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Abstract
This paper presents a specific process model for Knowl-

edge Discovery in Databases (KDD) projects aiming at
availability improvement in manufacturing. For this pur-
pose, Overall Equipment Efficiency (OEE) is analyzed and
used, since it is an approved approach to monitor and
improve the degree of availability in manufacturing. To
define the specific process model, we use the generic CRISP-
DM reference model and conduct a mapping for availability
improvement. We prove the applicability of our model in the
context of a specific KDD project in a large enterprise in
the manufacturing industry.

1. Introduction

Manufacturing companies strive for the detection and
reduction of loss in their productions to improve their ef-
ficiency and competitiveness. One approved approach is to
calculate the Overall Equipment Effectiveness (OEE). OEE
is a Key Performance Indicator (KPI) that represents the
degree of effectiveness of a production and compasses the
three factors performance, quality and availability [1], [2].

Information Technology enables new possibilities to
improve OEE. Technical developments and the increasing
availability of manufacturing data resulting from automation
and digitization not only facilitate an easier, automatized
and more accurate calculation but also allow for a proactive
improvement of OEE [3], [4]. Particularly, the field of
Knowledge Discovery in Databases (KDD) gained relevance
in using manufacturing data for knowledge generation, e.g.,
predicting the failure of a machine and increasing availabil-
ity by timely maintenance.

Cross Industry Standard Process for Data Mining
(CRISP-DM) is the de facto standard to realize such KDD
projects in industry [5]. It is characterized by its general
applicability in many domains. However, this generality
leads to costly mappings for specific domains.

According to [6], a mapping of CRISP-DM to specific
domains is required and can be done either for a single
project, i.e., mapping for the present, or for a set of projects,
i.e., mapping for the future. In this paper, we propose a
mapping for the future in the manufacturing domain. In
other words we provide the answer to following question:
How to discover knowledge for improving availability in the
manufacturing domain?

For this purpose, the paper delivers a specific process
model for KDD projects in the manufacturing domain using
CRISP-DM. The proposed process model provides a bridge
to the gap in-between the generic CRISP-DM and its specific
deployments in the manufacturing domain. In other words,
the proposed model contains a set of specific, efficient, and
reusable processes required for conducting KDD projects in
the mentioned domain. To assess its efficiency and reusabil-
ity, we apply the process model to a specific KDD project
and analyze the efforts and results.

The paper is organized as follows. After the introduction,
Section 2 provides an overview of KDD by depicting the
reference model CRISP-DM and discussing KDD applica-
tions in the manufacturing domain. Section 3 presents a
specific process model for availability improvement based
on CRISP-DM by outlining the modeling approach and
describing each phase in detail. In order to assess the
applicability of the proposed process model, it is applied
to a KDD project in manufacturing domain in Section 4.
Section 5 discusses the related work and Section 6 provides
the conclusion and future work.

2. KDD

As first defined by Fayyad et al., KDD is the nontrivial
process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data [7]. The KDD
process is highly iterative and interactive and contains dif-
ferent phases depending on the reference model used. In
this section we provide an overview of KDD by depicting
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the approved reference model CRISP-DM. We then discuss
OEE as KPI and classify KDD applications of the manu-
facturing domain into the three OEE factors describing their
overarching goal.

2.1. CRISP-DM

Chapman et al. define CRISP-DM as generic process
model for KDD projects in industry [6]. Today, CRISP-
DM is the de facto standard and utilized by the majority
of KDD experts [5]. Figure 1 provides an overview of the
CRISP-DM process which contains six phases. Each phase
includes generic tasks, which require specific mappings for
different domains. A mapping for the manufacturing domain
is presented in Section 3.

The CRISP-DM process is iterative with non-strictly
defined loops between phases [8]. This is due to the variety
of different outcomes of each phase that determine the
next step. The overall cyclical nature of a KDD project
results from gained experiences that can be applied in future
projects. Below, the six phases are described generically [6]:

The initial Business Understanding phase focuses on
understanding the project objectives, defining a data mining
problem and a preliminary plan to solve the problem.

