spectra were acquired across 

the crack as shown in Figure 4b. A G' peak for each point is shown in Figure 4b and 4c. The 

FWHM of the G' peak from every point is less than 25 cm-1 for both subtracted (TERS) and 

tip retracted (far-field Raman) spectra, corresponding to single layer graphene. 

Figure 4b clearly demonstrates a diminished intensity of G' peak in the TERS spectra 

from the middle of the crack. However, the peak intensity in the TERS measurements also 

depends on tip-laser coupling precision and can be varied, even for the measurements on the 

same point. Thus, we use the SiC transverse optical phonon peak (SiC E2 at 776 cm-1) as an 

internal standard. The plot of the peak height ratio between graphene G' and SiC E2 from the 

TERS spectra (Figure 4c) matches well with the AFM line profile. Peak height ratio is 

significantly reduced in the center of the crack, indicating lesser or absent graphene content. 

For points just outside the crack (points 2 and 4), while the G' peak height is lower (Figure 

4b), the G' and SiC E2 height ratio in Figure 4c is similar to points that far from the crack, 

emphasizing the importance of normalization using the SiC E2 peak. This reduced IG'/ISiC 

ratios in the spectrum from the crack center cannot be detected by far-field Raman 

spectroscopy, as shown in Figure 4c.  

 

Conclusion 

TERS and far-field Raman spectra from step, ridge, and crack structures of epitaxial 

graphene were studied. The step nanostructure, which originates from the underlying SiC and 

contains single-layer graphene on both step sides, does not significantly affect the TERS and 

far-field Raman spectra. In the TERS spectra, the ridge structure produced 8.7 cm-1 lower 

wavenumber of G' band, suggesting a relaxation of compressive strain with respect to the 

surrounding area. Using the strain-G' peak position equation, the strain difference between a 

ridge and its surrounding area is 1.6 × 10-3 and 6.0 × 10-4 for uniaxial and biaxial strain, 
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respectively. In the far-field Raman spectra, the peak shift is much smaller due to inadequate 

spatial resolution. The TERS spectra of a crack structure show a reduced graphene/SiC signal 

ratio, which cannot be probed by far-field Raman spectroscopy. These results suggest that 

TERS is a powerful technique in the characterization of nano/sub-micro structures on 

epitaxial graphene. 
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Figure 1 Tip-attached, tip-retracted, and subtracted Raman spectra of C-face epitaxial graphene from area with 

single layer graphene.  
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Figure 2 TERS measurement on step structure. (a) AFM topology image and line height profile. (b) G' band in 

far-field Raman and TERS spectra from five measurement points shown in (a). (c) Peak position of 

each G' band in (b), plotted against distances from point 1 along the line profile in (a). Error bars in (c) 

were calculated from uncertainties in Lorentzian fitting. Some errors bars are too small to be clearly 

visible. 
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Figure 3 TERS measurement on ridge structure. (a) AFM topology image and line height profile. (b) G' band in 

far-field Raman and TERS spectra from seven measurement points shown in (a). (c) Peak position of 

each G' band in (b), plotted against distances from point 1 along the line profile in (a). (d),(e) 

Calculated relative uniaxial and biaxial strain on each point, plot in the same fashion as (c), 

respectively. Error bars in (c), (d), and (e) were calculated from uncertainties in Lorentzian fitting and 

Grüneisen parameter. 
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Figure 4 TERS measurement on crack structure. (a) AFM topology image and line height profile. (b) G' band in 

far-field Raman and TERS spectra from five measurement points shown in (a). (c) IG'/ISiC E2 intensity 

ratio of each spectra in (b), plotted against distances from point 1 along the line profile in (a). Error 

bars in (c) were calculated from uncertainties in Lorentzian fitting. 
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Abstract 

Single-layer graphene microislands with smooth edges and no visible grain boundary 

were epitaxially grown on the C-face of 4H-SiC and then characterized in the nanoscale using 

tip-enhanced Raman spectroscopy (TERS). Although these graphene islands appear highly 

homogeneous in micro Raman imaging, TERS reveals the nanoscale strain variation caused 

by ridge nanostructures. A G′ band position shift up to 9 cm-1 and a band broadening up to 30 

cm-1 are found in TERS spectra obtained from nanoridges, which is explained by compressive 

strain relaxation mechanism. The small size and refined nature of the graphene islands helps 

in minimizing the inhomogeneity caused by macroscale factors, and allows a comparative 

discussion between proposed mechanisms of nanoridges formation. 

