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Development of a Semi-definite Programming
WeightedSum Based Approach for Solving
Stochastic Multi-objective Economic Dispatch
Problems Incorporating CHP Units

Kolapo Alli, Member, IAENGA.M Jubril, and L.O Kehinde

Abstract—This paper has presented a weighted sum based energy which can produce sufficient different heat and power
semidefinite programming (SDP) optimization technique for generation. Moreso, the heat generated by CHP units can be
solving stochastic multi-objective economic dispatch (MOED) ;seq for heating or industrial purposes. It is more important
model that incorporates Combined Heat and Power (CHP) : .
units. The stochastic multi-objective model was transformed to know that the_load demand is unstable in nature [2]. Ther?'
into its deterministic equivalent through their expectation, with ~ fore, problems in CHP are usually formulated as stochastic
the assumption that involved random variables are normally model and based on this, different power dispatch plans can
distributed. The multi-objective problem was recast in matrix pe modeled. The main objectives in CHP units dispatch are

form as a SDP relaxation problem and subsequently solved with 1, angyre sufficient production of power and heat, and fuel
a MATLAB programming suite. The system inequality and costs minimization !

equality constraints uncertainty were entered into YALMIP, )
which is a linear matrix inequality parser. Simulations were Some of the works that are relevant to this study are

performed on modified IEEE 6 and 20 units’ networks with hereby presented. Particle Swarm Optimization method for
2 CHP units. The efficiency of the proposed method is deter- solving Stochastic Multi-Objective Dispatch Problems has
mined by investigating reformulated problems in stochastic and |jaap reported iri2], (3], 4], [5], 6], 7], 8], [9], [10],[11].

deterministic models on power dispatch. The standard weighted A bi-obiecti ic di tch del i i ind
sum method is utilized in generating the Pareto-optimal solution I-objective economic dispatch model Incorporating win

between two objectives’ functions. An optimal selection of POwer units has been formulated in [12], whereby opera-
control weight selection k; parameter that provides a better tional cost and security effects are considered as conflicting
convergence property and moderately good extent of the Pareto gbjectives. Some evolutionary optimization methods based
distributions was empirically determined. The proposed SDP giochastic searching techniques have been presented in
method performed well in accuracy of results and providing . -
lower operational cost in the Pareto set produced. [13}’[14}’[15}’[161’[17}7[18] to achieve optimal power flow
problems resolutions. Problems such as smooth, non-smooth
and piecewise fuel cost objectives were considered in the
presented works.
Quasi-oppositional teaching learning based optimization
I. INTRODUCTION (QOTLBO) has been proposed by [19] to solve non-linear

HE reduction of operational cost of power productiorqwultl—objectlve economic emission dispatch (EED) formu-

in electrical power svstem analvsis can be simol rI@ted problem of electric power generation with valve point
P y Y Py efoading. Also, recent studies on optimal power flow prob-

ferred to as economic dispatch (ED).[l]'. Th_us, the_ prObl.ergms have been solved by the hybridization of stochastic
in economic dispatch becomes multi-objective optimization

when two or more objectives’ functions are considered search!ng—based optimization techniques prc_)posed by [20],
%1]. Similarly, a study on PID controller design for an au-

Index Terms—SDP, stochastic Multi-objectives problem,
Pareto Distribution.

the optimization model such as the total running fuel co . . . .
and the total emission are to be minimized simultaneou matic generation coptrol of myltl-arga power units network
Sths been addressed in [22] using Firefly algorithm. A three

by adjusting the output power of every single generat?ervel decomposition technique has been presented in [23]

while meeting the load demand and satisfying the systengosr solving problems on ac-unit commitment and a robust

constraints. . . . .
) . . commitment schedule to resist the stochastic wind power
However, in recent years, cogeneration unit popularly knowh

as combined heat and power (CHP) unit has become generation. More so, a mixed integer linear programming

essential energy production technology in many countrigéIS been proposed for solving multi-carrier power systems

. e : . roblems presented in [24].
due to its advanced efficiency in the production of tot n optimization approach based on generalized bender de-

Manuscript received May 11, 2016; revised July 18, 2017. composition has been presented in [25] for solving volt-
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CHP problem (both deterministic and stochastic) are alte the cost coefficients of thgh chp unit andw;, o, 0y are
heuristic in nature [27]. These evolutionary methods arthe cost coefficients of thkth heat-only unit.

population based algorithms and can generate a numbéhere the termsVar(P) = V2(P)P’, Var(T;) =

of solutions over several runs. However, because they aré(Tk)Tk2, Cov(©;,H;) = CQ(G)j,Hj)éfﬁj, and
stochastic in nature, the attainment of the Pareto solutiovr(g,(j() are the variance coefficients and correlation coeffi-
are not guaranteed to converge to the ideal optimal solktients of all the random variables respectively. The coefficient
tion set: they involve multiple runs and different solutionsf variance of all the involved random variables is chosen as
obtained in each run which result to keeping the statistical2, and the correlation coefficient of each pair of random
data by obtaining the best and worst optimal solutiongariables is set as 0.3 [7].

Another problem about these evolutionary methods is their

less capacity of dealing with problem constraints, which pro- N, N,

duces non-feasible solutions. Examples of these algorithms _ 4 B (P2 2/ B2 ,

are genetic algorithms (GAs), particle swarm 0ptimization§1 B ;{az +BF (PO A+ VAR) BT + Z;{aﬁ_
technique (PSO), they consumed much time in evaluating a  _ .y ) .y _ =

large number of functions. On the other hand, semi-definite i€ +7i(©;" +V7(0;)0;") + 0; H; + 6;(H;"+
programming (SDP)-based weighted sum approach proposed ) o o ) o Nn

in this paper is not a population based algorithm but convex V>(H;)H;") +&;(6;H; + C*(0;, Hj)O, H;} + Y |
optimization technique and have been shown to be useful k=1

in attaining the global optimal solution over several runs; {ox + 6x Tk + 0k (T2 + VA(Ti)Ti*)}

therefore, the global optimality of its solution is assured, if ()

the problem is convex. Likewise, for non-convex problem,_ 4 _ ) _, Ne _
semi-definite relaxation of the problem gives an estimated = Z{O‘i BB A (L VE(R)) BT} + Z{O‘J’ +66;
convex form that generates an approximation bound for the =1 J=t
problem [27]. The applications of SDP to optimal power +v;(1+ V3(©,))0,” + &, H; + 6;(1+ V2(H,))H,
flow (OPF) and economic dispatch (ED) problems can be Np

found in [27],[28],[29],[30],[31],[32],[33]. The paper is  +¢&;(1+C?*(©;,H;))0,H;} + Z{O‘k + 0k Tk + Ok (1+
structured as follows: Section | presents the introduction k=1

and literature reviews, Section Il describes the formulation y2(7, )7, *1

of stochastic multi-objective problems, constraints and their
SDP relaxation forms, Section Il discusses the description
of semi-definite programming approach. Section IV reportz
the simulations and results and Section V is the conclusion!