In the phase Data Understanding a big picture of avail-
able and useful data is created. Data quality problems are
identified, first insights into the data are discovered and
interesting subsets are detected to form hypotheses regarding
hidden information.

Figure 1. CRISP-DM Lifecycle [6]

The Data Preparation phase covers all activities needed
to construct the final dataset from initial raw data. Data

preparation tasks are likely to be performed multiple times
and not in any prescribed order. Tasks include table, record
and attribute selection, as well as transformation and clean-
ing of data for modeling tools.

In the phase Modeling, various modeling techniques are
selected and applied, and their parameters are calibrated to
optimal values. Typically, there are several techniques for
the same data mining problem type. Some techniques have
specific requirements on the form of data. Therefore, going
back to the Data Preparation phase is often necessary.

Before the Evaluation phase, a model was built that
appears to have high quality from a data analysis perspec-
tive. To assure that the model properly achieves the project
objectives, it is important to thoroughly evaluate it and
review the steps executed during creation, before proceeding
to the final deployment of the model.

Creation of a model is generally not the end of the
project, because the solution has to be deployed. Even if
the purpose of the model is to increase knowledge based
on data, the knowledge gained will need to be organized
and presented in a way that it can be used. This often
involves applying live models within an organization’s de-
cision making processes. These activities are done in the
phase Deployment.

2.2. KDD in Manufacturing

Automation and digitization have found their ways into
manufacturing. As stated in the 2016 Global Industry 4.0
Survey from PricewaterhouseCoopers (PwC), digitization
in manufacturing companies has reached 33 % in 2016
and is expected to be doubled by 2020 [9]. With these
technological achievements high volumes of structured and
unstructured data is created, which can be used to gen-
erate knowledge and improve OEE in the long term. To
be successful in this manner, two prerequisites have to be
met. First, the effective questions from a manufacturing
perspective to improve OEE have to be defined. Second,
relevant data to answer these questions has to be identified.
Therefore, we analyze the calculation of OEE determined
as proposed by [10]:

OEE = Availability · Performance ·Quality (1)

Further details for the calculation are provided by [1] and
[11]. Availability is the percentage of scheduled time that a
machine is available to operate and is reduced by machine
failures, unplanned maintenance, and set up. Performance
is the speed at which the machine runs as a percentage
of its designed speed and is reduced by microstops and
reduced speed. Quality represents the good units produced
as a percentage of the total units produced. Waste and
rework, i.e., products that do not or did not meet defined
specifications, reduce quality.
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There is a set of concepts which are related to OEE. We
classify them to the three OEE factors:

• Availability improvement

– Predictive Maintenance [12], [13], [14]
– Prognostics and Health Management [13],

[15]

• Performance improvement

– Predictive Production Planning [16]
– Predictive Manufacturing Control [17]

• Quality improvement

– Predictive Quality Control [18]
– Control Chart Pattern Recognition [19], [20]

These concepts provide theoretical foundations and re-
quire additional specifications for direct applicability. For
this purpose, we propose a specified process model focusing
on improving availability, since the costs for keeping a high
availability represent 15 – 60 % of total costs in manufac-
turing [21]. Additionally, availability can be quantified in an
accurate and reasonable manner. In focusing on one OEE
factor, i.e., availability, we can define a specific, applicable
and reusable mapping of CRISP-DM for the manufacturing
domain.

3. Mapping of CRISP-DM for Increasing
Availability

In this section we provide a specific KDD process model
for availability improvement based on CRISP-DM. The
basic idea is outlined and followed by a detailed description
of each of the six phases including their specific tasks.

3.1. Basic Idea

Chapman et al. recommend a deductive approach for
mapping CRISP-DM [6]. However, an efficient mapping
requires consideration of specific requirements of a domain.
Therefore, we conducted several KDD projects in the man-
ufacturing domain and studied specific models from other
domains as proposed by [8], [22]. This approach was induc-
tive and complements the recommended deductive approach.
As a result, we derive a holistic mapping of CRISP-DM
including a specific modeling of tasks. For this purpose,
following options exist:

1) an existing task is used without changes;
2) an existing task is omitted due to missing relevance;
3) an existing task is specified to support availability

improvement;
4) a new task is added to a phase.

