
AIMS Medical Science, 4(3): 261–273

DOI: 10.3934/medsci.2017.3.261

Received 25 April 2017,

Accepted 22 June 2017,

Published 13 July 2017

http://www.aimspress.com/journal/medicalScience

Research article

The Role of The Prefix Array in Sequence Analysis: A Survey

Frantisek Franek 1, 2, W. F. Smyth 1, 2, 3, * and Xinfang Wang 2

1 Department of Computing and Software, McMaster University, Hamilton, Canada
2 School of Computational Science and Engineering, McMaster University, Hamilton, Canada
3 School of Engineering and Information Technology, Murdoch University, Perth, Australia

* Correspondence: E-mail: smyth@mcmaster.ca; Tel: +1-905-525-9140 ext 23436

Abstract: The prefix array was apparently first computed and used algorithmically in 1984, playing

a pivotal role in an optimal algorithm to determine all the tandem repeats in a given (DNA or

protein) sequence. However, it is especially since the turn of the 21st century that applications of the

prefix array to fundamental sequencing problems have been recognized. An important aspect of this

expanding role has been the recognition that the prefix table and the border array are “equivalent”

data structures — that is, one can be computed from the other in linear time. Since the border array

in turn specifies all the periods of every prefix of the sequence, the prefix array thus turns out to be a

structure of central importance. In this paper we survey important applications of the prefix array —

in particular to approximate string matching under Hamming distance, as well as to the computation

of covers and enhanced covers — and show how, unlike border array algorithms, these are

extendible to sequences containing “don’t-care” or indeterminate letters such as {a, c} or {g, t}. This

extension leads to a surprising correspondence between prefix arrays and undirected graphs that

seems likely to be a fertile source of new insights in future. We conclude with an overview of

sequencing problems that the authors believe can be handled using prefix array technology.

Keywords: string; sequence; indeterminate string; prefix array; sequence analysis; algorithm

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/143482379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

262

AIMS Medical Science Volume 4, Issue 3, 261–273.

1. Introduction

DNA and protein sequences are special cases of what mathematicians call “words” and

computer scientists call “strings” — that is, sequences of “letters” drawn from some alphabet. Thus,

in the case of DNA, the alphabet consists of abbreviations {a, c, g, t} of the four nucleotides that

characterize all known life. In this paper, because we are discussing computer processing of these

objects, we will usually refer to them as strings.

For more than 60 years, biologists, mathematicians and computer scientists have studied

biological sequences in an effort to understand the patterns (or “regularities” [1,2]) in them that

somehow yield the astonishing complexity and diversity of life on earth. Due to the great length of

these sequences, the computer has become a necessary tool of “sequence analysis” and, as time goes

by, a collection of data structures has been developed to make string processing more efficient, thus

to permit ever more sophisticated calculations to be carried out. In this collection researchers will for

example recognize 1:

• the ubiquitous border array or failure function [3], famously used in the KMP

pattern-matching algorithm [4], and since then certainly in hundreds of string algorithms;

• the TRIE data structure for storing multiple strings [5];

• a very special TRIE, the suffix tree [6–8], with all its many variants and uses [9];

• the suffix array [10,11] that was known for 13 years before three O(n) time algorithms were

suddenly found to compute it [12–15], and that now, based on an even more efficient construction

algorithm [16] and greatly expanded applications [17], has largely replaced the suffix tree.

In this survey we focus on the prefix array, apparently discovered in 1984, ignored by

stringologists for 15 years, but recently found to be central to several interesting applications. As we

shall see, the prefix array is more or less “equivalent” to the border array, but with the advantage that

it can be used on sequences whose letters may be ambiguous (“indeterminate”) — for example, a

nucleotide {a, c} that may be either adenine or cytosine.

