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ABSTRACT 
 
Spectral-domain approach (SDA) is applied to modeling propagation characteristics of multiconductor structure on 
superconducting strip lines with signal strips and ground planes of finite thickness in lossy layered media. Equivalent 
surface impedance is used to transform the superconducting strip of finite thickness into an infinitely thin strip. A novel 
procedure of a calculation of the equivalent surface impedance is proposed. Two sets of basis functions (Chebyshev and 
Legendre polynomials) are compared by their ability to accurate modeling of microwave losses in the structure. The 
model applicability is illustrated by numerical results compared with experimental and simulated data. 
 
THEORETICAL ANALYSIS 
 
A CAD tool for design of filters based on sections of multicoupled planar transmission lines Vendik  et al. (1) is 
developed and improved. An efficient full-wave method is derived to calculate complex propagation parameters of the 
boxed multi-conductor planar lines embedded in a layered isotropic media as shown in Fig. 1. The method can be 
applied to the analysis of superconducting and normal metal lines. 
 
The dielectric layers are characterized by the thickness hi

Up ,hj
Low and the complex dielectric permittivity 
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For a superconducting layer the dielectric constant is determined as  
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where σsc  is the complex conductivity of a superconductor, Vendik (2). 
 
The goal of the analysis is to define a vector of the complex propagation constants ( ) ( ) ( )ωαωβω jk z −=  in the wave 
propagation direction z and the characteristic impedance for each mode propagating in the structure. 
 
With the commonly used spectral domain notation, the linear relationships between fields and currents on the 
conductor interface can be written as 
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where eq
sZ  is the equivalent surface impedance, ijZ~  is the component of Green’s dyad, jiJ ,

~
 is the component of the 

surface current density, αn is the Fourier variable. We use the analytical procedure for evaluation of the spectral Green’s 
dyad based on so-called immitance approach Itoh (3). An extension to the lossy case is made by use of complex 

permittivity ( )jiε  for i-th (j-th) dielectric layer and the complex propagation constant zk . Contribution of the 
superconducting strip conductivity to the loss factor can be accurately estimated with a modified set of boundary 
conditions applied to an infinitely thin strip. The equivalent surface impedance is used to transform a superconducting 
strip of finite thickness into an infinitely thin strip (Fig. 2). The real superconducting strip is characterized by the 
tangential electric and magnetic field components on the upper and lower interfaces related by impedance matrix of a 
thin conducting layer Van den Berghe et al.(4): 
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where Zsc is the surface impedance and βsc is the complex propagation constant of the superconductor. 
We  define the electric field in the plane 0≤y≤t of the original strip as 
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and use the following approximate ratio of the magnetic fields on the upper and lower interfaces for lossless dielectric 
media 
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Keeping the equality between the power stored and dissipated within the volume of a real superconducting strip and the 
equivalent infinitely thin one, the following equation for the eqivalent surface impedance of infinitely thin strip was 
obtained 
 

( )( )
( )

( )
( )( )
( ) dyk

t
tyk

t
yZ

h

sc

scsc

sc

scsc

UpLowsc

eq
s

2

0
211

2
sinh

sinh1
sinh

sinh
1

1
∫

−−
+

=
β

σβ
β

σβ
εεσ

,  (8) 

 
where  
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In performing solution for planar transmission lines by SDA, we consider two different sets of basis functions ϕ1 and 
ϕ2 to expand the unknown electric currents of the system (3). The set ϕ1 is the first type of Chebyshev polynomials Tp 
with Maxwell weighting function. The set ϕ2 is based on orthogonal Legendre polynomials Pp and is suitable for 
modeling finite edge current. In our codes, we use these sets to model both the axial current density and the derivative 
of the transversal one 
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The system of linear equations (3) has to be arranged to a homogeneous one. We formulate two different systems to be 
solved using the sets ϕ1 and ϕ2: 
 






