 

Introduction 

Epitaxial graphene grown on SiC is considered to be useful in a wide range of 

applications due to its large sheet area, low defects, transparent substrate, and circuit-ready 

capability without the need of substrate transfer.1–4 One of its interesting properties is 

nanostructures such as nanoridges, nanocracks, and nanosteps, which are created during the 

graphene synthesis.5–9 These features are more evident in graphene grown on the C-face of 

SiC than on the Si-face due to the weaker graphene-substrate attraction in the former case.10,11 

The presence of nanostructures causes a deformation of graphene, from a perfectly two-

dimensional flat object into a sheet with curvatures. It is known that curvatures alter graphene 

both physically and electronically.12 Thus, the manipulations of the nanostructures could 

conceivably be used to create interesting graphene samples, such as graphene with adjustable 

band gap.8 Since these effects from nanostructures should not be neglected, techniques with a 

nanoscale spatial resolution are crucial for graphene characterization. Scanning tunnelling 

microscopy and atomic force microscopy (STM/AFM),5,6 scanning tunnelling spectroscopy 

(STS),13 angle-resolved photoemission spectroscopy (ARPES),14 and high-angle annular-
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dark-field scanning tunnelling electron microscopy (HAADF STEM)15 have been used to 

investigate the nanoscale structures of epitaxial graphene grown on SiC, along with their 

effects on electronic properties. 

Raman spectroscopy has the capability to determine a great deal of information about 

graphene such as the number of layers,16–20 doping,21–23 strain,22,24,25 defects,23,26 etc. 

However, due to the diffraction limit of light, its spatial resolution is insufficient to study each 

nanofeature individually. Tip-enhanced Raman spectroscopy (TERS) is a technique that 

exploits information-richness of Raman spectroscopy and nanoscale resolving power of 

STM/AFM. By using a metallic nanotip, plasmon enhancement is confined to the small area 

at the tip apex and the Raman signal solely from this area can be detected.27–31 Due to its 

excellent spatial resolution, TERS has been used in graphene studies, especially in the 

investigation of small features such as edge boundaries,18–20,32,33 nanodefects,34–36 gap 

modes,37,38 and local strain.9,39,40 Using this technique, our previous study presented Raman 

spectra of ridge, crack, and step nanostructures on epitaxial graphene, which revealed direct 

evidence for the proposed mechanism that the nanoridges are formed through a relaxation 

against compressive strain.9 However, an alternative possible mechanism, in which Si vapour 

is trapped between graphene and SiC substrate and then accumulates into ridges, has also 

been suggested.41 It is known that under high temperature, additional deposited silicon can 

diffuse through graphene and intercalate it from the SiC substrate, this process occurs on both 

C face and Si face of SiC.42–44 On the Si-face, it has been shown that nanostructures can be 

created by the process.44  

The difficulties in the mechanism analysis arise from the complexity of the samples. 

Some previous studies on nanoridges were done using few layers graphene, and the authors 

suggested that layer effects must be put in the consideration.5,7 Large sheet graphene might 

acquire inherent doping and strain inhomogeneity, both of which are highly dependent on the 

growth pattern.22 Grain boundaries and defects can also be a hindrance. To eliminate these 
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interfering factors, this study employs epitaxial graphene microislands on the C-face of SiC as 

an ideal sample for nanostructures investigation. These graphene microislands have no visible 

grain boundary, and also contain no irregular edges like those found in the large-sheet 

epitaxial graphene of our previous study. They are unaffected by macro-scale anisotropic 

interaction caused by imperfection of SiC. During the synthesis, the inhomogeneity of 

temperature throughout the graphene sheet should be minimal, as the islands are just several 

micrometres in size. The single-layer nature and growth pattern of the graphene islands are 

also obvious. In this study, one of the highly regular graphene islands was investigated with 

TERS, revealing the effects that solely come from graphene nanoridges. This is also the first 

time that TERS results from multiple graphene nanoridges are compared and discussed. 

In addition, studying the properties of graphene microislands is also very interesting in 

itself. Graphene islands are known to have unique properties such as temperature effects,45 a 

shape and size dependent on Ar pressure in the synthesis chamber,46 and size dependent 

plasmon.47 The interest in understanding the in-depth properties of graphene islands and their 

growth mechanism is therefore extensive,46,48 and so the understanding of  their 

nanostructures is inevitably needed. We believe that the nano-characterization presented in 

this study would yield further insights on the properties of graphene islands that originate in 

nanoscale.  

 

Experimental Section 

Synthesis of graphene microislands 

On-axis 4H-SiC 0001  wafer was engraved by YVO4 laser to create pits with a size 

of several hundred micrometres. Si vapour etching was then used to make the pits bottom 

became step-free, large 0001  basal planes. After properly washed, the wafer was heated for 

15 minutes in a semi-closed TaC container at 1800 °C and controlled argon atmosphere with 

6.67 kPa pressure. The epitaxial graphene microislands then grew on the defects in the basal 
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planes of SiC. Since the defects are rare, it was easy to find basal planes with only single 

defect. Thus the graphene islands shown in this study were the only single island in their pits 

and thus not interfered by other island or other defect. 