Section 2 provides the basic definitions required to explain the algorithms outlined in later

sections, and also discusses the correspondence between the border and prefix arrays, explaining the

advantage of the latter in algorithms on strings that contain indeterminate letters. Section 3 shows

how the prefix array can be applied to determining the Hamming distance between strings containing

indeterminate letters. In Section 4 we introduce the idea of a cover of a string, and again show the

relevance of the prefix array to computation of the cover, also again in indeterminate strings. Section

5 discusses ideas for future applications.

263

AIMS Medical Science Volume 4, Issue 3, 261–273.

2. Preliminaries

2.1 Basic Definitions

Given an integer n ≥ 0, a string x is a sequence of n letters drawn from a finite set Σ called the

alphabet, where we write σ = |Σ|. We treat x as an array x[1..n], and if n = 0, we write x = ε, the

empty string. Then n = |x| is said to be the length of x. Of course, in bioinformatics applications, we

routinely process strings whose length n is in the billions.

If x = uvw, then u (respectively, v, w) is said to be a prefix (respectively, substring, suffix) of x

— in each case proper if |u| < n (respectively, |v| < n, |w| < n). If u is a substring of x, then x is a su-

perstring of u. If u is both a proper prefix and a proper suffix of x, then u is said to be a border of x

— note that ε is a border of every nonempty string. If x = uk for some nonempty u and integer k > 1,

we say that x is a repetition or tandem repeat 2
— when k = 2, a square. If x is not a repetition, it is

said to be primitive. If x = uku’ for some nonempty u, integer k > 0, and u’ a proper prefix of u, then

x is said to have period |u|. The following results are well known (see for example [18]):

Observation 1

a) String x of length n has period p if and only if it has a border of length n-p.

b) Suppose x’ = x[1..β1] is a border of x and suppose β2 ∈ 0..β1 - 1 is an integer 3. Then x” =

x[1..β2] is a border of x’ if and only if x” is a border of x.

The border array βx = β[1..n] gives for every i ∈ 1..n the length βx[i] of the longest border of

x[1..i]; a well-known algorithm [3,4] computes βx in O(n) time. From Observation 1(b) it follows

that βx specifies all the borders of every nonempty prefix of x. See Figure 1.

So far we have made the implicit assumption that the letters of x are single elements of Σ, an

assumption that in many contexts may not be justified. For example, as mentioned earlier, it may be

that for some i, the letter x[i] is ambiguous, thus best represented by {a, c} (either a or c) or perhaps

{a, c, g, t} (any element of Σ). The next subsection discusses issues arising in such cases, in

particular the limitations of the border array, and introduces an “equivalent” data structure, the prefix

array, which is more widely applicable.

	 	

264

AIMS Medical Science Volume 4, Issue 3, 261–273.

	

Figure 1. A string x of length n = 10 on alphabet Σ = {c, g, a, t} with proper prefix

cga, proper substrings tc and gat, proper suffix atcg. Since x is not a repetition, it is

therefore primitive. ε, cg and cgatcg are the borders of x, that accordingly has

periods n, n−|cg| = 8 and n−|cgatcg| = 4.

2.2 Indeterminate String, Border Array, Prefix Array

A letter λ drawn from alphabet Σ = {f1, f2,..., fσ} is said to be regular if λ = fj for some j ∈ 1..σ;

otherwise, if λ = Σk, a subset of Σ of size k > 1, then λ is said to be indeterminate. We say that two

letters λ1 and λ2 match, written λ1 ≈ λ2, if and only if λ1 ∩ λ2 ≠ ∅; thus regular letters match if and

only if they are equal, while for indeterminate letters this is not true. In fact, “match” is in general

nontransitive, as the following example shows:

λ1 = f1, λ2 = f2, λ3 = {f1, f2} ⇒ λ1 λ3 λ2 but λ1 ≉ λ2.

Similarly, a string x on Σ is said to be regular if every letter x[i], 1 ≤ i ≤ n, is regular; otherwise

indeterminate. But note that a string — for example, x = {c, g}, a, t, {c, g} — may be indeterminate

but at the same time give rise only to transitive matches; such strings are called essentially regular.

