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Abstract

Concerns about the use of fair value accounting commonly focus on the sensitivity

of market prices to exogenous liquidity shocks. In this paper, we show that the use

of fair value accounting for assets without an active market endogenously creates illiq-

uidity. The underlying mechanism is the discretion in fair value reports when prices

are unavailable. Firms use this discretion to report aggressively, leading to two market

e�ects. On the plus side, by revealing an upper bound on an asset's value, fair value

reporting leads to lower prices than would occur in a conservative regime. This is an

indication that prices are more e�cient than under conservatism, as the reports protect

investors from paying information rents. The downside is that fair value reports cannot

credibly convey a lower bound on an asset's value, causing illiquidity. We con�rm these

e�ects in a laboratory experiment.
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1 Introduction

Much of the controversy over fair value accounting is related to the e�ects of using fair value

for an illiquid asset. The supply side of the market is understood. An exogenous price drop

may trigger selling pressure due to regulatory requirements, or due to concerns over the

externality that other agents' trades generate. Allen and Carletti (2008) and Plantin et al.

(2008) address these e�ects of fair value on asset supply, and we do not revisit the questions

they raise. By contrast, we are unaware of any work systematically addressing the e�ects of

fair value on the demand side of the market. Our purpose in this paper is to �ll this gap.

Unlike fair-value driven supply shocks, the e�ects of fair value on asset demand do not

come from exogenous changes to prices or liquidity. Instead, the e�ects of fair value on

demand are concentrated in assets for which there is no active market price, in which �rms

use models to estimate fair values. The absence of a well-de�ned, veri�able market price

creates discretion in a �rm's reported fair value of an asset, as the auditing literature has

documented (see Schmidt (2009) and Bratten et al. (2013, 10)). Firms use their discretion

to report aggressively, as is commonly found in laboratory experiments (King and Wallin,

1991, Forsythe et al., 1999) and in empirical research (Beatty and Weber, 2006, Dechow et al.,

2010, Blacconiere et al., 2011). Investors respond by discounting reports for model-based

fair values, as Goh et al. (2009) observe; for a discussion, see Laux and Leuz (2010).

This practice of discounting model-based fair value reports has two main e�ects. First,

although the demand e�ects of fair value lead to lower asset prices than under a conser-

vative reporting regime, the prices are more informationally e�cient. The reason is that

the aggressive equilibrium reports reveal upper bounds on an asset's value to the market,

protecting investors against paying information rents. That is, although model-based fair

value reports are upwardly biased, they provide information that investors value (Song et al.,

2010, Magnan et al., 2015). By contrast, a conservative reporting regime provides investors

with a lower bound on an asset's value, e�ectively imposing a sanitized report as in Shin
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(1994). This leaves investors vulnerable to paying information rents.

Second, using fair value for assets without an active market (known under Statement of

Financial Reporting Standards 157 as Level 2 or Level 3 reports, which we refer to as mark-

to-model reports) causes endogenous drops in liquidity, in comparison to a conservative

regime. That is, prices under fair value use information more e�ciently than those under

conservatism, provided that trade occurs. But this gain in price e�ciency comes with a

decrease in liquidity, which may reduce overall market e�ciency. The reason for the loss of

liquidity under fair value is symmetric to the reason for the disappearance of information

rents. In equilibrium, �rms can report only aggressive fair value estimates, leaving investors

in the dark about credible lower bounds on asset values. A conservative regime necessarily

provides a lower bound, giving �rms a credible way to prevent investors form becoming

overly pessimistic.

After developing the theory behind the above argument, we use a laboratory experiment

to demonstrate the e�ects of using mark-to-model reporting on demand. As predicted, sellers

take advantage of their discretion, issuing highly aggressive reports that clearly �rst-order

stochastically dominate their secret reserve prices.

We then turn to the market's reaction to aggressive reporting, which generates the de-

mand e�ect noted above. Using a matched pairs design, we compare trading behavior in

conservative and aggressive reporting regimes. As expected, we �nd that both the bid dis-

tribution and the highest bid are lower under aggressive reporting than under conservative

reporting. Prices fall due to a disappearance of information rents. We do not observe supply

e�ects on prices, as seller reserve prices are indistinguishable across treatments.

We also �nd that fair value leads to illiquidity, compared with conservatism. Participants

facing aggressive reports traded in just under half of the rounds. Their counterparts in the

conservative treatment traded in nearly 3/4 of the rounds.

Although our point is a general one about the e�ects reporting regimes have on equilibria
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in markets with ambiguous fair values, some remarks about the �nancial crisis are in order.

Our theory predicts and our experiments replicate the pattern seen in the crisis, but the

driving force is not the bursting of a bubble or the arrival of a panic, i.e. a negative bubble.

In fact, we obtain our predictions in a one-shot setting. To the extent that the forces we

identify were in place in the crisis, the implication is that the friction was illiquidity, not the

drop in asset prices (which, again, would re�ect the disappearance of rents in our setting).1

We note that the crisis began shortly after the Financial Accounting Standards Board

(FASB) implemented two standards related to fair value accounting, giving explicit guidance

for the use of fair value of assets that do not have a readily available price in an active

market (SFAS 157) and encouraging the expanded use of fair value (SFAS 159).2 These new

standards sharply a�ected the �nancial reporting of the debt-backed securities that were

central to the crisis. The 2007 Lehman Brothers annual report cites these standards as its

reason for using fair value for ��nancial instruments not previously recorded at fair value�

(39�40), and shows in Note 4 to the balance sheet (97) that 99.7% of its mortgage- and asset-

backed securities had fair values determined by marking to model. Compared with 2006,

Lehman's reported values of derivatives based on market prices increased by 3.2% in 2007,

or $100 million. In the same time, its value of derivatives reported using fair values based on

internally generated models increased by 111.8%, or $21.8 billion. Similarly, Bear Stearns,

in its report for the quarter ended August 31, 2007, reported 97.9% of its derivative trading

inventory using mark-to-model fair value reports, along with 77.7% of its non-derivative

1Note, however, that if the illiquidity arising from mark-to-model reports were to spread to other markets,
then a drop in prices may not be a bene�cial disappearance of rents. See Allen and Carletti (2008) and Sapra
(2008) for discussion of how fair values based on prices from active markets can be vulnerable to illiquidity.
See also Plantin et al. (2008) and Khan (2012) for how reports based on market prices can be related to
systemic risk.

