
Logic Programming as a Service (LPaaS)

Distributed Systems / Technologies
Sistemi Distribuiti / Tecnologie

Roberta Calegari Andrea Omicini
roberta.calegari@unibo.it andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 1 / 52



Outline

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 2 / 52



Scope & Goals

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 3 / 52



Scope & Goals

Context I

Internet of Intelligent Things: Intelligent objects in the IoT

our everyday physical objects should be able to network in the IoT
[Gubbi et al., 2013, Atzori et al., 2010, Fortino et al., 2014]

they are required to understand each other, to learn, to understand
situations, to understand us [Lippi et al., 2017]

our everyday object should be(come) intelligent in the Internet of
Intelligent Things [Arsénio et al., 2014]

Micro-intelligence for the IoT

micro-level feature, influenced by the Things vision in IoT

ability to abstract, reason, plan, solve, and learn capabilities

situatedness feature, as the capability to interact with and act on the
environment.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 4 / 52



Scope & Goals

Context II

New opportunities for IoT apps and services [Zambonelli, 2015]

Devices and people collaborate as a superorganism: situation-aware dense
ecosystem where infrastructures should

be customisable

be self-managing

govern interaction

encapsulate intelligence

Micro-intelligence as distributed situated intelligence

spread light-weight, context-aware, effective intelligence chunks where
and when needed

locally satisfy the specific reasoning needs of the application at hand

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 5 / 52



Scope & Goals

Why Logic Programming for Intelligent Systems? I

General features of Logic Programming (LP)

computation as deduction

declarative and procedural interpretation match

reasoning about what is true rather than about what to do

logic theories as programs and knowledge bases

programming with relations and inferences

non-typed tree structures for uniform data representation

unification as a non-directional mechanism for message passing

single-assignment variables, step-by-step refinement

reasoning with incomplete information

non determinism

interactive computational model

. . .

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 6 / 52



Scope & Goals

Why Logic Programming for Intelligent Systems? II

LP languages and technologies → long-respected reputation in supporting
intelligence: originally conceived for single solvers and later extended
towards concurrency and parallelism

declarativeness and explicit knowledge enable knowledge sharing at
the most adequate level of abstraction

supporting modularity and separation of concerns [Oliya and Pung, 2011]

specially valuable in open and dynamic distributed systems [Niezen, 2013]

its sound and complete semantics naturally enables intelligent agents
to reason and infer new information

LP extensions or logic-based computational models – like
meta-reasoning about situations [Loke, 2004] or labelled variables
systems [Calegari et al., 2016] – could be incorporated to enable complex
behaviours tailored to the situated components

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 7 / 52



Scope & Goals

LP Re-interpretation

LP as a situated service

Overall LP has the potential to fully support pervasive computing
scenarios once it is suitably re-interpreted along three main lines:

architecture beyond (originally monolithic) structure of LP systems

→ unsuitable for distributed contexts such as IoT
mobility/cloud ecosystems grounded upon the
service-oriented paradigm

→ Everything as a Service (XaaS): promote maximum
availability and interoperability, any resource of any sort
should be accessible as a service [Erl, 2005]

situatedness enabling logic theories, queries, and resolutions to be
context-aware w.r.t. the (computational) environment,
space, and time

interaction re-think interaction patterns used by clients to query logic
engines, which should lean towards on-demand computation

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 8 / 52



Scope & Goals

LPaaS Motivations

Logic-based micro-intelligence approach

enabling people to benefit from ubiquitous information access
exploiting contextual knowledge

multiple, distributed Prolog engines

intelligence providers
technology integrators

Logic Programming as a Service (LPaaS)
as the evolution of LP in parallel, concurrent, and distributed scenarios