Strings with letters restricted to either single elements fj of Σ or else Σ itself (called a hole or don’t

care letter) were introduced in [19] and have been intensively studied as partial words since 2003 by

Blanchet-Sadri (see [20]). In the 1980s Abrahamson [21] dealt with a form of indeterminacy (which

he called “generalized string matching”); in this century, beginning with [22], there has been

continued interest in indeterminate strings — for example, see [23,24].

In order to be useful for indeterminate strings, the border needs to be redefined in terms of

matching rather than equality: a proper prefix u of x is a border of x if and only if u u’, where u’

is a suffix of x. But then Observation 1(b) no longer holds, as Figure 2 shows, and so the border array

loses its usefulness as a compact representation of all the borders of every prefix of a string.

We now introduce the prefix array πx of a string x: for every i ∈ 1..n, πx[i] = u, where u is the

largest integer such that x[i..i + u − 1] x[1..u], thus also providing the critical information that, for

i + u ≤ n, x[i + u] ≉ x[u + 1]. Again see Figure 2.

265

AIMS Medical Science Volume 4, Issue 3, 261–273.

	

Figure 2. x’= {a, g} {a, t} (or {c, g} {c, t}) is a border of x; but neither x” = {a, g} nor {a,

t} is a border of x[3..4], and neither x” = {c, g} nor {c, t} is a border of x[1..2]. However

πx correctly identifies all the borders of every prefix of x: π[3..4] = 20 ⇒ x has border

only of length 2; π[3] > 0 and π[2[< 2 ⇒ x[1..3] has border only of length 1; π[2] > 0 ⇒

x[1..2] has a border of length 1.

The prefix array was apparently first used in Main and Lorentz’s algorithm [18,25] to compute

all the tandem repeats in a string, but only in this century was it identified as an important data

structure, the table des préfixes [26,27], where it was also for the first time observed that (on regular

strings) the border array and the prefix array could be computed from each other in O(n) time, and so

were in some sense “equivalent”. However, in [28] it was shown that, unlike the border array, the

prefix array retained its properties on indeterminate strings, on which it could be used for

pattern-matching 4 and other applications (see Figure 2). Also in [28] a compressed form of the

prefix array was introduced, making use of the fact that entries in πx are usually zero — πx[i] = 0 ⇔

x[i] ≉ x[1]. Linear-time algorithms for computing the border and prefix arrays of a string x, as well as

for converting from one array to the other, were described and analyzed in [28,29].

We note also [30] that the prefix array gives rise to a simple and efficient pattern-matching

algorithm: given a string x and a pattern u, compute the prefix array of w = u$x, where $ is a letter

not occurring in x. Then the positions i such that πw[i] = |u| identify the occurrences of u in x. (In

Section 3 we shall see a variant of this idea used to do pattern-matching with k mismatches.)

In [31] a linear-time algorithm was described that, given an integer array I = I[1..n], determined

in O(n) time whether I was a prefix array of some regular string, and, if so, found a lexicographically

least string x for which πx = I. This work was extended to indeterminate strings in [32]. In [33] the

feasible array y = y[1..n] was introduced, with y[1] = n and, for every i ∈ 2..n, i ≤ I + y[i] ≤ n + 1. It

was then shown that every feasible array is the prefix array of some (indeterminate) string, while of

course every prefix array must be feasible. Also in [33], a prefix graph with interesting properties

was defined corresponding to every feasible array; this has led to new theoretical insights [34,35].

Recently the range of application of the prefix array was extended even further with the

publication of a paper [36] describing a prefix array for parameterized strings — that is, strings on

two alphabets, a “variable” alphabet of the usual kind together with a special “fixed” alphabet of

266

AIMS Medical Science Volume 4, Issue 3, 261–273.

specified parameters. In a biological context, for example, we might fix parameters A = aca and B =

gtg, then search a string x for all occurrences of A * B, where * indicates any sequence of variables

drawn from {a, c, g, t}. The original application of parameterized strings was the identification of

cloned computer code: a program on a fixed set of operators (say +, −, *, /, =) together with arbitrary

variable names would match the same computer program with variable names changed.

