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Abstract

When subjects interact in continuous time, their ability to coop-

erate may dramatically increase. In an experiment, we study the im-

pact of di�erent time horizons on cooperation in (quasi) continuous

time prisoner's dilemmas. We �nd that cooperation levels are similar

or higher when the horizon is deterministic rather than stochastic.

Moreover, a deterministic duration generates di�erent aggregate pat-

terns and individual strategies than a stochastic one. For instance,

under a deterministic horizon subjects show high initial cooperation

and a strong end-of-period reversal to defection. Moreover, they do

not learn to apply backward induction but to postpone defection

closer to the end.
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1 Introduction

Understanding the determinants of cooperation in social dilemmas is crucial

to all social sciences. In many �eld situations, actors can change actions

frequently and asynchronously, a somewhat di�erent situation from that

familiar from discretely repeated games. Examples include �rms posting

prices on Internet or via a centralized and transparent marketplace (as

airlines), workers choosing e�ort in a plant, nearby restaurants choosing

menus, and spouses sharing everyday chores. This paper reports results

from laboratory experiments on Prisoner's Dilemma games played in (al-

most) continuous time. We study how cooperation levels change in in-

teractions with di�erent termination rules and of di�erent lengths. This

study considers situations with deterministic versus stochastic time horizon

(i.e., deterministic versus stochastic termination) and of long versus short

expected length (60 and 20 seconds).

The theory of repeated games in discrete time emphasizes the tradeo�

between immediate bene�ts of deviation and future punishments that can

be applied only with a delay. This tradeo� is important in many situations

involving repeated interactions, for example when bidding in sealed-bid

auctions, when traders can sign secret contracts or when producers decide

capacity levels that others will discover only at a later time. However, in

many other situations the delay in punishment is negligible and may have

a little e�ect on incentives.

When interactions are frequent and players can react quickly, the trade

o� typical of discretely repeated games may be of second order relevance.

In such a case, the assumption of discrete time interaction is not a simple

matter of convenience in modelling but may have far reaching implications.

Economic theory has provided some answers to the question whether play-

ers should behave di�erently in these di�erent environments, but for �nite

horizon games it o�ers con�icting predictions. Running experiments in

continuous time allows to empirically investigate what is di�erent in con-

tinuous time, and which theories of continuous time games �t best.

Most experimental studies of social dilemmas compare situations where

the game is repeated with relatively low frequency. A recent experiment

by Friedman and Oprea (forth.) has shown that when actions in a Pris-
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oner's Dilemma can be changed at very high frequency, so to approximate

a continuous time game, very high levels of cooperation are sustained even

when the time horizon is deterministic.

This striking observation led directly to our research question. Would

a di�erent termination rule, a stochastic time horizon, generate di�erent

results in an (almost) continuous time framework? Friedman and Oprea's

results and the leading theories of repeated games do not clearly indicate

whether imposing a deterministic or stochastic time horizon would make a

di�erence for continuous time games: theoretical models of cooperation in

continuous time do not give an unanimous answer to this question. Provid-

ing evidence that the di�erence is immaterial would blur the line between

games of deterministic vs. stochastic duration. On the other hand, if rel-

evant di�erences emerge, they would be a useful guide for further research

on continuous time games.

We report four main results. First, Friedman and Oprea's strikingly

high rates of cooperation emerged also in our experiment with deterministic

horizon, which provides a robustness check for their �ndings.

Second, cooperation rates were similar or higher with deterministic hori-

zon than with stochastic horizon in interactions of identical expected dura-

tion. In our long duration treatments (60 seconds), cooperation rates are

statistically indistinguishable between stochastic and deterministic horizon,

while in the short duration treatments (20 seconds) cooperation rates are

signi�cantly higher with deterministic horizon than with stochastic hori-

zon. These results in continuous time mark a qualitative di�erence from the

�ndings in Dal Bó (2005) for discretely repeated games, where the author

reports the opposite e�ect of time horizon on cooperation rates.

Third, we �nd that the within-period pattern of cooperation di�ered

in the stochastic and deterministic horizon treatments. With determinis-

tic horizon, the initial level of cooperation was signi�cantly higher than

with stochastic duration, while the �nal level of cooperation was signi�-

cantly lower (i.e. lines cross). We are not aware of any theoretical model

that would predict a higher initial cooperation with a deterministic hori-

zon. However, since some of the models of behavior in continuous time

games yield a folk theorem, it is possible that di�erent time horizon induce

subjects to coordinate on di�erent equilibria, and the deterministic con-
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tinuous time environment makes it particularly easy to coordinate on the

Pareto-e�cient one.

Fourth, with deterministic duration, end-of-period e�ects did not un-

ravel cooperation. In particular, we �nd that as subjects gained experi-

ence the end-of-period e�ect became less pronounced. This contrasts with

discretely repeated games experiments where with �nite horizon the end-

of-period e�ect is typically strengthened by experience. It suggests that

subjects did not apply backward induction, and instead postponed the

end-game-e�ect closer and closer to the end. Moreover, the end-of-period

reversal to defection took place signi�cantly later in the short duration than

in the long duration treatments.

As mentioned earlier, these results are not only relevant from a game

theoretic or behavioral - experimental point of view. They may explain, for

example, why higher prices have been observed in oligopolies when a clear

future end-of-the game emerges.1 And they imply that policies designed

for discretely repeated interactions may be ine�ective or counterproductive

in high frequency environments.2

The next section reviews the related literature; Section 3 discusses the

theoretical background; Section 4 describes the experimental design; Sec-

tion 5 presents our results in detail and Section 6 brie�y concludes.

1Szymanski (1996) noted that the two incumbent shipping companies in the Channel
increased prices substantially when the threat of the Eurotunnel taking the best part of
their market became real. Assuming a monopolistic market, his model suggested that
this happened because of the reduced fear of regulatory intervention given its �xed costs
and the fact that the tunnel was expected to soon reduce prices dramatically anyway.
However, he admitted he could not explain how this theory could apply to the shipping
duopoly that motivated his paper, i.e. why competition among the duopolist did not
drive prices down given the Eurotunnel limited the horizon of their interaction.