2Statement of Financial Accounting Standards (SFAS) 159 gives an irrevocable option to use fair value
for �nancial instruments that were not previously recorded at fair value. The FASB's stated purpose was to
expand the use of fair value accounting (see http://www.fasb.org/st/summary/stsum159.shtml). SFAS 157
provides guidance for using fair value in the absence of an active market. Under SFAS 157, �rms can use
internally generated models to determine fair values, and are left with considerable discretion in the choice
of the models. The inputs to the models can come from the market, for example if the �rm's chosen model
uses interest rates, volatility measures, etc., but can also be internally generated.
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trading inventory (15).

The fact that debt-backed securities were the assets at the heart of the crisis also appears

to be no coincidence. Coval et al. (2009) illustrate how debt-backed securities are highly

sensitive to even small changes in the correlation among the risks of the debt securities in

a portfolio. This type of micro-correlation sensitivity is known to make estimating a risk

distribution extremely di�cult, even with an arbitrarily large sample size (Al-Najjar, 2009,

Brunnermeier, 2009), though calculating bounds is straightforward (Embrechts et al., 2013).

This means that the fair value reports would have the type of discretion necessary for our

story and observed in the empirical audit literature (e.g. Bratten et al., 2013).3

As our goal is to isolate the impact of reporting regime from other factors, we by design

make trade zero-sum, rather than having either illiquidity or information rents generate ex-

ternalities. The literature suggests, however, that the welfare losses due to illiquidity are

substantial. Farmer (2015) shows that market crashes Granger-cause unemployment, and

infers that the stock market crash�which seems quite likely to be related to the liquidity col-

lapse in the debt-backed securities market�is a major culprit in the severity of the recession

that followed.

2 Theory

This section gives a high-level theoretical overview of the setting we study. We limit ourselves

here to enough detail to allow us to explain our hypotheses and our experimental design,

and provide technical details in Appendix A.

3Additional play in mark-to-model values may arise due to limitations on investors' ability to appreciate
the importance of the covariance structure in estimating the distribution of tranches. For work along these
lines, see Eyster and Weizsäcker (2011).
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2.1 Agents, endowments, and timing of events

There are two types of agents, a single seller and n ≥ 2 buyers, who meet in a �rst-price

sealed bid auction. This setting corresponds to an over-the-counter market in a private label

security, such as the debt-backed securities that were central to the �nancial crisis. The seller

is endowed with one indivisible unit of a �nancial asset, with a value ṽ that is realized at the

end of the only period in the economy. The buyers have cash, which they can keep or use to

bid on the asset. By restricting our focus to a setting with one trading period, we avoid any

possible resale motive for purchasing the asset at a value other than its intrinsic value. This

eliminates laboratory bubbles or panics as an additional source of ine�ciencies, and enables

us to focus on the e�ects of the reporting regime on liquidity and price e�ciency.4

Initially, there are commonly known bounds on the asset's end-of-period value, ṽ ∈ [a, b].

The distribution of ṽ is ambiguous, corresponding to the di�culties in estimating the payo�

distribution on debt-backed securities (Coval et al., 2009, Brunnermeier, 2009) and more

generally on assets reported using mark-to-model reports (Bratten et al., 2013). Before the

market opens, the seller receives a private signal, in the form of a re�nement to the set of

possible terminal values. That is, the seller learns ṽ ∈ [a′, b′] ⊂ [a, b].

The seller publicly reports v̂ ∈ [a′, b′], i.e., the seller cannot issue an outright lie. After

issuing the report, the seller chooses a private reserve price v∗, and the buyers submit their

bids {pi}ni=1. If the highest bid p∗ := maxi=1...n pi ≥ v∗, then there is trade, and the price

is p∗. Otherwise, the seller keeps the asset, and the buyers keep their money. The value of

asset ṽ is realized and paid to its owner, and then the game ends. See Figure 1.5

4In the experimental economics literature, markets without resale are used to separate the role of specu-
lative bubbles or panics from other trading behavior. See Lei et al. (2001).

5Why make the reserve price secret? It is known that public reserve prices reduce alone can create
liquidity frictions (Choi et al., 2015). Our interest is in illiquidity, and we want to avoid the confound of
illiquidity arising through another channel.
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ṽ ∈ [a, b]
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First-price
sealed bid
auction

ṽ
realized

Figure 1: Timeline.

2.2 Preferences and aggressive reporting

In the tradition of Aumann (1962, 1964) and Bewley (2002), we allow preferences to be

incomplete, as a way to weaken the Savage axioms enough to allow for ambiguity. Our

strategy, pursued in detail in Appendix A, is to provide axioms on preferences that are

necessary and su�cient conditions to guarantee aggressive reporting (i.e., that the uniquely

optimal report is v̂ = b′). By doing so, we consider the largest class of preferences consistent

with aggressive use of mark-to-model reports. Most standard examples, such as α-maxmin-

expected utility with pessimism parameter α > 0 and the smooth and variational ambiguity

models Klibano� et al. (2005), Maccheroni et al. (2006) are consistent with our axioms, as

are models where ambiguity leads to indeterminacy in choices (e.g. Steele, 2007, Arló-Costa

and Helzner, 2010). The main exception is maxmin-expected utility (Gilboa and Schmeidler,

1989), in which aggressive reporting is optimal but not uniquely.

Our �rst axiom is a weak form of monotonicity. Agents' preferences are an interval

order.6 Given two assets with ambiguous values in the ranges [a0, b0] and [a1, b1], if b0 ≤ a1,

then [a0, b0] - [a1, b1]. If the inequality is strict, then so is the preference. Intuitively, agents

always prefer an asset to one its payo� is guaranteed to dominate.