We use Business Process Model and Notation 2.0
(BPMN 2.0) to visualize the process models, since it is
the de facto standard for business process modeling and
prevalently used in research and industry [23], [24]. Figure
2 depicts the generic CRISP-DM process model.

XOR operators are used to model feedback loops be-
tween phases and tasks which are necessary to enable an
iterative approach. It must be noted that the BPMN 2.0
models provide an overview of each phase. The conditions
of jumping from one phase or task into another are very
complex and versatile. In sake of clarity, we refrain from
detailing these conditions in all process models.

Project 
Start

Business 
Understanding

Data 
Understanding

Data 
Preparation

ModelingEvaluationDeployment

Project 
End

Figure 2. Process Model

The model depicted by Figure 2 has six collapsed sub-
processes. We explain them by providing an expanded view
for each sub-process in the following.

3.2. Business Understanding

Figure 3 presents the tasks required in the Business Un-
derstanding phase, i.e., Describe Production Environment,
Define Project Goal, Define Data Mining Goal, Perform
Project Management.

Highly automated machines and complex manufacturing
processes are key features of today’s productions. A basic
understanding of these processes and machines as well as
sensors and the maintenance strategy is a prerequisite for
applying KDD methods to improve availability. For this
purpose, we define the new task Describe Production En-
vironment.

The task Define Project Goal answers the question, what
the outcome of the project is and thus should be related to
availability improvement. Quantifying the goal in terms of
availability improvement helps evaluating it at the end of
the project.

To break down the project goal and define the answer
for the question of how availability can be improved, a
detailed data mining goal is defined in task Define Data
Mining Goal. Basically, two options exist to answer the
question. We can find the root cause for failures and thus
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Business Understanding

Describe 
Production

Environment

Define
Project Goal

Define Data
Mining Goal

Perform
Project

Management

Need for
Business 

Understanding 

Business
Understanding

completed

Project 
Goal

Data Mining 
Goal

Project Plan

Production 
Environment Report

Project Charter

Figure 3. Phase Business Understanding

enable eliminating them or we can predict failures to prevent
unplanned maintenance. Additionally, the used data and
success metrics are defined, serving a specification for the
model produced in the Modeling phase.

We specify the task Perform Project Management, in
which a project plan and a project charter are created and
activities such as staffing, risk assessment, project planning
or calculation are performed [6].

3.3. Data Understanding

In the Data Understanding phase a big picture of avail-
able and relevant data sources in the manufacturing envi-
ronment is created. To do so, four tasks are performed:
Identify Data Sources, Describe Data, Explore Data, Verify
Data Quality. These tasks, depicted in Figure 4, are directly
transferred from CRISP-DM and specified in their content.

To increase availability with KDD, two types of data are
necessary and to be identified in task Identify Data Sources:

1) historical data about machine failures, which are
often recorded in MES (Manufacturing Execution
Systems) and

2) data that indicate these failures or describe the
condition of machines, such as sensor data.

With this data collected, it is possible to either find the root
cause of failures or predict failures in the future resulting in

Data Understanding

Identify Data 
Sources

Describe 
Data

Explore
Data

Verify 
Data Quality

Available
DataNeed for

Data
Understanding

Data
Understanding

Completed

Data 
Catalogue

Exploring
Report

Quality
Report

Project 
Goal

Data Mining
Goal

Relevant
Data

Figure 4. Phase Data Understanding

less failures and unplanned maintenance and thus increasing
availability.

The task Describe Data serves a concise overview and
first understanding of the identified data sources and col-
lected data. Especially describing sensor data with measure-
ment units and value ranges create a first understanding.

In exploring the data in task Explore Data with visual-
ization, clustering, correlation and other methods, the data
structure and strong relations between machine failures and
indicator variables are identified.

The quality of the discovered knowledge is strongly
related to data quality and thus a high data quality is
important. To assess data quality in task Verify Data Quality,
we use the four criteria as proposed by [25], i.e., accuracy,
timeliness, consistency, and completeness. Emphasis has to
be put on completeness due to the occurrence of sensor data
and WSN (Wireless Sensor Networks) in manufacturing and
thus issues in data communication and dropped readings
[26].