2For example, Frezal (2006) recently proposed to replace current random industry
audits by competition authorities with announced prolonged and intensive audits one
industry at a time. By making future collusion impossible for sure for a su�ciently
long time period, during the audit, this policy should generate an end-game e�ect that
would make collusion unravel in all markets. Our results suggest that in the electricity
auction market and other industries where interaction is highly frequent this policy may
actually increase cartel prices.
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2 Related Literature

The repeated (or `iterated') Prisoner's Dilemma with perfect monitoring

has probably been the most important set up in which the question `what

leads people to cooperate' has been explored experimentally since the early

work of Rapoport and Chammah (1965). An important and highly de-

bated issue has been the role played by the time horizon, sometimes called

the `termination rule'. A large experimental literature has shown that the

theoretical prediction that backward induction should apply to �nitely re-

peated games with the features of a Prisoner's Dilemma often does not hold

in the laboratory.3 In �eld situations, the moment at which a relationship

will come to an end is often uncertain. To capture this feature several re-

searchers, starting with Roth and Murnighan (1978) and Murnighan and

Roth (1983), have tried to reproduce an inde�nite, uncertain horizon in

the lab under a stochastic continuation/termination rule for the repeated

game. Selten, Mitzkewitz, and Uhlich (1997) argued against the attempt to

replicate a potentially in�nite horizon in the lab, since no real experiment

can have in�nite duration and subjects will be aware that the experiment

will end in reasonable time, and their beliefs may vary about when ex-

actly. Based on previous experimental evidence (e.g. Selten and Stoecker

1986) they proposed using �nitely repeated games, given that the outcome

of repeated laboratory games with deterministic and stochastic horizon is

similar, apart for the end game e�ect that only takes place in the last

rounds. Dal Bó (2005) o�ered experimental evidence against this last con-

clusion. He ran repeated Prisoner's Dilemma games with two di�erent

parameterizations of the stage game payo�s and with deterministic and

stochastic horizon with identical but low expected duration. Among other

things, he found that cooperation rates in both the �rst and last rounds of

the supergames are signi�cantly lower in treatments with a deterministic

horizon than in these with the same expected duration but stochastic hori-

zon. Normann and Wallace (2011) also compared these termination rules

(as well as a third, `unknown termination') but in a di�erent set up where

the Prisoner's Dilemma is repeated 22 times before the di�erent termina-

3See e.g. Selten and Stoecker (1986), Andreoni and Miller (1993), Cooper, DeJong,
Forsythe, and Ross (1996) and more recently Bereby-Meyer and Roth (2006).
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tion rules are introduced, �nding no signi�cant di�erences in cooperation

rates.4 How far the expected end of the game is seems therefore to play a

crucial role for the e�ects of termination rules in standard repeated games.

By contrast, in Friedman and Oprea (forth.) subjects play a symmetric

Prisoner's Dilemma where they could switch actions with latency times on

the order of 0.02 seconds for a total period length of exactly 60 seconds,

after which the interaction stops with certainty and subjects are rematched

in pairs to play another continuous time supergame. Rates of mutual co-

operation then reach a median of 90%, and cooperation is typically sus-

tained until the very last seconds of the game when a short but drastic

end game e�ect takes place.5 The present study di�ers from Friedman

and Oprea (forth.) because it implemented a series of (almost) continuous

time repeated Prisoner's Dilemma supergames both under a deterministic

time horizon and under a constant probability of termination generating an

identical expected duration of the game. We have treatments with inde�-

nite horizon and look at di�erent expected duration (60 and 20 seconds),

but also in other dimensions: we ensure that after each period/match our

subjects can never meet again the same opponent (perfect stranger design);

and our subjects are asked to choose the starting action rather than hav-

ing it chosen randomly by the program (and the stage game payo�s are

di�erent).6

Our work is also related to experimental studies of �nitely repeated

games played in discrete time at low frequency that, among other things,

asked whether subjects learn with experience to apply backwards induction.

A consistent �nding in this literature, including Selten and Stoecker (1986),

Andreoni and Miller (1993), Hauk and Nagel (2001) and Bereby-Meyer and

Roth (2006), is that close to the end cooperation rates fall more the more

4See also Palfrey and Rosenthal (1994) who compared contributions to a public good
in one shot vs. inde�nitely repeated games. Engle-Warnick and Slonim (2004) report
little di�erences when comparing a trust game repeated exactly �ve times vs. repeated
with a continuation probability of 0.8.

5Charness, Friedman, and Oprea (2011) ran a 4-person public good experiment in
continuous time and report a somewhat lower impact of continuous time interaction on
cooperation.

6An additional di�erence relative to Friedman and Oprea (forth.) is that in our
experiment agents could observe a plot displaying cumulative earnings. In their de-
sign, instead, subjects could see the time series of actions both for themselves and the
counterpart, and the respective �ow payo�s.
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subjects gain experience.

3 Theoretical Considerations

The theory of games in continuous time is less developed than its counter-

part in discrete time. The topic can be approached from di�erent perspec-

tives; here we sketch three of them that apply to social dilemma games.

A �rst approach is to treat continuous-time games as the limit of stan-

dard discrete time games, as each round of interaction is divided into multi-

ple rounds. Hence, agents take more frequent decisions over payo�s that are

a fraction of the original ones. When a game is repeated in discrete time,

theory predicts that behavior under deterministic vs. stochastic time hori-

zon can be quite di�erent. The standard theory of �nitely repeated games

in discrete time suggests that cooperation cannot be sustained in equilib-

rium because of the standard backward induction argument.7 In contrast,

following the Folk theorems, if future interactions loom su�ciently large,

agents can support full cooperation under a stochastic horizon. Hence, un-

der the standard assumptions of rationality and self-regarding preferences,

100 percent cooperation in the initial instant is not sustainable as equi-

librium under a deterministic horizon while it can be under a stochastic

horizon. This approach predicts that behavior in continuous time games

will mirror that in repeated discrete time games.

A second possible approach is to model the games directly in continu-

ous time, which entails that deviations can be punished immediately. In

continuous time games the backward induction argument breaks down as

the real line is not well ordered and a last period cannot be identi�ed even

under a deterministic horizon. In other words, in continuous time `there is

always another period' in which a deviation can be punished. This setting

leads to the prediction that cooperation is an equilibrium regardless of the

type of stopping rule or of the length of the interaction.

Finally, the third approach considers discrete-time games with a per-

7The induction argument was apparently �rst made in relation to the �nitely re-
peated Prisoner's Dilemma by John Nash in private communication reported in Merrill
Flood (1952). Models of repeated interaction of stage games with multiple and ranked
equilibria that can be used to punish previous defections (Benoit and Krishna, 1985) do
not apply to this study.
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turbation, which can take several forms. The continuous-time games can

be modeled as the limit of perturbed discrete time games. This is the ap-

proach that prevailed in the literature, and that characterizes the models

by Simon and Stinchcombe (1989), Bergin and MacLeod (1993), Radner

(1986), Friedman and Oprea (forth.), and Kreps, Milgrom, Roberts, and

Wilson (1982).