We need two other axioms, to account for the fact that the seller can issue a given report

v̂ whenever a′ ≤ v̂ ≤ b′. Consequently, before considering the seller's reporting strategy,

6For background, see Fishburn (1985), Bogart (1993), Bridges and Mehta (1995), Manzini and Mariotti
(2008). Dubra et al. (2004), Öztürk and Tsoukiàs (2006) provide extensions of incomplete preferences to
more complex spaces. Stecher (2008) presents an interval order representation of incomplete preferences in
a social choice setting.
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buyers learn from v̂ a set of possible ex post bounds the seller could have:

v̂ is a feasible report i� [a′, b′] ∈ {[a, b]|a ≤ a ≤ v̂ ≤ b ≤ b}

Our �rst additional axiom is a dominance condition. Given two disjoint sets of possible

ranges for the value of ṽ, say S and T , suppose that every interval in S is strictly worse

(in the interval order sense) than some interval in T , and that nothing is T is strictly worse

than anything in S. Then we assume an agent prefers an asset for which the seller's report

reveals that [a′, b′] ∈ T to one for which the report reveals that [a′, b′] ∈ S.

The other additional axiom is a betweenness condition, related to the averaging and

impartiality conditions in Bolker (1967) and Broome (1990). Let R, S, and T be pairwise

disjoint sets. Suppose the agent prefers an asset for which [a′, b′] ∈ T to one for which

[a′, b′] ∈ S. Further, suppose R is between S and T , in the sense that the agent does not

prefer an asset with [a′, b′] ∈ S to one with [a′, b′] ∈ R; similarly, the agent does not prefer

an asset with [a′, b′] ∈ R to one with [a′, b′] ∈ T . Then we assume the agent prefers an asset

with [a′, b′] ∈ T ∪ R to one with [a′, b′] ∈ S ∪ R. This axiom says that, if an agent prefers

an asset with a range of payo�s in T to one with a range of payo�s in S, and R is no better

than S and no worse than T , then the agent also prefers T ∪R to S ∪R.

Figure 2 illustrates the idea behind these two axioms. Let S be the vertically striped

region, R the checked region, and T the horizontally striped region. Assume all boundaries

belong to R. Given a report of ṽ = 0.1, the agents know that [a′, b′] ∈ S ∪ R. Similarly,

given a report of ṽ = 0.3, the agents know [a′, b′] ∈ R ∪ T . Our �rst axiom requires that an

agent prefers an asset with [a′, b′] ∈ T to one with [a′, b′] ∈ S. Our second axiom says that

the agent must then prefer R∪T to S∪R. If the buyers satisfy these axioms,7 then a higher

report to the market is always better news.

7A technical closure axiom guarantees that the checked region R is not worse than the horizontally striped
region T and not better than the vertically striped region S.
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Figure 2: Preferences over sets of intervals. The x-axis represents the ex post lower bound a′

on the asset's value. The y-axis represents the ex post upper bound b′. The gray triangle is
the set of possible ranges of the seller's private information. The dominance axiom requires
that agents prefer an asset with [a′, b′] in the horizontally striped region to one with [a′, b′]
in the vertically striped region. The betweenness axiom requires that adding the checked
region to both the striped regions preserves the agents' preference ordering.

We therefore have the following:

Theorem 2.1 (Aggressive Reporting). If the seller's private information is [a′, b′], then the

uniquely optimal report is v̂ = b′.

2.3 E�ects on demand

We now illustrate how Theorem 2.1 a�ects the bid distribution in the auction and leads to

illiquidity. Because the seller can justify any value in [a′, b′], we require only that the reserve

price is in this range. Buyers, however, know only that ṽ ∈ [a, b′], which means that any bid

above b′ is a dominated strategy. Bids below a are deliberate decisions to stay out of the

auction. The region of interest is therefore [a, b′], in which buyers o�er a bid that, from their

viewpoint, is potentially credible. See Figure 3.

An investor's bidding decision requires an estimate of how much to discount the report
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Figure 3: Bids and reserve prices under mark-to-model. The seller optimally chooses a
reserve price in [a′, b′]. A buyer who wishes to stay out of the market can bid anything in
[0, a]. Because the seller optimally discloses b′, no buyer with monotone preferences ever bids
above b′. The buyers do not know a′, and therefore any buyers wishing to make a credible
bid must choose a value in [a, b′].

from b′. If the highest bidder discounts the report below a′, then the market shuts down.

Fixing the values of a and b′, it is easy to see that the higher a′ is, the greater the illiquidity

from a given level of discounting. The reason is that the amount that the highest bidder

discounts the report v̂ = b′ can depend only on a and b′.8

A conservative reporting regime, in which the seller is required to report a′, shifts the

range of credible bids to the right. Buyers wishing to make a credible bid in a conser-

vative reporting regime choose a bid in [a′, b]. This interval is shifted to the right of the

corresponding interval under mark-to-model. The problem in choosing how to bid is also

changed: rather than deciding on how much to discount the reported value, buyers must

now decide how aggressively to bid above the reported value. A bid that is above b′�which

the buyers cannot estimate�gives the seller an information rent. For �xed a′ and b , as b′

decreases, a buyer at a given level of aggressiveness in bidding will be more likely to pay the

8For a general overview in bidding on �rst-price auctions with ambiguity, see Kaplan and Zamir (2015).
Much of the research focuses on private value auctions, starting with Salo and Weber (1995) and the theory
and experimental work of Chen et al. (2007). A common value auction, similar to our conservative reporting
treatment, is in Dickhaut et al. (2011).
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information rent, which cannot arise under mark-to-model. See Figure 4.

Figure 4: Bids and reserve prices under conservative reporting. The seller's reserve price is
in [a′, b′]. A buyer who wishes to stay out of the market can bid anything in [0, a′]. The
buyers do not know b′, and therefore any buyers wishing to make a credible bid must choose
a value in [a′, b].

3 Description of the experiment and hypotheses

To test the predictions described in Section 2, we ran a laboratory experiment. We recruited

participants from the Carnegie Mellon Tepper School of Business/Social and Decision Sci-

ences participant pool, using an online recruiting program. The experiment was coded in

z-Tree (Fischbacher, 2007).

Participants in the experiment were grouped together in groups of 5 for 16 rounds. Each

group was assigned to one of three conditions: a discretionary reporting condition, an aggres-

sive reporting condition, or a conservative reporting condition. The purpose of the discre-

tionary condition was to test whether, given �exibility in reporting, sellers of a �nancial asset

would report aggressively, as Theorem 2.1 predicts. The aggressive condition imposes the

equilibrium strategy that the seller uses under fair value, in order to make the equilibrium

report common knowledge. The conservative condition imposes the ex post lower bound
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as the report. This structure enables us to separate our tests of the predicted reporting

behavior from our tests of trading behavior under mark-to-model reporting. Both the dis-

cretionary condition and the aggressive condition can be thought of as fair value treatments.