3.4. Data Preparation

Data Preparation is usually the most time intensive phase
in KDD. Particularly, in machine-related projects, where
sensor data and thus time series data are frequently used,
it is highly challenging to prepare data for modeling. To
facilitate data preparation, we define a certain format the
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prepared data has to meet, which is depicted in Table 1. In
order to bring the data into this target format, four tasks
have to be conducted which we adopt from CRISP-DM
and present in Figure 5: Select Data, Clean Data, Construct
Features and Create Feature Set.

Data Preparation

Select
Data

Clean
Data

Create 
Features

Create 
Feature Set

Relevant
DataNeed for

Data 
Preparation

Data 
Preparation
Completed

Data Mining Goal

Selected
Data

Cleaned
Data

Features

Feature
Set

Preparation
Report

Figure 5. Phase Data Preparation

Selecting the relevant variables of the data sources in
task Select Data is crucial to the quality of the model pro-
duced in the Modeling phase. As stated in Section 3.3, data
about machine failures are as important as data, that describe
the condition of machines and indicate those failures. To
select the best indicators and machine condition variables,
several techniques [27], [28], e.g., Pearson, Kendall and
Spearman Correlation, Fisher Score, and Chi-Square-Test,
can be applied in different situations.

In task Clean Data, the identified data quality issues are
handled. Challenging are missing sensor values and the oc-
currence of sensor noise. To eliminate noise and reconstruct
missing values, regression models and probabilistic models
as well as outlier detection methods are applied [26].

To build a high quality model for predicting failures, so-
called features are needed. Those features are derived from
existing variables such as sensor values, machine informa-
tion and component replacement records. Such a derived
feature is the age of a component calculated based on its
last replacement. The goal is to produce the best possible
representation of a machine and its components at particular
points in time. This allows an algorithm to better identify

emerging patterns in the data. Tumbling Window, Sliding
Window and Hopping Window are methods for data stream
management [29] and can create features for predicting
machine failures.

Table 1. Target Format for the Feature Set

Time Stamp Input Variables Target Variable
t x1 x2 ... xn y
t1 x1,1 x2,1 ... xn,1 y1
t2 x1,2 x2,2 ... xn,2 y2
... ... ... ... ... ...
tm x1,m x2,m ... xn,m ym

For most modeling techniques, one consistent table
called feature set is used for training (see Table 1). All se-
lected variables and constructed features are merged consid-
ering time stamps and other dependencies. The construction
of a target variable, which can contain information whether
the machine had a failure at a particular point in time, is
done separately. With a predictive model we then try to
predict this target variable for a new set of features.

3.5. Modeling

Modeling consists of four tasks depicted in Figure 6.
Selecting the suitable modeling technique in task Select
Modeling Technique and choosing appropriate metrics for
evaluating the model’s quality in task Assess Model can be
specified in our context.

Modeling

Select 

Modeling 

Technique

Generate 

Test Design

Build 

Model

Assess 

Model

Need for

Modeling

Modeling

Completed
Model

Report

Decision

Tree

Feature
Set

Test
Data

Training
Data

Trained
Model

Figure 6. Phase Modeling
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There are mainly four modeling techniques that can be
used to either find the root cause of machine failures or
predicting them. We studied various data mining packages,
tools and functions compiled in [30] and data mining tech-
niques presented in [31], [32], [33] in order to define a
process of how to select the best technique in our specific
context. Figure 7 shows the resulting decision tree, that helps
selecting the modeling technique suitable with a defined data
mining goal related to availability improvement.

Modeling tech-

nique required

What is the Data 

Mining Goal?

Find root 

cause 

for failures

Select 

Descriptive 

Analytics

Select 

Predictive 

AnalyticsPredict 

failures

How to find the 

root cause?

How to predict 

failures?