−
−

−

−
−

=







)('~
)(~

~~

~
~

)(~
)(~

2
nx

nz

n

eq
sxx

n

xz

n

zxeq
szz

nx

nz

J
J

ZZ
j

Z
j

Z
ZZ

V
E

α
α

αα

α
α
α     (11) 

 
for ϕ1 and 
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for ϕ2, with 
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The both systems can be presented in general form as 
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Solving (15) by Galerkin’s method leads to a homogeneous system of linear equations 
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with [X] being unknown expansion coefficients of the current density. The entries of [A(ω,kz)] are numerical series , 
whose general term in (16) is  
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where µ,ν stand for x- or z- components of spectral dyad, k, j=1..n are the strip numbers, p,q are the numbers of basis 
function. 
In order to reduce numerical efforts for solving the dispersion equation, the effective speed-up algorithm in the case of 
using the basis function set ϕ1 was implemented Gano et al. (5), while for the set ϕ2 the large argument approximation 
for Legendre polynomial basis functions was used. 

 
NUMERICAL RESULTS. 
 
The convergence behavior of Galerkin's method for both sets of basis function was studied. The propagation constants 
versus number of applied basis function are shown in Fig. 3 for superconducting (YBCO) microstrip line. Evidently, the 
Chebyshev polynomial-based set demonstrates quite poor convergence (typically, more than 15 basis functions have to 
be applied to provide 1% accuracy). It makes this basis set computationally inefficient. The basis set based on the 
Legendre polynomials shows better behavior (6-7 basis functions are enough to obtain the result close to converged 
value). All data presented below are computed using 7 basis functions of this set. 
 
A comparison between results of calculation of the HTS multistrip structure characteristics by the method developed 
with the experimental characteristics was done for the multistrip structure of two coupled S-shape YBCO resonators on 
LaAlO3 substrates (Fig. 4). Simulated and measured transmission coefficients at two different temperatures (T = 20 K 
and 77 K) Vendik et al. (6) are presented in Fig. 5. A good agreement gives a reliable confirmation of correctness of the 
method developed. 
 
CONCLUSIONS 
 
A computationally efficient full-wave method of analysis of HTS multistrip multilayered structure is proposed and 
discussed. The method allows taking into account real characteristics of the dielectric layers and conducting strips of a 
finite thickness. Numerous examples of simulation of different structures revealed a high efficiency and reliability of 
the method. As result, the complex propagation constants and related modal impedances of the multiconductor structure 
containing superconducting (normal metal) strip and lossy multilayer dielectric can be calculated. The method can be 
effectively used for a simulation and design of planar filter structures including tunable devices using ferroelectric layer. 
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Fig. 1. Transverse section of multistrip structure in a 
layered media 

             a)                                         b) 
Fig. 2. Equivalence between tangential boundary 
conditions for a strip of thickness t (a) and infinitely 
thin equivalent (b). 
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Fig. 3. Propagation constant β and attenuation coefficient α 
versus  number of  basis functions for an YBCO (The London 
penetration depth λL = 0.33 µm, the normal conductivity σn = 
3.0⋅106 (Ohm⋅m)-1) microstrip line on LaAlO3 substrate (f = 
10 GHz). The line with w = 180 µm and t =0.4 µm was placed 
on the substrate with h1

Low = 0.508 mm, ε = 23.5 and 
tanδ =  6.0⋅108. 

Fig. 4. The layout of two S-shape YBCO resonators 
on LaAlO3 substrate. The copper (σ = 7⋅107 
(Ohm⋅m)-1) box dimensions are L = 25 mm and  

1
Uph = 7mm. 

          a)         b) 
Fig. 5. The simulated and measured Vendik et al. (6) transmission characteristics of two coupled S-shape resonators 
(Fig. 4). The dielectric substrate of 0.515 mm thickness was used with parameters ε = 23.3,  tanδ =  2.0⋅10-6, the YBCO 
film of 0.45 µm thickness was used with characteristics  λL = 0.144 µm, σn = 5.25⋅106 (Ohm⋅m)-1 (a) and  λL = 0.282 
µm, σn = 12.4⋅106 (Ohm⋅m)-1(b). 
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