This technique has an advantage that the amount of graphene growth can be precisely 

controlled by the adjustment of temperature and Si partial pressure. The details of the 

synthesis were elaborately discussed in our previous paper.3 

 

2.2 Characterization of a graphene microisland 

AFM topography images of a graphene island were collected using a silicon cantilever 

with 20 nm tip radius (UNISOKU Co. LTD). The tip was controlled by non-contact mode to 

prevent any deformation on the graphene nanostructures. Since moisture can affect non-

contact AFM, the nitrogen flow was used to ensure < 1.0 % humidity during the scanning. 

Raman spectra were measured by a Raman spectrometer equipped with a liquid 

nitrogen-cooled CCD detector (Photon Design Nanostar NFRSM800). The excitation laser 

was a DPSS laser with 514 nm wavelength (Cobolt Fandago 25). The magnification and 

numerical aperture (NA) of the objective lens were X90 and 0.71, respectively. The confocal 

setup allows the spatial resolution of about 500 nm. 

Etched bulk silver tips with ~50 nm apex radius (UNISOKU Co. LTD) were used for 

TERS measurements. They were controlled by the same fashion as the AFM tips mentioned 

above. The TERS tips lie 45° from the sample plane. The micro Raman system described in 

the above paragraph was used to collect TERS signal. Thus, the TERS setup in this study was 

top-illumination and top-collection. Each acquisition was done with laser power of 0.10 mW 

and exposure time of 720 seconds.  

Since the laser spot of micro-Raman system was larger than TERS tips, each signal in 

the TERS measurement is composed of tip-enhanced component (near-field) and unenhanced 

out-of-tip component (far-field). For every measurement point, a spectrum was collected in 

tip-attached position to get both near-field and far-field signal. Then, another spectrum was 
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collected in tip-retracted position to acquire only the far-field component. The subtraction of 

the former spectrum by the latter one yields solely near-field component, and is presented as 

‘TERS spectrum’ in this paper. 

 

Results and discussion 

Although the graphene microisland appears highly homogeneous in the micro Raman 

imaging, the exceeding spatial resolution of TERS reveals a different picture at the nanoscale 

level. The relationship between graphene topology and TERS spectra is shown in Figure 3, in 

which the TERS spectra from a nanoridge and flat area are compared. G′ band is chosen in 

this analysis because G band is interfered by SiC bands around 1600 cm-1. Both bands shift to 

the same direction in response of strain, thus using only G′ band should suffice. G′ position 

shift is also more sensitive to strain than G band. The nanoridge (ridge #1) in Figure 3b was 

∼2.0 nm in eight and ~70 nm in width, whereas the target flat area (flat #5) had a height 

variation of less than 0.5 nm. 

In Figure 3d, it is clear that the G′ bands in the TERS spectra of the ridge and flat area 

have significantly different Raman shifts (2682 cm-1 vs 2691 cm-1) but the difference is not 

pronounced in the far-field Raman spectra in Figure 3e (2691 cm-1 vs 2692 cm-1). This 

difference between the ridge and flat area is clearly demonstrated in Figure 4. The figure 

presents TERS and far-field Raman spectra from eight points from nanoridges (Figure 4a) and 

flat areas (Figure 4b). Noted that on the nanoridges, the standard deviations of the G′ band 

position and FWHM are significantly larger for the TERS spectra than those of the far-field 

spectra. Moreover, the band positions in TERS spectra from nanoridges shows significant 

downshifts, whereas the band positions in the TERS spectra from the flat areas remain almost 

equal to the far-field spectra. It is safe to say that in the far-field Raman spectra, the signal 

from the ridge is overwhelmed by the signal from the much larger surrounding flat area. This 

is a crucial point for graphene island samples, as it means that graphene islands which appear 

to have a homogeneous strain might actually exhibit a variation in the nanoscale. As discussed 
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and shown above, other potential sources of irregularity (e.g., inherent strain variation in 

macro scale, grain boundary effects, and layer effects) are minimal or non-existent for this 

graphene sample. Therefore, it can be concluded that the nanoscale inhomogeneity must come 

from the nanoridges.  

From the G′ band position in Figure 3, the strain difference between the ridge and flat 

area can be calculated using the following equation:9,54 

	 ∆ 	 1 	

	

where , , and  represent the G′ band position from the ridge, the flat 

area, and unstrained graphene (2674 cm-1 with 514 nm excitation wavelength), respectively.61 

 is the uniaxial Grüneisen parameter for the G′ band of graphene (2.7),24,54 and  is 

the Poisson’s ratio of SiC (0.231).62 The Poisson’s ratio of SiC was chosen here instead of that 

of graphene because SiC-grown epitaxial graphene attaches strongly to the substrate.24 Note 

that this equation is based on a uniaxial strain model that assumes a strain in only one 

direction, which is not perfectly accurate for nanoridges in our sample. Nevertheless, the 

model is more suitable than the biaxial strain model, which assumes equal strain in both 

directions. 