2

P Nc
=Y o + 8P + %1+ 0.0 P} + 3 {ay + 5;0,+
i=1

j=1
<2 7 7 2
Il. PROBLEM OBJECTIVES 75(1+0.04)8;" + 6;H; + 6;(1 + 0.04) H;" +
. Nn
A. Total cost function £(1+0.00)0;H;} + Z{ak + 6k + 0,(1 +O.04)Tk2}
The objective function for the Total co§f, ) is formulated k=1
as [7] The conversion of Eq. (II-A) to its equivalent deterministic
Np Ne Np, model becomes;
Ji=) CiP)+) Ci(05. Hy) + Y Cu(Te) (1) N, N.
=t 7=l k=1 J_l = Z{Oéz + 61P1 + ’Yi(1.04)pi2} + Z{Oéj + Bj@_j—F
where N,, are the numbers of conventional power units, i=1 j=1

NC_ are the numbers of electrical and therm_al power ot_Jtputs %(1.04)@}2 +6;H, + 9j(1.04)(gj2) +¢;(1.09)0,H;}
units and N, are the numbers of heat units, respectively. N,
The expected stochastic objective cost functigris further n Z{O"“ 4 8, + 0,(1.04)T2)

expressed as follows [7]: —

N, i i N. . . . e
J1 = Z{%‘ + BiP; + vi(P? + Var(P))} + Z{Ozj+ J1=trace(X"TX)+ A" X +Q+6; Hj+0; H; (4)

=1 j=1 where X represents the vector variables in matrix form i.e
B0, +7;(0,"° + Var(e,)) + 6; H; + ©,(H,;"+ X =[P, 0;,H;,Ti]",
Ni U = blkdiag(diag(y1,--- ,vi); diag(yr, - ,75)5 -
Var(H;)) +&(0;H; + Cov(©;, Hj)} + > {on+ diag(0y,--- ,0;);diag(0y,--- ,0k)] * 1.04,
k=1 A= [(617 e vﬂi); (ﬂlv T 7ﬁj); (617 T ?5j)}T
0kTi + Ok (TE + Var(Ty))} o T DTS DRI DA

wherebya;, G;, v; are the running cost coefficients of tlle o

thermal unit, 7, is the power output of thh unit, ©, and B- Expected emissions0,/NO, and CO»

H; are the electrical and thermal power output coefficients The total emissions in ton/h 0, and NO, are given
of the jth chp unit respectively. Alsog;, 3;, v;, 05, 85, §; as follows by a function of units power output with an
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exponential factor for the conventional units [7]:

Np p—1 P
_ Z 102(& 4 B,P; + ,YAP‘Q) + C‘e(Ai,PLv) ZVar )+ ZV(LT )+ 2 Z Z Cov(P,
gt (3 14 () 7 =1 m—it1
N, ®) Neoy Ny N.
Z 0,+1)0; + 3 (m + o) T Pn)+2) Z Cov(6;,0,,) +2) > Cov(R
i=1 =1 j=1 m=j+1 i=1 j=1
- oo ©i)
where P; is the power output generated by the conventional (10)

generators, power produced by the CHP units is denoted

as ©; and the coefficients of the emission for the thermal

units areay, G;, 7vi, G, A, the emissions coefficients for the 7 V2 P V2 @ 9

CHP units are given a8;, n; and the emissions coefficients Z * Z * ; mz;rl

for the heat-only units are given ag, p, respectively. The

expectation values of the random variables in Eq. (5) can be C2(P. P\P.P 2 S -
: : ) s i P, + 2 C*(0;,0,,)0,0,,

further expressed by taking the Taylor series expansion for ( * Z Z (

the exponential factor: N, N =t mEI
+2 Z > c3(p,e;)
Np i=1 j=1
T P 2 D _2 - - . -
J2 = Z 10%(ai + Bibi + (P + Var(B))) Eq. (10) can be transformed into its equivalent determin-
=1 A istic matrix form as,
D 1\ 2 _ _ _ _
+ G+ GNPy + =5 (BP + Var(R)+ ©) 7= 0.04x P2 4+0.04x 6,2 +2x 009 x BBy +2x
N, Nh, < T =T <
< - 0.09%x0;, 6, +2x0.09%x P, ©;
Z(@j +1;)0; +Z(7Tk + pr) Tk J (11)
i=1 k=1 Similarly, the expected heat generation deviation can be
Therefore, the sdp relaxation of (6) is as follows; expressed as an objective functignformulated as follows:
_ _ _T T5 N, Np,
JQ = trace(PiFiPi ) + A Pz + Ql) ¥ { < > }
Ji=E(hp =S H; =S T, (12)
o 2=

+ G+ GNP+

5 (P? +Var(P)) @
N, N, wherehp is the heat deviation.
+ ) {0 +1,)10; + > {(mk + pi) } Tk

j=1 k=1 D. Problem constraints
The total electric power generation comprises both the

I' = dia y e ¥:)](1.04); : .
9lin Wl ) total electric power demand and the real power losses, given

— T
é _ [Z(:ﬂf,\z:o 041-,’ Bl as follows [7]:
Also, the stochastic approximation 6f0O, emissions can _ _ Moo
be expressed as a linear equation of units’ power output as Pp + P, — ZPz' =0 (13)
follows [7]: i=1
N, N N, The inner matrix representation of Eq. (13) is as follows:
i=1 Jj=1 k=1 —14

where the expectation value of the power losses is denoted
as Pr. The power losse#’;, otherwise known ag, can be
expressed further by utilizing the Kron’s B-loss coefficients

C. Expected power deviation as [7]:

wherer;, k;, o), are the coefficients of’O, emissions.