Simon and Stinchcombe (1989) build a general model of games a �nite

number of actions and players. When placing some restrictions on strate-

gies, they prove that a prisoner's dilemma played in continuous time admits

a unique equilibrium of full cooperation, a prediction that is stronger than

the counterpart of Folk Theorems for an in�nitely repeated game in discrete

time. More in detail, they de�ne the game on a discrete grid in a �nite inter-

val and then let the grid interval go to zero, and assume that each strategy

admits a uniformly bounded number of moves in the game. Reasoning by

backward induction, they obtain that cooperation is typically sustainable

in subgame perfect equilibrium and that for the Prisoner's Dilemma full

cooperation is the unique equilibrium surviving iterated deletion of weakly

dominated strategies. The intuition behind this result is that no player

would ever switch from defection to cooperation, when she has only one

move left. So if both players can react with a delay that tends to zero, and

can switch action at least once in the game, the game will never end in one

of the two asymmetric outcomes.8 Strictly speaking, this theory suggest

that we should not observe sizable end game e�ects in a continuous time

game played under a deterministic horizon.

Bergin and MacLeod (1993) build a related model that includes a degree

of inertia in changing actions as interactions are structured in a sequence

8The two possible �nal states are such that either both players have at least one
move available and they both cooperate, or they both defect and they have zero or one
move left each, or an uneven number of moves. Suppose for example that at some point
in time t the two players have the same number n of moves remaining, with n ≥ 2, and
that they both defect. It is optimal for them to switch immediately to cooperation, and
to switch back to defection only if they realize that the opponent has not done the same.
If instead they both cooperate, and they both have one move available, no one has an
incentive to switch to defection, as the gains from defection would be incomparably low
with respect to the foregone payo�s from cooperation. Answering the question whether
continuous time games have discrete repeated games analogues the authors write �yes,
provided that agents payo�s are insensitive to the actions other agents choose near
the end of the game" (p. 1200) meaning that continuous time games are intrinsically
di�erent than discretely repeated ones precisely with respect to end game e�ects.
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of intervals from t to t+ε. They characterize the set of ε-subgame-perfect-

equilibria and then let ε go to zero. This leads to a full Folk Theorem for

the continuous time Prisoner's Dilemma that holds for both deterministic

and stochastic horizons. The intuition behind these predictions is that if

players adopt a trigger strategy that punish a defection after a time interval

of size ε, the magnitude of the gains of defection also is of the order of ε.

Thus, as ε approaches zero, the incentive to deviate also vanishes. Because

of the multiplicity of equilibria, this theory has a weaker predictive power

and is consistent with a large number of equilibrium paths observed in the

lab, with or without a sizable end game e�ect.

Radner (1986) puts forward a theory of bounded rationality in discretely

repeated games with �nite horizon based on ε−equilibria (recently adopted
and extended by Friedman and Oprea (forth.) to explain their results). He

predicts full initial cooperation as long as there is a small probability that

the opponent plays a �cooperative� dynamic behavioral strategy. His be-

havioral restriction is to a class of strategies of the form �cooperate until

period k or until the other player defects and defect otherwise," so-called

cut-o� strategies. He notes that if the players can react swiftly to a defec-

tion of the other player, the losses that a player may incur using a cut-o�

strategy with a very large k are bounded to be very small, while the same

strategy allows large gains from prolonged cooperation if the opponent uses

a cut-o� strategy with a large k. The best response strategy, defect at k−1

if the other player waits till k, leads to backward induction and unraveling.

Relative to the safe but low non-cooperation payo�s obtained using best

reply and the induction argument they trigger, the cooperative strategies

become more and more attractive when the number of repetitions grow.

This implies that that cooperation can be sustained in deterministic hori-

zon games with many periods or frequent actions if subjects realize that

continuing cooperating rather than defecting produces large expected ben-

e�ts compared to the risk of small losses one is exposed to. This argument

applies of course to a stronger extent to continuous time games, as stressed

by Friedman and Oprea (forth.), and may be consistent with a small end

game e�ect at the end of the �nite horizon. The timing of the end-game

e�ect depends on how far the horizon is, and the reaction time. More

speci�cally, this model predicts that the switch to permanent defection
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takes place later, for games with a longer duration and for shorter reaction

times.

This last approach also includes the 'gang of four' paper for discrete-

time games under a deterministic horizon (Kreps, Milgrom, Roberts, and

Wilson, 1982), which can be brought to the limit and extended to contin-

uous time games, without changing the predictions.9

None of these theories, however, o�er testable predictions on di�erences

in initial, average or median cooperation rates between deterministic and

stochastic horizons in continuous time games with the same expected dura-

tion. For this reason it is useful to look also at predictions about patterns

of behavior within a period. Kreps, Milgrom, Roberts, and Wilson (1982)

and Radner (1986) predict an initial high cooperation and a sudden fall in

cooperation as the end of the game approaches, while Simon and Stinch-

combe (1989) does not predict an end-of-period e�ect. Moreover, Kreps,

Milgrom, Roberts, and Wilson (1982) predict that the duration of the end

game e�ects should be independent of the length of a game and depend

on the players' beliefs about the opponent's type, which may change with

experience. By contrast, the model by Radner (1986) and its extension by

Friedman and Oprea (forth.) predicts that the faster the reaction time, the

later appears an end-game e�ect. On the other hand, they o�er no predic-

tion about the impact of experience or length of a game on the end-game

e�ect. Table 1 summarizes the theoretical predictions of the above models.

In brief, the experiment aims at studying three issues for continuous-

time games: i) which of the above approaches better predict the di�erences

in overall cooperation levels between a deterministic vs. a stochastic time

horizon. ii) which of the above approaches better predict the patterns of

behavior within a period. iii) which, if any, patterns observed in the data

are inconsistent with all of the above approaches.

4 Experimental Design

The experiment has a two-by-two factorial design. The two treatment

variables are the expected duration of each period and the termination

9See Mailath and Samuelson (2006) for an excellent survey of models of incomplete
information and reputation formation in repeated games.
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Bergin &

McLeod

(1993)

Radner

(1986)

Friedman

& Oprea

(forth.)

Simon &

Stinch-

combe

(1989)

Kreps et

al. (1982)

Discrete-

time

games

Stochastic horizon
Full initial cooperation

is an equilibrium

Yes Yes Yes Yes Yes

Deterministic hori-
zon
Full initial cooperation

is an equilibrium

Yes Yes Yes Yes No

End-game e�ect with
det. horizon
Predicted No Yes No Yes �

Pattern emerging

with learning

� Decreasing � Unclear,

or no

e�ects

Increasing

Table 1: Main theoretical predictions of di�erent models.

rule. Table 2 summarizes the characteristics of each treatment.

In all treatments, subjects played a series of (quasi) continuous time

prisoners' dilemmas.10 Each session comprised a non-overlapping group of

24 subjects, who interacted in pairs for 23 periods. Pairs were formed so

that each subject met all the others once and only once in a session (perfect

strangers).11

In all treatments, the stage game was as follows. Each subject had

to select an initial action for the period between Cooperate (green) and

Defect (orange). When all subjects were done, the period began. Within

a period, subjects could switch action up to six or seven times per second.

