
 

 

 
 
 
 

 
A Theory of Classification Shifting 

 
 

Abstract 
 
This article demonstrates that managers can influence the market by classifying some items as core 
earnings and others as non-core. Investors react to classifications because managers have 
incomplete discretion over how to classify results. Managers optimally use their discretion to pool 
good news with items mandatorily classified as core earnings and bad news with items mandatorily 
classified as non-core. Aggregation reduces this temptation to classify strategically, provided 
managers also have incomplete discretion over how to aggregate. That is, managers can use 
aggregation to separate from strategic classifiers. Our results provide empirical implications for 
the cross-sectional properties of financial reports. 
 
Key words: Aggregation; Classification Shifting; Simpson’s Paradox 
 



2  

 

 

I. Introduction  

 

Financial disclosures contain both quantitative and qualitative information. While quantitative 

information is subject to uncertainty, the qualitative information inherent in classifications is 

subject to vagueness. For example, transitory vs. permanent, operating vs. nonoperating, or 

expense vs. capitalization classifications are not necessarily based on numerical thresholds – 

because generally accepted measures of ‘permanent-ness,’ etc., do not typically exist. Yet these 

classifications serve to organize balance sheets, income statements and the non-GAAP disclosures 

which are becoming more common. While certain items may be confidently classified – this is 

why classifications are useful in everyday discourse – an accounting standard which fixes a limited 

number of categories for describing transactions will inevitably result in gray areas.1  

 

We develop a model of opportunistic classification which gives a firm discretion over how to 

classify those items (transactions or events) which fall into a gray area. To the extent that the firm 

has more than one item to classify, we assume that classifications must be consistent— if an item 

is classified (not classified) as a member of a category, then items with stronger (weaker) 

membership must also be included (not included) in the classification.2 We also examine the effect 

of aggregation – it is common practice to aggregate the quantitative assignments (i.e., sum them 

up) for similarly classified items before disclosing them. We show that consistency and 

aggregation can both increase the informativeness of disclosure by limiting the benefit to the firm 

form exercising opportunistic discretion. Noting that consistency requires that more than one item 

be classified, the former result suggests that adding an item to be disclosed can improve the overall 

informativeness of the disclosure. If classifying many (versus few) items suggests the evolution of 

an accounting routine, then the result also suggests that firms which have been able to establish 

accounting routines may have better disclosures. The latter result on aggregation contrasts more 

                                                             
1 For example, it may be easy to point out a person in a crowd if we can identify that characteristic for which the 
individual is an extreme example (color of clothing, hair style, accessories, etc.). The task becomes problematic, 
however, if, we forced to use a single category (e.g., tall/short). See Penno (2008). 
2 This is commonly referred to as a fortiori reasoning. 
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conventional views of aggregation (that ignore opportunistic behavior) which hold that 

aggregation destroys information.3 

 

The paper is related to the economic literature which recognizes the significance of classification. 

They include Mullainathan et al. (2008) who study how individuals group situations into categories 

and apply the same model of inference to all situations within a category (coarse thinking), 

Barberis and Shleifer (2003) who study the pervasive classification which occurs in financial 

markets (style investing), and Barberis et al. (1998) who consider investors who consider only 

limited number of ways to classify stock price movement. In terms of the accounting literature, 

our results on aggregation expand the research initiated by Dye and Sridhar (2004) who examine 

the efficiency of aggregating soft and hard information. Our Section II result on Simpson’s 

Paradox is closely related to Sunder (1983), who provides an accounting application (cost 

allocation across activities) of the paradox. 

 

For the remainder of the paper, Section II provides the intuition behind discretionary classification 

of a single item in isolation. We model an ‘item’ as a two-dimensional transaction or event with a 

generally accepted numerical assignment for the first (hard) dimension. The second dimension is 

soft, and a numerical threshold for that dimension cannot be established. Instead, the second 

dimension is used for classification purposes. For example, when disclosing non-GAAP earnings, 

a firm may choose to treat a numerical loss (first dimension) as transitory (second dimension) by 

excluding it from non-GAAP earnings. If the second dimension’s underlying characteristic is 

continuous, a gray area will result where the item’s classification makes the transition from 

transitory to permanent.4 Here the classifications become uninformative as the amount of 

discretion reaches its maximum level. Sections III and IV model the setting where the firm has 

two items to be classified. This extension permits us to contrast to the simple illustration, and to 

explain how certain classifications now are informative as the amount of discretion reaches its 

                                                             
3 For example, by Ijiri (1967) and Sorter (1969). Ijiri (p. 120) suggests that “any aggregation generally involves the 
loss of information in that the resulting total ‘value’ may be composed of many – possibly infinitely many – 
different components.” Sorter (p. 13) adds that ”less rather than more aggregation is appropriate” for the financial 
statements, and that is it up to the user to do the aggregation himself if the need so arises. 
4 For example, Dichev et al.(2013, p. 13) indicate that a key issue with an interviewed standard setter was whether, 
and how, to treat non-permanent items. 
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maximum level. Section V introduces the notion of within-category aggregation and Section VI 

concludes.  