The model for the expected deviation is obtained by
finding the difference between the scheduled electric power  _ N
=2
JJ

P, Bim Py + ZZPBZJG

generation and demand by taking the expectation of the
=1 j=1
(15)

square of unsatisfied demand, during the dispatch calculation,

and is stated in [7] as:
BJn@n

u M? ] Mz

Np c 2
J3 = E{ (pD +pL — Z P, - Z ®j> } 9) where the coefficients of the power loss for a line branch
i=1 j connecting unitsi and j is represented a®;;. The sdp

where the power demand is denotedpas the power loss relaxation of Eq. (15) can be written as,

is pr. Eq. (9) can be expressed further as [7]: Js = P! By Py + Pl Bi;0; + O] B;,0,, (16)

(Advance online publication: 20 November 2017)
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FABLEH

THERMAL UNITS COEFFICIENTS

. _ TABLE Il
Units o B v Pg/™  Pgr” CHP AND BOILER CAPACITY
G, 100 200 10 0.05 0.5
G, 120 150 10 005 06 Unt 7" ere  grm grer
Gs 40 180 10 0.05 1.00 CHP, 0].05 J1_0 Jo 6.6
[en 60 100 10 0.05 1.20 CHP, 0.05 0.6 0 0.6
TABLE Il HEAT, - - 0 2
CHP AND BOILER COEFFICIENTS TABLE IV

Units o 3 - 50 & DATA FOR THE TWENTY THERMAL UNITS OF GENERATING UNIT
J J Vi J J J CAPACITY AND COEFFICIENTS

CHP1 265 145 345 42 30 31

CHPQ 125 360 435 6 27 11 Un|t Pm'm,( max 2
M (pu) P (pu)  y(8/put) B/ pu)  o($)
HEAT, 110 41 23 - - - 1 1.50 6.00 6.80 1819 1000
2 0.50 2.00 7.10 1926 970
_ _ _ 3 0.50 2.00 65.00 1980 600
The stochastic expression for Eq. (15) can be found in [1] 4 0.50 2.00 50.00 1910 700
which is further expressed as: 5 0.50 1.60 73.80 1810 420
NN N 6 0.20 1.00 61.20 1926 360
_ LA _ r N 7 0.25 1.25 79.00 1714 490
Ji=Y_ PBimPn+Y_ > PiB;;0; 8 0.50 1.50 81.30 1892 660
i1 m=1 im1 =1 9 0.50 2.00 52.20 1827 765
N, N N, ~ 10 0.30 1.50 5730 1892 770
< N 11 1.00 3.00 48.00 1669 800
+2.D OiBinOn+ 3 BiVar(P)+ 3 Bjj 12 1.50 5.00 31.00 1676 970
j=ln=1 i=1 J=1 13 0.40 1.60 85.00 1736 900
Np-1 Np Ne—1 14 0.20 1.30 51.10 1870 700
Var(©;) +2 BimCov(B, Py,) +2 15 0.25 1.85 39.80 1870 450
! ; mgl " o ; 16 0.20 0.80 71.20 1426 370
N N N 17 0.30 0.85 89.00 1914 480
< LA 18 0.30 1.20 71.30 1892 680
Y BjCov(6;,0,)+ > Y B;;Cov(R,0;) 19 0.40 1.20 62.20 1847 700
n=j+1 i=1 j=1 20 0.30 1.00 77.30 1979 850
(17)
N Ny o N N o Ne N I1l. SEMI-DEFINITE PROGRAMMING
= P; B, Py, + P,B;;©.; + . . . . .
* oemem A Semi-definite programming is a solution method for con-
i=1 m=1 i=1j=1 j=1n=1

N N vex optimization problems which simplifies the linear pro-
Y N 2o B2 S 2ia G 2 gram (LP) by replacing the vector variables by matrix vari-
O BinOn + ZB”V (P)F+ ZB”V (6,); ables. Moreover, the component-wise non-negativity condi-
tion is replaced by positive semidefiniteness of the matrices.
Therefore, the general SDP optimization problem is stated
below as [35];

i=1 j=1

Np—1 Np

=1 m=i+1 j=1 n=j5+1
NP Nc
B;,C%(0;,0,)6,0, + Bi;C*(P;,0,)P,6, minimize (Ao, X)
! ’ ! ;; ! ! ’ subject to: (A;,X)=10b;, i=1,...,m (23)

Eq. (17) can be relaxed as follows, X=z0

- _7 - o o7 - where X ¢ S" is the decision variable) ¢ R™ and
J1=Pi" BimPn + Pi" BijO; +0;" BjnOy Ay, A; € S while S™ is refer to as a set of all symmetric
+0.04BLP? + O.O4BjTj®]2- + 2(0.09(Bi,,,15iTP;n)) matrices inR™*". The inner product between two matrices
T < _ T M, N € 8" is defined agM,N) = ¢ MN
- 2(0.09(B;n6: T 6,)) +0.09(B, P76, (1) M N €SS defined asM, N) = trace(MN)

.T.he expected va}lues a're'llmlt'ed within the ranges of tl)g_ SDP Relaxation
minimum and maximum limits given below,
T omin T e - Semidefinite programming (SDP) approach is a recent
P < P <I' P i=1...,N,  (19) approach that is becoming widely used for solving vari-
ous power system optimization problems. SDP involves the
IT@;_nin <0, < ]T@;ﬂaw j=1,...,N, (20) minimization of a linear problem subject to the constraints
that are affine combination of symmetric matrices is semi-
definite [36]. Semidefinite programming is considered as an
]THJW?" <H; < ]TH]?’LW j=1,...,N, (21) extension of linear programming whereby the elements of
the inequalities vectors are substituted by matrix inequali-
ties, otherwise, the first orthant is substituted by the cone
of positive semi-definiteness of the matrices [36]. Several
Tables I, I, Il are obtained from [7] while Table IV andnormal problems such as linear and quadratic programming
the B matrix of the transmission loss coefficient for 20 unitare combined using semi-definite programming and discovers
network are available in [34]. a lot of uses in the field of engineering and combinatorial

(Advance online publication: 20 November 2017)
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optimization [36]. More so, SDPs are gaining much recognid5] by getting the dual SDP:
tion comparedo linear programs, SDPs are not much harder

to solve. Most interior-point methods for linear programming ~Maximize ¢

have been_ simplified to semidefinite programs. As in linear subject to: [ngo bﬂ ] . |:?71 bl} n
programming, these methods have polynomial worst-case o ¢ 1 A (28)
complexity and perform very well in practice. R A% bL] >0,
Most importantly, semi-definite programs can be effectively b_L 1CL