We refer to the aggressive reporting condition henceforth as fair value, in order to emphasize

that the discretionary treatment includes a reporting decision rather than starting with the

equilibrium fair value report.

In each treatment, the computer privately and randomly selected one participant in

each round as the seller for that round. The other four participants in the group were the

buyers for that round. The choice of the seller in each round was made independently, from

a discrete uniform distribution with replacement. The instructions explained the method

of selecting the seller to the the participants. Keeping the participants grouped together

enables us to rule out participant heterogeneity as the sole source of di�erences in behavior

across treatments. This is crucial to control for, as Ahn et al. (2014) demonstrate. However,

grouping creates the possibility of order e�ects, in which behavior in one round a�ects

decisions in subsequent rounds (e.g., learning, attempts at reputation building). We ran

several tests for order e�ects, which we describe below in Subsection 4.6.

In each round, we endowed the seller with an asset which had a value commonly known

to be between $0.50 and $1.50. We endowed the buyers with of $1.50, which they could use

only in the current round. After the participants completed trading in a given round (as

described below), the computer revealed the asset's value to all the participants, along with

an indication of whether trade occurred and, if so, at what price. The computer deposited

all the money that a participant held at the end of a given round into the participant's bank

account, which determine the participant's earnings but was unavailable for trading in any

subsequent round.

The setting of the experiment was a �rst-price sealed bid auction, with a privately in-

formed seller. The timeline, common to all treatments, follows Figure 1 from Section 2, with
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a set to $0.50 and b to $1.50. In the conservative treatment, v̂ was always set to a′. In the

fair value treatment, v̂ was always set to b′. The discretionary treatment allowed the seller

to choose v̂ but required that v̂ ∈ [a′, b′]. The instructions explained the reporting to all

participants.

To generate the values for (a′, v, b′) in each of the 16 rounds, we used the ambiguity

generator of Stecher et al. (2011). The procedure draws numbers from a nonstationary,

nonergodic process, giving us a set of realizations for which each draw came from a new

distribution, and for which the way the distribution changes between draws is unknowable.

We partitioned the realizations into triples and sorted, making a′ the lowest realization in

the triple, v the median realization, and b′ the highest.

In total, we generated �ve blocks of 16 realized triples (a′, v, b′), and used a matched

pairs design. We ran one conservative session and one fair value session for each block of 16

triples, and ran two discretionary sessions using two of the blocks of realized triples.

Our main hypotheses, stated in alternative format, are as follow:

H1
A: In the discretionary treatment, the distribution of reports �rst-order stochastically

dominates the distribution of reserve prices.

H2
A: The bid distribution in the conservative treatment �rst-order stochastically dominates

the bid distribution in the fair value treatment.

H3
A: The maximum bid under conservative reporting is higher than the maximum bid under

fair value.

H4
A: Fair value reduces liquidity. That is, Pr[trade | Fair Value] < Pr[trade | Conservative].

The �rst hypothesis is based on Theorem 2.1. If sellers report aggressively, then they

would disclose values that systematically exceed their reserve prices. The second and third

hypotheses are related to demand and prices (or, if there is no trade, the latent price). H2
A
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states that the overall level of demand is shifted downward under fair value compared with

the conservative treatment. H3
A states that the downward shift a�ects the highest bids, and

hence is signi�cant enough to a�ect prices in a �rst-price auction. The last hypothesis states

that fair value reporting reduces liquidity.9

Additionally, we test whether reserve prices are a�ected by the reporting regime, to rule

out supply-driven factors, such as those discussed in Allen and Carletti (2008) and Plantin

et al. (2008). We also conduct several robustness checks. For the results on liquidity, we

test whether our repeated measures design drives the results. That is, we check whether

di�erences in liquidity across matched sessions could be driven by the same behavior of

individual participants. For the results on the bid distribution, we test whether any shifts in

demand are due to aggressive reporting being common knowledge. To do so, we compare the

bid distributions of the discretionary sessions with those of the corresponding fair value and

conservative sessions. To rule out order e�ects, we test whether reserve prices and maximum

bids di�er between the �rst eight and the last eight rounds of the experiment.

4 Results

4.1 Participants

We recruited 60 participants for a total of twelve sessions. The median participant age was

24.5 years, with an interquartile range of 21�29 years. Roughly 40% were female.

For the discretionary treatment, there were two groups of participants, giving 32 rounds

of discretionary report and reserve price observations. For the conservative and fair value

9Because our data come from an experiment, we are able to observe latent prices, in the form of highest
bids. Outside of the laboratory, an empiricist would be restricted to analyzing prices when trade occurs,
possibly adding a selection equation. For this reason, we also tested hypothesis H3

A restricting attention to
rounds in which trade occurred. We found no di�erences between focusing on prices or on latent prices. We
choose to focus on latent prices here, in order to include all observations that address our hypotheses. The
robustness of the results suggest that archival research with questions similar to ours would be unlikely to
require a selection model to adjust for time periods without trade.
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treatments, there were �ve groups each, with each conservative group matched to a fair value

group. In total, we had 80 matched pairs of rounds, with 160 reserve price observations and

640 bid observations.

Among the 80 matched pairs of conservative and fair value rounds, in 59 (74%), all par-

ticipants in both groups made decisions that were rationalizable given an objective of pro�t

maximization. In the remaining 21 rounds, at least one participant either made a bid that

was guaranteed to lose money or chose a reserve price that was a dominated strategy. Among

these violations of wealth maximization, 13 decisions were made by a single participant, who

consistently bid more than the commonly known upper bound on the asset's value.10

Each session took approximately 45 minutes, including time to seat participants, read

and quiz the participants on the instructions, and pay the participants at the end of the

session. Earnings ranged from $19.60 to $24.02.