The adaptability of the prefix array suggests looking at algorithms on regular strings that make

use of the border array, with a view to (1) using instead the prefix array in order to improve

performance; (2) extending the scope to indeterminate strings.

In the next two sections we survey recent work that implements this strategy.

3. Approximate Matching Under Hamming Distance

In DNA sequences it often happens that segments of the genome (substrings) are copied from

one area to another, but with transcription errors, such as a change from a to t (substitution) or

deletion/insertion of one or more letters. For this reason it becomes important to do approximate

string matching that is tolerant of these errors. In this section, drawing on [37], we outline

applications of the prefix array to this problem in the case that the errors are substitutions.

The Hamming distance H(x, w) between strings x and w, both of length n, both perhaps

containing indeterminate letters, is the number of positions i ∈ 1..n such that x[i] ≈ w[i]. Given a

nonnegative integer k < n, we write x	 ≡	 w if H(x, w) ≤ k. Then the k-prefix table of x under

Hamming distance can be defined as follows: for every i ∈ 1..n, [i] = u is the length of the longest

prefix of x such that x[i..i + u − 1] ≡	 x[1 ..u].

In [37] a very simple algorithm kHP is described that for regular strings computes in

expected time O(kn) using only constant additional space. kHP is very fast in practice, based on the

observation that the expected number of letter comparisons required at each position is less than 3.

The algorithm also executes very well on indeterminate strings, though with an unspecified time

bound. In addition the authors describe a much more complex algorithm, kHP*, that uses global data

structures and techniques to compute in guaranteed O(kn) worst case time; however, kHP* is

much slower in practice than kHP and does not extend to indeterminate strings. kHP (respectively,

kHP*) is then used in two applications important in bioinformatics:

(1) Given a pattern u = u[1..m], a text x = x[1..n], and an integer threshold k < m,

algorithm kHPT (respectively, kHPT*) finds all the substrings u’ in x such that H(u, u’) ≤ k. The first

step of the algorithm forms z = xu and then computes the regular prefix table 	of z. According to

the tests conducted in [37], kHPT is an order of magnitude faster in practice than all other known

algorithms, including that proposed in [21].

(2) Given a set of r strings and an error rate ε, algorithm kHOverlap finds, over all pairs

of strings, their suffix/prefix matches (approximate overlaps) of maximum length u that are within

Hamming distance k = ε . This procedure depends upon the efficient conversion of to a

267

AIMS Medical Science Volume 4, Issue 3, 261–273.

k-approximate border array .

Also in [37] the edit distance E(x, w) between two strings is considered: the minimum number

of edit operations (insert, delete, substitute) required to transform x into w, where now we write x

	 w if E(x, w) < k. Then the k-prefix table under edit distance is analogously defined. An

efficient algorithm kEP is described, using the dynamic programming matrix for x and w, to compute

, but no algorithms kEPT and kEOverlap, analogous to kHPT and kHOverlap, are proposed.

Of course Hamming distance is of interest in computational biology, but efficient algorithms

using edit distance are of much greater importance: this is due to the frequent occurrence of insertion

and deletion errors in the transcription of one section of the genome to another that make Hamming

distance unhelpful. For example, H(x, w) = 5 for x = acgta, w = cgtag, while E(x, w) = 2 (delete x[1]

= a, insert x[5] = g). Thus, as discussed in Section 5, the further application of is a priority.

4. Computing Covers of Strings

As noted in Observation 1, the borders (equivalently, the periods) of a string can provide an

economical way of describing a string in certain cases. For example, the string x = cgatcgatcg shown

in Figure 1 could be described by the triple (p, e, t) = (4, 2, 2), telling us that x has period p = 4,

exponent e = 2, and tail of length t = 2; that is, x = (cgat)
2
(cg). Unfortunately, most strings cannot be

described so simply; for example, x’ = cagtcgatcg, with just two letters interchanged, has only the

empty border.