1=

executed, both in theory and practice [37]. Semi-definite
programs have been successfully applied to non-convexTie constraint in the non-convex problem (24) can be relaxed
combinatorial optimization. For instance, given an optimizas follows:
tion problem in a quadratic form: T

F@ =11 ool [1]=°

3

minimize fo(z) (29)

subject to: f;(z) <0, i=1,...,1,

where fo(z) = 2T Aoz + 2boT x + co, fi(z) = 2T A N |z T MA bo A by
2bﬁxfoc(¢,) i:1,~0~~7+z e 1 " W)_[l] ([boT Co—sb}“l {b? 61]+

The matrices ofA; are indefinite, and thus, Eq. (24) is et s [AL bL} ) { x } >0 (30)
a difficult, non-convex optimization problem and involves L ) 1| =
polynomial objective problem and polynomial constraints.

With A07A1' € Rxm: bo,bi € R™, and Co,C; € R; fo(.f) — ¢+7'1f1(33) + .- +TLfL($) =0
1 = 1,---,1. Each of the quadratic functions is convex if
A; > 0. A lifting variable X = xz® is introduced to convert
the problem in Eq. (24) to its SDP relaxation form, by further Jo(x) = ¢ 20
reducing the constraint in equality form to an inequalitgimply, the derivation of the problem (28) is obtained by

(24)

constraint X> z2”. Eq. (24) becomes using Lagrangian duality.
minimize Tr(X Ay) 4200z + e | V. LAGR'ANC?IAN RELAXATIONS o
subject to: Tr(XA;) + 26Tz +¢; <0, i=1,...,1 Lagrangian relaxation is another lesser way of achieving
X 21 Y a more computable lower bound on an optimal value of the
LCT 1] >0, nonconvex quadratic optimization problem given as [38];
. ek . (25) minimize 2T Apx 4 bz + co
where X = XXe ZL% andx € R" are the variables. subject to: 2T Az +b.Tx +¢, <0, i=1,...,1,
The constraint| "7 | > 0 is similar to X > zxT. A (31)

relaxation of the original problem (24) is the semi—definit(::l—hiS method #tilizes th? dlélal . ab||orobl$_rr1]1 V;'hiCh is_alwfays
program in (25) which is expressed as convex to achieve a solvable problem. The lagrangian form

of the above Eq. (31) is given as

1 l
subject to: Tr(XA;) +2b;"x +¢; <0, i=1,...,1, = i
X =227, ! 32)
(26) +CU+Z>\iCi
The only difference between (26) and (25) is the re- i=1

placement of the non-convex constraift = zz” with To obtain the dual form of Eq. (31), given a function

i T
the convex reIaxannX_ > gzt. The rela>_(ed problem SN = bTAb, if A > 0 andb € R(A) -
(26) and the problem in Eqg. (25) are equivalent to each?ty -00, otherwise
other if ;‘; 310 is of rank one. Furthermore, every of theThen, the dual function is
guadratic representation in Eqg. (26) can be relaxed in their g(\) = igﬁL(W) (34)

SDP equivalent, in which the optimization problem can be
deduced to the standard SDP form in Eq. (23) as

1 - 1 -
= i(AOJrZ)\iAi) T+ (b0+z>\lbi)
minimize A, b [X = T l - (36)
bz; Col’ 2T 1 (Ao+z>\i14i>+z>\ici+co
i=1 i=1

subject to: T o7 <0, i=1,---,p _
b; ¢zt 1 The duafform of Eq. (31) using Schur complements becomes

LET :f >0, maximize v+ Zi:l AiAi +co
(27) subject to: { (ot Zz:'l‘:l )\iATl) (b0t Ei:l )\ibi)/z} >0,
It is essential to have a good computation on the lower (bo 320, ’\il;f)>/§ .7
bounds for the ideal value of (23) using Shor’s relaxation te (36)

(Advance online publication: 20 November 2017)
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where the variablex € R™. The dual of the nonconvex C. Theadaptation of weight selection in improving weighted
guadratically constrained quadratic programs (QCQP) in Esym method

(31) is a convex program, otherwise known a Semidefinite | ot's assume that the weights in Eq. (41) are parameterized
program which is easier to solve, and gives a lower bou%g, )\, such thatw; = A andwy, = 1 — )\, a consistent set
on the optimal value of the nonconvex QCQP. value of A does not generate a consistent space distribution
on the Pareto front (PF) [27]. Although, when the weight is
parameterized such thatis parameterized on the surface of

The sdp relaxation in Eq. (25) is used to produce a positigg ellipsoid, the improved spreading of the Pareto solutions
semidefinite and covariance of the matrix with the constraia]ee obtained on the Pareto front. In the parameterizationsy

limit condition on the objective [38]. However, if is taken setting

as a normal distribution variable with ~ N (x, X — zz7), M A3

the nonconvex quadratic problem in (25) can be solved by =T 2 (45)
considering the mean distribution of i.e:

A. Unpredictability of a Nonconvex Optimization Problem

and substituting45) in (42), the elliptical equation becomes

minimize E(Tr(XAy) + 20 = + o) )‘i + )‘é —1 (46)
subject to: E(Tr(XA;) +2b a+¢;) <0, i=1,...,1, ki k3
)g TS0 where the elliptical axes are denoted &s and k;. The
x 1| =7

normalization of the expression is obtained by fixing the

. ) ] (37) _value ofk; = 1. Let Ay = XA andky, = 1 in Eq. (46),
A “good” feasible solution can be determined by sampling,o slope becomes

x over a large number of times, which results to keeping the

best statistical solution. tan @, — M (47)
w AQ
B. Weighted sum method and thesensitivity of the slope becomes
Considering the weight vectan = [wy, - ,w,|T € R,, d —2k2
the vector objective functiorf(z) = [fi(x),- -, fp(2)]” oy tanby = —5= (48)

€ R, and the maps(f, w) : R? x R? — R. The weighted

. . L This indicateghat the minor axis of the elliptical surface
sum method includes a linear or convex combination of trllse set to unit value. Thought, is selected from any value
objectives f;(z),i = 1,--- ,p, details can be obtained in ' i1 y

[27]. Each of the objectiveg; (x) is multiplied by a weight greater than 1. Variation ih; value allows for the curvature

factor w; and later added up to provide the scalar ObjectiVgontrol of the ellipsoidal surface. Therefore, the non-linear

weight selection provides a higher sensitivity and achieves

¢z, w), as further sensitivity improvement through the free parameter
b .
k1. The value ofk; can be used to control the solution
_ 3 _ T 1 1
o(f,w) = Z;wlfl(m) =w f(z) (38) points such that the gathered solutions can be distributed

. L out, thus enabling an improving computational efficiency of
wherep stands for the size of the objectives and the technique.