4.2 Result: discretion leads to aggressive reporting

In the two sessions with discretionary reporting, sellers provided both a reserve price and a

report to the market. Because the private lower bound a′ and the private upper bound b′

varied across rounds, we calculate a normalized value v̂−a′
b′−a′ , representing how far the report

v̂ is along the line segment from a′ to b′. We use a similar normalization to scale the seller's

reserve price v∗. Because the reserve price is chosen privately, it is a weakly dominant

strategy for the seller to truthfully report v∗. If the seller's preferences are incomplete, as

is commonly assumed in models with ambiguity (e.g., Bewley, 2002), then v∗ is optimally

chosen at a value at which the seller is not worse o� by selling and not better o� by buying

(see Appendix A). If the distribution of v̂ �rst-order stochastically dominates the distribution

of v∗, then there is evidence that the sellers report aggressively from their own viewpoint.

10To be complete, we perform our analyses in two ways: including all observations and focusing on those
that are consistent with maximizing behavior. The results are robust to the inclusion or exclusion of the
non-maximizing behavior, and we feel that remarking on both makes the analysis more complete.
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Including this comparison is crucial, because it allows us to distinguish between aggressive

reports and high reports arising from optimistic beliefs.

Figure 5 shows the cumulative empirical histograms of seller reserve prices and reported

values. The x-axis gives the normalized distance along the line segment from a′ to b′. The

y-axis shows the cumulative proportion of observations at or below a given level on the x-

axis. The distribution of reports is shifted to the right of the distribution of reserve prices.

The di�erence between the cumulative distributions is signi�cant at the 0.05 level under a

Kolmogorov-Smirnov test and at the 0.01 level under Anderson-Darling, Cramér-von Mises,

and Mann-Whitney tests. We therefore strongly reject the null that the distribution of

reports does not dominate that of reserve prices.

Figure 5: Cumulative distributions of scaled reported values (dark) and reserve prices (light)
in baseline treatment.

In absolute terms, the median scaled reported value was 0.87, compared with a median

scaled reserve price of 0.37. That is, the median report was roughly 7/8 of the distance along

the line segment from a′ to b′, while the median reserve price was only 3/8 of this distance.

The 75%ile of scaled reports was 0.97, meaning that roughly one-fourth of sellers reported
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approximately at the upper bound b′. As is apparent from the �gure, upper quartile of scaled

reserve prices is considerably lower, at 0.82. Overall, the results support our hypothesis H1
A

that the discretionary treatment leads to aggressive reporting.

4.3 Results: bids and latent prices are lower under fair value

Given that discretion leads to aggressive reporting, we now address whether aggressive re-

porting causes in a downward shift in demand, compared with conservative reporting. Fig-

ure 6 shows the cumulative empirical histograms of bids in the conservative and fair value

treatments. For the bid distributions, we do not scale the values between 0 and 1. The reason

is that participants in the fair value treatment know the ex ante lower bound a and the ex

post upper bound b′, whereas participants in the conservatism treatment know the ex post

lower bound a′ and the ex ante upper bound b. The raw bid amounts are comparable, and

the participants are matched across sessions, so unscaled data are more directly comparable.

By contrast, the data in Figure 5 come from the sellers, who always know both a′ and b′, and

in any case face the same information when choosing their reserve prices and their reports.

Figure 6 shows that the bid distribution under conservatism is to the right of the distri-

bution under fair value. The di�erence between the two empirical cumulative distributions

is signi�cant at the 0.001 level under Anderson-Darling, Cramér-von Mises, Kolmogorov-

Smirnov, and Mann-Whitney tests. This result supports our hypothesis H2
A that fair value

reporting lowers the amount buyers are willing to pay and thus weakens demand.

Our third hypothesis H3
A addresses the fact that it is the the highest bid that determines

prices and liquidity, not the entire bid distribution. Table 1 compares the average values

of the maximum bids across treatments, and shows the maximum bid was lower in the fair

value treatment. Under a Wilcoxon signed-rank test, the di�erence in the maximum bids

was signi�cant at the 0.01 level. If we restrict attention to the rounds in which no participant

chose a strictly dominated strategy, the di�erence between bid distributions becomes more
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Figure 6: CDFs of bids under the conservative and fair value reporting.

signi�cant, with a p-value below 0.001. This supports our hypothesisH3
A that bids are higher

under conservatism than under fair value.

Conservative Fair Value
112.8¢ 105.3¢

Table 1: Average value of highest bid across treatments

To test whether supply could also have played a role, we compared the distribution of

reserve prices across treatments. Figure 7 shows the cumulative empirical histograms. The

CDFs of reserve prices did not di�er signi�cantly at any conventional levels. The p-values

were 0.27, 0.30, 0.30, and 0.46, respectively, under the Kolmogorov-Smirnov, Cramér-von

Mises, Anderson-Darling, and Wilcoxon signed-rank tests. We therefore fail to reject the

null that reserve prices are independent of the reporting regime.

Combining these results, we �nd that supply is not a�ected by the use of fair value, but

demand is signi�cantly weakened. The lower prices are due to falling bids, re�ecting an

increase in price e�ciency because of the disappearance of information rents. The falling
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Figure 7: CDFs of reserve prices under conservative and fair value treatments.

prices are not driven by seller behavior.

4.4 Result: fair value reduces liquidity

Having established that the fair value regime leads to aggressive reporting and weak de-

mand, compared with a conservative regime, we now address whether fair value also causes

illiquidity. Table 2 summarizes the frequency of trade under both regimes.

Conservative \ Fair Value Trade FV No Trade FV
Trade C 31.3% 36.3%

No Trade C 23.8% 8.8%

Table 2: Frequency of trade, cross tabulated across treatments.

An exact form of a McNemar test, which compares the o�-diagonal entries with a

binomial(80,1/2), gives a p-value of 0.0279 against a one-sided alternative.

To control for repeated measures, we use the two-step procedure of Eliasziw and Donner

(1991). The �rst step estimates the correlation among the discordant pairs (the o�-diagonal

elements in Table 2). The second step calculates an approximate McNemar test statistic,
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adjusted for the estimated correlation.

The Eliasziw-Donner procedure gives an estimated correlation among discordant pairs

of 0.183, which, though seemingly low, is enough to make the di�erence in frequencies of

discordant pairs insigni�cant. However, the correlation is driven almost entirely by a sin-

gle participant, whose bids were above the commonly known upper bound in 13 rounds.