 

II. A Single Transaction Illustration 

 

The disciplining effect of consistency is possible only when a firm must classify more than one 

item. To provide a benchmark and simple introduction to our modeling of such classifications, 

consider a simple setting where there is a single item is to be classified. That is, the firm observes 

the realization of a random but quantifiable economic event or transaction, say a cash flow, x~ . 

This economic event or transaction must be reported to a risk-neutral investor where the true effect 

of both variables on the value of the firm is simply ,xa  where ú
û

ù
ê
ë

é
Î

p
a 2,0~ , and a~  is uniformly 

distributed and independent of .~x 5 We require that a  represent a piece of evidence observable 

and understood by both the firm and a third party enforcer (e.g., an auditor) rather than a subjective 

estimate that exists only in the mind of management. But unlike x  itself, a  lacks a generally 

accepted reporting mechanism for its specific value. Instead, we assume that the firm classifies a

as either L (low) or H (high). We further assume that the firm has limited discretion over this 

classification. In particular, whenever a  is extremely low, the firm must classify the reported 

value of x~  as an ,L  and when a  is extremely high, the firm must classify the reported value of 

x~  as an H . That is, as a  becomes extreme, the third party will force the appropriate disclosure. 

However, for intermediate values of a , the firm has full discretion and may report a as either an 

L  or an H . We represent the firm’s degree of discretion with the interval depicted in Figure 1. 

 

-- Place Figure 1 about here -- 
 

Any xwith an e
p

a -<
1

 must be classified and reported as an L , and any xwith an 

e
p

a +>
1

 must be classified and reported as an H . Accordingly, the exogenous parameter e  

                                                             
5 The independence assumption is made for parsimony and provides us with an intuitive benchmark. 
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models the degree of discretion present in the classification scheme.6 We assume that because the 

value of the firm is xa , a firm that wishes to present itself in the most favorable light will choose 

that classification which maximizes the value of the firm as determined by the investor on the basis 

of the reported classification { }HLC ,Î  and x . The investor, in turn, estimates the expected value 

of a~  conditional on x  and its inference of the firm’s classification strategy. The firm, in turn, 

makes its classification given the investor’s expectations, resulting in a Bayesian Nash 

equilibrium. It is straightforward to verify that the following is such an equilibrium: 

 
 

-- Place Table 1 about here -- 
 
 

Whenever 0<x , the firm will use all of its available discretion to report LC =  so as to mitigate 

the effect of the investor’s perceived weight applied to the negative value of x . Thus, the firm will 

report classification Lwhenever 0<x  and ú
û

ù
ê
ë

é
e+

p
Îa

1,0 , which is the union of the lower non-

discretionary region and the discretionary region. Therefore the expected value of a~  given 0<x  

and LC =  equals ÷÷
ø

ö
çç
è

æ
+ e

p
1

2
1 . Similar reasoning establishes the rest of Table 1, which provides 

the equilibrium weights applied by the investor to the various realizations of x~ . An important 

feature of this simple model is that the classifications become uninformative as 
p

e 1
® .  

 

An interesting feature of this particular setting is that conditional on the classification being L  or 

H , the investor’s weight attached to a negative x  is always greater (by an amount, e ) than the 

weight attached to a positive x . Consequently, if we only compare reported items within a 

classification, this will lead to the conclusion that for this simple setting that bad news has a higher 

weight than good news. Upon returning to the model, this result might be surprising given that on 

average, due to the independence of a~ and ,~x good and bad news should both have a weight of 

                                                             
6 To illustrate, firms with established business models, or members of a very competitive (and standardized) 
industry may have small e  values, while emerging technologies or first movers may have large e  values. 
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p
1

. While the result may appear to suggest conservatism, it is actually a manifestation of 

Simpson’s Paradox, in which a trend that appears in different groups of data disappears when these 

groups are combined. It is interesting to note here that the Simpson’s Paradox effect is a direct 

implication of focusing on classification since, by its definition, Simpson’s Paradox requires that 

classifications be made before a paradox can exist.7  

 

III. Model 

 

Allowing for two dimensions permits us to not only examine the effect of extreme items, as we 

did above, but just as importantly, to consider the disciplining effect of natural orderings. That is, 

items to be classified into one of two categories are generally not identical and frequently can be 

ordered as to which category is more or less representative of that item. We model this setting with 

a circle of area one circumscribed within a square. See Figure 2.  

 

-- Place Figure 2 about here -- 
 
 
For this setting, the firm reports the realizations of two random variables, 1

~x  and 2
~x ,and privately 

observes the realization random variables, 1
~a  and 2

~a , where ( )21
~,~ aa  is uniformly distributed over 

a circle with radius 
p
1

, which has an area of one, and where ( )21
~,~ aa  is independent of ( ).~,~ 21 xx

The true underlying value of the firm equals 2211 xx aa + . Similar to the one-item illustration, the 

firm must classify each ia  realization as either an L or an H , and does so to maximize the outside 

risk-neutral investor’s inferred expected value. The classification decision is designated as 

( )21,CC  where { }HLCi ,Î  is the classification for .ix  The investor, in turn, estimates the 

expected values of 1
~a  and 2

~a  conditional on the disclosure of 1x  and 2x , the disclosed 

classification, and the inferred classification strategy of the firm. The firm, in turn makes its 

classification given the investor’s expectation, resulting in a Bayesian Nash equilibrium.  