V. SIMULATION AND RESULTS

This vector optimization problem in (38) is transformed to a,The standarq modified IEEE 6 and 20 units’ netyvorks
scalar of the form: with 2 CHP units to each of the networks were considered

to investigate the effectiveness of the SDP technique
(40) presented in this paper. The conversion of the SDP problem

into the standard primal/dual form was achieved using
The p-dimensional objective space are mapped onto t&| MIP parser [27]. However, in the generation of the
positive real lineR and each of the optimal (non-dominatedpareto-front solution, a standard weighted sum method was
points are mapped to the same point on the line. Le{fed in generating the Pareto-optimal solution between two
consider wherp = 2 for the bi-objective problem, then bothgpjectives functions. Different values of the control weight
Egs. (38) and (39) ca be deduced to selection parameter were used in the generation of Pareto

w) = wy f1(z) + wafa(z 41) points.

#fw) 11(@) + w2 folw) () Fifty one (51) runs were performed for each parameter
value to explore the impact of changes in control weight
selectionk; and compare different cases. Figs. 1-9 show
If the weights in (41) is constrained by, i.ew; = A and the Pareto curves at the values of control weight selection

p
ZU%:LUJLZO, Z:,,p (39)
i=1

minimize ¢(f,w)
s.ti reX

and
wy +wy =1, wy,we >0 (42)

we = 1 — ), therefore the gradient af is defined as k1= 1, 5, and 10 respectively. Only less distinct points were
1—\ obtained from 51 runs with control weight selectiép=1.
tan,, = N (43) This shows that different values of achieved very close

values at different runs. This is regarded as a waste of
computational effort. As the value of control selectibnis

4 tan 6, = 4 (1)‘> _ L (44) increased, the Pareto points were distributed uniformly out.
dA dA \ A A2 As the value ofk; further increases, a gradual progression

and sensitiity of the gradient as

(Advance online publication: 20 November 2017)
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Fig. 4. Pareto front at weight selectién =1 for total cost and power loss

functions using a modified IEEE 6 units’ network.

in the spread up of the Pareto points is noticed, and the
gathering of the Pareto points stop to exit. Conversely,
it can be observed that the solutions points near to the
lower extreme point are not captured. When control weigh*

selectionk;=1, more points were missed from the middle
part of the curve while more spread solution points wel
noticed at the middle part of the curve as theis further

increased from 1. It is observed in the Pareto fronts (PF
solutions that for every case of control selection paramel
k1 10, the optimal solutions are widely distributed or
the tradeoff surface using the proposed SDP algorithi
Therefore, the decision maker can select an approprii
solution based on his/her choice from a generated group
Pareto optimal solutions in the multi-objective optimizatior
Also, one of the disadvantages of the weighted sum meth
is its unavailability to produce uniform spread of the
solutions on the Pareto surface with uniform values «
the weight factorw [27]. The Adaptation of the weight

Pareto-optimal Solutions
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selection into the weighted sum method using non-linear

weight selection however, controls and improves tI}%

distribution of Pareto points [27].

g. 5. Pareto front at weight selectidn =5 for total cost and power loss
nctions using a modified IEEE 6 units’ network.
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Fig. 9. Pareto front at weight selectian=10 for the total cost and power
loss functions using a modified IEEE 20 units’ network.

A. Case study I: Modified IEEE six units

In this study, a modified IEEE six units, 30 bus test net-
work with 2 CHP units is considered based on the simulation
analysis obtained from [7]. Total power demand is 2.834pu
and heat demand is 0.8pu. The coefficient of variance of
all the involved random variables is chosen as 0.2, and the
correlation coefficient of each pair of random variables is set
as 0.3 [7]. The cogeneration units emissions coefficients used
are #;=0.00015,7,=0.0015 andk;=0.2 for SO;, NO, and
CO,, respectively, and for thermal units onky;=0.0008,
p1=0.001 andr,=0.4. All the B-coefficients are given in per
unit (p.u.) on a 100 MVA base capacity.

The optimization results obtained from SDP technique com-
pared to the results of a modified multi-objective particle
swarm optimization (MOPSOQ), genetic algorithms (GA) and
the weighted aggregation (WA) reported in the literature are
shown in Table V. The cost reduction results obtained from
other methods are close, while SDP approach achieved better
computational results when compared with the results from
the literature.

It can be observed in Table VI that there is diversity of
results in the minimum values of the operational costs which
differentiated the stochastic and deterministic power dispatch
models as a result of uncertainties of the power and heat
demands. A comparison between stochastic and deterministic
models is presented in Tables VIII and IX using the results
obtained from the Pareto set, for the lowest value of each
problem objective.

B. Case study Il: Modified IEEE Twenty-units system

This case study consists of eighteen thermal and two CHP
units. This system supplies a total load demandPpf =
25.00 pu. The data table for IEEE Twenty-units system and
the B matrix of the transmission line loss coefficient are
available in [34]. More so, the stochastic and deterministic
models optimization results for modified IEEE twenty units
network obtained from the Pareto set, for the lowest value
of each problem objective are shown in Tables X and XI.

The B;; matrix of the transmission loss coefficient for

(Advance online publication: 20 November 2017)
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TABLE V

COST REDUCTION ON A MODIFIED IEEE SIX UNITS' NETWORK TABLE VI

INCORPORATING TWOCHP UNITS.