Thus it is of interest to identify other patterns in strings that might more often provide a basis

for a short space-saving description. This requirement is of particular interest when the strings are

both many and very long, as occurs in DNA sequence analysis.

In the early 1990s Apostolico and his co-authors [38,39] took a first step by introducing the

cover of a string x; that is, a nonempty proper border u of x such that every position i in x falls

within an occurrence of u. They called |u| the quasiperiod of x. For example, u = cgatcg is a cover of

x = cgatcgatcg, which therefore has quasiperiod 6. Several papers were written to compute the

covers of a given string x[1..n] [40–42], culminating in an algorithm [43] that, using the border array

as a starting point, in linear time computed the cover array; that is, an array γ[1..n] that, analogous to

the border array, specifies all the quasiperiods of every prefix of x.

Several efforts have been made to identify a more useful notion of cover. In [44] the seed of a

string x was introduced — that is, the cover of a superstring of x, thus not constrained to be a border

— then extended in [45] to an approximate seed. Ref. [46] introduced the idea of a k-cover of x —

that is, a minimum cardinality set of substrings of length k that together cover x —, later shown to be

NP-hard to compute [47].

Some years later it was shown that a “relaxed” k-cover could be approximated in polynomial

time [48]. Most recently a variant of the suffix tree, a highly space-consuming data structure, was

used [49,50] to compute α-partial covers and α-partial seeds of x, where α is a preselected parameter

268

AIMS Medical Science Volume 4, Issue 3, 261–273.

that specifies the minimum number of positions in x to be covered. Collectively, these methods,

while interesting, were often expensive in their space and/or time requirements and did not provide a

sufficiently compact representation for most strings.

In [51] the minimum enhanced cover of x (MECx) was proposed — that is, a border of x that is

the shortest among all the borders that cover a maximum number of positions in x. Also proposed

were relaxed variants of MECx that did not require the cover to be a border of x, but only a proper

prefix. However, like the cover array algorithm, these methods depended strongly on an initial border

array computation. Since, as we have seen, the prefix array has a flexibility that the border array does

not, the possibility arises that these calculations can be handled using the prefix array instead, thus

opening the way for the extension of covering algorithms to indeterminate strings.

 It turns out that for indeterminate strings there are two natural analogues of the idea of “cover”:

Definition 1. A string x = x[1..n] is said to have a sliding cover of length κ if and only if

(a) x has a suffix v of length |v| = κ; and

(b) x has a proper prefix u, |u| ≥ |x|−κ, with suffix v’	 	v; and

(c) either u = v or else u has a cover of length κ.

A sliding cover requires that adjacent or overlapping substrings of x match, but the

nontransitivity of matching leaves open the possibility that nonadjacent elements of the cover do not

match. For example,

x = {a, g} c {a, c} {a, c} ca (1)

has a sliding cover of length κ = 2 because {a, g} c 	{a, c} {a, c} ca, even though {a, g} c ≉

ca.

However, note that the very concept of “regularity of a string” in some sense breaks down

when we consider a sliding cover: now the “cover” need not actually “match” the area it is covering.

In fact, a string can be a sliding cover of an indeterminate string x without being a substring of x at

all! This motivates the idea of a rooted cover of length κ, where every covering substring is required

to match, not the preceding entry in the cover, but rather the prefix of x of length κ. A rooted cover is

defined simply by changing “suffix” to “prefix” in part (b) of Definition 1. The example string (1) has

no rooted cover, but the string x = {a, g} c {a, c} {a, c} ac has both a sliding cover and a rooted

cover of length 2. Note that, while a rooted cover must occur as a prefix of x, it need not occur

elsewhere in the string.

The first computation of the covers of an indeterminate string x, in [52], begins by computing

the “deterministic border array” of x as proposed in [22], then applies the Aho-Corasick automaton

to determine whether each border can be a (rooted) cover [53]. Their algorithm requires O(n) time on

average to compute the largest cover of x itself; it is then iterated to compute the rooted cover array

of x in worst case time O(n2).

