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ABSTRACT

Recurrent behaviors are considered to be the basic building blocks of any human-driven goal-

oriented process, reflecting the development of efficient ways for dealing with common tasks based

on past performance. Thus, the ability to discover recurrent behaviors is utterly important for a

bottom-up systematic study, modeling, and improvement of human-driven processes. In the context

of software development, whose ultimate goal is the delivery of software, the ability to recognize re-

current behaviors enables the understanding, formal description, and effective guidance of evolving

software processes. While a number of approaches for recurrent behavior discovery and software

process modeling and improvement have been previously proposed, they typically built upon on-

line intrusive techniques, such as observations and interviewing, therefore expensive, suffering from

biases, and unwelcome by software developers.

In this exploratory study, I have developed and tested the idea of software process discovery via

off-line analysis of software process artifacts. For this, I have prototyped and evaluated the Software

Trajectory Analysis framework, which is built upon the definition of the “software trajectory” data

type, that is a temporally ordered sequence of software artifact measurements, and a novel technique

for temporal data classification, that enables the discovery and ranking of software trajectory char-

acteristic patterns. By analogy with the notion of trajectory in Physics, which describes a projectile

path in metric space, a software trajectory describes the software process and product progression

in a space of chosen software metrics, whereas its recurrent structural patterns are related to the

recurrent behaviors.

The claim of this dissertation is that (1) it is possible to discover recurrent behaviors off-line via

systematic study of software artifacts, (2) the Software Trajectory Analysis framework provides

an effective off-line approach to recurrent software process-characteristic behaviors discovery. In

addition to the extensive experimental evaluation of a proposed algorithm for time series charac-

teristic pattern discovery, three empirical case studies were carried out to evaluate the claim: two

using software artifacts from public software repositories and one using the public dump of a Q&A

web site. The results suggest that Software Trajectory Analysis is capable of discovering software

process-characteristic recurrent behaviors off-line, though their sensible interpretation is sometimes

difficult.
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GLOSSARY

1NN – One Nearest Neighbor. A variant of kNN classification where we assign each entity to the

class of its closest neighbor.

DIRECT – DIviding RECTangles algorithm. A general parameters optimization algorithm that is

based on the iterative partitioning of the search space into hyper-rectangles [1] [2].

FLOSS – Free/Libre/Open Source Software. A computer software that can be classified as both

free software and open-source software, and is licensed for free use, copying, study, and

change. This software model is the opposite to proprietary software, which is typically closed-

source and distributed under a restrictive copyright.

PAA – Piecewise Aggregate Approximation. A technique for reducing the dimensionality of time

series by aggregating its segment to their mean values [3].

SAX – Symbolic Aggregate approXimation. A technique for symbolic discretization of the contin-

uous signal [4].

SCM system – Software Configuration Management system. A software system which enables

tracking and controlling changes in the software [5].

SCRUM – An iterative and incremental agile software development framework for managing prod-

uct development [6].

TF*IDF – Term Frequency – Inverse Document Frequency. A numerical statistic that is intended

to reflect how important a word is to a document in a collection of documents [7].

TDD – Test Driven Development. A software development process that relies on the repetition of

a very short development cycle: coding of an automated test, producing the minimum amount

of code to pass that test, and refactoring the new code to acceptable standards [8].

XP – Extreme Programming. One of several lightweight software development methodologies

based on values of simplicity, communication, feedback, courage, and respect [9].
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CHAPTER 1

INTRODUCTION

A central issue addressed in this dissertation is the possibility of recurrent behaviors discovery from

publicly available software process artifacts.

As recurrent behaviors are considered to be the basic building blocks of any human-driven goal-

oriented process, which reflect the development of more or less fixed ways of dealing with tasks

based on past performance [10] [11], then, the ability to discover recurrent behaviors in the context

of software development equates to a highly desirable capacity to discover the evolution of charac-

teristic mannerisms in which developers structure their activities – the antecedent features that form

high-level software development processes.

I have explored an approach to this problem based on the transformation of software artifact trails

into time series by measurements and on the subsequent application of a novel time series classifi-

cation technique that enables characteristic patterns discovery, which, as I hypothesize, correspond

to recurrent behaviors.

This dissertation identifies the challenges of automated discovery of recurrent behaviors, reviews

the relevant previous work, proposes and evaluates a novel time series classification algorithm ca-

pable of characteristic patterns discovery, and presents the results of an empirical evaluation of

the algorithm’s applicability to the problem of recurrent behaviors discovery from public software

artifacts.