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 9 / 52



Logic Programming as a Service

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 10 / 52



Logic Programming as a Service Vision & Architecture

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 11 / 52



Logic Programming as a Service Vision & Architecture

LPaaS Vision I

LP as a situated service: key features

encapsulation

statelessness

locality

situatedness: space, time, context

preservation, with
re-contextualisation, of the SLD
resolution process

stateless client-server interaction

time-sensitive computation

space-sensitive computation

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 12 / 52



Logic Programming as a Service Vision & Architecture

LPaaS Vision II

Distributed logic engines

lightweight and interoperable LP engines distributed even on
resource-constrained devices [Denti et al., 2013]

multiple logic theories scattered around, encapsulated in each engine,
and associated to individual computational devices and things in the
IoT

each logic theory situated, representing what is true locally, according
to a simple paraconsistent interpretation

LP resolution process is local to each theory / engine, so it is both
standard and consistent [Robinson, 1965]

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 13 / 52



Logic Programming as a Service Vision & Architecture

LPaaS Architecture

Logic Programming as a Service (LPaaS)

provides an abstract view of an LP inference engine in terms of service

promotes interoperability, encapsulation, and situatedness

promotes context-awareness

Each LP server node exposes its services concurrently to multiple clients,
via interfaces: Configurator Interface and Client Interface

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 14 / 52



Logic Programming as a Service Service Description

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 15 / 52



Logic Programming as a Service Service Description

Service Description

Logic resolution process provided as a service

The LPaaS service

implements SLD resolution [Robinson, 1965]

encapsulates the logic theory / Knowledge Base (KB)

is configured with the set of goals that the client can ask to be proven

Service initialised at deployment-time → dynamic re-configuration (when
needed) only by the Configurator

Main features of the LP service

stateful vs. stateless interaction

dynamic vs. static KB

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 16 / 52



Logic Programming as a Service Interface & API

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 17 / 52



Logic Programming as a Service Interface & API

LPaaS Configurator Interface

LPaaS methods

observational methods to provide configuration and contextual
information about the service

usage methods to query the service for triggering computations and
reasoning, and for asking solutions

setConfiguration(+ConfigurationList)

getConfiguration(-ConfigurationList)

resetConfiguration()

setTheory(+Theory)

getTheory(-Theory)

setGoals(+GoalList)

getGoals(-GoalList)

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 18 / 52



Logic Programming as a Service Interface & API

LPaaS Client Interface – Static KB

STATIC KNOWLEDGE BASE

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution) solve(-Solution)

solveN(+Goal, +NSol, -SolutionList) solveN(+N, -SolutionList)

solveAll(+Goal, -SolutionList) solveAll(-SolutionList)

solve(+Goal, -Solution, within(+Time)) solve(-Solution, within(+Time))

solveN(+Goal, +NSol, -SolutionList, within(+Time)) solveN(+NSol, -SolutionList, within(+Time))

solveAll(+Goal, -SolutionList, within(+Time)) solveAll(-SolutionList, within(+Time))

solveAfter(+Goal, +AfterN, -Solution)

solveNAfter(+Goal, +AfterN, +NSol, -SolutionList)

solveAllAfter(+Goal, +AfterN, -SolutionList)

solve(-Solution, every(@Time))

solveN(+N, -SolutionList, every(@Time))

solveAll(-SolutionList, every(@Time))

pause()

resume()

reset()

close()

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 19 / 52



Logic Programming as a Service Interface & API

LPaaS Client Interface – Dynamic KB

DYNAMIC KNOWLEDGE BASE

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory, ?Timestamp)

getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))

setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)

solveN(+Goal, +NSol, -SList, ?TimeStamp) solveN(+N, -SolutionList, ?TimeStamp)

solveAll(+Goal, -SList, ?TimeStamp) solveAll(-SolutionList, ?TimeStamp)

solve(+Goal, -Solution, within(+Time), ?TimeStamp) solve(-Solution, within(+Time), ?TimeStamp)

solveN(+Goal, +NSol, -SList, within(+Time), ?TimeStamp) solveN(+NSol, -SList, within(+Time), ?TimeStamp)

solveAll(+Goal, -SList, within(+Time), ?TimeStamp) solveAll(-SList, within(+Time), ?TimeStamp)

solveAfter(+Goal, +AfterN, -Solution, ?TimeStamp)

solveNAfter(+Goal, +AfterN, +NSol, -SList, ?TimeStamp)

solveAllAfter(+Goal, +AfterN, -SList, ?TimeStamp)

solve(-Solution, every(@Time), ?TimeStamp)

solveN(+N, -SList, every(@Time), ?TimeStamp)

solveAll(-SList, every(@Time), ?TimeStamp)

pause()

resume()

reset()

close()