Using Equation 1, the strain difference between the ridge and the flat area was 

calculated to be (1.6 ± 0.5) × 10-3. The positive value indicates that the strain on the ridges is 

less compressive than that in the flat area, which is concordant with the ‘ridge as a 

compressive strain relaxation’ mechanism.5,9 It is interesting to compare this value with the 

TERS result of a nanoridge on large-sheet epitaxial graphene reported in our previous study. 

Despite the difference in the height of the nanoridge (~2 nm vs ~6 nm), this ridge-flat strain 

difference is almost equal to the value of (1.6 ± 0.2) × 10-3 in our previous study.9 This might 

be partly by chance, as the TERS results from some other ridges give significantly smaller 
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values of strain difference (see Figure 4a). However, it does demonstrate that nanoridges on 

epitaxial graphene microislands also provide compressive strain relaxation of a similar order 

of magnitude to nanoridges on large-sheet epitaxial graphene. If the band position from far-

field Raman spectra is used, then the calculated strain difference between the ridge and flat 

area would be just 7.21 × 10-5, a value smaller than the uncertainty range. This means normal 

micro-Raman measurement does not have enough spatial resolution to detect ridge-flat strain 

difference, thus making TERS a necessity. 

It is well-known that the SiC step/plateau acts as a graphene nucleation point. Then, at 

the edge of nucleated graphene, SiC decomposition releases Si vapour to the atmosphere and 

allows the remaining carbon atoms to contribute to graphene growth.1,3 The graphene 

microisland in this study clearly grew from the center to the edge of the hexagonal island. The 

near-perfect equiangular shape of the island suggests that there is only one nucleation point in 

the center. This obvious growth pattern helps in the discussion of nanoridges formation. The 

alternative mechanism of nanoridges origin (i.e., the accumulation of trapped Si vapour),41 is 

unlikely to occur in this sample because of three reasons: 1) SiC decomposition (and so Si 

sublimation) can only occur at the graphene edges as the island grows, and not in the center, 

otherwise there will be multiple layers formed. The Si vapour produced near the edges could 

easily escape out from the island, and thus cannot accumulate into nanoridge. 2) AFM images 

show that many nanoridges extend to the edge of the island, and these open cavities cannot 

trap Si vapour. The one among these ridges (Figure 3c and 4a, point number 3) gives a similar 

TERS spectrum to nanoridges on other position.  3) The island should have a poor capability 

to trap Si vapour due to its small size. Despite these reasons that the ‘Si vapour trapping’ 

mechanism cannot occur, nanoridges with compressive strain relaxation are still observed in 

the graphene microisland. This indicates that the ‘strain relaxation’ mechanism alone is 

enough to create nanoridges. 

Aside from the peak position, the G′ band in the TERS spectrum from the ridge in 
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Figure 3d appears broader than that from the flat area. One possible explanation for the 

broadening is that nanoridges relax the strain in only one direction,5 and thus the strain in the 

direction across the ridge is weaker than that along the ridge. Graphene with such a difference 

of strains between the two axes is known to exhibit a splitting of G and G′ band.54,63,64 The 

degree of splitting depends on the strain difference. In the cases where this splitting is too 

small to be discerned, the bands appear instead as a broad band.54,64 This possibility was 

confirmed by resolving the G′ band with two Lorentzian peaks. By fixing one peak at 2691 

cm-1 (the average peak position of G′ band from the flat area), both of the resolved peaks have 

FWHM of 30 cm-1, which is very close to FWHM in the far-field Raman spectra (Figure 3e). 

Since a FWHM of around 30 cm-1 is a well-known characteristic of single layer graphene, the 

FWHM values of the resolved peaks are important in confirming that the broadening does not 

arises from multi-layer graphene, but rather from strain inequality. The peak positions from 

the two-peak approach can be also calculated into new value of strain relaxations.  

Figure 4a and 4b depict the greater variation of G′ band FWHM in the TERS spectra 

from the nanoridges, compared to the flat areas and to the far-field spectra from both areas. 

Based on the semi-splitting explanation in the previous paragraph, this indicates that the 

inequality of strain in the two axes is different among each nanoridge. These results 

demonstrate that TERS does not only reveal the inhomogeneity in the magnitude of the strain, 

but also in the direction of strain. 