1.1 Preliminaries

Definition 1. A Software Process defines a way that software development goes. It enumerates

resources and artifacts, but most importantly, it defines a set of activities that need to be performed

in order to design, to develop, and to maintain software systems.

Examples of such activities include requirements collection and creation of Unified Modeling

Language (UML) diagrams, source code writing, system testing, and others. The intent behind

2



a software process is to provide control over the software development effort by implementing a

global strategy and by structuring and coordinating human activities in order to achieve the goal –

to deliver a functional software system on time and under budget.

Definition 2. A Software Process Model is a complete and unambiguous software process descrip-

tion that guarantees a rigorous specification ready to be executed.

Definition 3. A Software Repository is a storage location from which software system and its com-

plementary and auxiliary information can be retrieved. For open-source projects, repository often

provides means for software project management, such as version control system, defect tracking

system, and message boards, which is typically referred to as software configuration management

(SCM) system.

Definition 4. Software Configuration Management system, or simply SCM, is a software system

which enables tracking and controlling changes in the software. In the research literature concerned

with Mining of Software Repositories (MSR) terms “SCM” and “repository” are often used inter-

changeably as they simply point to the source of the data used for studies.

Definition 5. A Software Artifact is one of numerous products and byproducts of a software process

- a use-case, an UML class diagram, a change record, or a bug report. It is common in Software

Engineering to keep software artifacts organized with the help of an SCM system.

Note, that while artifacts play an important role in software processes, where they are used to

support software development activities and reused to document the resulting software, they are not

created in order to enable a scientific research.

Definition 6. A Software Artifact Trail is a collection of software process artifacts ordered by the

artifact’s creation time.

Examples of software artifact trails include a software project’s source code change records or-

dered by commit time and a user’s questions at the StackOverflow website ordered by post time.

Definition 7. A Software Metric is a characteristic of a software or a software process that can be

objectively measured.
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While I discuss software measurements in detail later in the dissertation, examples of software

product metrics include the size of a software system measured in lines of code (LOC) or in function

points (FP), and the number of defects discovered in a delivered system. Examples of software

process metrics include the velocity of a software process called “churn”, that measures the amount

of LOC changed per day; the response time to fix an issue; and the “technical debt”, that measures

deterioration of the code quality over time.

Similarly to other sciences, measurements in Software Engineering are essential for establishing

systematic research. Product and process metrics are also important in software project management

where they are used in order to derive high-level software project metrics including cost, schedule,

and productivity.

1.2 Motivation. Software Crisis.

Contemporary software projects deal with the development of complex software systems and typi-

cally have a long life cycle - well over decade. A project’s development and maintenance activities

are usually carried out by geographically distributed teams and individuals. The development pace,

the experience, and the structure of a development team continuously change with project progres-

sion and as developers join and leave. When combined with schedule and requirements adjustments,

these create numerous difficulties for stakeholders, developers, and users, ultimately affecting the

project’s success [12].

This software development complexity phenomenon was identified in 1968 as the “Software cri-

sis” [13], and was addressed by bringing the research and the practice of software development

under the umbrella of Engineering in an effort to provide the control over the process of software

development. Following the Engineering paradigm, numerous methodologies of software design

and development processes, known as Software Processes, were proposed [14]. Some of these were

further formalized into Software Process Models - industrial standards for software development

such as CMM [15], ISO [16], PSP [17], and others [18].

In spite of this effort, industrial software development remains error-prone and more than half

of all projects ending up failing or being very poorly executed [19]. Some of them are abandoned
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due to running over the budget, some are delivered with such low quality, or so late, that they are

useless, and some, when delivered, are never used because they do not fulfill requirements.

By the analysis of software project failures, it was acknowledged that the Engineering paradigm

may not be an adequate way to control software development processes due to the large discrepan-

cies between problems in Software Engineering and in any other Engineering field [20] [21] [12]

[22]. The chief argument supporting this point of view is the drastic difference in the cost model:

while in Software Engineering there is almost no cost associated with materials and fabrication,

these usually dominate cost in all other Engineering disciplines. Ironically, Software Engineering

is suffering from cost and challenges associated with continuous re-design of the product and its

design processes – an issue that is hardly seen at all in other Engineering areas. In addition, as

it has been shown by numerous studies, engineering-like models of software processes are typi-

cally prescriptive and rigid – they are difficult to adapt to the particular organizational structure, to

the project specificities, and to changing requirements [23]. Thus, the degree to which an adopted

process model structures software processes varies greatly between teams and projects and cannot

guarantee success [24] [25]. Finally, an increasing understanding and appreciation of human factors

in software development processes over tools, technologies, and standards suggests that human-

driven software process aspects are likely to be defining in the software project’s fate [26] [27] [28]

[23] [29].