 

                                                             
7 See Sunder (1988) for another accounting illustration of Simpson’s Paradox. 
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The inner circle with a radius of e  represents the realizations of ( )21
~,~ aa  for which classification 

discretion is allowed. For reference, the large circle (radius 
p
1

) has been divided into four 

quadrants. If 0=e , then the firm would have no discretion and must report classifications ( ),,HH

( )HL, , ( )LL,  and ( )LH ,  when the ( )21,aa  realization falls into quadrants I, II, III, and IV 

respectively. As e  increases, the regions of no-discretion shrink. The outer unshaded ring 

represents ( )21,aa  realizations for which no classification discretion is never allowed. We assume 

the following property: 

 

Consistency: The firm is prohibited from reporting ( )LH ,  when 21 aa < , and prohibited from 

reporting ( )HL,  when 21 aa > . 

 

Consistency reflects the idea that an observer such as an auditor is able to examine 1a  and 2a , 

and recognize whether one is less than the other and that any reported classification should not 

violate that ordering. The ordering property essentially requires that the firm be consistent and 

keep its story straight. While the probability that 21 aa =  is zero implies that the realizations 

( )21,aa  will be strictly ordered with probability one, those realizations for which 21 aa =  create 

a useful boundary, as discussed below. To appreciate the implications of the ordering property, 

consider Figure 3, which depicts a cross-hatched semicircle: 

 
 

-- Place Figure 3 about here -- 
 
 

The dashed diagonal represents all ( )21,aa  pairs for which 21 aa = , and divides the discretionary 

region depicted in Figure 2 into two semicircles of equal area. For all ( )21,aa  falling into the 

interior of cross-hatched semicircle, we have 21 aa > , and for all ( )21,aa  falling into the interior 

of complementary (white) semicircle, we have 21 aa < . Thus, by the ordering property, a report 

of ( )HL, is not allowed when ( )21,aa  lies in the cross-hatched semicircle. Similarly, when 

( )21,aa  lies in the complementary (white ) semicircle, a classification of ( )LH ,  is not allowed. 
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The ordering property does not apply to an ( )HH,  or an ( )LL,  classification. For those cases, as 

long as ( )21,aa  lands in either semicircle, either an ( )HH,  or ( )LL,  classification is permitted, 

because now there is no violation of the ordering property with either classification. Consequently, 

Figure 3 suggests that reports of ( )HL,  or ( )LH ,  may be less manipulable than a report of ( )HH,  

or ( ),,LL  and, as we will see, be more informative.  

 

To illustrate the issues involved, suppose that 11 -=x  and 12 =x , meaning that, ceteris paribus, 

the firm would like the investor to place the lowest weight possible on 1x  and the highest weight 

possible on .2x  Conjecture for now that a reported classification of ( )HL,  results in the investor’s 

highest inferred equilibrium value for the firm and a reported classification of ( )LH ,  results in the 

lowest equilibrium value. If the firm reports ( )HL, , the investor uses its knowledge of this 

preference to infer that ( )21,aa  has fallen into either the white rim for ( )HL,  or the white 

semicircle (complementary to the hatched semicircle as depicted in Figure 3) and will calculate 

the conditional expectations for 1
~a  and 2

~a , and use accordingly to weight 1x  and 2x . Given that 

( )HL,  was the preferred choice of the firm, suppose next that the firm reports a classification other 

than ( )HL, . If the firm reports a classification different than ( ),,HL  the investor infers that 

( )21,aa  did not fall into the above-mentioned areas, because otherwise, the firm would have 

reported ( )HL, . The investor can use this deviation from most preferred classification to make 

inferences about ( )21,aa . If, for example, the actual disclosure were ( )LL, , the investor would 

then know that ( )21,aa  has fallen into either the segment of the white rim for ( )LL,  or the cross-

hatched semicircle and will calculate the weights for 1x  and 2x  accordingly. If instead, the firm 

reported ( )HH, as the alternative to the preferred classification, the investor would then infer that 

( )21,aa  has fallen into either that segment of the white rim for ( )HH,  or the cross-hatched 

semicircle. Finally, suppose that ( )HL,  was the preferred choice of the firm, but that the firm 

reports classification ( )LH , . If this were the least preferred choice of the firm, the investor knows 

that the firm has been unable to report its second choice of ( )HH,  or ( )LL, , which would imply 

that ( )21,aa  must have fallen into the outer rim for ( )LH , . The investor accordingly creates a 
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hierarchy of firm choices and corresponding conditional inferences. A similar description applies 

to the case where ( )LH ,  is the most preferred disclosure and ( )HL,  is the least preferred. Thus 

for the cases of ( )HL,  or ( )LH ,  being most preferred, we conjecture a three-level hierarchy: 

 

1. Most preferred classification 

2. Second choice classification 

3. Least preferred classification  

 

This hierarchy is used by the investor to value 1x  and 2x . 