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 20 / 52



LPaaS as a Web Service

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 21 / 52



LPaaS as a Web Service Architecture & Technology

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 22 / 52



LPaaS as a Web Service Architecture & Technology

Architecture

The LPaaS RESTful WS Architecture [Fielding and Taylor, 2002]

reused and adapted patterns commonly used for the REST
architectural style

introduced a novel architecture supporting embedding Prolog engines
into Web Services

client applications interacting via HTTP requests and JSON objects

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 23 / 52



LPaaS as a Web Service Architecture & Technology

Technology

Exploiting a plurality of common technologies

Business Logic realised on the J2EE framework [J2EE, 2017], exploiting
EJB [EJB, 2017]

database interaction implemented on top of JPA
[Java Persistence API, 2013]

service interfaces exploit the EJB architecture—also accessible as
RESTful WS → JAX-RS Java Standard (Jersey) [Jersey, 2017]

security based on jose.4.j [jose.4.j, 2017]

application deployment → Payara Application Server [Payara, 2017]

Prolog engine implemented on top of the tuProlog system
[Denti et al., 2001]

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 24 / 52



LPaaS as a Web Service The Smart Bathroom: Case Study

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 25 / 52



LPaaS as a Web Service The Smart Bathroom: Case Study

The Smart Bathroom Case Study I

Testbed Scenario: monitor physiological functions

deduce symptoms and diseases

sensors collect data and undertake reasoning on tuProlog-LPaaS

solutions available through a dedicated tuProlog Android app

Three tuProlog-enabled LPaaS services processing data by

toilet sensors analysing biological products, like temperature, volume
or glucose sensors (Toilet Server)

nano sensors integrated into the toothbrush (Toothbrush Server)

ultrasonic bathtubs, pressure sensing toilet seats and other devices to
monitor people’s cardiovascular health (Personal Server).

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 26 / 52



LPaaS as a Web Service The Smart Bathroom: Case Study

The Smart Bathroom Case Study II

Collected data may trigger different alerts: urgent ones, such as presence
of streptococcus infection, positive diabetes tests, etc. and normal ones

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 27 / 52



LPaaS as a Web Service The Smart Bathroom: Case Study

Prototype Screenshots

KB extraction of LPaaS Personal Server and LPaaS Toothbrush Server

The system is built on the following network:

toilet server: on Raspberry Pi 3 (Ubuntu Mate
Arm)

toothbrush server: on Lubuntu laptop

personal server: on Windows 10 laptop

client: tablet Lenovo A10 (Android 5.0.1)

client: desktop application on Windows 10

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 28 / 52



LPaaS and Multi-Agent Systems

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 29 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 30 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

Agents & multi-agent systems (MAS)

agents are the most viable abstraction to encapsulate fundamental
features such as control, goals, mobility, intelligence
[Zambonelli and Omicini, 2004]

MAS abstractions such as society and environment are essential to
cope with the complexity of nowadays application scenarios
[Omicini and Mariani, 2013]

agent-oriented models and technologies are gaining momentum for
embedding decentralised intelligence [Singh and Chopra, 2017]

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 31 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

LPaaS for MAS: Model & Architecture I

The LPaaS for MAS

agents on Smart Objects (SO): autonomy, situatedness, sociality,
mobility

resource-constrained devices → intelligence is a challenge

whenever local intelligence cannot be available (i.e. memory
constraints, CPU constraints limiting efficiency,...) → SO may
request to another, “more intelligent” one, to perform some
inferences on its behalf