269

AIMS Medical Science Volume 4, Issue 3, 261–273.

Figure 3. The border and cover arrays of x = agaagaga: even though the border array

has many non-zero entries, the cover array is sparse.

Ref. [54] avoids any border computation altogether. For regular strings x the prefix array is

computed in O(n) worst-case time, then applied directly to compute the cover array, also in O(n)

time, and significantly faster in practice than the border-based method proposed in [43]. For

indeterminate strings x the same general approach is followed to compute the rooted cover array, still

requiring O(n2) time in the worst case, but now only O(n) time on average.

It is encouraging that the prefix array can be applied to efficient computation of the rooted cover

array for indeterminate strings, but still, as we have seen, the cover array has limited utility as an

economical means of describing the patterns in a string. Perhaps more interesting is the use of the

prefix table to extend the computation of the minimum enhanced cover MECx to indeterminate

strings, as proposed in [55]. In fact, this paper shows how the prefix array can be used, instead of the

border array, to compute MECx and its variants with identical worst-case asymptotic complexity but

with much lower space requirements and, according to tests, significantly faster in practice. Then, of

course, the prefix array is employed to extend these results in a straightforward fashion, based on the

rooted cover, to indeterminate strings. It turns out, surprisingly, that, for indeterminate strings as for

regular strings, MECx and its variants can be computed in O(n) expected time.

Overall we have seen in this section that the prefix array can provide significant benefits, both in

terms of efficiency and extended applicability, to methods that seek compressed representations of

strings.

5. Open Problems

Even though, as we have seen, the prefix array has been used for more to be explored. Here we

briefly note a few possible future directions of research:

i. Due to the importance of edit distance between strings in biological applications, it

would seem to be of great interest to investigate algorithms that, given string u and

integer k > 0, use the prefix array to find all substrings u’ in x such that the edit distance

270

AIMS Medical Science Volume 4, Issue 3, 261–273.

E(u, u’) ≤ k. The results for Hamming distance using look very promising, but

nothing is known about the extension to edit distance and .

ii. It turned out that the k-cover approach to compact representation of a string required an

NP-hard computation, but are there other approaches to this problem that use multiple

substrings to represent the given string x without this computational drawback?

iii. As we have seen, for regular strings the border array and the prefix array are equivalent

in the sense that one can be computed from the other in linear time. Moreover, in at least

some applications, making use of the prefix array rather than the border array provides

benefit both in terms of algorithmic efficiency for regular strings and extendibility to

indeterminate strings. What other such applications are there?

iv. More generally, in view of the prefix graph introduced in [33], what tools of graph

theory can be brought to bear on problems arising in sequence analysis?

Notes:

1 Technical terminology relevant to this survey is defined in Section 2; for other terms mentioned

here, see for example [18,26,27].
2 Nontandem repeats, also of great interest in bioinformatics applications, take the form uvu for

some nonempty v ≠ u. So far the prefix array has not found application in the computation of

nontandem repeats.
3 By i ∈ i1..i2, all variables integers, we mean i1 ≤ i ≤ i2.
4 That is, finding all matches for a given (regular or indeterminate) string in another given (regular

or indeterminate) string x, |u| < |x|.

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of

Canada.

References

1. Iliopoulos CS, Mouchard L (1999) Quasiperiodicity and string covering. Theoret Comput Sci 218:

205-216.

2. Smyth WF (2013) Computing regularities in strings: a survey. Europ J Combinatorics 34: 3-14.

3. Aho AV, Hopcroft JE (1974) The design and analysis of computer algorithms. Pearson

Education India.

4. Knuth DE, Morris, Jr JH, Pratt VR (1977) Fast pattern matching in strings. SIAM J Computing 6:

271

AIMS Medical Science Volume 4, Issue 3, 261–273.

323-350.

5. Fredkin E (1960) Trie memory. Commun Assoc Comput Mach 3: 490-499.

6. Weiner P (1973) Linear pattern matching algorithms. In: Switching and Automata Theory, 1973,

SWAT'08. IEEE Conference Record of 14th Annual Symposium on. IEEE: 1-11.