As in the case of graphene island edges, the TERS result shows no significant 

difference in graphene peaks positions and FWHMs from the TERS spectra of the flat areas 

inside the island. The D band is also absent in the TERS spectrum from the edge, which is 

similar to the far-field Raman spectra discussed in the previous section. This is expected 

because the growth of epitaxial graphene tends to minimize edge energy.48 It is 

thermodynamically preferred to have a clear and smooth edge rather than an irregular edge in 

the nanoscale. However, this does not rule out the possibility of a small D band that is below 
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the detection limit of the TERS experiment. 

TERS mapping was impractical to be performed in this study due to the long exposure 

time required for each spectrum, which is a consequence of weak TERS signal. The inevitable 

reasons of the weak signal are: 1) gap mode enhancement using gold/silver substrate cannot 

be done for this sample, since SiC is already under the graphene. 2) Raman signal of graphene 

grown on SiC is weaker than exfoliated graphene on SiO2, because of stronger substrate 

interaction. 3) non-contact mode tip controlling was required to prevent nanostructures 

deformations by the tips. The larger tip-sample distance compared to contact mode makes the 

enhancement lower, as the near field enhancement decay by distance from tip.19  

 

Conclusion 

Hexagonal epitaxial graphene microislands were synthesized by annealing pre-

engraved 4H-SiC 0001 . The studied island was several micrometres in both height and 

width, consisted of a single layer of graphene throughout its sheet, and had no grain boundary. 

AFM analysis revealed nanoridges with a height of ∼2 nm all over the island. Although the 

island appeared homogeneous at the scale of micro-Raman imaging, TERS shows that 

nanoridges cause a nanoscale variation of strain in terms of both magnitude and direction. The 

G′ band shift of 9 cm-1 between the TERS spectra from a nanoridge and flat area can be 

calculated into a strain difference of (1.6 ± 0.5) × 10-3, indicating a relaxation of compressive 

strain on the ridge. The similar strain change that occurs in both graphene island and large 

sheet graphene suggests that the ‘compressive strain relaxation’ mechanism is sufficient for 

nanoridges to form, since the ‘Si vapour accumulation’ mechanism being unlikely to have 

occurred in this sample. 
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Figure 1 A) semi-low energy SEM image of a graphene microisland. B) AFM topography image of the 

graphene. C) Another AFM image on the smaller area of blue dashed square in B). 



51 
 

 

 
 
 

Figure 2 Raman imaging of the graphene microisland. The maps are 9.6 x 9.6 µm. Each map contains 32 x 32 

spectra. The band intensities, positions, and FWHM are acquired by Lorentzian fitting. 
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Figure 3 A) AFM topography image on the lower-left area of the island shown in Figure 1. B), C) Smaller area 

scans on green and purple dashed square in A). These AFM images are acquired using silicon AFM 

tips. Noted that the colour scale of A) is different from B) and C) due to an adjustment to increase the 

contrast for lower heights. D), E) G′ band in TERS and far-field spectra from flat and ridge at the 

position of X mark number 1 and 5 in B).  
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Figure 4 FWHM vs peak position of G′ band in TERS spectra from A) ridges and B) flat areas of the 

corresponding number marks in Figure 3B and 3C. 



 
 

 

 

 

 

 

 

Chapter III: 3D SERS imaging using chemically-synthesized 

highly-symmetric nanoporous silver microstructure 
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Abstract 

A synthesis, 3D SERS characterization, and potential applications of 3D highly-

symmetric nanoporous silver microparticles have been demonstrated. The synthesis is 

chemical-based and capable for large-scale.  Both of the particle shape and SERS 

enhancement pattern in 3D are very predictable, as they have regular hexapod shape with 

octahedral symmetry. By embedding the particles into polymer, 3D SERS imaging can reveal 

an inhomogeneity in the system which cannot be resolved by conventional 3D Raman 

imaging. 

 

Introduction, result, and discussion 

Surface-enhanced Raman scattering (SERS) spectroscopy, a highly sensitive and 

selective technique which provides rich molecular information, has been widely used in 

various applications including life sciences and materials sciences.1–5  Recently, SERS 

substrates with three dimensions have been developed by many research groups and have 

been demonstrated to have promising signal quality due to their exponentially large surface 

area and large amount of hotspots from the additional third dimension.6–8 However, almost all 

of the 3D SERS substrate studies demonstrated only point-by-point measurement or 2D SERS 

imaging, which does not fully utilize the three-dimensionality of the substrates. To the best of 

our knowledge, only one research9 showed a breakthrough of 2D limitation with 3D SERS 

imaging on 3D SERS substrate and reported very interesting potential applications such as 

3D-encoding of digital data. Even so, the research used lithography-base synthesis of the 

SERS substrate, which makes the enhancing surface being topologically extruded 2D plane 

rather than a proper 3D object. It is worthy to note that there are the uses of nanoparticles 

aggregates10,11 or 3D-movement nanoparticle tracking12 to do 3D SERS imaging in cells, 

which allow amazing investigations of intracellular pathway, but have a limited application in 

materials science since the aggregation and 3D motion of nanoparticle are semi-random, and 
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thus enhancement pattern is unpredictable. The present study tries to use chemically-

synthesized symmetric silver microparticles to further push the potential of 3D SERS imaging 

with the novel 3D SERS substrate into creative applications such as dispersible embedding 

3D SERS probe, which allows the use of much lower laser power compared to normal Raman 

spectroscopy, but providing an improved spatial resolution. The objective is not to claim the 

superiority in an enhancement factor over the previously reported substrates, but to provide an 

alternative substrate for unexplored applications. 