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 32 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

LPaaS for MAS: Model & Architecture II

LPaaS for MAS

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 33 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

LPaaS for MAS: Model & Architecture III

Overview of a LPaaS multi-agent system

bottom layer → physical/computational environment lives (boundary
artefacts [Omicini et al., 2006] for representation and interactions with the
rest of the MAS)

middleware infrastructure → common API and services to
application-level software – i.e. coordination artefacts
[Omicini et al., 2006]

on the top of the middleware → application/system as a whole lives,
in LPaaS MAS view as a mixture of services – possibly RESTful, as
for LPaaS as a WS – and agents

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 34 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

LPaaS for MAS: Model & Architecture IV

LPaaS-based MAS

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 35 / 52



LPaaS and Multi-Agent Systems Architecture & Technology

Technology

Exploiting a plurality of common technologies

implemented on top of the Jade middleware [JADE API, 2017], which
facilitates the development of interoperable, open, and heterogeneous
multi-agent systems by relying on the FIPA standard
[O’Brien and Nicol, 1998]

communication between Jade agents occurs via ACL (Agent
Communication Language) messages [FIPA ACL, 2002]

security using Jade-S (Secure Jade) [Poggi et al., 2001]

exploiting tuProlog [Denti et al., 2001] as the LPaaS Prolog engine

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 36 / 52



LPaaS and Multi-Agent Systems The Smart Kitchen: Case Study

Focus on. . .

1 Scope & Goals
2 Logic Programming as a Service

Vision & Architecture
Service Description
Interface & API

3 LPaaS as a Web Service
Architecture & Technology
The Smart Bathroom: Case Study

4 LPaaS and Multi-Agent Systems
Architecture & Technology
The Smart Kitchen: Case Study

5 tuProlog for the IoT
6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 37 / 52



LPaaS and Multi-Agent Systems The Smart Kitchen: Case Study

The Smart Kitchen Case Study I

four IoT devices (a fridge, a
pantry, a mixer, an oven) supply
information to clients, exploiting
LPaaS, about food supply and
users’ preferences

fridge and pantry capable of
monitoring the quantity of food,
and collecting historical data on
user’s habits (i.e. most eaten
food, preferred meals) while
oven identifies and cook food

mixer manages the recipe
instructions, interacting with
both fridge – to check
ingredients availability – and
with oven—to check its ability
to cook that food, synthesise
control instructions

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 38 / 52



LPaaS and Multi-Agent Systems The Smart Kitchen: Case Study

The Smart Kitchen Case Study II

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 39 / 52



tuProlog for the IoT

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 40 / 52



tuProlog for the IoT

tuProlog in a Nutshell

http://tuprolog.unibo.it

light-weight Prolog system for distributed applications and
infrastructures [Denti et al., 2001]

intentionally designed around a minimal core

can be either statically or dynamically configured by
loading/unloading libraries of predicates

natively supports multi-paradigm programming, providing a clean,
seamless integration model between Prolog and mainstream
object-oriented languages

runs on most known platforms and devices (Java, .NET, Android,
iOS)

interoperability → also supports JSON serialisation natively, ensuring
the interoperability required by a WS

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 41 / 52



Benefit, Open Issues & Future Work

Next in Line. . .

1 Scope & Goals

2 Logic Programming as a Service

3 LPaaS as a Web Service

4 LPaaS and Multi-Agent Systems

5 tuProlog for the IoT

6 Benefit, Open Issues & Future Work

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 42 / 52



Benefit, Open Issues & Future Work

LPaaS Benefits

ubiquitous intelligence for pervasive scenarios

→ distribute reasoning and inference capabilities amongst the
components of IoT system, balancing the computational requirements
to best suit the deployment scenario

situated reasoning:

→ enable reasoning and inferential processes to be context-aware w.r.t.
the (possibly ever-changing) environment where the process takes
place