However, current alternatives to Engineering-like processes that are flexible, user- and developer-

centric, and which often praised for their dynamism, flexibility, and encouragement for innovation

– such as Agile and Software craftsmanship – are also affected by the same complexity issues.

For example it has been shown that SCRUM (iterative and incremental agile software develop-

ment framework) does not cover the whole software life-cycle [6], extreme programming (XP) does

not scale for large teams [9], and test driven development (TDD) requires an extensive expertise

from developers [8]. In addition, the increase in flexibility is often directly linked with increase in

uncertainty, creating significant difficulties with project cost and effort estimation [30] [31]. The

Free/Libre/Open source software (FLOSS) projects, which are typically less concerned with the

cost issues, are also affected by this uncertainty. As it has been shown, most of the open-source
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projects never reach a “magic” 1.0 version [32]; among others, the great “infant mortality rate” of

open-source projects was related to a burnout, inability to acquire a critical mass of users, loss of

leading developer(s), and forking [33].

Currently it is widely acknowledged that there exists no “silver bullet” process which guaranteed

to bring a software project to a successful conclusion [34]. Processes are numerous, each has advan-

tages and drawbacks, and each is accompanied with success stories and failure experiences making

the process selection difficult and the results of its application unpredictable. This uncertainty, and

the alarming rate of software project failures suggest that our understanding of software develop-

ment “mechanics” is limited and insufficient [22]. The enormous cost of the lost effort, measured

in hundreds of billions of US dollars [12] [35] [36], continues to provide motivation for further

research on software process design and improvement.

1.3 Classical approaches to software process design and improvement

Traditionally, it has been assumed that software development is performed for a profit in corporate,

government, or military settings by people that are mostly collocated together. This assumption

shaped early research focused on approaches for on-site “software manufacturing”, which were

discussed for decades in the Software Engineering literature.

Classical approaches can be divided into two distinct categories. The first category consists of

top-down techniques which are based on proposing a process that is based on a specific pattern

of software development. For example, the Waterfall Model process proposes a sequential pattern

in which developers first create a Requirements document, then create a Design, then create an

Implementation, and finally develop Tests [37]. Alternatively, the Test Driven Development pro-

cess proposes an iterative development pattern in which the developer must first write a test case,

then write the code to implement that test case, then re-factor the system for maximum clarity and

minimal code duplication [8].

While top-down techniques follow the usual path of trial and error, and reflect the creative pro-

cesses of invention and experimentation, the “invention” of an adequate software process is far from

trivial and its evaluation cycle is considerably expensive and long [18] [34]. Moreover, it has been
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shown that the process inventors are usually limited in their scope and tend to assume idealized

versions of real processes, thus, they often produce “paper lions” - process models which are in-

complete, unscientific, and unpredictable [38] therefore likely to be disruptive and unacceptable for

end users, at least in their proposed form [39].

The second category of classical software process design and improvement approaches consists

of bottom-up techniques that focus on knowledge extraction from process event logs for its recon-

struction, elicitation, validation, and enhancement [40]. Typically, this task is viewed as a two-levels

problem where the process event log is aggregated and transformed into the chain of logical devel-

opment events at first, and the process model is constructed at the second level [41] [40]. Cook

and Wolf, in their pioneering work on software process discovery, have shown the possibility of

automated extraction of software process models through the mining of process event logs [42] [43]

[44]. Later work by Huo et al. shows the possibility of software process improvement through event

logs analysis [45] [46].

The bottom-up approaches, while appearing to be more systematic and potentially less challeng-

ing than invention, are also affected by a number of issues, among which observability is the most

significant: while live project observations are technically challenging to implement due to the high

cost and privacy concerns [40], the post-process data collection, for example through interviewing,

significantly affects the process reconstruction validity due to frequent discrepancies between actu-

ally performed and reported actions [45]. Yet another significant issue is the insufficient capacity

of currently available process discovery and representation techniques to discover and to represent

models of distributed and concurrent processes [40].