More precisely there was a tick every 16/100th of a second, which gave the

participants the feeling of continuous time. The PCs had touch screens,

10As the instructions explained, the experiment was in quasi continuous time:"Within
a period, both you and the other will be able to change action as many time as you
wish. The time �ows in very rapid ticks (of 16th hundredth of a second); in practice
there are between six and seven ticks every second, so that if you wish you can change
action six or seven times per second." For shortness, from now on we will talk about
continuous time experiment.

11In the Short-Deterministic session run on February 2, 2011, due to a technical
problem in period 23 subjects met again their opponents of period 1. All reported
results hold even if period 23 in that session is dropped.
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Termination rule

Deterministic Stochastic

Short
(20 secs.)

N=48

Period endowment: 15 pts.

Conversion rate: 50 pts.=1 e
- January 24, 2011

- February 4, 2011

N=48

Period endowment: 15 pts.

Conversion rate: 50 pts.=1 e
Average realized duration: 22.6�

- February 2, 2011

- February 4, 2011

Long
(60 secs.)

N=48

Period endowment: 50 pts.

Conversion rate: 150 pts.=1 e
- October 21, 2010

- October 28, 2010

N=48

Period endowment: 50 pts.

Conversion rate: 150 pts.=1 e
Average realized duration: 68.3�

- October 22, 2010

- October 28, 2010

Table 2: Treatments and sessions

hence a switch of action could not be heard by others as subjects simply

touched the screen with a �nger.

Earnings for all possible combinations of actions were visible on the

screen at all time (Figure 1). The payo� matrix showed earnings in tokens

per second. The subject's current action was always highlighted in yellow

in the payo� matrix. Moreover, every subject could observe her cumulative

earnings on a continuously updated graph (Figure 1). Subjects' earnings

in every period included an initial endowment (see Table 2), and could stay

constant, increase, or decrease over time depending on the choices of the

pair. The graph showed these patterns of earnings as a �at, increasing, or

decreasing line, respectively. A steeper line indicated a faster accumulation

or depletion. The line color was green or orange depending on the subject's

own action. Hence, from the graph subjects could unambiguously infer the

action taken in any moment by their opponent. The progression of the

earnings line marked the timing of the period for the subjects. They could

observe at every instant the speed of the game, which ran at the same pace

for all subjects in the session. For the Deterministic treatments subjects

could always check the time remaining before the end of a period, by looking

at the graph on the screen.

In the Long-Deterministic treatment, a period always lasted 60 sec-

onds. In the Long-Stochastic treatment, a period lasted in expectation 60

seconds. Similarly for the short treatments, where the expected duration
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was 20 seconds. In the stochastic treatments, the exact duration was se-

lected at random period by period. As explained in the instructions for

the Long(Short)-Stochastic treatment, the period duration depended on a

random draw. �Imagine a box with 10,000 (1000) balls, of which 9,973

(992) are black and 27 (8) are white. It is as if a ball is drawn after every

tick. If the ball is white, the period ends. If the ball is black, the period

continues and the ball is put back into the box. At the next tick, another

ball is drawn at random. You have to imagine very fast draws, i.e. one

every tick of 16 hundredth of a second. As a consequence of this procedure,

we have estimated that periods will last on average 60 (20) seconds. There

may be periods that are short and periods that are long.� In case a period

lasted beyond 60 seconds, the time-line in the graph automatically shifted

forward.

Stage game payo�s are such that cooperation should be easily achieved

(at least in the stochastic ending treatments). In continuous time cooper-

ation is always supportable because the instantaneous discount factor is 1:

then a grim trigger strategy should in theory always support cooperative

play as an equilibrium no matter the arrival rate of the end of the game.

But even if agents perceived the game to be played discretely, e.g. because

of minimal human reaction time, cooperation should be easily sustained

with our parameterization. For example, if subjects react with 1 second

delay and treat it as a time interval length of 1 second, then, given our

stage game payo�s (see Figure 1), cooperation can be sustained with in�-

nite horizon for discount factors higher than 1/2, which implies an expected

duration of 2 seconds. If the time interval length is 0.25 of a second, then

it would be enough to have an expected duration of 0.5 of a second, and so

on. Hence the 20 seconds is quite far from the theoretical bound.

Instructions were distributed and then read aloud. Subjects had the

opportunity to ask questions, which were answered in private, and then

went through three practice periods with a robot opponent that was pro-

grammed to switch action in the middle of the period. After the practice

period, subjects had to guess the actions taken by the robot, and then

completed an on-line quiz to verify their complete understanding of the

rules of the game. The experiment started as soon as all subjects answered

14



correctly to all the four control questions.12 The session ended with a

questionnaire.

Subjects were 192 students at the University of Bologna (primarily),

who were randomly assigned to one of the four sessions using an on-line re-

cruitment software (Greiner, 2004). The experiment was run in the Bologna

Laboratory for Experiments in Social Sciences using z-Tree (Fischbacher,

2007). Subjects seated at visually isolated computer terminals and could

not communicate. A session lasted on average 2 hours for the Long treat-

ments and 1 hour and 10 minutes for the Short ones. Subjects earned on

average 16.72 Euros, and 14.81 Euros, respectively, which include a show-

up fee of 3 Euros.

5 Results

The presentation of results is organized in three parts. We �rst provide a

comparison of the aggregate cooperation rates across the four treatments

(Result 1). We then report about patterns of cooperation within a pe-

riod (Results 2 and 3). Finally, we describe and comment the e�ects of

experience on cooperation rates (Result 4).

5.1 Aggregate cooperation rates across treatments

Our Long-Deterministic treatment replicates and extends the results re-

ported in Friedman and Oprea (forth.) for di�erent payo� levels. They

report only the median cooperation rate after period 12, which ranges from

81% to 93%. Our median cooperation rate is 84.0% over all periods, and

exhibits an increasing trend with experience. If we consider only periods

after the twelfth, the median rate of cooperation in our data is 91.2%. We

provide a robustness check on Friedman and Oprea's results by increasing

the number of subjects per session, which allows us to adopt an absolute

stranger matching protocol. This design feature reduces repeated game

e�ects within a session.

12In the three practice periods, 71% of the subjects always made correct guesses about
the sequence of actions taken by the robots. In answering the xx control questions about
the instructions, 50% of the subjects made at most one mistake.
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The novelty of this study stems from the comparison across all our four

treatments.

Result 1 When period duration is deterministic, cooperation rates are sim-

ilar or higher than in the case of stochastic duration.