→ rely mostly on locally available information reduces the bandwidth
consumption and the need for reliable communications

other benefits when coupling LPaaS with MAS

→ goal-orientedness: LPaaS agents may in fact exploit LPaaS to reason
about their own goals, the plans and actions needed to achieve them,
and the effects brought by—which is something only rational agents
(such as BDI ones [Rao, 1996]) usually do

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 43 / 52



Benefit, Open Issues & Future Work

Future Work

further tests in pervasive deployment scenarios are required, mainly in
the IoT landscape—e.g., testing directly LPaaS tuProlog over
Bluetooth Low Energy connections
deal with space-awareness and mobility need to be further
investigated, for instance by exploring the idea to opportunistically
federate LP engines by need as a form of dynamic service composition
architecting a specialised logic-based middleware
integrating LPaaS with Labelled LP [Calegari et al., 2016] for
domain-specific logic-based computation
integration with databases as distributed knowledge base of the
system → handling replication and consistency of data scattered in
connected devices arise
integration with sensor devices to have LPaaS always working the
most up-to-date perception of the environment properties of interest
for the application at hand.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 44 / 52



Bibliography

References I

Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., and Serrano, E. (2014).
Internet of Intelligent Things: Bringing artificial intelligence into things and
communication networks.
In Inter-cooperative Collective Intelligence: Techniques and Applications, volume 495 of
Studies in Computational Intelligence, pages 1–37. Springer Berlin Heidelberg.

Atzori, L., Iera, A., and Morabito, G. (2010).
The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805.

Calegari, R., Denti, E., Dovier, A., and Omicini, A. (2016).
Labelled variables in logic programming: Foundations.
In Fiorentini, C. and Momigliano, A., editors, CILC 2016 – Italian Conference on
Computational Logic, volume 1645 of CEUR Workshop Proceedings, pages 5–20, Milano,
Italy. CEUR-WS.
Proceedings of the 31st Italian Conference on Computational Logic.

Denti, E., Omicini, A., and Calegari, R. (2013).
tuProlog: Making Prolog ubiquitous.
ALP Newsletter.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 45 / 52



Bibliography

References II

Denti, E., Omicini, A., and Ricci, A. (2001).
tuProlog: A light-weight Prolog for Internet applications and infrastructures.
In Ramakrishnan, I., editor, Practical Aspects of Declarative Languages, volume 1990 of
Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidelberg.
3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11–12 March 2001.
Proceedings.

EJB (2017).
Home Page.
http://www.oracle.com/technetwork/java/javaee/ejb/.

Erl, T. (2005).
Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall / Pearson Education International, Upper Saddle River, NJ, USA.

Fielding, R. T. and Taylor, R. N. (2002).
Principled design of the modern Web architecture.
ACM Transactions on Internet Technology, 2(2):115–150.

FIPA ACL (2002).
Agent Communication Language Specifications.
Foundation for Intelligent Physical Agents (FIPA).

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 46 / 52

http://www.oracle.com/technetwork/java/javaee/ejb/


Bibliography

References III

Fortino, G., Guerrieri, A., Russo, W., and Savaglio, C. (2014).
Integration of agent-based and Cloud Computing for the smart objects-oriented IoT.
In 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pages 493–498.

Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013).
Internet of Things (IoT): A vision, architectural elements, and future directions.
Future Generation Computer Systems, 29(7):1645–1660.

J2EE (2017).
Home Page.
http://docs.spring.io/autorepo/docs/spring-framework/1.2.x/reference/.

JADE API (2017).
Home Page.
http://jade.tilab.com/doc/api/.

Java Persistence API (2013).
Home Page.
http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 47 / 52

http://docs.spring.io/autorepo/docs/spring-framework/1.2.x/reference/
http://jade.tilab.com/doc/api/
http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html


Bibliography

References IV

Jersey (2017).
Home Page.
http://jersey.java.net/.

jose.4.j (2017).
Home Page.
http://bitbucket.org/b_c/jose4j/.