Nanoporous silver microstructures in this study were synthesized by in-place galvanic 

reduction of AgCl template as described in Experimental Section. A SEM image in Figure 1A 

shows a regular hexapod shape with octahedral symmetry (each leg has the same length and is 

90° from the adjacent.).  The nanopores which would acts as hotspots are presented in Figure 

1B, with an average pore size of ~60 nm. This pore size should allow small molecules, such 

as SERS probe molecules, to go deep inside cavities of the particles, instead of just the outer 

surface. Its Raman enhancement uniformity in a single microstructure was evaluated to be 

within an order of magnitude by our previous study.13 The study also confirmed the 99.9 % 

purity of silver throughout the structures by energy-dispersive X-ray spectroscopy (EDS). 

An advantage of octahedral symmetric shape is that when the silver microparticles lie 

on a flat surface, no matter what the direction is, they would always be pulled down by 

gravity and rest on three legs, with the other three legs pointing upward 45° from the flat 

surface plane, as shown in Figure 1A. Due to the symmetry, every hexapod particle would 

have an apparent leg-to-adjacent-leg angle and leg-to-opposite-leg size of 30° and 2cos(leg-

length), respectively, viewing from the Z axis (and from all direction equivalent to the Z axis 

in octahedral symmetry). The particle orientation similar to Figure 1A almost always happens 

for a hexapod-shape particle, and thus it is an easy-to-find target. The capability that lower 

legs can be seen from the top together with the upper legs is also an important factor which 

allows 3D SERS imaging. 
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Figure 2A shows a SERS spectrum of p-aminothiophenol (PATP) from the center of 

the particle in Figure 2B. PATP is a well-known and important SERS probe because it can 

adsorb very well on silver, giving strong SERS signal.14–17 In our previous study, PATP with 

a concentration as low as 10-8 M could be detected by SERS with similar hexapod silver 

microstructures.13 Figure 2C, D, and E display 3D SERS imaging from simple area 

integration of the 1075 cm-1 band. Each image represents volumetric data of 45 × 45 × 45 

spectra spanning in the XYZ space of 13.23 µm3 (see Experimental Section). The band was 

selected because it is a simple Raman band which can be unambiguously assigned to a1 mode 

C-S stretching of PATP in C2V point group.14,16,18 The enhancement pattern is easily 

predictable, as the top-view enhancement mapping in Figure 2C closely resembles the particle 

shape in Figure 2B. The XY-slices shown in Figure 2E also show an obvious pattern, as the 

hotspots are gradually translated from upper leg positions to lower leg positions. Both Figure 

2D and 2E indicate that the SERS enhancements appear to be slightly lesser for the lower legs 

than the upper legs. This is most likely due to the shadowing effect, as the upper legs block 

some part of incoming excitation laser and scattered signal from the lower legs. This 

hypothesis can be carried out by doing 3D SERS imaging on many hexapod particles, as all 

particles measured show similar trends in upper leg/lower leg signal. (See supporting 

information.) The symmetry and regularity in the structure, along with the predictable 

enhancement pattern of this 3D SERS substrate is crucial in sensing application; if there are 

irregular or large difference in SERS signal from each equivalent leg of the hexapod, it is 

certain that the difference comes from external factors (e.g. sample inhomogeneity), not the 

particle itself.  

Polarization of excitation laser can have huge impact in Raman enhancement for 

nanostructure-based SERS substrates.19,20 Thus, it is of particular interest to study the effect of 

polarization on the 3D enhancement pattern. In Figure S1 of supporting information, 3D 

SERS images using the excitation laser with 0°, 45°, and 90° polarizations are presented 
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(using the same particle as that in Figure 2). Figure S1A, B, and C illustrates top-view images 

obtained by using the 1074 cm-1 band area. Figure S1D, E, and F presents the corresponding 

side-view images. It is clear that there is only subtle change in the enhancement pattern for 

this Raman band among the three polarizations. The electromagnetic enhancement of 

nanostructured silver is a nanoscale phenomenon, and therefore, it does not affect the outline 

shape of this micrometers-scale enhancement pattern, which is dictated by the particle shape. 