 

Next, consider the case where ( )HH,  or ( )LL,  is the firm’s most preferred disclosure. Suppose 

that 11 =x  and 12 =x , meaning that the firm would like the investor to place the highest possible 

weights on both 1x  and .2x  Conjecture that ( )HH,  is now the firm’s preferred disclosure. If, 

indeed, the firm discloses ( )HH,  the investor infers that ( )21,aa  has landed in either the white 

outer rim for ( )HH,  or the shaded area of Figure 2, and will calculate its conditional expectation 

for ( )21
~,~ aa  accordingly. Next suppose that ( )HH,  was the preferred disclosure, but that another 

disclosure ( ( )LL, , ( )HL,  or ( )LH , ) has occurred. Now the investor may infer that ( )21,aa  did 

not fall in white outer rim for ( )HH,  and did not fall the shaded area of Figure 2 either, and can 

pin down the location of ( )21
~,~ aa  precisely to the white rim corresponding to the actual disclosure 

( )LL,( , ( )HL,  or ( )),LH . A similar description applies to the case where ( )LL,  is the preferred 

disclosure. When ( )HH,  or ( )LL,  are most preferred, the investor accordingly creates a two-level 

hierarchy of firm choices and corresponding inferences. 

 

1. Most preferred classification 

2. Least preferred classification 

 

Note that when ( )HH,  or ( )LL,  are most preferred, the hierarchy is reduced from three levels to 

two. This occurs because a rejection of ( )HH,  or ( )LL,  leaves no remaining discretion, forcing 
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the firm out to the white rim (least favored), whereas as rejection ( )HL,  or ( )LH ,  leaves enough 

discretion to choose an ( )HH,  or ( )LL,  before the firm is forced out to the white rim. 

 

To develop a further sense of all of the possible classifications, we next calculate the weights for 

the most and least preferred classifications for both hierarchies above. (These calculations are 

found in the appendix.) Suppose first that the firm reports its least preferred classification. Given 

the definitions made above, this means that all other options are not available and that ( )21,aa  

lies in the corresponding segment of the white outer rim. Due to the symmetry of the problem, we 

can let Li ww º  represent the weight for least preferred classification LCi = , and Hi ww º  

represent the weight for a least preferred classification when HCi = . 

 

( )
( )epp

epepepw 22/3

22/3

3
44433

+
---+

=L  

 

( )
( )  H epp

epepepw 22/3

22/3

3
44433

+
++-+

=  

 

Next suppose that the firm makes its most preferred classification and that it is either ( )HL,  or 

( )LH , . In this case, symmetry again permits us to determine that an ix  classified as an L  will 

have weight Lµ , and the other jx  classified as an H  will have weight Hµ  where 

 

( )
( )epp

pepepµ 22/3

32/322

13
431243

+
-+--

=L  

 

( )
( )epp

pepepµ 22/3

32/322

13
431243

+
++-+

=H  

 

Finally, if a firm makes its most preferred choice ( )HH,  or ( )LL,  , then the investor knows that 

the ( )21,aa  realization is contained in either in the shaded circle of Figure 2 or the corresponding 
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quarter of the outer white rim. Let Hl  indicate the weight applied to 1x  and 2x  each, when the 

classifications are ( )HH,  and Ll  indicate the weight applied to 1x  and 2x  each, when the 

classifications are ( )LL, ,  

 

( )22/3

32/322

313
4349

pep
pepepl

+
-++

=L  

 

( )22/3

32/322

13
4343

pep
pepepl

+
++-

=H  

 

The weights above are represented in Figure 4.  

 
 

-- Place Figure 4 about here -- 
 

from the ex ante mean 
p
1  provides an indication of the classification’s informativeness. As 

discretion increases, reporting a least preferred classification becomes more informative as the w  

weight deviates from the ex ante mean. Furthermore note that as 
p

e 1
® , the µ weights do not 

converge to the uninformative weight, 
p
1 . This is due to the fact that even though ,1

p
e ®  a 

firm reporting ( )HL,  or ( )LH ,  does not have complete discretion. Finally , the l  weights 

converge to the uninformative weight 
p
1  as 

p
e 1
® , reflecting the absence of discipline 

arising from of the lack of an ordering limitation on discretion for this type of disclosure. 

 

Consequently, as 
p

e 1
® , the ( )LL,  and ( )HH,  preferred choices become uninformative, while 

the ( )HL,  and ( )LH ,  preferred choices continue to be informative. This contrasts the simple 
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model of Section II where the classifications become uninformative as 
p

e 1
®  and thereby 

emphasizes the role of multiple items in disciplining the classifications made by an otherwise 

opportunistic firm. We will see next, however, that as 
p

e 1
® , that the most preferred ( )HL,  

and ( )LH ,  classifications become rare.  

 

To see this, consider Figure 5.  

 

-- Place Figure 5 about here -- 
 
 
Figure 5 exhibits the firm’s most preferred classifications for ( )21, xx  pairs for 3.=e  and 5.=e . 

The boundary between ( )HL,  most preferred and ( )LL,  most preferred disclosure is found by 

comparing the investor’s valuations assuming that a disclosure is most preferred. For example, the 

value HL xx ll 21 +  is used for an ( )HL,  disclosure and LL xx µµ 21 +  is used for and ( )LL,  

disclosure. The boundary between ( )HL,  preferred disclosure and ( )LL,  preferred disclosure is 

found by setting these two values equal and solving for 2x  as a function of 1x . The same approach 

is issued for all of the other boundaries and is summarized in the appendix.  