Lippi, M., Mamei, M., Mariani, S., and Zambonelli, F. (2017).
Coordinating distributed speaking objects.
In 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017).
IEEE Computer Society.

Loke, S. W. (2004).
Representing and reasoning with situations for context-aware pervasive computing: a logic
programming perspective.
The Knowledge Engineering Review, 19(3):213–233.

Niezen, G. (2013).
Ontologies for interaction: Enabling serendipitous interoperability in smart environments.
Journal of Ambient Intelligence and Smart Environments, 5(1):135–137.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 48 / 52

http://jersey.java.net/
http://bitbucket.org/b_c/jose4j/


Bibliography

References V

O’Brien, P. D. and Nicol, R. C. (1998).
FIPA — towards a standard for software agents.
BT Technology Journal, 16(3):51–59.

Oliya, M. and Pung, H. K. (2011).
Towards incremental reasoning for context aware systems.
In Abraham, A., Lloret Mauri, J., Buford, J. F., Suzuki, J., and Thampi, S. M., editors,
Advances in Computing and Communications: First International Conference, ACC 2011,
Kochi, India, July 22-24, 2011. Proceedings, Part I, volume 190 of Communications in
Computer and Information Science, pages 232–241. Springer, Berlin, Heidelberg.

Omicini, A. and Mariani, S. (2013).
Agents & multiagent systems: En route towards complex intelligent systems.
Intelligenza Artificiale, 7(2):153—164.
Special Issue Celebrating 25 years of the Italian Association for Artificial Intelligence.

Omicini, A., Ricci, A., and Viroli, M. (2006).
Agens Faber: Toward a theory of artefacts for MAS.
Electronic Notes in Theoretical Computer Sciences, 150(3):21–36.
1st International Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceedings.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 49 / 52



Bibliography

References VI

Payara (2017).
Home Page.
http://www.payara.fish.

Poggi, A., Rimassa, G., and Tomaiuolo, M. (2001).
Multi-user and security support for multi-agent systems.
In Omicini, A. and Viroli, M., editors, WOA 2001 – Dagli oggetti agli agenti: tendenze
evolutive dei sistemi software, Modena, Italy. Pitagora Editrice Bologna.

Rao, A. S. (1996).
AgentSpeak(L): BDI agents speak out in a logical computable language.
In Van de Velde, W. and Perram, J. W., editors, Agents Breaking Away, volume 1038 of
LNCS, pages 42–55. Springer.
7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’96), Eindhoven, The Netherlands, 22-25 January 1996, Proceedings.

Robinson, J. A. (1965).
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 50 / 52

http://www.payara.fish


Bibliography

References VII

Singh, M. P. and Chopra, A. K. (2017).
The Internet of Things and multiagent systems: Decentralized intelligence in distributed
computing.
In 37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017).
IEEE Computer Society.

Zambonelli, F. (2015).
Engineering self-organizing urban superorganisms.
Engineering Applications of Artificial Intelligence, 41(C):325–332.

Zambonelli, F. and Omicini, A. (2004).
Challenges and research directions in agent-oriented software engineering.
Autonomous Agents and Multi-Agent Systems, 9(3):253–283.
Special Issue: Challenges for Agent-Based Computing.

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 51 / 52



Logic Programming as a Service (LPaaS)

Distributed Systems / Technologies
Sistemi Distribuiti / Tecnologie

Roberta Calegari Andrea Omicini
roberta.calegari@unibo.it andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2017/2018

Calegari & Omicini (DISI, Univ. Bologna) T8 – LPaaS A.Y. 2017/2018 52 / 52


	Scope & Goals
	Logic Programming as a Service
	Vision & Architecture
	Service Description
	Interface & API

	LPaaS as a Web Service
	Architecture & Technology
	The Smart Bathroom: Case Study

	LPaaS and Multi-Agent Systems
	Architecture & Technology
	The Smart Kitchen: Case Study

	tuProlog for the IoT
	Benefit, Open Issues & Future Work