While distinct in their nature, traditional approaches to software process design and improvement

yield similar abstract representations of software processes which are typically expressed formally

in a process modeling language or as flowcharts of interconnected software development activities

[40] [24]. As process “inventors” put the best of their knowledge, experience, and logical reasoning

into the proposed sequence of activities, the process “miners” strive to eliminate the noise and to

converge to a concise sequence of activities that is supported by the majority of observations.

This particular attention of traditional approaches to the deterministic and complete model syn-
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thesis is often cited as limiting as it assumes idealized and streamlined development environment

leaving many variable human factors, such as a team structure, its expertise, work schedule, disci-

pline, and motivation behind – an issue that has been widely recognized [27] [23] [47] [48] but still

largely ignored in industrial practices mostly due to the difficulties with human component benefits

estimation [49] [50] [51].

1.4 Free/Libre/Open Source software processes

Despite the uncertainty issues discussed above, in recent years we have seen a rise of alternatives

to on-site Software Engineering development model – people are coming together over the Inter-

net to create software which they distribute openly, promoting its modification and re-distribution.

Surprisingly, they provide very little if any guidance on software processes, effectively allowing

any software process to be used as long as it positively contributes to the project’s goal. This char-

acteristic freedom of free-software processes, while challenging to traditional schools of Software

Engineering and software process research, enables advancements in previously unexplored and un-

derexplored research directions, among which is the role of human factors in software development.

The free-software social movement originates from 1960s and is inspired by the philosophy of

source code sharing and its collaborative improvement. The movement was partially formalized in

1983 by Richard Stallman, who launched the GNU Project and founded the Free Software Foun-

dation in 1985. The commonly used term “open-source” was coined later, in 1998 at the very first

Open Source Initiative (OSI) meeting [52]. The free-software development community consists of

self-organized individuals and teams of mostly non-professional programmers - amateurs, hobby-

ists, students, and academics. By using the Internet, they collaborate and develop software that is

distributed free of charge as source code and is usually called Free/Libre Open Source Software

(FLOSS).

Over the years, this software development model has proven its ability to deliver increasingly

complex and surprisingly popular software in a truly global scale - when thousands of project’s

contributors and users are scattered all over the world. A number of FLOSS projects such as Linux

and its derivatives, Gnome, Apache HTTP Server, PostgreSQL database, and others, succeeded to
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develop and to efficiently manage distributed software processes that are providing control over a

large development team and source code base and deliver state of the art software whose quality

is similar to or exceeding that of industrial projects [53]. This fact attracted considerable attention

not only from industrial companies that seek to emulate successful open source software processes

in traditional closed-source commercial environment [54] [55] [56] [57], but also from the soft-

ware process research community, who wishes to understand the reasons for the success of FLOSS

processes [58] [59] [60] [61] [62].

A number of studies conducted on open source processes discovered that they are significantly

different from traditional software development at many levels. In particular, the flexibility of open

source processes and their inherent capacity to adapt to changing requirements is often cited as

the most prominent. Consider an exploratory study performed by Sacchi et al. [62] in which

they confirmed that requirements elicitation, analysis, specification, validation, and management of

open-source systems are drastically different from traditional approaches where mathematical logic,

descriptive schemes, and UML models are usually used. The authors provide numerous evidence

that OSS requirements are neither prescriptive nor proscriptive in terms of what should be or what

might be done and are instead typically implied simply by discourse of the project participants and,

most importantly, by implementation assertions. As yet another example reflecting the importance

of software implementation, consider the message posted by L. Torvalds that clearly highlights the

preference of practical reasons over specification in Linux kernel development in Figure 1.1.

A lack of explicit specifications, however, creates numerous difficulties in studying open-source

processes, as it becomes difficult to understand how the software project got from “here” to “there”.

A typical way of uncovering such information is by mining of public software repositories.

1.4.1 Public software repositories

The proliferation of open-source development continues to create publicly available software pro-

cess artifacts at an increasingly high rate, changing the software process research landscape by

providing data covering the full software development life cycle for free. Currently, public code

hosting sites such as SourceForge, GoogleCode, and GitHub host thousands of FLOSS projects of-
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Figure 1.1: Torvald’s response from the Linux mailing list suggesting that practical reasons, i.e. the

“real-life” needs, should be always considered over specifications. Excerpt from Linux mailing list.

http://lkml.indiana.edu/hypermail/linux/kernel/0509.3/1441.html

fering numerous software process artifacts, such as design documents, source codes, bugs and issue

records, and developers communications. In addition, Q&A and social websites for developers such

as StackOverflow, TopCoder, and others, becoming increasingly popular among software develop-

ers and users as places to discuss software issues, to exchange expertise, to learn new tools, and to

improve skills.
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The scientific community response on the public availability of software process artifacts was

overwhelming and a number of venues were established in order to address the increased interest.