Support for Result 1 comes from Tables 3 and 4. The unit of observation

is the cooperation rate which is de�ned as the fraction of time Rip a subject

i spends cooperating within period p. Given that these observations are not

independent, Table 4 compares results across treatments through a panel

regression with random e�ects at the subject level and standard errors

robust for clustering at the session level.13

Termination rule
Duration Deterministic Stochastic

Long 65.5 ∼ 66.9

(84.0) (84.8)

∨∗∗∗ ∨∗∗∗
Short 63.3 >∗∗∗ 52.3

(79.2) (47.0)

Notes: Median cooperation rates are reported in parentheses. The unit of observation

is a subject per period. The mean cooperation rate of a session is the average across all

23 periods and all 24 subjects. There are two sessions per treatment, thus N=1104.

Table 3: Cooperation rates

Result 1 holds both for short and for long duration treatments. In

the long duration treatments, cooperation rates are statistically indistin-

guishable between stochastic and deterministic duration (p-value > 0.1,

see Table 4). The absolute di�erence between the two treatments is just

1.4 points in terms of means, and 0.8 points in terms median. By con-

trast, in the short duration treatments cooperation rates are signi�cantly

higher with deterministic duration than with stochastic duration (p-value

< 0.001, see Table 4). The absolute di�erence in cooperation between the

13We obtain qualitatively and quantitatively similar results with linear regressions
and standard errors robust for clustering at the subject and pair level. We perform the
same robustness check for all regressions in the main text and in the Appendix. Results
in Tables 4, A.1, and A.2 are also robust to collapsing all the data by subjects and then
running the test clustering by session.
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two treatments is 11.0 points in terms of means, and 32.2 points in terms

median.

In addition we report that shortening expected period duration from

60 to 20 seconds can have a dramatic impact on cooperation rates. In the

stochastic treatments cooperation rate drops by 14.6 points in terms of

mean, and by 37.8 in terms of median, and the di�erence is highly signif-

icant (p-value < 0.001, Table 4). To our surprise, the di�erence between

the long and the short deterministic treatments is much smaller, though

signi�cant (p-value < 0.01, Table 4). The cooperation rate drops by 2.2

points in terms of mean, and by 4.8 in terms of median.14

Dependent variable: cooperation rate
Coe�cient (s.e.)

Short-Deterministic -6.082*** (2.000)

Long-Stochastic 1.998 (1.449)

Short-Stochastic -17.755*** (2.872)

Constant 62.600*** (11.371)

Controls for individual characteristics Yes

N 4416

R-squared overall 0.047

R-squared between 0.223

R-squared within 0.000

Notes: Panel regression with random e�ects at the subjects' level and standard errors

robust for clustering at the session level. The unit of obs. is the fraction of time a

subject spends cooperating within a period. Default treatment: Long-Deterministic.

The di�erence between coe�cients for the Short-Stochastic and Short-Deterministic

treatment is signi�cant at any standard signi�cance level (p-value < 0.001).

Table 4: Panel regression on cooperation rates

These results complement the �ndings reported in Dal Bó (2005) for

games in discrete time. He reports that cooperation is higher with stochas-

tic than with deterministic duration.15

14Regression results in Table 4 show that the estimated di�erence between the Short-
Deterministic and the Long-Deterministic treatments is actually slightly larger if we
control for individual characteristics.

15In a repeated game with a much shorter expected duration (the expected number
of action choices is 125 in our short treatments, 375 in our long treatments, while it
ranges between 2 and 4 in his treatments), Dal Bó �nds that, �for every round, [. . . ] the
percentage of cooperation in in�nitely repeated games [. . . ] is greater than in �nitely
repeated games of the same expected length [. . . ], with p-values of less than 0.01.�. More
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5.2 Patterns of cooperation within a period

To deepen the analysis of the di�erence across treatments, we now turn

to the patterns of cooperation within a period. In continuous time, there

can be rich dynamics within each period, as the same cooperation rate Rip

can result from many di�erent sequences of actions. It turns out that the

pattern of cooperation within periods presents some strong regularities, as

reported in Results 2 and 3.

Result 2 With deterministic duration, cooperation does not unravel due

to end-of period e�ects. End-of-periods e�ects exist but they arise later and

later as subjects gain experience.

Result 2 suggests that subjects do not apply backward induction, and learn

to postpone more and more the end-game-e�ect.

Support for Result 2 comes from Figure 2 and Table 5. A subject can

change action every 0.16 seconds. Figure 2 presents the time pro�le of the

mean share of cooperators, taken across periods and sessions. Our unit of

observation is the share of cooperators Stp at a given time interval t of 0.16

seconds, within a period p.

As seen in this �gure, subjects facing periods with deterministic dura-

tion exhibit a clear end-of-period e�ect: the share of cooperators suddenly

drops a few seconds before the end of the period.

There are of course many ways to quantitatively measure the timing

of such switch from cooperation to defection. We describe below one way

to measure it that takes as reference all pairs that at some point during

a period reached simultaneous cooperation, CC. Out of those pairs, we

consider in the calculation only those that switched to defection before

the end of the period, i.e. CD, DC, or DD, which were the lion's share

of the observations.16 On average, the end-of-period e�ects kicked in 3.4

seconds before the end of the period. Table 5 reports in more details the

speci�cally, when the expected duration is 2 (4) periods, the average cooperation rate
is 28.3% (35.2%) with stochastic ending and 12.5% (24.8%) with deterministic ending.

16468 subjects-period out of a total of 552 in the Long treatment and 460/552 in the
Short treatment cooperated simultaneously at least once in a period. Of these, some
(54/468 and 51/460, respectively) kept on cooperating until the end of the period, while
in others (414/468 and 409/468, respectively) at least one of the subjects in the pair
switched to permanent defection.
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Figure 2: Time pro�le of the share of cooperators

Notes: The graph includes the �rst 60 seconds for Long treatments and the �rst 20

seconds for Short treatments. The unit of observation is the share of cooperators at

a give time interval of 0.16 seconds within a period. All periods and all subjects are

included.

19



Periods
Treatment 1-8 9-16 17-23 Overall

Long-Deterministic 5.8 4.1 3.4 4.4

N=119 N=134 N=134 N=387

Short-Deterministic 3.0 2.4 2.0 2.4

N=107 N=152 N=150 N=409

Notes: the table reports the number of seconds before the end of the period when a

pair in CC permanently switches to defection, i.e. either CD, DC, or DD. In the Long-

Deterministic treatment we drop observations in which the end game e�ect kicks in more

than 20 seconds before the end of the period (27 out of 414 of the observations). This

was done to preserve comparability with the Short-Deterministic treatment.

Table 5: Timing of the end-of-period e�ect

mean number of seconds from the end of the period, when this switch to

permanent defection took place.