Select 

Cluster 

Analysis

Find similar and 

dissimilar data

Select 

Association 

Analysis

Find rules 

for failures

Select 

Classification

Analysis

Select 

Regression

Analysis

Predict exact 

time of failures

(Remaining Useful Life)

Modeling tech-

nique identified

Predict, if failures occurs 

in particular time span

Figure 7. Decision Tree for Selecting a Modeling Technique

Descriptive analytics including clustering and associa-
tion analysis are techniques primarily used to find the root
cause of machine failures. Predictive analytics including
classification and regression analysis are techniques used to
predict machine failures.

Generating a test design in task Generate Test Design
is the activity of splitting the feature set into training and
test data. To build a model in task Build Model, the training
data is used.

To assess the model in task Assess Model, it is applied
to the test data to verify if its outcomes, e.g., predictions,
are correct. Different metrics can be applied to assess model
quality. It is important to pick the right metrics dependent on
the problem to be solved. When predicting a machine failure
with predictive analytics techniques, a wrong prediction of a
machine failure is producing costs resulting from unneeded
maintenance or needed maintenance not executed. On the
other hand, a correct prediction can save costs resulting
from timely maintenance – a failure that would’ve been
occurred does not occur. To assess a model predicting ma-
chine failures with classification analysis, the metric recall
in combination with precision should be used. In regression
analysis, the weighted sum of prediction error is to be
minimized, in order to get a good quality model [34].

3.6. Evaluation

In agile project management methods, the Evaluation
phase can be compared with the retrospective, in traditional
project management with the lessons learnt [35], [36]. In
four tasks, depicted in Figure 8, results are evaluated, the
project is reviewed, next steps are determined and a project
report is produced.

We do not specify the tasks in this phase, since they
remain generic in every domain. However, we transfer the
task Produce Project Report from the Deployment phase
to the Evaluation phase, since evaluating the project and
writing down the findings in parallel saves time to create
the project report. Apart from that, deployment is often
conducted separately and thus all the results should be well
documented.

Evaluation

Evaluate 
Results

Review
Project

Determine
Next Steps

Produce
Project 
Report

Approved 
Models

Need for
Evaluation

Evaluation
Completed

Review 
Report

Next Step 
Report

Project 
Report

Assessment of 
Goal Achievment

Data Mining
Goal

Project 
Goal

Figure 8. Phase Evaluation

3.7. Deployment

In CRISP-DM, the deployment of a model is only
planned and not conducted. Hence, the results and outputs
gained in the KDD process consisting of built models and
findings are not operationalized. In order to ensure applica-
bility, we concretize activities to be conducted in different
steps of deployment particularly in respect of availability
improvement. The four specified tasks of the Modeling
phase are presented in Figure 9.
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Deployment
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Deployment
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Monitoring

Plan 
Maintenance

Conduct 
Handover

Need for
Deployment

Deployment
Completed

Maintenance
Plan

Final 
Presentation

Deployment
Plan

Monitoring
Plan

Figure 9. Phase Deployment

In the task Plan Deployment we define how the approved
models and necessary production data are provisioned and
how the results are presented, e.g., visualized.

The model’s quality has to be monitored since produc-
tion data change over time. For this, we define the task Plan
Monitoring. As a result of data changes, the model creates
bad predictions and needs to be maintained, i.e., retrained
with new data. For this, we define the task Plan Mainte-
nance. There are three options to trigger the maintenance of
a model:

1) occurring events in manufacturing of which we
assume that patterns in data have changed, e.g.,
changed machine settings;

2) periodical retraining, e.g., every week;
3) deviation from a defined threshold of model quality

metrics, e.g., recall is 5 % under threshold.

The considerations and decisions made in the tasks Plan
Deployment, Plan Monitoring and Plan Maintenance have
to be documented in the corresponding reports shown in
Figure 9. To assure, that built models, data, findings and
documents are available and handed over to the deployment
team properly, a final project meeting with a presentation is
performed in the new task Conduct Handover at the end of
a project.

4. Validation

To assess the applicability of the proposed process
model, we applied it to a KDD project in the manufacturing
domain. The project aimed at generating knowledge to
improve availability. More specifically, the project aimed
at building a model for predicting failures of a carding
machine to reduce unplanned maintenance. We applied the
aforementioned six process models as follows.