MULTI-OBJECTIVE MINIMIZATION RESULTS FOR STOCHASTIC MODEL
CONSIDERING A MODIFIEDIEEE SIX UNITS TEST SYSTEM USINGSDP

SDP MOPSO GA WA APPROACH
E 0.0500 0.2980 0.4597 0.0500
P 0.6000 0.4576 0.5290 0.6000 min{J:} min{Jz} min{J;} min{Js} min{Js5}
Ps 0.5260 0.6519 0.4721 0.7737 1275.3 1528.1 1422.1  1415.7 1327.9
Py 1.2000 0.7826 0.8623 0.7205 1.2342 0.9013 1.2213 1.3585 1.3387
o, 0.4629 0.3468 0.4856 0.0600 0.5265 0.5165  0.4567 0.5210 0.5482
o, 00500 01523 00899 0.0600 0.0268  0.0416  0.0334 0.0256  0.0341
N 0.0000 0.2422 0.3684 0.0000 0.0546 0.1902 0.0873 0.0854 0.0267
Ho 0.6000 0.2330 0.1507 0.2000
Tl 0.2000 0.2972 0.2309 0.5000 MULTI-OBJECTIVE MINIMI;-AAT?(ID_E IL)éSULTS FOR DETERMINISTIC
Cost 12753 13050 13224  1303.6 MODEL CONSIDERING A MODIFIEDIEEE SIX UNITS TEST SYSTEM
CO- 1.0823 15960 1.7212 1.6001 USING SDPAPPROACH
NO.;,SO, 0.1519 0.1272 0.1285 0.1361
Power dev. 0.5265 0.4784  0.5447 0.4882 : : T : :
Heat dev. 0.0268 0.0309 0.0292 0.0206 min{/i} min{/a} min{J;} min{/s} min{J;}

1274.3 1519.9 1420.4 14116 1345.9

1.2306 0.8881 1.2142 1.3516 1.3014

0.5311 0.5084 0.4551 0.5165 0.5287

0.0268 0.0416 0.0333 0.0256 0.0341
TABLE VI 0.0567 0.1664 0.0907 0.0727 0.0259

COST REDUCTION INCORPORATING TWOCHP UNITS CONSIDERING A
MODIFIED IEEE SIX UNITS’ NETWORK USING SDPAPPROACH

Gen/obj Sto. Model (SM) _ Det. Model OM)  |EEE six units is given by
Pi(Py) 0.0500 0.0828 0.1382  —0.0299  0.0044  —0.0022 —0.0010 —0.0008
PQ(PQ) 0.6000 0.6000 —0.0299 0.0487 —0.0025 0.0004 0.0016 0.0041
o 0.0044 —0.0025 0.0182 —0.0070 —0.0066 —0.0041
&(P%) 0.5260 0.5086 —0.0022 0.0004 —0.0070 0.0137 0.0050 0.0033
Py(Ps) 1.2000 1.2000 —0.0010  0.0016  —0.0066  0.0050  0.0109  0.0005
©:(01) 0.4629 0.4493 —0.0008  0.0041  —0.0066  0.0033  0.0005  0.0244
%E%g 8'8288 8'8388 Furthermore, Figs. 10 and 11 illustrate the performance
1 1 . . . . e .
o (Hz) 0.6000 0.6000 of SDP_ technique on s_tochqshc and detgrmm_lstlc quels
T (Ts) 0.2000 0.2000 respectively by performing fifty-one (51) iterations which
Cost 1275.3 1274.3 were investigated on standard modified IEEE six and twenty
COs 1.0821 1.0836 units’ networks with two CHP units to each of the networks.
NOz,502 0.1519 0.1470 It is established that there is significant variation in the
Total Emission 1.2340 1.2306 comparative convergence profiles for both stochastic and
Power Loss 0.0531 0.0567 L . .
Power dev. 0.5265 0.5311 deterministic models presented in both Figs. 10 and 11
Heat dev. 0.0268 0.0268 using a standard modified IEEE six units’ network with
Total Power Output 2.8871 2.8907 two CHP units and also, Fig. 12 shows a comparative
Total Heat Output 0.8000 0.8000 convergence profiles for both stochastic and deterministic
models considering a standard modified IEEE twenty units’
network with two CHP units. There is a deviation in the
results of stochastic and deterministic models presented in
TABLE VII Figs. 10, 11 and 12 as a result of random effect on the power

COST REDUCTION ON A MODIFIED IEEE TWENTY UNITS' NETWORK  generation systems. Therefore, in real life implementation,
INCORPORATING TWOCHP UNITS USING SDPAPPROACH

Gen/Obj  Opt. val Gen/Obj Opt. val TABLE X
P 4.3094 Pis 0.8000 MULTI-OBJECTIVE MINIMIZATION RESULTS FOR STOCHASTIC MODEL
2y 1.8332 Prr 0.6618 CONSIDERING A MODIFIEDIEEE TWENTY UNITS USING SDPAPPROACH
Ps 1.3017 Pig 0.8610 , , , , i
P 1.0920 9, 1.0000 Obj min{/1} min{Js} min{Js} min{J5}

= Cost 58593.0 59285.0 6029.0 59323.0

1;5 g'gggi % 8'2888 Power dev. 54.4161 52.9812 56.5431 53.5166
26 : i ' Heat dev. 0.0268 0.0332 0.0256 0.0332
P 1.0950 i 0.6000 Power Loss  0.9000  0.7419  1.0661 0.6298
& 1.2927 T 0.2000
& 0.9415 COSt($/pU) 58593.0 TABLE XI
Pio 0.8183 Paver Loss 0.9000 MULTI-OBJECTIVE MINIMIZATION RESULTS FOR DETERMINISTIC MODEL
P 1.4582 Pwer dev. 54.4161 CONSIDERING A MODIFIEDIEEE TWENTY UNITS USING SDPAPPROACH
P, 27944 Headev. 0.0268 . . . _ .
Pr3 1.4293  Btal Power Output  25.9000 Obj min{/i} min{Js} min{Js} min{J5}
Pis 0.2000 ‘btal Heat Output 0.8000 Cost 29826 29834 29835 29834
Prs 1.8500 Power dev. 8.5139 8.5139 8.5139 8.5139

Heat dev. 0.5937 0.5357 0.5297 0.5358

Power Loss 0.1436 0.1436 0.1436 0.1436

(Advance online publication: 20 November 2017)
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Fig. 11. Pareto fronts for the Stochastic and Deterministic models
it is advisable to express problems in CHP as stochastic

model so as to cover the effect of the uncertain factors [7].