 

 Note how the most preferred status areas for ( )HL,  and ( )LH ,  shrink with e . In the limit, as 

p
e 1
® , it can be shown that most preferred status for ( )HL,  and ( )LH ,  vanishes and the graph 

indicating the areas of most preferred status only for ( )LL,  and ( )HH,  which become two equal 

triangles separated by a diagonal line with a slope equal to one. When this occurs, the weights for 

1x  and 2x  converge to the ex ante weight of 
p
1  as noted in Figure 4, and ( )LL,  and ( )HH,  are 

the only most preferred disclosures. This implies that overall, any classification becomes 

uninformative due to the fact the firm is always free to choose its most preferred ( )LL,  or ( )HH,  

and both of these classifications become uninformative. However, while rare, the classifications 

( )HL,  and ( )LH ,  remain informative as indicated in Figure 4. 
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While we have assumed that ( )21

~,~ aa  is independent of ( )21
~,~ xx , to the extent that quantitative 

factors (i.e., ( )21, xx ) influence the investor’s interpretation of ( )21,CC , the equilibrium 

classifications and ( )21,aa  are clearly dependent. This become even more apparent when we 

consider the firm’s second choice classifications.  

 
 
IV. Second Choice Classifications 
 

To complete the analysis, consider the second choice disclosures. Consider first the case where the 

most preferred classification is ( )HL,  or ( ).,LH  Imagine a diagonal line drawn on Figure 5 

representing all ( )21, xx  pairs such that 21 xx =- , descending from the upper left-hand corner, 

( )1,1 - , to the lower right-hand corner, ( )1,1- . Due to the linearity of the objective functions, it 

turns out that the firm’s second most preferred choice will simply depend on which side of the that 

diagonal, 21 xx -= , that ( )21, xx  lies. Return to the example where 11 -=x  and 12 =x , and ( )HL,  

the preferred classification. It would seem that for a quadrant II ( )21, xx  realization falling below 

the 21 xx =-  diagonal, that because 21 xx >- . the negative event dominates. Consequently, the 

firm might, as a second choice limited to ( )LL,  or ( )HH, , prefer both weights to be low rather 

than for both weights to be high, with the reverse holding for a ( )21, xx  realization falling above. 

the 21 xx =-  diagonal in quadrant II. Accordingly, we this conjecture a second choice of ( )LL,  

for a quadrant II ( )21, xx  realization falling below the 21 xx =-  diagonal, and a second choice of 

( )HH,  for a quadrant II ( )21, xx  realization falling above the 21 xx =-  diagonal, Conditional on 

either of these second choice disclosures, the investor may conclude that ( )21,aa  has fallen into 

either the hatched semicircle of Figure 3 or the appropriate region in the white outer rim. Finally, 

if ( )HL,  is the most preferred disclosure, and a disclosure of ( )LL,  or ( )HH,  is not made, the 

investor may deduce that ( )21,aa  has fallen into white rim for least favored ( )HL, .  

 

The following expressions summarize the equilibria and are displayed in Figure 6. (These are 

derived in the appendix.)  
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-- Place Figure 6 about here -- 
 
 
Suppose first that the firm’s most preferred choice is ( )HL, m quadrant II ( )21, xx  lies below the 

diagonal, and its second choice is ( )LL,  , then a disclosure of ( )LL,  will have weights ( )Lµg ,  

where  

 
( )

( )epp
pepepg 22/3

32/322

13
431243

+
-+++

=  

 

Similarly, if the firm’s most preferred choice is ( )HL, m quadrant II ( )21, xx  lies above the 

diagonal, and its second choice is ( )HH,  , then a disclosure of ( )HH,  will have weights ( )bµ ,H  

where  

 

=b = ( )
( )epp

pepep
22/3

32/322

13
431243

+
+++-  

 

A symmetric argument can be made for the case where ( )21, xx  lands in the region where ( )LH ,

is most preferred. If ( )21, xx  lies below the diagonal which means that its second choice is ( )LL,  

and disclosure of ( )LL,  will have weights ( )gµ ,L , and if ( )21, xx  lies above the diagonal which 

means that its second choice is ( )HH, , a disclosure of ( )HH,  will have weights ( )Hµb , .  

 

Consider the case where ( )HL,  is the most preferred choice, but the firm has made ( )LL,  its 

choice. When 0»e , the weights ( )Lµg ,  are approximately ( )LL µµ ,  reflecting the fact that there 

is little discretion available and that a disclosure of ( )LL,  reflects that ( )21,aa  almost surely lies 

in the third quadrant of Figure 2 where the conditional expected values of 1
~a  and 2

~a  are both .Lµ  

A symmetric argument applies for a most preferred disclosure of ( ).,LH  

 

An implication of Figures 4 and 6 taken together is that while the w weights representing the least 

preferred choice are more informative that the l  weight for the two –level hierarchy 

corresponding to ( )LL,  and ( )HH,  as most preferred, when we then consider the second choice 
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preference corresponding to a three level hierarchy and ( )HL,  and ( )LH ,  as most preferred, we 

no longer have an unambiguous ordering of informativeness as we descend the hierarchy. In 

particular, the g and b weights move toward, and then away from no-information benchmark of 

p
1  as e increases, while the companion µ weight is identical to the weight for most preferred 

( )HL,  and ( )LH , . Consequently we have shown that it is not always the case that a less preferred 

classification is more informative than more preferred one (Hirst et al., 1995). 