7. McCreight EM (1976) A space-economical suffix tree construction algorithm. JACM 23:

262-272.

8. Farach M (1997) Optimal su x tree construction with large alphabets. In: Proceedings of the 38th

Annual Symposium on the Foundations of Computer Science, FOCS: 97.

9. Apostolico A (1985) The myriad virtues of subword trees. In: Combinatorial algorithms on

words. Springer Berlin Heidelberg: 85-96.

10. Manber U, Myers GW (1990) Suffix arrays: a new method for on-line string searches, Proc. First

Annual ACM-SIAM Symp. Discrete Algs: 319-327.

11. Manber U, Myers G (1993) Suffix arrays: a new method for on-line string searches. SIAM J

Comput 22: 935-948.

12. Kärkkäinen J, Sanders P (2003) Simple linear work suffix array construction. In: International

Colloquium on Automata, Languages, and Programming. Springer Berlin Heidelberg: 943-955.

13. Ko P, Aluru S (2003) Space efficient linear time construction of suffix arrays. In: Annual

Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg: 200-210.

14. Kim DK, Sim JS, Park H, et al. (2003) Linear-time construction of suffix arrays. In: Annual

Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg: 186-199.

15. Puglisi SJ, Smyth WF, Turpin AH (2007) A taxonomy of suffix array construction algorithms.

acm Computing Surveys (CSUR) 39: 4.

16. Nong G, Zhang S, Chan WH (2009) Linear time suffix array construction using D-critical

substrings. In: Annual Symposium on Combinatorial Pattern Matching. Springer Berlin

Heidelberg: 54-67.

17. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays.

J. Discrete Algorithms 2: 53-86.

18. Smyth B (2003) Computing patterns in strings. Pearson Education.

19. Fischer MJ, Paterson MS (1974) String-matching and other products (No. MAC-TM-41).

Massachusetts Inst. of Technology.

20. Blanchet-Sadri F (2007) Algorithmic combinatorics on partial words. CRC Press.

21. Abrahamson K (1987) Generalized string matching. SIAM J Comput 16:1039-1051.

22. Holub J, Smyth WF (2003) Algorithms on indeterminate strings.	36-45.

23. Holub J, Smyth W F, Wang S (2008) Fast pattern-matching on indeterminate strings. J Discrete

Algorithms 6: 37-50.

24. Smyth WF, Wang S (2009) A new approach to the periodicity lemma on strings with holes.

Theoret Comput Sci 410: 4295-4302.

25. Main MG, Lorentz RJ (1984) An O (n log n) algorithm for finding all repetitions in a string. J

272

AIMS Medical Science Volume 4, Issue 3, 261–273.

Algorithms 5: 422-432.

26. Crochemore M, Hancart C, Lecroq T (2001) Algorithmique du texte. Paris: Vuiber: 347.

27. Crochemore M, Hancart C, Lecroq T (2007) Algorithms on strings. Cambridge University Press:

383.

28. Smyth WF, Wang S (2008) New perspectives on the prefix array. In: International Symposium

on String Processing and Information Retrieval. Springer Berlin Heidelberg: 133-143.

29. Bland W, Kucherov G, Smyth WF (2013) Prefix table construction and conversion. In:

International Workshop on Combinatorial Algorithms. Springer Berlin Heidelberg: 41-53.

30. Gusfield D (1997) Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge university press.

31. Clément J, Crochemore M, Rindone G (2009) Reverse engineering prefix tables. In: 26th

International Symposium on Theoretical Aspects of Computer Science STACS 2009. IBFI

Schloss Dagstuhl: 289-300.

32. Alatabbi A, Rahman MS, Smyth WF (2015) Inferring an indeterminate string from a prefix

graph. J Discrete Algorithms 32: 6-13.