Figs. 13 and 14 illustrate the Pareto fronts solutions for the

simultaneous minimizations of stochastic multi-objective

problems respectively. It is shown in Fig. 13 that the lower

extreme solution produces the lowest total cost, at maximt Rateicpinaksalition s
power loss and minimum total emission, while at the upp ;
extreme point generates maximum total cost at minimu
power loss and maximum total emission among all tr
solutions in the Pareto front. Fig. 14 shows that the low:
extreme solution generates lowest value of total cost,
maximum power deviation and minimum heat deviatio
whereas as the total cost increases, heat deviation incree
and power deviation decreases among all the solutions
the Pareto front. If randomness is to be considered in t
power systems, there will be increase in total cost, pow
and heat deviations [1].

Also, the Pareto solutions for the simultaneous minimizatic : : ‘ i : :

of deterministic multi-objectives functions are presented "% 684 586 588 69 592 694
Figs. 15 and 16. It can be deduced from the Fig. 15 th... L x10°

the lower extreme solution indicates that at minimum tot&l9- 12. Pareto fronts for the Stochastic and Deterministic models
cost, maximum power loss and minimum total emission

are generated while at the upper extreme solution gives

maximum total cost, at minimum power loss and maximum

total emission among the solutions in Pareto front. On the

other hand, Fig. 16 illustrates that at minimum total cos* aretooptiml Solctons

maximum power deviation and minimum heat deviation a S
generated at the lower extreme solution. '

Power loss p.u

VI. CONCLUSION

The proposed SDP method performed well in accuracy
results and provides lower operational cost in the Pareto :
produced. The results for the multi-objectives formulatio
problems are presented using SDP approach, indicating t
the decision maker can choose his/her preferred soluti 0%
while satisfying multiple criteria. The SDP method solve
a stochastic problem by minimizing the expectation of th 0.03
multi-objective functions using the statistics of Gaussis
distribution. Also, further investigations were performel
on the comparison of the stochastic model for the multidg. 13. Pareto front Solution for the Stochastic objective functions
objective functions and the deterministic approach, resulting
to diversity in total operational cost which covers the

Total ernission tonfhr
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002
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uncertainties opower and head demand.

It is obvious that the adaptation of weight selection
k1 into the weight sum method achieves more uniform
distribution of the solution points as ttig value increases.
An optimal selection of k; parameter that generates
a comparative uniform spread out of the algorithm is
practically determined.

Future work can be conducted in the implementation of
chance constraints to capture the stochastic characteristic of
the power system generation and distribution which is more
practical than the deterministic constraints.

REFERENCES

J. Hetzer, D. C. Yu and K. Bhattarai, “An Economic Dispatch Model
Incorporating Wind Power JEEE Transactions on Energy Conversion,
vol. 23, no. 2, pp. 603-611, June 2008.

L. Wang and C. Singh, “Stochastic Combined Heat and Power Dis-
patch Based on Multi-Objective Particle Swarm Optimizatidtgiver
Engineering Society General Meeting, IEBEI. 8, no. 2, pp. 8-16,
2006.

A. Shubham and B. K. Panigrahi, “A New Particle Swarm Opti-
mization Solution to Nonconvex Economic Dispatch ProblertisZE
Transactions on Power Systems, vol. 22, no. 1, pp. 380-389, February
2007.

A. Shubham, B. K. Panigrahi, and M. K. Tiwari, “Multiobjective
Particle Swarm Algorithm With Fuzzy Clustering for Electrical Power
Dispatch,”|IEEE Transactions on Evolutionary Computation, vol. 12,
no. 5, pp. 567-578, October 2008.

E. N. Azadani, S. H. Hosseinian, B. Moradzadel and P. Hasanpor,
“Economic dispatch in Multi-area using particle swarm optimization
in electricity market,”Power System Conference, 12th International
Middle-East, pp. 559-564, 2008.

S. Jiang, Z. Ji and Y. Shen, “A novel hybrid particle swarm optimiza-
tion and gravitational search algorithm for solving economic emission
load dispatch problems with various practical constrairgctrical
Power and Energy Systems, vol. 55, no. 2, pp. 628-644, 2014.

G. S. Piperagkas, A. G. Anastasiadis and N. D. Hatziargyriou,
“Stochastic PSO-based and power dispatch under environmental con-
traints incorporating CHP and wind power unit&lectric Power
Systems Research, vol. 81, no. 1, 2010.

P. Ajay, D. V. Raj, T. G. Palanivelu and R. Gnanadass, “Optimal Power
Flow Solution for Combined Economic Emission Dispatch Problem
using Particle Swarm Optimization Techniquédurnal of Electrical
Systems, vol. 3, no. 1, pp. 13-25, 2007.

R. Syahputra, I. Soesanti and M. Ashari, “Performance Enhancement
of Distribution Network with DG Integration Using Modified PSO
Algorithm,” J. Electrical Systems, vol. 12, no. 1, pp. 1-19, 2016.

K. Rayudu, M. ali, G. Yesuratnam and A. Jayalaxmi, “Optimal
Reactive Power Dispatch Based on Particle Swarm Optimization and
LP Technique,’International Conference on Emerging Technological
Trends [ICETT], 2016.

A. Shukla, S. Kesherwani and S. N. Singh, “Efficient Holomorphic
Based Approach for Unit Commitment ProblenfEE International
Conference, 2016.

L. Wang, and C. Singh, “Tradeoff Between Risk and Cost in Economic
Dispatch Including Wind Power Penetration Using Particle Swarm Op-
timization,” Power System Technology, PowerCon 2006. International
Conference, pp. 1-6, 2006.

A. Salhi, D. Naimi and T. Bouktir, “Optimal power flow resolution
using artificial bee colony algorithm based grenade explosion method,”
J. Electrical Systems, vol. 12, no. 4, pp. 734-756, 2016.

B. Bentouati, C. Chettih, P. Jangir and I. Trivedi, “A solution to the
optimal power flow using multi-verse optimized! Electrical Systems,
vol. 12, no. 4, pp. 30-36, 2016.

Y. C. Liang and R. C. Juarez, “A normalization method for solving
the combined economic and emission dispatch problem with meta-
heuristic algorithms,Electrical Power and Energy Systems, vol. 54,
no. 2, pp. 163-186, 2014.

A. Mukherjee and V. Mukherjee, “A Solution to Optimal Power Flow
with DC Link Placement Problem using Chaotic Krill Herd Algo-
rithm,” International Conference on Emerging Technological Trends
[ICETT], 2016.