 

V. Aggregation 

 

We assumed in the previous sections that when an item was classified as ( )HH,  or ( )LL, , the 

investor was able to observe both 1x  and 2x . We saw that as 
p

e 1
® the classification overall 

became uninformative. In this section, we gather results from the previous ones to serves as a 

comparison to disclosures with within-category aggregation, and will see that by introducing 

within category aggregation, the classifications will remain informative as 
p

e 1
® .  

 

We modify the model by requiring the firm to aggregate 1x  and 2x  by reporting their sum 

whenever a ( )LL,  or ( )HH,  classification is made, the most preferred status will reverse itself 

with ( )HL,  and ( )LH ,  becoming the most preferred disclosures as 
p

e 1
® . Figure 4 shows 

that these disclosure remain informative as 
p

e 1
® , thus establishing that within-category 

aggregation may enhance the informativeness of the disclosures relative to the (non-aggregation) 

model examined above. 

 

To make this statement more precise, suppose that when ( )HH,  or ( )LL,  is reported that instead 

of indicating the values of 1x  and 2x , the firm reports the sum å ix . This assumption recognizes 

that without sub-categorization, classifying two items into the same category will result in their 
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aggregation. We retain the assumption, however, that the values of 1x  and 2x  are individually 

indicated when the classification is ( )HL,  or ( )LH , . To simplify the analysis of within-category 

aggregation, see Figure 7.  

 

-- Place Figure 7 about here -- 
 
 
Figure 7 assumes that ( )21

~,~ xx  is uniformly distributed over a square of length 2 and mean ( ).0,0  

Suppose for a moment, the investor only learned the value of å ix  This would allow the investor 

to calculate expected value of an å ix  disclosure as ÷
÷
ø

ö
ç
ç
è

æ åå
2

,
2

ii xx
. For example, suppose that 

the investor learned only that 5.=å ix . Then the conditional expected value of ( )21
~,~ xx  is the 

average of ( )5,.1-  and ( )1,5. -  or ( )25.,25. -- .  

 

Next consider the role of classification. The weights for the most preferred and least preferred 

disclosures will not change so the value associated with a most preferred ( )HL,  disclosure remains 

21 xx HL ll + . If instead, given a particular realization of ( )21,aa , the firm wished to report an 

aggregate å ix  as its most preferred disclosure, then it would be indifferent among all ( )21, xx  

giving rise to å ix , because this is all the investor can see. Consequently, the value associated 

with a most preferred ( )LL,  disclosure of å ix  will be 
22
åå + i

L
i

L

xx
ll  = å iL xl . A similar 

argument can be made for a most preferred ( )HH,  resulting in an investor value of å iH xl . 

Using these weights, we graph Figure 8, as the analogue of Figure 5. 

 

-- Place Figure 8 about here -- 
 
 
Figure 8 presents a complementary analogue to Figure 5. Figure 8 exhibits the firm’s most 

preferred classifications for ( )21, xx  pairs for 3.=e  and 5.=e  given within-category aggregation.  
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Note how the preference for ( )LL,  and ( )HH,  shrinks with e . In the limit, as 
p

e 1
® , the 

preference for ( )LL,  and ( )HH,  vanishes and resulting figure will indicate that most preferred 

areas remaining only for ( )HL,  and ( )LH ,  separated by a graph with slope equal to one. That is, 

with probability one, 1a  and 2a  can be strictly ranked, and with probability one half, the most 

preferred preference will be realized. One the other hand, with probability one-half, the most 

preferred classification will not be realized, but then the firm will classify ( )21, xx  as either ( )LL,  

or ( )HH,  depending on the sign of å ix , but because ( )21
~,~ aa  is assumed independent of ( )21

~,~ xx  

the classification will be uninformative. Thus, as 
p

e 1
® , while aggregated disclosures are 

uninformative, the process of aggregation is informative relative to the case of no aggregation 

described above. The net effect however, is for informativeness to survive in the face of wide 

discretion.  

 

VI. Conclusion 

 

Our model sheds light on the economics of the classification of disclosures opportunistically made 

by a firm. To the extent that all disclosures must be classified, our model examines a universal 

feature of modern financial reporting. By noting certain limitations on this discretion (discretion 

over classifying extreme items, and the inherent ordering of the items) we are able to show how 

the classifications are informative. Furthermore, due to the strategic nature of classification, the 

convention of aggregating within-category items (i.e., reporting a simple sum) may actually 

increase the overall informativeness of classification relative to classification made without the 

aggregation convention for the classifications that we study.  
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Appendix 
 

This appendix contains a sequence of arguments deriving the results figures found in the text.  

 

1. Deriving the weights when ( )HL,  and ( )LH ,  are most preferred classifications.  

Consider Figure 9. 

 

--Insert Figure 9 about here-- 

 
 
Quadrant II exhibits a smaller gray quarter circle with radius e , and a larger quarter circle with 

radius 
p
1  containing the gray quarter circle. The centroid of smaller gray quarter circle is 

÷÷
ø

ö
çç
è

æ
+-

p
e

pp
e

p 3
41,

3
41  and the centroid of the larger quarter circle is 

÷÷
ø

ö
çç
è

æ
+- 2/32/3 3

41,
3
41

pppp
. The probabilities of these two regions are 

4

2pe  and 
4
1  

respectively.  
 