Restricting attention to the 59/80 rounds consistent with wealth maximization makes the

di�erences in liquidity stronger and more signi�cant than under the ordinary McNemar test.

The results are in Table 3.

Conservative \ Fair Value Trade FV No Trade FV
Trade C 30.5% 42.4%

No Trade C 15.3% 11.9%

Table 3: Frequency of trade, cross tabulated across treatments, consistent rounds only.

Although the numbers in the cells of Tables 2 and 3 are similar, the Eliasziw-Donner

correlation among discordant pairs changes dramatically, dropping to 0.048. The implication

is that the participants who did not maximize wealth, and in particular the single participant

who consistently made bids that were assured of losing money, generated almost the entire

clustering e�ects. The di�erence between the frequencies of discordant pairs in Table 3 is

highly signi�cant, with a p-value of 0.009.

In practical terms, the di�erence in trade frequency across treatments is quite large. From

Table 3, trade occurred in 72.9% of rounds under the conservative treatment, compared

with 45.8% of rounds under the fair value treatment. If we include the rounds with non-

maximizing participants, trade occurs in 67.5% of rounds under conservatism versus 55.0%

under fair value. The corresponding likelihood ratio is 1.59 for participants whose behavior

is rationalizable and 1.23 overall. The results overall are consistent with our hypothesis H4
A

that fair value reduces liquidity.
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4.5 Robustness to failures of common knowledge of rationality

The analysis so far establishes a fair value regime lowers demand without a�ecting supply,

compared with a conservative regime. This results in a drop in prices and in liquidity.

To test the robustness of our predictions, we look at bidding behavior in the discretionary

treatment. This treatment is a more complex setting than the fair value treatment, because

it requires participants to anticipate aggressive reporting from others, and adjust their bids

accordingly. By contrast, in the fair value setting, all participants are informed that the

reports will be aggressive. An initial analysis suggests that participants do not anticipate

aggressive reporting from the sellers: in our discretionary sessions, we observed an astound-

ingly high frequency of trade, occurring in 93% of the rounds! A more careful analysis,

however, shows that the discretionary treatment is less anomalous than it initially seems.

Figure 8 shows the bid distribution in the discretionary sessions and the matched fair

value and conservative reporting sessions. The bid distribution in the discretionary treatment

is shifted leftward from the conservative treatment, though not as far leftward as the fair

value treatment (in which the optimal aggressive report is imposed and commonly known).

Consistent with the �ndings of Malmendier and Shanthikumar (2007), Figure 8 shows

that participants, when in the role of buyers, do not fully anticipate aggressive reporting,

even though the same participants, when in the role of sellers, report aggressively. The

driving force is the right tail of the bid distribution. The top quartile of bids are nearly

identical under conservatism and under the discretionary treatment. Demand in general

falls when moving from a conservative to a discretionary treatment, but the highest bid

does not soften enough to eliminate trade.11 Even with the high frequency of trade in the

discretionary treatment, the bids move in the predicted direction, and the same forces are

in play as in our fair value sessions.

11The reserve price distribution did not di�er signi�cantly across any of the three treatments.
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Figure 8: CDFs of reserve prices under all three treatments.

4.6 Robustness to order e�ects

Our design makes reputation building di�cult, as the seller's identity is private, and a par-

ticipant's expected number of times as a seller is only 3.2 rounds. Nevertheless, participants

could anticipate repeated interaction, or could alter their decisions due to learning.

We conduct two tests of order e�ects. First, we check whether the reserve price distri-

bution varied between the �rst and last half of the experiment. Second, we check whether

the highest bid varied in the �rst and last half of the experiment. For the fair value groups,

the di�erence between reserve price distributions in the �rst and last half of the experi-

ment di�ered with p-values of 0.54, 0.59, 0.64, and 0.90, respectively, under Mann-Whitney,

Anderson-Darling, Cramér-von Mises, and Kolmogorov-Smirnov tests. For the conservatism

group, the corresponding p-values were 0.73, 0.91, 0.93, and 0.92. We therefore �nd no

evidence of an order e�ect on reserve prices.

Among the maximum bids, the p-values for di�erences between the �rst and last half of

the experiment for the fair value group were 0.48, 0.56, 0.57, and 0.76, respectively, under
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Mann-Whitney, Anderson-Darling, Cramér-von Mises, and Kolmogorov-Smirnov tests. For

the conservatism group, the corresponding p-values were 0.29, 0.41, 0.37, and 0.40.

In sum, we �nd no evidence of order e�ects in our participants' decisions.

5 Discussion and conclusion

Our analysis highlights the consequences of choosing between a conservative and a fair value

reporting regime with mark-to-model reporting. We �nd that a fair value regime leads

to aggressive reporting, lower asset prices than under conservative reporting, and market

illiquidity. These results are consistent with the theoretical results of Alchian (1977) and

Lester et al. (2011, 2012), summarized in Lagos et al. (2015), who associate liquidity with

the ease of recognizing an asset's quality. A conservative report makes a minimum quality

known to market participants, avoiding a liquidity friction.

An important insight is that the lower asset prices under a fair value regime are not the

result of the bursting of a bubble, but arise from the disappearance of information rents,

which in�ate prices under a conservative regime. Lower prices under fair value reporting

simply re�ects that the regime does what it is designed to do.

However, this gain in price e�ciency does not mean that fair value improves overall

market e�ciency. Illiquidity under fair value is the result of a friction it generates, which is

absent from a conservative regime. The tradeo� is, therefore, between the information rents

of a conservative regime and the illiquidity of a fair value regime.

Although evaluation of the consequences of illiquidity is beyond our scope, the macroeco-

nomics literature suggests the impacts can be extremely large. Bernanke and Gertler (1989,

1990) and Bernanke et al. (1996, 1999) demonstrate the multiplier e�ect of liquidity frictions

in lending markets; a good overview of this literature is in Hall (2010). Additionally, the

�ndings of Farmer (2015) suggest that a market collapse Granger causes unemployment, and
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that the crash of the stock market played a major role in the severity of the Great Recession.

To the extent that the stock market crash was linked to the evaporation of liquidity in the

market for debt-backed securities, this would imply a drastic social cost of liquidity frictions.