Table 5 shows that, with experience, the end-of-period e�ect kicks in

later in time (1 to 2.4 seconds later). This e�ect of experience is signi�-

cant both in the Long-Deterministic (p-value < 0.001) and in the Short-

Deterministic treatment (p-value < 0.05).17 In addition, in the Short-

Deterministic treatment the end-of-period e�ect kicks in signi�cantly later

than in the Long-Deterministic treatment (Table 5, p-value < 0.05).18

Friedman and Oprea (forth.) also report an end-of-period e�ect. They

�nd that �cooperation level falls below 75 percent only when 5 seconds

remain and below 50 percent only when 1 second remains.�

Result 3 The share of cooperators displays a di�erent time pro�le in the

stochastic vs. the deterministic treatment. With stochastic duration, the

initial share of cooperators is lower, while the �nal share is higher than

17P-values obtained from a linear regression with standard errors robust for clustering
at the session level. The dependent variable is the timing of the end game e�ect (in
seconds), and among the independent variables we include a dummy taking value 1 for
the treatment with short duration, the variable �Period� and their interaction. The
regression is not reported here. Regression's results are available from the authors upon
request.

18P-value obtained from a panel regression with random e�ects at the subjects' level
and standard errors robust for clustering at the session level. The dependent variable
is the timing of the end game e�ect (in seconds), and the only independent variable is
a dummy taking value 1 for the treatment with short duration. The regression is not
reported here. Regression's results are available from the authors upon request.
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with deterministic duration (i.e. lines cross).

Support for Result 3 comes from Figure 2 and Table 6. Figure 2 traces

the time pro�le of the share of cooperators second by second and is self-

explanatory. Table 6 summarizes frequencies of actions at the initial and

�nal instant of a period and displays the stark contrast between the stochas-

tic and deterministic treatments that is highlighted in Result 3. With

stochastic ending, in the relative majority of pairs the two subjects coop-

erated both in the initial and in the �nal instant of a period (cells in bold

in Table 6 (a) and (d)). On the contrary, with deterministic ending, in the

relative majority of pairs both subjects cooperated in the initial instant

and defected in the �nal instant of a period (�gures in bold in Table 6 (b)

and (c)).

In general, more subjects chose cooperation as their initial action in

the Long-Deterministic than in the Long-Stochastic treatment (82.5% vs.

75.1%, Table 6 (a) and (b)). On the contrary, less subjects chose coop-

eration as their �nal action in the Long-Deterministic than in the Long-

Stochastic treatment (18.1% vs. 64.9%, Table 6 (a) and (b)).

A logit regression on �nal cooperation shows that this di�erence is sig-

ni�cant at the 1% level (Table A.2 in the Appendix). A similar pattern

characterizes results from the short treatments. Initial cooperation is 82.6%

vs. 65.9%, and �nal cooperation is 15.8% vs. 46.8%, respectively (Table

6, (c) and (d)). Logit regressions on initial and on �nal cooperation show

that both di�erences are signi�cant at the 1% level (Tables A2 and A3 in

the Appendix).19

Result 3 suggests that di�erent termination rules induce the adoption of

di�erent individual strategies. This interpretation is supported by the data

presented in Table 7, which reports the fraction of subjects whose behavior

follows one out of �ve simple patterns: (i) always defect, (ii) always coop-

erate, (iii) start defecting then switch to permanent cooperation, (iv) start

cooperating and switch to permanent defection when the opponent coop-

erates (leader), (v) start cooperating then switch to permanent defection

when the opponent is defecting (follower). These patterns describe between

19Support for Result 3 becomes stronger as subjects gain experience. Figure 4 and
Figure A.1 in Appendix illustrate initial and �nal cooperation rates across periods.
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Long-Deterministic (a) Long-Stochastic (b)

opponent's initial-�nal actions opponent's initial-�nal actions

actions D-D D-C C-D C-C Total actions D-D D-C C-D C-C Total

D-D 4.3 0.1 10.8 0.5 15.7 D-D 4.3 0.6 8 1.4 14.4

D-C 0.2 1.2 0.4 1.8 D-C 1.4 0.8 7.6 10.5

C-D 47.6 6.6 66.2 C-D 10.1 1.7 20.7

C-C 8.9 16.3 C-C 43.7 54.4

Total 100 Total 100

Short-Deterministic (c) Short-Stochastic (d)

opponent's initial-�nal actions opponent's initial-�nal actions

actions D-D D-C C-D C-C Total actions D-D D-C C-D C-C Total

D-D 3.8 0.4 10.2 0.6 15 D-D 9.8 1.1 13 1.4 25.3

D-C 0.5 0.7 0.7 2.4 D-C 3.1 1.2 3.4 8.8

C-D 53.4 4.8 69.2 C-D 11.4 2.4 27.9

C-C 7.2 13.4 C-C 30.8 38

Total 100 Total 100

Notes: The �rst letter denotes the initial action, the second letter the action taken

when the period ends. For instance D-C denotes subjects who chose defect as their

initial action and chose cooperate when the period ended. The fraction of subjects who

initially cooperated are the sum of the �gures in the �total� row for columns C-D and

C-C. The matrices are symmetric and for easier reading the lower triangle has been left

blank. The largest �gure in each matrix is in bold.

Table 6: Initial and �nal actions
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Treatment
Long Long Short Short

Det. Stoch. Det. Stoch.

(i) always D 5.2 4.4 2.8 13.9

(ii) always C 13.0 33.6 8.8 32.7

(iii) start D then C 1.1 2.4 0.5 4.3

(iv) start C then D (leader) 13.6 2.7 18.8 8.2

(v) start C then D (follower) 21.2 4.0 24.4 9.3

(vi) multiple switches 46.0 52.9 44.8 31.5

Total 100.0 100.0 100.0 100.0

Notes: percentage points. The unit of observation is a subject per period, N=1104.

Table 7: Individual patterns of choices.

47.1% and 68.5% of subjects, depending on the treatment. Subjects fol-

lowing (i) and (ii) never switch actions, while subjects following (iii), (iv),

and (v) switch action exactly one time. Table 7 also reports the residual

category (vi) where a subject engaged in multiple switches between C and

D, or vice versa.

Table 7 shows that subjects use qualitatively di�erent strategies in the

stochastic versus deterministic duration treatments. This evidence con�rms

the intuition gained from Table 5 when one traces a subject's choices in

every instant within a period and can hence detect switches and volatility

in behavior. With stochastic duration about three times as many sub-

jects follows �always cooperate� than with deterministic duration (33.1%

vs. 10.9%, column (ii) averaged across treatments). With stochastic du-

ration, about one third as many subjects follow �start cooperating then

switch to permanent defection" than with deterministic duration (12.1%

vs. 39.0%, columns (iv) and (v)). Two comments are in order. On the

one hand, this evidence can explain why the lines cross especially in the

long treatment: a larger fraction of subjects starts cooperating in the de-

terministic treatment and then switch to defection. On the other hand,

with periods of short duration, a high fraction of subjects always defected

in the stochastic treatment. This evidence can explain why the gap in co-

operation rates between the short treatments is larger than between the

long duration treatments.
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5.3 E�ects of experience on cooperation

In this subsection, we look at how the level of cooperation evolves across

periods, as subjects gain experience.