Moreover, the inner nanoscale pattern is also unaffected. In the maps of 1074 cm-1 peak area 

shown in Figure 1S A-F, one can see that some areas with red/bright color indicating higher 

enhancement, and that these areas are similar for all polarizations. This indicates uniform 

distribution of the nanopores (no special nano-orientation). The polarization independence of 

enhancement pattern of the simple Raman band is useful, since it also means that there is no 

complication from the rotation of the particles in the XY plane. 

A possible application of this 3D substrate is demonstrated by embedding the 

microparticle into polymers. Since this substrate has inherent SERS activity from its uniform 

nanopores and does not need either nanoparticle-decoration or aggregation, there is no risk of 

enhancement loss by the detachment of nanoparticles. Therefore, one may embed it in various 

environments while keeping its SERS activity. Contrary to the plane-extruding lithography-

type 3D substrates, which are bound to the underlying surface, this substrate can go anywhere 

in the sample, even the volume near the top of the sample. For example, the upper legs of the 

silver hexapod in Figure 3A are located around 3 µm under the polymer surface and the 

particle bottom is still several micrometers over underneath glass slide. In this experiment 1:1 

poly(3-hydroxybutyrate) (PHB)/poly(D,L)lactic acid  (PDLLA) blend was used. Both 

polymers are popular biodegradable polymers, and blending them together improves physical 

properties over the original polymers.21–23 This blend was chosen because the two polymers 

have the same functional groups (ester carbonyl and methyl groups), but are enough different 

in their Raman spectra. (See structure in supporting information Figure S2.) Due to the same 

functional groups, the interaction of each polymer to silver should be very similar and 
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differences in the measured SERS spectra should come from the different in polymer 

distribution.  

Figure 3B presents a top-view SERS image of the 3D imaging on the particle shown in 

Figure 3A, with the color representing the ratio of 870/840 cm-1 peak areas (from the 855-885 

cm-1 and 830-850 cm-1 integral ranges, respectively). The peaks are originated from C-COO 

stretching modes of PDLLA and PHB,21 respectively. The three example spectra from the 3D 

imaging are shown in Figure S3 of Supporting Information. The enhancement is actually very 

low compared to PATP because the carbonyl group of polymers does not adsorb very well on 

the silver particle. Nevertheless, the 3D image based the on peak area ratio shows a high value 

in some nanoscale area, which could be interpreted into an inhomogeneity of the blend (in 

which the area consists of more PDLLA content). Actually, the use of normal 3D Raman 

imaging to probe the inhomogeneity in polymers have been demonstrated,24,25 but it is well-

known that Raman spectroscopy in polymers suffers from a limitation in spatial resolution 

due to refraction, especially in the Z-axis.26,27 It can be clearly seen in the 3D Raman images 

of the nearby polymer without silver structure (Figure 3C and 3E), that the inhomogeneity is 

not resolved very well. With the symmetric 3D SERS substrate as a near-field probe, the 

shape of the substrate constrains the probing area, and thus the small inhomogeneity can be 

resolved.   

The capability in improving the spatial resolution in the Z axis can be demonstrated in 

the two-layer polymer systems. Hexapod silver particles were embedded into the interface 

between polyvinylpyrrolidone (PVP) and polystyrene (PS) (Figure 4A-B). Similar to the 

polymer blend system, the low enhancement from the poor adsorption resulting in noisy 3D 

SERS images. Nevertheless, using the peak area ratio between PS ring-mode vibration28 

(1002 cm-1) and PVP C-C ring breathing29 (933 cm-1), the partition of the polymers can be 

seen. A top-view 3D SERS image in Figure 4C shows red color on upper legs of the particle, 

indicating high PS peak area, while lower legs exhibit low value of the ratio, representing 
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PVP. With the side-view 3D SERS image and median peak area ratio at the specific heights 

(Figure 4D-E), one can see that the ratio transition from the PS-like into PVP-like in just 

around 1 µm, contrary to a few micrometers in normal 3D Raman imaging. 

Using 3D SERS imaging, we characterized the highly-symmetric nonporous silver 

microparticles about its SERS activities in three dimensions. The result showed that the 

substrate can provide volumetric SERS information. The enhancement pattern of particles is 

very predictable as it correlates well with the particle shape. The polarization-independent 

enhancement pattern is an advantage, as it allows the substrate to be useful in every 

orientation. A potential application as an embedding SERS probe was demonstrated. In a 

PHB/PDLLA polymery blend, 3D SERS imaging on this symmetric nonporous silver 

structure can resolve a small inhomogeneity of the blends. An improved spatial resolution in 

the Z axis was also illustrated by two-layer polymer system. 