Consider next, the region corresponding to the larger quarter circle less the smaller gray quarter 
circle, or the white fraction of the larger quarter circle. This represents those realizations of 1a  
and 2a  for which no discretion is allowed. The centroid of this region ( )HL ww ,  obeys 
 
 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ
÷÷
ø

ö
çç
è

æ

÷÷
ø

ö
çç
è

æ
-

4
1
4

3
41

2pe

p
e

p
 + 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ
÷÷
ø

ö
çç
è

æ
-

4
1
44

1 2pe

wL = ÷÷
ø

ö
çç
è

æ
- 2/33

41
pp

, and  

 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ
÷÷
ø

ö
çç
è

æ

÷÷
ø

ö
çç
è

æ
+

4
1
4

3
41

2pe

p
e

p
 + 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ
÷÷
ø

ö
çç
è

æ
+

4
1
44

1 2pe

wH = ÷÷
ø

ö
çç
è

æ
+ 2/33

41
pp

, with the result that  

 

=Lw
( )
( )epp

epepep
22/3

22/3

3
44433

+
---+  and =Hw

( )
( )epp

epepep
22/3

22/3

3
44433

+
++-+  
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Consider next Figure 10, 
 
 
 

--Place Figure 10 about here-- 

 
 
For Figure 10, the darkened half circle represents the area of discretion for the report ( )HL, . The 

darkened half-circle has centroid ÷÷
ø

ö
çç
è

æ
+-

p
e

pp
e

p 3
221,

3
221 , and the probability of being in 

this half circle equals 
2

2pe . Consequently the expected values of 1
~a  and 1

~a  given ( )HL,  equals  

 
( )],|~[ 1 HLE a   

= 

÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-+

÷÷
ø

ö
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è
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÷÷
ø

ö
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è

æ
-

44
1

2

2
3
221
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2
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p
e

p
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÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç

è

æ

-+

÷÷
ø

ö
çç
è

æ
-

÷÷
ø

ö
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è
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+
---+
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3
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13
431243

+
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= Lµ  
 
and ( )],|~[ 2 HLE a   
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÷
÷
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ç
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The analysis for the ( )LH ,  disclosure is symmetric.   
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2. Deriving the weights when ( )HH,  or ( )LL,  is most preferred 

 
Consider Figure 11: 
 

--Place Figure 11 about here-- 

 
The dotted fill circle in Figure 11, represents the area of discretion which has centroid 

÷÷
ø

ö
çç
è

æ
pp
1,1  and probability 2pe . A an analysis similar to that for ( )HL,  establishes that  

 

( )],|~[ 1 HHE a  = ( )],|~[ 2 HHE a = ( )22/3

32/322

13
4343

pep
pepep

+
++- = Hl . 

 
A similar argument for ( )LL,  establishes that 
 

( )],|~[ 1 LLE a  = ( )],|~[ 2 LLE a = ( )22/3

32/322

313
4349

pep
pepep

+
-++ = Ll . 

 
3. Deriving the boundaries for Figure 5 

For each boundary indicated below we will solve for 2x as a function of 1x . Instead of directly 
solving for 2x , we will solve first for 2x̂  and the resulting boundary be  
 
 

ï
î

ï
í

ì

>
££

<
=

1x̂ f1
 1x̂0 if ˆ

 0x̂ f0

2

22

2

2

i 
x

i 
x  

 
Boundary for ( ) ( )HLHH ,/, : solve HH xx µµ 21 ˆ+  = HL xx ll 21 ˆ+  to obtain 
 

 ( ) ( )( )
( ) 1232/3

52/532/32

2 312
4232242ˆ xx ÷÷

ø

ö
çç
è

æ

+
-+-++

-=
peep

epeppe  

 
Boundary for ( ) ( )HLLL ,/, : solve LL xx µµ 21 ˆ+  = HL xx ll 21 ˆ+  
 

( )
( )( ) 132/332/32

52/352/332

2 22231
23222ˆ xx ÷÷

ø

ö
çç
è

æ

+-+
+-+

-=
epeppe
epepepep  
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Boundary for ( ) ( )LHLL ,/, : solve LL xx µµ 21 ˆ+  = LH xx ll 21 ˆ+  
 

( )( )
( ) 132/332/32

32/332/32

2 23222
22231ˆ xx ÷÷

ø

ö
çç
è

æ

+-+
+-+

-=
epepeppe

epeppe  and  

 
Boundary for ( ) ( )LHHH ,/, : solve HH xx µµ 21 ˆ+  = LH xx ll 21 ˆ+  
 

( )
152/552/532/332/32

232/3

2 2342242
312ˆ xx ÷÷

ø

ö
çç
è

æ

+-+-+
+

-=
epepepeppe

peep  

 
 

4. Deriving the weights when ( )HL,  is preferred, but another report is issued. 

 
 If ( )HL,  is preferred but not reported, we know that ( )21,aa  is not located in the shaded upper 
semicircle of Figure 3, nor in the section of the white outer ring corresponding to ( )HL, . From 
Figure 5, we may hypothesize that when as ( )21, xx  is near the borders of the ( )HL,  preference 
zone, that the second most preferred disclosure will be either ( )HH,  or ( )LL, . If the firm issues 
the second most preferred disclosure, say, ( )LL, , then we know that ( )21,aa  is either located in 
the white outer rim for ( )LL,  or the lower unshaded semicircle of Figure 3. In this case, the 
centroid for the white segment is ( )LL ww ,  =  
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( )
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( ) ÷÷