Result 4 Cooperation rates increase with experience in all treatments.

Figure 3: Cooperation and experience

Notes: Mean share of time spent in each of the three outcomes. One observation per

couple, per period.

Support for Result 4 comes from Figure 3. On top of each bar, we report

the average of the cooperation rate Rip of subject i in period p, across blocks

of four periods, and across subjects. In all treatments there is an upward

trend, although this trend is weaker with stochastic duration, especially in

the Short-Stochastic treatment. More detailed evidence comes from a panel

regression reported in the Appendix (Table A.3). Our result for the Long-

Deterministic treatment is consistent with Friedman and Oprea (forth.),
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who also �nd that cooperation rates rapidly increase in the �rst 16 periods

and settle afterwards.

In addition, Figure 3 also reports the average share of time in which

both subjects in a pair simultaneously cooperated (CC), simultaneously

defected (DD), or chose di�erent actions (CD). In all treatments, the share

CD decreases with experience (Figure 3).

Dal Bó and Fréchette (forthcoming) suggest that the level of initial co-

operation is an additional, important measure of cooperation in treatments

with stochastic duration. The reason being that that generally the cooper-

ation rate changes with period duration and periods usually have di�erent

durations. Our Result 3 is con�rmed when looking at the initial rate of

cooperation (Figure 4). The upward trend in the level of initial coopera-

tion is signi�cant in all treatments (Table A.4 in the Appendix). In the

Short-Stochastic treatment this upward trend emerges only in the second

half of the session (Table A.4), and the overall rate of initial cooperation

is signi�cantly lower than in the other treatments (p-value 0.01, see Table

A.1).

Figure 4: Rates of initial cooperation

Our results on the impact of experience on cooperation levels are con-

sistent with the �ndings of Dal Bó and Fréchette (forthcoming). When

playing repeated games, the amount of experience is a critical determinant
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of outcomes and it takes more than 10 repetitions to settle on a stable level

of cooperation.

6 Conclusions

Through an experiment in (quasi) continuous time, we have studied pris-

oner's dilemma games under deterministic and stochastic horizons. By

comparing the data with the theoretical predictions, one can draw several

conclusions.

With long periods (60-second expected), we report high levels of co-

operation that were similar under a deterministic vs. a stochastic time

horizon. This result is compatible with theoretical approaches that model

continuous-time games directly or as the limit of discrete-time games with

some perturbation.

Instead, with short periods (20-seconds expected) a deterministic hori-

zon led to strictly higher rates of cooperation than a stochastic horizon.

This �nding is novel and contrasts with existing experimental results about

social dilemmas in discrete time where either it is harder to sustain coop-

eration with a deterministic horizon than a stochastic horizon, or rates are

similar. We are not aware of any theoretical approaches to continuous-time

games that accounts for this �nding. Another result is that with stochas-

tic duration overall rates of cooperation were lower in short than in long

periods.

For additional insights one can look at patterns of behavior within a

period. The time horizon signi�cant impact on the strategies employed

and the dynamics of cooperation. With deterministic duration there was

a dramatic end-game-e�ect. Subjects employed cut-o� strategies such as

"Cooperate until time T and then defect forever." Theoretical models such

as those in Radner (1986) and Kreps, Milgrom, Roberts, and Wilson (1982)

are compatible with an end-of-period e�ect. This reversal from cooperation

to defection, however, took place later in time the more subjects gained

experience within a session. This suggests that subjects are learning to

cooperate more close to the end rather than less, as is instead typically

observed for discretely repeated games. Moreover, the reversal took place

later in short periods than in long ones. None of the theoretical approaches
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reviewed here can account for this impact of period length on the timing of

the end-game e�ect. If con�rmed by other experiments these �ndings will

be another interesting paradox for the theory to explain.

More generally, under a deterministic horizon cooperation rates within a

period were initially higher than under a stochastic horizon, and they were

lower toward the end (i.e. lines cross). In the experiment, a deterministic

horizon seemed to facilitate an initial coordination on cooperation.

From a theoretical viewpoint these results suggest that behavior in con-

tinuous time games is not simply the limit of standard discretely repeated

games. The canonical theory of repeated games in discrete time focuses

on how deviations create a tradeo� between current bene�ts and future

punishments. Our results are consistent with the continuous games the-

ories of Simon and Stinchcombe (1989) and Bergin and MacLeod (1993),

where they suggest that this tradeo� is of second order importance when

players can react quickly so that the time horizon is not a crucial deter-

minant of cooperation. They support even more strongly theories that

predict high cooperation rates followed by end horizon e�ects, like Kreps,

Milgrom, Roberts, and Wilson (1982), Radner (1986) and Friedman and

Oprea (forth.). The theoretical approaches that model the game directly

in continuous time do not �nd support in our data because they predict

no di�erences across treatments in the ability of subjects to coordinate on

cooperation and do not predict an end-of-game e�ect.

Taken together, these �ndings may have important implications for a

variety of �eld applications. People facing social dilemmas in which they

can react swiftly, as in many productive, labor, sporting, and military ac-

tivities can easily overcome the challenge of achieving mutual cooperation

irrespective of the deterministic or stochastic horizon of the interaction even

for short duration activities. In those situations a deterministic horizon is

not an impediment to cooperation and may even facilitate it. On collusion

practices, our results may explain why higher prices have been observed in

oligopolies when the date of the last interaction is made public. This sug-

gests that competition policies designed for discretely repeated interactions

may be counter-productive in continuous time.

To draw implications from the experimental results, however, one should

keep in mind that these activities must share some well-de�ned features:
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they should involve a continuous time e�ort by both participants as when

carrying together a heavy object or jointly rowing in a boat and partici-

pants must perfectly observe the action or e�ort taken by the opponent.

Further work is needed to understand the domain of application of these

results, for instance with respect to shorter period lengths or other details.

In particular, the introduction of imperfect monitoring of the opponent's

action may limit, or remove all-together, the possibility to sustain a coop-

erative outcome when actions are chosen frequently (as in the theoretical

results in Sannikov and Skrzypacz (2007)).
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A Additional tables

Dependent variable: initial cooperation (0/1)
Marginal e�ect (s.e.)

Short-Deterministic -0.040 (0.044)

Long-Stochastic -0.025 (0.043)

Short-Stochastic -0.184*** (0.044)

Controls for individual characteristics Yes

N 4416

Log-likelihood -1889.180

Notes: Marginal e�ects from a logit regression with random e�ects at the subjects'

level and standard errors robust for clustering at the session level. The unit of obs.

is the decision of a subject to initiate a period by cooperating (1) or defecting (0).