  

Experimental Section 

Nanoporous silver microparticles with 3D symmetry were chemically synthesized by 

in-place galvanic reduction of 3D AgCl particles. The method is slightly modified from that 

reported in our previous study.13,30 AgNO3 (0.1 M, 5 mL) and NH4OH (5.31 M, 4.7 mL) were 

thoroughly mixed, and then the solution was quickly added into excess amount of vigorously 

stirred 1 M NaCl solution. White AgCl precipitates were formed immediately after the 

mixing, but the stirring is kept for 5 minutes in ambient conditions.  The AgCl particles was 

washed with water and ethanol, dried in air, and reduced with a Zn plate in NaCl solution (0.1 

M, 50 mL) until AgCl microparticles were completely converted to nanoporous hexapod 

silver microparticles. (The color of particles changed from white to dark grey.) Since the 

process does not involve lithography, it is highly scalable to the scale of several grams. 

In the sample preparation for SERS of PATP experiment, one milligram of silver 

microparticles were washed a few times with water and ethanol (sonicated until disperse in 

water or ethanol, centrifuge, and then remove the liquid part). The particles were then mixed 
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with 10-3 M PATP for one hour. The mixture was dropped onto a glass slide, and then washed 

with ethanol to remove non-adsorbed PATP. 

3D SERS measurement was carried out with a Renishaw Invia Raman spectrometer 

equipped with a 532 nm solid-state laser. The objective lens used had 100X magnification and 

0.85 NA (Leica N PLAN). The measurement was done by moving the sample with an 

automated XYZ stage controller and then SERS spectra were acquired point-by-point to get 

multiple spectra in 3D Cartesian grid. Every 3D SERS images in Figure 2 and 3 contains 45 × 

45 × 45 points, with 0.3 µm separation between points and 0.4 s exposure time per point. The 

laser power was only 0.010 mW to prevent silver nanostructure from nanoscale deformation. 

The 3D images were generated using volume rendering (Bunyk ray cast) of Paraview 4.4.0. 

The optical images in Figure 2B and 4A were from focus-stacking technique, which is a 

merging of multiple images taken in the same position but different focus. Picolay software 

was used to merge the images.  

For the polymer-embedded experiment, washed silver microparticles were dried with a 

vacuum oven (50 °C, -28 inHg relative to ambient pressure). After that, the particles were 

dispersed in chloroform with ratio of ~2 mg particle per 1 mL of chloroform. The 0.250 mL 

of the mixture was then mixed with 0.45 mL of 0.5 % PHB/0.5 % PDLLA blend in 

chloroform. This silver/particle mixture was dropped on a glass slide. Three drops were 

overlapped to build up the film with various thicknesses, which allows silver particles that are 

fully covered with polymer to be found. The procedure of 3D SERS measurement was the 

same as previous paragraph but with 35 × 35 × 35 points and 1 s exposure time. The point 

separation in the Z axis was reduced to 0.2 µm to compensate the higher refractive index of 

polymer compared to air. (Objects inside the polymer appear shallower.) For 3D Raman 

mapping without the SERS substrate in Figure 3C, laser power had to be as high as 5 mW, 

because normal Raman provided much lower signal than SERS. 

The two-layer polymer sample was prepared by casting 0.500 mL of 1.25 % PVP 

together with 1 mg of silver particles. The microscope of Renishaw Invia was use to spot 
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particles which are covered by PVP for around a half of their heights. 0.300 mL of 1 % PS in 

2-butanone was then cast over the sample at 50 °C. The 3D imaging then performed on 

previously spotted particle with the same condition as the previous paragraph, but with 41 × 

41 × 41 points.  
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Figure 1 SEM images of nanoporous silver microstructures. A) The overall hexapod shape, B) nanopores.
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Figure 2 A) SERS spectra of PATP from the center of a hexapod silver microstructure. B) Optical microscope 

image of the particle. C),D) Top and diagonal views 3D SERS images constructed by PATP a1 mode 

at 1074 cm-1, using the same particle as B). E) 2D slices in the Z axis of B) with 1.5 µm separation 

per slice. Noted that C) and D) use the same color scale.  
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Figure 3 A silver microstructure in a PHB/PDLLA polymer blend. (A) The optical image. (B) 3D SERS 

imaging on the particle showing 870/840 cm-1 peak ratio. (C) 3D Raman imaging showing the same 

peak ratio but on the polymer outside the particle. (D), (E) 2D slices in Z axis with 1.0 µm separation 

per slice of (B) and (C), respectively.  
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Figure 4 A) A Scheme represents a silver particle embedded in two-layer polymer system. B) Optical image of 

the silver particle in  polymers. C),D) Top- and side-view 3D SERS images constructed by ratio 

between the peak area in the range of 990-1010 cm-1 and 910-955 cm-1 (representing the peak at 

1002 cm-1 and 933 cm-1, respectively.). E) Median peak area ratio at each specific height, using the 

spectra from the particle only. 
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