From a public policy viewpoint, it is natural to wonder if there is an easy �x. Why

not require �rms to disclose both a conservative and a fair value estimate? This idea has

established precedent in �nancial reporting. For example, �rms using LIFO to measure

inventory �ow also disclose in the notes to the �nancial statements a LIFO reserve, which

is calculated as if the �rm had used FIFO. Reporting both a conservative and a fair value

number would seem to give us a safeguard against illiquidity, while protecting investors

against having to pay an information rent. But there is cause for skepticism.

The di�culty is in assuring that �rms would continue to disclose an aggressive fair value

estimate when they are required to report a conservative valuation. A �rm could be better o�

with a pessimistic mark-to-model estimate that simply restates the conservative valuation.

Doing so enables the �rm to disclose only the lower bound on its asset values, thereby

retaining its information rent.

An alternative is to mandate explicitly that the �rm provide a conservative and an

aggressive estimate. Because one number would be declared to be aggressive, �rms would no

longer have incentive to underreport. The main concern associated with this approach is the

additional costs of providing (and having audited) both a best-case and a worst-case scenario.

Whether these costs are justi�able depends on how large they are, compared with the costs

of potential information rents. Future research studying this trade-o� would provide useful

information for standard setters and regulators.
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A Axioms and Theoretical Development

The central tenet of our argument is that the discretion in mark-to-model accounting leads

to aggressive reporting. In this appendix, we elaborate on the axioms on preferences that are

necessary and su�cient for aggressive reporting to be the seller's unique optimal reporting

strategy. Because the market of interest to us is characterized by ambiguity, as discussed in

Section 1, we allow preferences to be incomplete; see Bewley (2002) or the recent model of

Easley and O'Hara (2010).

We require that all agents prefer an asset that is guaranteed to have a higher value to

one that is guaranteed to be lower. Letting

X = {[a, b]|a ≤ a ≤ b ≤ b},

we have the following.

Axiom A.1 (Interval Order). All agents have preferences that are monotone in the range

of values, in the interval order sense of Fishburn (1985): if asset x has value in [a, b] and

asset y has value in [c, d], then

b ≤ c⇒ x - y,

and if there is at least one strict inequality among a ≤ b ≤ c ≤ d, then x ≺ y.

For convenience, we will write preferences as if directly on X. Thus, we will henceforth

write [a, b] - [c, d] instead of writing x - y for asset x with values in [a, b] and asset y with

values in [c, d].

Violations of Axiom A.1 lead to counterexamples to the unique optimality of always

reporting the private upper bound. If buyers have a bliss point, then there is nothing to be

gained by reporting that a value above the bliss point is feasible. Note that A.1 implies a

full support condition.
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Because a report v̂ is feasible if and only if a′ ≤ v̂ ≤ b′, buyers learn from the seller's

report that a′ ∈ [a, v̂] and b′ ∈ [v̂, b]. We therefore extend preferences to rectangular subsets

of X (�rectangles�), which are sets of the form

R(w, x, y, z) := {[a, b] ∈ X|w ≤ a ≤ x ≤ y ≤ b ≤ z}.

In this notation, the report v̂ is feasible if and only if [a′, b′] is in the rectangle R(a, v̂, v̂, b).

Our next axiom is monotonicity with rectangular sets.

Axiom A.2 (Witnessed Strict Dominance). Let S, T be nonempty rectangular subsets of X.

Suppose that

(∀[a′, b′] ∈ S)(∃[a′′, b′′] ∈ T ) [a′, b′] ≺ [a′′, b′′]

and

(∀[c′′, d′′] ∈ T )(∀[c′, d′] ∈ S) ¬([c′′, d′′] - [c′, d′]).

Then S ≺ T .

A.2 is weaker than strict dominance. It says that, if every element of S is strictly

dominated by something in T , and nothing in T is strictly dominated by anything in S,

then S ≺ T . That is, given a possible range of values in S, there must be a witness in T

willing to testify that T o�ers something better. If this condition holds, then the agent must

prefer T to S. Referring Figure 2, Axiom A.2 requires that the horizontally striped region,

excluding the left boundary, is strictly better than the vertically striped region, excluding

the top boundary. If this does not hold, and our next axiom does, then the seller would be

better o� issuing a lower report than an higher report.

Axiom A.2 compares regions that are feasible under one report and infeasible under

another. That is, A.2 addresses the symmetric di�erence of feasible regions for distinct

reports. The next axiom, which we call disjoint union betweenness, compares the intersection
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of feasible regions.

Axiom A.3 (Disjoint Union Betweenness). Let S, T, U be nonempty rectangular subsets of

X. Suppose S ≺ T , ¬(U ≺ S), and ¬(T ≺ U). Then

U ∪ S ≺ U ∪ T.

It is important to restrict attention to rectangles that are no worse than a preferred

rectangle and no better than the dominated rectangle. To see why, assume S ≺ T and U, S,

and T are pairwise disjoint. Suppose U ≺ S, and that T is a small region, say a single

identi�ed point [v, v]. Suppose U is a larger region than T , but a much smaller region than

S. Then U ∪ T is almost identical to U , and U ∪ S is almost identical to S. The restriction

of Axiom A.3 to regions U that are not worse than S or better than T avoids this di�culty.

Although violations of Axioms A.1�A.3 can provide examples in which aggressive re-

porting is not uniquely optimal, these axioms alone are insu�cient to guarantee aggressive

reporting. The reason is that none of Axioms A.1�A.3 assures that the checked region in

Figure 2 is neither better than the horizontally striped region nor worse than the vertically

striped region. The additional axiom we needs is a closure condition. We �rst de�ne a notion

of distance.

De�nition A.1. Let [a, b], [a′, b′] ∈ X, and let U ⊆ X. De�ne

d([a, b], [a′, b′]) := ‖(a, b)− (a′, b′)‖

d([a, b], U) := inf
[a′′,b′′]∈U

d([a, b], [a′′, b′′])

If U = ∅, then set d([a, b], U) := −∞.

De�nition A.1 says the following: associate the interval [a, b] ∈ X with the point (a, b) ∈
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R2, as in Figure 2. De�ne the distance between two intervals be the Euclidean distance

between the associated points in R2, and let the distance from an interval [a, b] ∈ X to a

subset U ⊆ X be the distance from [a, b] to the closest point in X.