ø
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è
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+
---+

+
---+

epp
epepep
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3
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3
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and the centroid for the lower unshaded semicircle is ÷÷
ø

ö
çç
è

æ
-+

p
e

pp
e

p 3
221,

3
221 , so the 

expected centroid over both regions equals ( )21,aa  where  
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As similar analysis establishes that a firm with an ( )HL,  preference who discloses as second 
choice ( )HH,  will have weights ( )21,aa  
 
 

=1a = ( )
( )epp

pepep
22/3

32/322

13
431243

+
++-+  = Hµ  

 

=2a = ( )
( )epp

pepep
22/3

32/322

13
431243

+
+++- =b  

 
 
To show that the diagonal 21 xx =-  forms a boundary between the second choice disclosures for 
preferred choice ( )HL,  we compare the value 21 xx Lµg +  for second choice disclosure of ( )LL,  
to value 21 xxH bµ +  of second choice disclosure of ( )HH,  evaluated at 21 xx =-  and find that 
they are equal.  
 
Symmetric analysis apply to the case of second choice disclosures for most preferred ),( HL . 
 
 

5. Establishing that ( )LH ,  is least preferred when ( )HL, most preferred and vice versa.  

 
For example, If ( )HL, most preferred then the valuation will be 21 xx HL µµ + . By establishing 
boundaries, Figure 5 implies that the ( )LL,  region cannot be most preferred. From Figure 5 we 
see that 21 0 xx <<  and form Figure 4 we see that HL µµ <  which in implies that  
 

21 xx HL µµ +  > 21 xx LH µµ + .  
 
Which implies that when ( )21, xx  is contained in the ( )HL, most preferred region of Figure 5 
( )LH ,  cannot be most preferred.  
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Suppose next, contrary to assumption, that ( )LH ,  is second preferred. If ( )LH ,  were second 
preferred then the investor would know that ( )21,aa  lies either in the white outer rim for ( )LH ,
or hatched semicircle of Figure 3. Recall that if ( )LL,  we second preferred, then the investor 
would know that ( )21,aa  lies either in the white outer rim for ( )LL,  or the hatched semicircle of 
Figure 3. Thus a second chose of ( )LH ,  or ( )LL,  share the hatched semi-circle, and we need to 
evaluate only the effect of the outer white rim. If ( )LH ,  is second preferred then  
 

21 xx LH ww +  > 21 xx LL ww + , or  
 
( ) 01 >- xLH ww  . 
 
This is contradicted however, by the fact that 21 0 xx << , demonstrating that ( )LH ,  is least 
preferred when ( )HL, . A symmetric argument establishes that ( )HL,  is least preferred when 
( )LH ,  is most preferred.  
 
 

6. Boundaries for figure 8: 

 
First, argument similar to argument 5 used above establishes that ( )LH ,  is least preferred when 
( )HL, most preferred and vice versa. 
 
Next, for each boundary indicated below we will solve for 2x as a function of 1x . Instead of 
directly solving for 2x , we will solve first for 2x̂  and the resulting boundary be  
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Boundary for ( ) ( )HLHH ,/, : ( )21 x̂xH +l = 21 x̂x HL ll +  
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Boundary for ( ) ( )HLLL ,/, : ( )21 x̂xL +l = 21 x̂x HL ll +  
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Boundary for ( ) ( )LHLL ,/, : ( )21 x̂xL +l = 21 x̂x LH ll +  
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2 23222
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Boundary for ( ) ( )LHHH ,/, : ( )21 x̂xH +l = 21 x̂x LH ll +  
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Table 1: The investor’s valuation weights  
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Figure 1: Discretion with a Single Item 
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Figure 2: Discretion with Two Items. Roman numerals indicate quadrants. 
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Figure 3: The cross-hatched region represents those realizations of  for which the 
firm may not classify an  as . The Roman numerals indicate quadrants.  
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Figure 4 summarizes the analysis thus far (please note that we have not yet considered the 
second choice disclosures made for ( )HL,  or ( )LH , ). The extent to which the weights deviate   
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Legend for Figure 4: 
 is the weight for any least preferred  disclosure. 

 and  are the weights for most preferred disclosures  and . 
 and  are the weights for most preferred disclosures  and . 

Figure 4: The weights for most preferred and least preferred disclosures 

 

Weight 
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Figure 5: The firm’s most preferred classifications for  pairs 
given  and . Roman numerals indicate quadrants. See the 
appendix for the boundary expressions. 
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Figure 6:  and  weights for second choice disclosures 
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Figure 7: Implication of a aggregate disclosure assuming that  is 
uniformly distributed over a square of length 2 and mean , The conditional 

expected value of an  disclosure is . 
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Figure 8: The firm’s most preferred classifications for  pairs 
given  and  with aggregation of  and  items. 
See the appendix for the boundary expressions. 
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Figure 9: Appendix. 
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Figure 10: Appendix. 
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Figure 11: Appendix. 