Business Understanding. x
The manufacturing company produces nonwovens which are
used for indoor filters and other products. These materials
are produced in a continuous production process on a plant
with several machines and process steps. One of these
process steps is carding in which the loose fibers are first
aligned to form a nonwoven. This machine consists of 20
engines powering different rollers and belts. A schema of
the carding machine is shown in Figure 10.

Figure 10. Schema Carding Machine

For each of the 20 motors, three sensor values are
measured:

• motor speed V in revolutions per minute rpm, mea-
sured every second;

• power consumption I in ampere A, measured every
second;

• temperature T in degree Celsius ◦C, measured every
minute.

The company’s strategic objective is to improve the
availability of the carding machine from under 90 % to
98 % in one year. Goal of the project was to support
this strategic objective in predicting failures of the carding
machine to reduce unplanned maintenance and thus improve
availability.

Data Understanding. x
Data source for the sensor data was a supervisory control
and data acquisition system (SCADA). Elicitation of failure
data is done via a MES. Table 2 shows an excerpt of the
sensor values extracted. The Pen Number is referencing a
certain sensor in the machine. Table 3 contains information
about the sensors which we need to identify whether the
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generated sensor values represent motor speed (V), power
consumption (I) or temperature (T). Table 2 and Table 3 are
linked to each other, e.g., the first record in Table 2 contains
the measured speed of motor one, i.e., Mot01. In Table 4,
data about occurred machine failures is shown containing a
time stamp, the reason for failure, the affected equipment
and the breakdown duration in minutes.

Table 2. Excerpt Sensor Values

Pen Number Date Value
1 14.01.2017 13:30:01 23,943863
1 14.01.2017 13:30:02 23,712383
...

...
...

2 14.01.2017 13:30:01 43,427383
2 14.01.2017 13:30:02 40,477303
...

...
...

Table 3. Excerpt Sensor Description

Pen Number Pen Name Minimum Maximum
1 V Mot01 0 188,58
2 I Mot01 0 45,22
3 T Mot01 0 36
...

...
...

...

Table 4. Excerpt Failure Data

Date Reason Equipment Duration
12.01.2017 21:31 product change 51
13.01.2017 17:19 electrical disturbance winder 120
14.01.2017 07:05 mechanical disturbance carding 102

...
...

...
...

If we analyze the sensor data just before failures, power
consumption (I) stands out. While motor speed (V) and
temperature (T) do not change before a machine failure,
power consumption values show anomalies a few minutes
before failures occur as shown in Figure 11. This failure is
the third record in Table 4.

0

0,5

1

1,5

2

2,5

07:00:00

I_Mot04 I_Mot09 I_Mot14 I_Mot18 I_Mot19 I_Mot23
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o

n
su

m
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ti
o

n
 I

Time
07:01:00 07:02:00 07:03:00 07:04:00 07:05:00 07:06:00

Failure

Figure 11. Power Consumption Anomalies before a Machine
Failure

The quality of the sensor data extracted from the
SCADA was high, except from Motor 20 sensors, which

produced no data. However, the time stamps of machine
failures extracted from the MES are not correct. Operators
type them in manually which results in incorrect time stamps
to be adjusted manually.

Data Preparation. x
As motor speed and temperature values do not indicate a
machine failure, we discard them and select power con-
sumption as indicator variables. To create the feature set
with respect to the target format, equidistant time stamps for
every second are created. Then the values of the 19 power
consumption sensors are matched to these time stamps in the
feature set. The target variable is a boolean value indicating
anomalies linked to potential failures. Table 5 is an excerpt
of the constructed feature set. This data is used during the
next phase to train the algorithms and assess their quality
with regard to anomaly detection.

Table 5. Excerpt Feature Set

Date I Mot01 I Mot02 ... Failure
14/01/2017 06:55:00 2,202 6,216 ... 0
14/01/2017 06:55:01 2,202 5,120 ... 0

...
...

...
...