Axiom A.4 (Closure). Let S, T be rectangular subsets of X, with S ≺ T . Then for all

[a, b], [a′, b′] ∈ X, if d([a, b], S) = d([a′, b′], T ) = 0, {[a, b]} - {[a′, b′]}.

Lastly, we impose a consistency condition.

Axiom A.5 (Consistency). Let S, T ⊆ X. Suppose (∀[a, b] ∈ S)(∀[c, d] ∈ T ), we have

[a, b] - [c, d]. Then S - T .

Lemma A.6. Let a < v′ < v′′ < b. De�ne the rectangles

S = R(a, v′, v′, v′′)\{[a, b] ∈ X|a ≤ a ≤ v′ and b = v′′}

T = R(v′, v′′, v′′, b)\{[a, b] ∈ X|a = v′ and v′′ ≤ b ≤ b}

U = R(a, v′, v′′, b)

Then ¬(U ≺ S) and ¬(T ≺ U).

Remark. In Lemma A.6, the regions S, T, and U correspond to the vertically striped, hori-

zontally striped, and checked regions in Figure 2.

Proof. First, note that, for every [a0, b0] ∈ S with a0 < v′, the points {[a, b] ∈ X|a =

v′ and v′′ ≤ b ≤ b} ⊂ U strictly dominate [a0, b0]. On the other hand, no point in S strictly

dominates any point in U . So again by witnessed strict dominance, S\{[a, b] ∈ S|a = v′} ≺

U .

Next, observe that for any [v′, b] ∈ S and any [c, d] ∈ U , we have d([v′, b], S) = d([c, d], U) =

0. So by the closure axiom A.4, [v′, b] - [c, d]. We therefore have, for all [a, b] ∈ S and for

all [c, d] ∈ U , [a, b] - [c, d], and hence by the consistency axiom A.5, S - U .

An analogous argument shows that U - T .
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We can now prove Theorem 2.1.

Proof of Theorem 2.1. Let S, T, U be as in the proof of Lemma A.6. We will show that

S ∪U ≺ T ∪U . Since S ∪U is the information the buyer receive from report v′ and T ∪U is

the information the buyers receives from report v′′ > v′, it then follows that a higher report

is always better news. Consequently, the seller's uniquely optimal strategy is to choose the

highest admissible report, v̂ = b′.

Observe that S ≺ T ; this is an immediate consequence of the interval order axiom A.1

and the witnessed strict dominance axiom A.2. Lemma A.6 then guarantees that S - U

and U - T . By the disjoint union betweenness axiom A.3, the result follows.

B Instructions

We provide the instructions and the review questions for the conservative treatment. The

instructions for other treatments are shown in brackets.

Instructions

This is an experiment in the economics of decision-making. This experiment will last

approximately one hour. Do not talk to others at any time during the experiment. If you

have any questions during the experiment, please raise your hand.

To make a pro�t, you will trade a �nancial asset. At the end of the experiment, we will

pay you a show-up fee of $5 plus any pro�ts you will have made.

The experiment will last for 16 rounds. In each round, the computer will randomly select

one person as the seller. The other four participants will be buyers for that round. Everyone

has an equal chance of being the seller in any given round. The computer will tell you

whether you are a seller or a buyer. The computer will not tell the buyers who the seller is.

At the beginning of each round, the seller will receive an asset, and the buyers will receive

150 cents. The computer will determine the asset's value at the end of the round.
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Your Information [Discretionary treatment: Your Information and the Seller's Report]

If you are the seller, the computer will tell you a minimum and maximum value of the asset

for that round. The minimum will be at least 50 cents, and the maximum will be at most

150 cents. The asset's value will be between the minimum and maximum. [Discretionary

treatment: The computer will ask you to enter a possible value of the asset, which must be

between the minimum and the maximum.] If you are a buyer, the computer will tell you the

minimum, and will remind you that maximum is at most 150 cents. [Fair value treatment: If

you are a buyer, the computer will tell you the maximum, and will remind you that minimum

is at least 50 cents.] [Discretionary treatment: If you are a buyer, the computer will tell you

the possible value the seller entered.]

The Auction

If you are a seller, the computer will ask you to enter the lowest price for which you are

willing to sell the asset. None of the buyers will see the minimum price you enter.

If you are a buyer, the computer will ask you to enter the amount you are willing to pay

for the asset. We call this amount your bid. You may enter any amount from 0 to your 150

cents. None of the other participants will see your bid.

If the highest bid is at least the minimum price the seller is willing to accept, then

the computer will sell the asset to the buyer who made the highest bid. The price will

be the amount of the highest bid. If two or more buyers tie for the highest bid, then the

computer will randomly select one of these buyers and sell the asset to the selected buyer.

The computer will then determine the asset's value. If trade does not occur, the seller will

receive the asset's value. If trade occurs, the buyer who bought the asset will receive the

asset's value. After the computer determines the asset's value, your money for the current

round will be deposited into your account.

At the end of the experiment, we will pay you the balance in your account. If your

account balance is negative, we will still pay you the full $5 show-up fee.
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If you have any questions, please raise your hand now.

Review Questions

Please answer the following questions. Your answers will not a�ect your payment.

1. The computer tells the seller that the asset is at least 59 cents and at most 120 cents.

The computer will also tell the buyer that the asset is worth at most 120 cents. [Dis-

cretionary Treatment: The computer tells the seller that the asset is worth at least 59

cents and at most 120 cents. The computer will also tell the buyers the possible value

the seller enters.]

True False

2. The computer tells the seller that the asset is at least 59 cents and at most 120 cents.

The computer will also tell the buyer that the asset is worth at least 59 cents. [Dis-

cretionary treatment: The computer tells the seller that the asset is worth at least 59

cents and at most 120 cents. The seller may enter a possible value of 125 cents.]

True False

3. The lowest price for which the seller is willing to sell the asset is 76 cents. The highest

bid is 87 cents. Trade will occur.

True False

4. The lowest price for which the seller is willing to sell the asset is 87 cents. The highest

bid is 76 cents. Trade will occur.

True False
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