33. Christodoulakis M, Ryan PJ, Smyth WF, et al. (2015) Indeterminate strings, prefix arrays &

undirected graphs. Theoret Comput Sci 600: 34-48.

34. Blanchet-Sadri F, Bodnar M, De Winkle B (2017) New bounds and extended relations between

prefix arrays, border arrays, undirected graphs, and indeterminate strings. Theory of Computing

Systems 60: 473-497.

35. Helling J, Ryan PJ, Smyth WF, et al. (2017) Constructing an indeterminate string from its

associated graph. Theoret Comput Sci. Available from:

http://www.sciencedirect.com/science/article/pii/S0304397517301494

36. Beal R, Adjeroh DA, Smyth WF (2017) A prefix array for parameterized strings. J Discrete

Algorithms 42: 23-34.

37. Barton C, Iliopoulos CS, Pissis SP, et al. (2014) Fast and simple computations using prefix tables

under hamming and edit distance. In: International Workshop on Combinatorial Algorithms.

Springer International Publishing: 49-61.

38. Apostolico A, Ehrenfeucht A (1993) Efficient detection of quasiperiodicities in strings. Theoret

Comput Sci 119: 247-265.

39. Apostolico A, Farach M, Iliopoulos CS (1991) Optimal superprimitivity testing for strings.

Inform Process Lett 39: 17-20.

40. Breslauer D (1992) An on-line string superprimitivity test. Inform Proces. Lett 44: 345-347.

41. Moore D, Smyth WF (1994) An optimal algorithm to compute all the covers of a string. Inform

Process Lett 50: 239-246.

42. Moore D, Smyth WF (1995) A correction to “An optimal algorithm to compute all the covers of

a string”. Inform Process Lett 54: 101-103.

43. Li Y, Smyth WF (2002) Computing the cover array in linear time. Algorithmica 32: 95-106.

273

AIMS Medical Science Volume 4, Issue 3, 261–273.

44. Iliopoulos CS, Moore DWG, Park K (1996) Covering a string. Algorithmica 16: 288-297.

45. Christodoulakis M, Iliopoulos CS, Park K, et al. (2005) Approximate Seeds of Strings. J

Automata Languages & Combinatorics 10: 609-626.

46. Iliopoulos CS, Smyth WF (1998) On-line algorithms for k-covering. Proc. 9th Australasian

Workshop on Combinatorial Algs: 107-116.

47. Cole R, Ilopoulos CS, Mohamed M, et al. (2005) The complexity of the minimum k-cover

problem. J Automata Languages & Combinatorics 10: 641-653.

48. Iliopoulos CS, Mohamed M, Smyth WF (2011) New complexity results for the k-covers

problem. Inform Sci 181: 2571-2575.

49. Kociumaka T, Pissis SP, Radoszewski J, et al. (2015) Fast algorithm for partial covers in words.

Algorithmica 73: 217-233.

50. Kociumaka T, Pissis S P, Radoszewski J, et al. (2016) Efficient algorithms for shortest partial

seeds in words. Theoret Comput Sci Available from:

http://www.sciencedirect.com/science/article/pii/S0304397516307034

51. Flouri T, Iliopoulos CS, Kociumaka T, et al. (2013) Enhanced string covering. Theoret Comput

Sci 506: 102-114.

52. Bari MF, Rahman MS, Shahriyar R (2009) Finding All Covers of an Indeterminate String in O

(n) Time on Average. In: Stringology: 263-271.

53. Aho AV, Corasick MJ (1975) Efficient string matching: an aid to bibliographic search. Commun

Assoc Comput Mach 18: 333-340.

54. Alatabbi A, Rahman MS, Smyth WF (2016) Computing covers using prefix tables. Discrete Appl

Math 212: 2-9.

55. Alatabbi A, Islam AS, Rahman MS, et al. (2016) Enhanced covers of regular & indeterminate

strings using prefix tables. J Automata Languages & Combinatorics: 41-46.

© 2017 Frantisek Franek et al., licensee AIMS Press. This is an

open access article distributed under the terms of the Creative

Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

	