The di�erence between coe�cients for the Short-Stochastic and Short-Deterministic

treatment is signi�cant at the 5% signi�cance level (p-value = 0.011).

Table A.1: Impact of the treatment on initial cooperation

Dependent variable: �nal cooperation (0/1)
Marginal e�ect (s.e.)

Short-Deterministic -0.061 (0.043)

Long-Stochastic 0.406*** (0.033)

Short-Stochastic 0.226*** (0.040)

Controls for individual characteristics Yes

N 4416

Log-likelihood -2324.573

Notes: Marginal e�ects form a logit regression with random e�ects at the subjects' level

and standard errors robust for clustering at the session level. The unit of obs. is the

decision of a subject of cooperating (1) or defecting (0) in the last instant of a period.

The di�erence between coe�cients for the Short-Stochastic and Short-Deterministic

treatment is signi�cant at any standard signi�cance level (p-value < 0.001).

Table A.2: Impact of the treatment on �nal cooperation
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Figure A.1: cooperation rates at the end of the period.
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B Instructions

[Instructions for the Long-Stochastic treatment, translated from Italian.

the parts that are di�erent in the Long-Deterministic treatment are re-

ported in italics.]

Welcome! This is a study about how people take economic decisions. This

study is funded by the University of Bologna and other institutions. If you

pay attention, the instructions will help you to make your decisions and

earn a reasonable amount of money. The earnings will be calculated in

points and then converted into euros.

For every 150 points you will receive 1 euro.

In addition, you will receive 3 euros for participation. Your earnings will

be paid in cash at the end of today's session.

We ask that you turn o� your phone now and do not communicate in any

way with the people present in the room until the end of the study. If you

have any questions, please raise your hand and we will assist you in private.

This study comprises 23 periods. In each period you will be paired with

another person selected at random from those present in the room.

In every period you will be able to repeatedly choose between a "GRE-

EN" action and an "ORANGE" action. Also the person matched

with you will be able to repeatedly choose between "green" and "orange"

actions. As a consequence, there are four possible combinations: GREEN-

green, ORANGE-orange, GREEN-orange, and ORANGE-green. For each

combination of actions there is a corresponding cell in Figure B.1 below.

In each cell you can see the gains or losses during the period according to

your action and the action of the other. Your action will determine the

table row, while the action of the person matched with you will determine

the table column.

The earnings described in Figure B.1 above represent earnings per second.
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Figure B.1: Earnings table

For instance, suppose you choose "GREEN" and holds that choice over

time: if the other chooses "green" and holds his choice in time, you earn

1 point per second and the other earns 1 point per second; if the other

chooses "orange" and holds it, you lose 2 points per second and the other

earns 2 points per second. And so on.

In each period, earnings depend on how much time you spend in each cell

of Figure B.1. The more time you spend in a cell, the more your average

earnings will approximate what is indicated in the cell. For instance, if

you spend half of the period in the GREEN-green cell where you earn 1

and half of periods in the ORANGE-orange cell where you earn 0, your

earnings will be 0.5 points per second. Are there any questions about how

to read the table?

Who is the other person matched with me?

It could be anyone in this room. Your identity and hers will be kept con�-

dential. Also payments will be made in private. There will be 23 periods.

At the beginning of each period pairs will be changed. People will be

recombined so that you will never meet the same person twice.

What should I do? In every period you choose an initial action and then

you can decide every instant whether to keep or change that action. The

person matched with you can do the same. During a period, both you and

the other will be able to change action as many times as you like. Time
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�ows through very fast ticks (16-hundredths of a second each), in practice

there are between six and seven ticks per second, so if you want you can

change the action six or seven times per second.

Figure B.2: Earnings table

Earnings

During the period you will receive information in real time on your earnings.

In the screen pictured in Figure B.2 above, your cumulated earnings will

appear in a graph as a line that will form at every tick of 16-hundredths

of a second. In each period you will have an initial endowment of 50

points as cumulated earnings. If during the period, your earnings

are zero, then the line will be �at. In case of losses, then the line

will be declining. In the case of positive earnings, then the line is

increasing. For instance, if you earn 1 point per second there will be an

increasing line that is parallel to the graph grid. If you earn 2 points per

second, the line will be increasing, but steeper. Looking at the earnings

graph will gives you information on the current action of the other person

matched with you. Are there any questions?

To understand how to read the screen, we will do a trial period, without

consequences on your earnings. For simplicity, the trial period will last 60

seconds and the other will be played by a robot. The robot will start with

an action and then, halfway through the period, will change action. Now
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please look at the screen and follow the exact guidelines you are given. To

start with, choose the 'initial action. Press the screen with your �nger on

the button that you will be told to choose ("GREEN" or "ORANGE").

Also the robot will choose its initial action ("green" or "orange"). Please

everyone choose "GREEN" now as the initial action. The selected

action will be highlighted in yellow on the table. The period will begin

when everybody has chosen their initial action and pressed "OK". From

this moment on, the time will begin to run. Then you will see that thee

graph line is green like your action. Now, please press your �nger on the

button "OK" to con�rm. Does anyone need help? After 10 seconds please

everyone press the button "ORANGE." You will see that your action has

changed because in the table the line highlighted in yellow will change and

that indicates your current action. Moreover the graph line will now be

orange in color. After 30 seconds please everyone press again the button

"GREEN." Now we ask you to guess what actions did the robot choose.

Are there any questions?

We will do two more trial periods, without consequences on your

earnings. For simplicity, the trial period will last 60 seconds and the other

will be played by a robot. The robot will start with an action and then,

halfway through the period, will change action. Now look at your screen.

Choose the initial action that you prefer. When everyone has completed,

you'll see the time running. You are free to change the action at any time.

At the end of the period, we will ask you to guess what actions did the

robot choose.

Now we will do the last trial period. Go ahead and choose the action you

want. Are there any questions?

For simplicity in the trial periods and the other was a robot and the du-

ration of 60 seconds. However, in the coming periods, the other will be a

person in this room while the duration of each period will be variable and

determined randomly. Each period will stop without notice and for every-

body at the same moment, and the period duration could vary from less than

a second to several minutes.
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How is a period duration established?

The period may stop at every tick of 16 hundredths of a second. This event

depends on the result of a random draw. Imagine a box with 10,000 balls,

of which 9,973 black and 27 white. It is as if, after every tick, a ball was

drawn. If the ball drawn is white, the period ends. If the ball is black, the

period continues and the ball is placed back into the box. At the next tick, a

new ball is drawn at random. You have to imagine very rapid draws, that is

one every tick of 16 hundredths of a second. We calculated that as a result

of this, the periods will have an average duration of 60 seconds. There may

be some short periods and some long periods. Are there any questions about

this?

[DETERMINISTIC: The length of each period will be 60 seconds.]

Very well, then we can start.
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