...
14/01/2017 07:09:05 0 0 ... 1

Modeling. x
We used Microsoft Azure Machine Learning Studio for
modeling. Since we want to detect anomalies before a failure
occurs and thus predict machine failures in a particular time
span, we built classification models, i.e., anomaly detec-
tion models. The tool provides two different algorithms to
train such models, i.e., One-Class Support Vector Machine
(SVM) and Principal Component Analysis (PCA) Anomaly
Detection. We trained both, compared them and chose the
one with higher quality. Since we cannot measure recall
or precision of these particular algorithms in the tool, the
model which detects a failure earlier and more distinctly
is of better quality. The predictions, i.e., anomaly score as
metric for failure probability, of both models are depicted
in Figure 12. The higher the anomaly score, the more likely
an anomaly is detected.

Comparing the output of the models, they both detect the
failure which occurred at 07:05:00 three minutes in advance
around 07:02:00 at the same time. However, SVM is more
distinctly. In standard machine operation it calculates an
anomaly score of just above 0, three minutes before the
failure occurs it scores over 0.8. PCA scores 0.5 even in
standard machine operation, which is not acceptable for
failure prediction. Hence, we choose SVM.

Evaluation. x
The outcome of the project is reviewed with all involved
parties to assess, whether the project goal is reached, i.e.,
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Figure 12. Model Comparison for Prediction of Failure

the availability can be improved with implementing the
predictive model into production. We came to the conclusion
that, if a failure can be detected three minutes before it
occurs, the consequences, i.e., breakdown time and un-
planned maintenance efforts, can be reduced. In this case,
the jamming of the carding machine can be avoided. As
a result, the effort for cleaning can be reduced. Hence, the
availability can be improved and the project goal is reached.

A project report is created summarizing the six phases.
Next steps are determined as follows. Validation of the
model on other machines data; deployment of the model
with live data streaming from the machine; collection of
more failure and sensor data in order to further improve
models.

Deployment. x
For planning and testing deployment of the model, a web
service is created in the cloud where the model is stored. Via
an Application Programming Interface (API) and a R-script,
the model can be fed with sets of sensor data and returns
anomaly scores accordingly. The model can be retrained
periodically with data from standard machine operation to
learn new patterns and remain of high quality. The project
is handed over with a final presentation.

5. Related Work

KDD process models have been defined and specified
for certain domains. [22] proposes a specified process model
based on a deductive and an inductive approach. However, it
focuses on text mining in contrast to our model considering
the manufacturing domain. The methodology in [8] is com-
parable to our work. It maps CRISP-DM to define a specific
process model for the medical domain. However, such a
mapping does not exist for the manufacturing domain. [37]
proposes a data mining approach for analyzing semiconduc-
tor data to enhance a KPI called overall usage effectiveness
(OUE). In contrast to our approach, enhancing OUE is
more specific and can only be used for wafer fabrication,
whereas OEE is accepted cross-industrial. Moreover, it aims
at yield enhancing instead of availability improvement and

thus contributes to performance improvement. [38] discusses
the nature and implications of data mining techniques in
manufacturing. Though, it only focuses on the content of
the subject and does not provide the process of KDD.
[39] postulates the new approach Knowledge Discovery and
Analysis in Manufacturing (KDAM). It sensitizes the topic,
reviews methods for KDD in manufacturing and discusses
related applications, but comparable to [38], is not focus-
ing on the process of KDD. [40] reviews data mining in
manufacturing on the kind of knowledge and proposes a 10
step process. However, it is still very generic and a rough
guideline without a detailed layer describing specific tasks.
A similar approach is given in [41], which lacks detailed
descriptions.

6. Conclusion and Outlook

Low availability constitutes a big part of manufacturing
costs. KDD can be used to generate knowledge for improv-
ing availability. For this purpose, we presented a specific
KDD process model. We used CRISP-DM as reference,
studied specific models from other domains and considered
various conducted projects. The process model contains six
phases with specific, efficient and reusable tasks traversed
in several iterations throughout a project. To assess the effi-
ciency of the process model, we applied it to a KDD project
aiming at improving availability by predicting failures of a
carding machine. This objective has been achieved and since
the process model provides a reusable approach, the required
efforts conducting the project have been reduced.

Based on the results of this paper, we intend to validate
the defined process model in further KDD projects and
complement specific models for quality and performance
improvement in order to provide a holistic KDD-based
approach for improving OEE.
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