[17] J. Wang and J. Song, “Chaotic Biogeography-based Optimization
Algorithm,” IAENG International Journal of Computer Science, vol.
44, no: 2, pp. 25-32, 2017.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

(18]

[16]

(Advance online publication: 20 November 2017)



TAENG International Journal of Computer Science, 44:4, IJCS 44 4 10

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

(33]

(34]

(35]

(36]

(37

(38]

[39]

[40]

S. Li and J. Wang, “Improved Cuckoo Search Algorithm with Novel
Searching Mechanisrfor Solving Unconstrained Function Optimiza-
tion Problem,” IAENG International Journal of Computer Science, vol[41]
44, no: 1, pp. 301-314, 2017.

K. R. Provas and B. Sudipta, “Multi-objective quasi-oppositional
teaching learning based optimization for economic emission lodd2]
dispatch problem,Electrical Power and Energy Systems, vol. 53, no.
1, pp. 937-948, 2013.

O. Herbadiji, L. Slimani and T. Bouktir, “Solving Bi-Objective Opti-
mal Power Flow using Hybrid method of Biogeography-Based Opt{43]
mization and Differential Evolution Algorithm: A case study of the
Algerian Electrical Network,J. Electrical Systems, vol. 12, no. 1, pp.
197-215, 2016.

J. Wang and J. Song, “A Hybrid Algorithm Based on Gravitational
Search and Particle Swarm Optimization Algorithm to Solve Function
Optimization Problems,TJEEE Engineering Lettervol. 25, no: 1, pp.
20-25, February 2017.

K. Jagatheesan, B. Anand, S. Samanta, N. Dey, A. S. Ashour, V. E.
Balas,“Design of a proportional-integral-derivative controller for an
automatic generation control of multi-area power thermal systems
using firefly algorithm,”IEEE/CAA Journal of Automatica Sinica, pp.
1-14, 2017.

N. Amjady, S. Dehghan, A. Attarha and A. J. Conejo, “Adaptive Ro-
bust Network-Constrained AC Unit CommitmenifZEE Transactions

on Power Systems, vol. 32, no. 1, pp. 672-683, January 2017.

C. Shao, X. Wang, M. Shahidehpour and X. Wang, “An MILP-
Based Optimal Power Flow in Multicarrier Energy System&EE
Transactions on Sustainable Energy, vol. 8, no. 1, pp. 239-248, January
2017.

C. Lin, W. Wu, B. Zhang, B. Wang, W. Zheng and Z. Li, “Decen-
tralized Reactive Power Optimization Method for Transmission and
Distribution Networks Accommodating Large-Scale DG Integration,”
IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 363-373,
January 2017.

C. Yammani and V. K. Macha, “Fuel cost minimization with reserve
capacity and inter-area flow limit for reliable and cost effective oper-
ation of multi microgrids,"IEEE Region 10 Conference (TENCQN)
Proceedings of the International Conference, pp. 45-50, 2016.

A. M. Jubril, “Economic-emission dispatch problem: A nonlinear
weight selection in weighted sum for convex multiobjective optimiza-
tion,” Facta Univ (NIS) Series Maths Inform, vol. 27, no. 3, pp. 357-
372, 2013.

J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,”|IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92-107, 2012.
R. A. Jabr, “Solution to economic dispatching with disjoint feasible
regions via semidefinite programmindBEE Trans. Power Systvol.

27, no. 1, pp. 572-573, 2012.

X. Bai, H. Wei, K. Fujisawa and Y. Wang, “Semidefinite programming
for optimal power flowproblem,Int. J. Electr. Power Energy Syst., vol.
30, no. 1, pp. 383-392, 2008.

Z.Jin, F. Li, X. Ma and S. M. Djouadi, “Semi-Definite Programming
for Power Output Control in a Wind Energy Conversion SystdEEE
Transactions on Sustainable Energy, pp. 1949-1959, 2014.

T. Ding, S. Liu, Z. Wu and Z. Bie, “Sensitivity-based relaxation
and decomposition method to dynamic reactive power optimisation
considering DGs in active distribution networkdET Generation,
Transmission and Distribution, vol. 11, no. 1, pp.U8#8, 2016.

S. Bahrami, F. Therrien, W. S. Wong and J. Jatskevich, “Semidef-
inite Relaxation of Optimal Power Flow for ACDDC Grids,” IEEE
Transactions on Power Systems, vol. 32, no. 1, January 2017.

L. S. Coelho and C. Lee, “Solving economic load dispatch problems in
power systems using chaotic and Gaussian particle swarm optimization
approaches,Electric Power and Energy Systems, vol. 30, no. 2, pp.
297-307, 2008.

S. Boyd and L. Vandenberghe, “Semidefinite Programming Relax-
ations of Non-Convex Problems in Control and Combinatorial Op-
timization,” Information Systems Laboratory, Stanford University, vol.
25, no. 1, pp. 29-37, 1997.

S. Boyd and L. Vandenberghe, “Convex Optimizatiobst ed., New
York: Cambridge University Press, 2004.

S. Boyd and L. Vandenberghe, “Semidefinite Programmi&iAM,
Rev., vol. 38, pp. 49-95, 2003.

A. Aspremont and S. Boyd, “Relaxations and Randomized Methods
for Nonconvex QCQPs,Stanford University Autumn, 2003.

A. Rong and R. Lahdelma, “C® emissions trading planning in
combined heat and power production via multi-period stochastic
optimization,” European Journal of Operational Reseayolol. 176,

pp. 1874-1895, 2007.

A. Rong and R. Lahdelma, “Efficient algorithms for combined heat and
power production planning under the deregulated electricity market,”

(Advance online publication:

European Journal of Operational Research, vol. 176, pp. 1219-1245,
2007.

F. Salgado and P. Pedrero, “Short-term operation planning on cogen-
eration systems: A surveyElectric Power Systems Research, vol. 78,
no. 1, pp. 835-848, 2008.

R. A. Abarghooee, T. Niknam, A. Roosta, A. R. Malekpour and
M. Zare, “Probabilistic multiobjective wind-thermal economic emis-
sion dispatch based on point estimated methddyirnal of Energy,
vol. 37, no. 2, pp. 322-335, 2012.

V. H. Quintana and M. Madriga, “Semi-Definite Programming Re-
laxations for0, 1-Power Dispatch ProblemsPniversity of Malaga,
Spain, vol. 21, no. 1, pp25-32, April 2000.

20 November 2017)