Since 2004, the International Conference on Software Engineering (ICSE) hosts a Working Confer-

ence on Mining Software Repositories (MSR). The original call for papers stated MSR’s purpose

as “... to use the data stored in these software repositories to further understanding of software

development practices ... [and enable repositories to be] used by researchers to gain empirically

based understanding of software development, and by software practitioners to predict and plan

various aspects of their project” [63] [64]. Several other venues including International Confer-

ence on Predictive Models in Software Engineering [65], International Conference on Open Source

Systems, the Workshop on Public Data about Software Development, and the International Work-

shop on Emerging Trends in FLOSS Research have also played an important role in shaping and

advancing of the new research domain.

Some of the work from this domain addresses the problem of open source software process-related

knowledge discovery from artifacts. Probably the most notable and relevant to my research is work

by Jensen & Scacchi, where they demonstrated that the knowledge reflecting software processes

can be gathered from public systems [58]. In their later work, they showed, that it is possible

to reconstruct FLOSS processes by manual mapping of collected process evidence to a pre-defined

process meta-model [59] [60]. Another work closely related to my research is by Hindle et al., where

they showed that it is possible to discover software process evidence through artifacts partitioning

[61], and recurrent behaviors by Fourier analysis of source code change records [66].

However, the work mentioned above and other work based on mining of public software pro-

cess artifacts show that while public availability of software process artifacts minimizes cost of

the observation and eliminates privacy concerns, the nature of public artifacts creates a number of

new challenges that limit the scope of the research and significantly elevate its complexity, effec-

tively rendering many of previously developed process research techniques inefficient. For example,

the coarse granularity of public software change records hides most of the low-level development

activities such as small code edits, unit-test runs, etc., which invalidates the application of many

previously developed event-based process mining techniques [61] [67]. Similarly, artifact dupli-
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cation due to concurrent and often overlapping processes, as well as the incompleteness of public

artifact trails prevent typically deterministic process discovery techniques from producing consis-

tent results [67] [68]. Finally, it was found that the driven by external factors and malleable nature

of software development renders state of the art approaches based on time dependent information

inefficient [66] [69]. Thus, novel software process analysis and discovery techniques are needed to

be developed for public software process artifacts analysis [64].

1.5 Systematic approaches for software process research

In addition to the establishment of an Engineering-like software development paradigm, the ac-

knowledgement of the software crisis led to the development of similar to Engineering project man-

agement techniques based on software measurements.

1.5.1 Software measurements

The goal of software measurements is to make objective judgments about software process and

product quality. It has been shown that an effective measurements programs help organizations un-

derstand their capacities and capabilities, so that they can develop achievable plans for producing

and delivering software products. Furthermore, a continuous measurements effort provides an ef-

fective foundation for managing process improvement activities, such as CMM [15], PSP [17], [70]

[71], ISO 9001 [16], and SPICE [72].

In addition to practical applications, software measurements are extensively used in research –

they are the basis of the Empirical Software Engineering research area where researchers base their

conclusions on concrete evidence collected through experimentation and measurements of software

systems and software processes [73].

1.5.2 Software telemetry

Ideally, by using measurements, a software process and product can be assessed in real-time al-

lowing for efficient in-process decision making. Johnson et al. [74], pioneered this approach by
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defining software project telemetry as a particular style of software process and product metrics

collection and analysis based on automated measurements over a specified time interval. The au-

thors hypothesized that the visualization of multiple streams of collected measurements captures the

project and software process state evolution conveying its dynamics to the user. They implemented

an in-process software engineering measurement and analysis system called Hackystat [75] that is

capable of metrics collection, processing, and telemetry streams visualization. The system’s em-

pirical evaluation showed that the visual analysis of multiple telemetry streams aids in in-process

decision making, and it is also possible to improve existing software processes by using the knowl-

edge extracted by visual analysis of these streams. At the same time, the authors acknowledged that

it is impossible to extract a traditional analytical model that is capable of automating the decision

making process and that machine learning application is desirable.

Later, Kou et al. extended Hackystat by implementing the Software Development Stream Anal-

ysis Framework (SDSA) that is capable of partitioning telemetry streams into sequences of devel-

opment “episodes” using pre-defined boundary conditions [76] [77]. By designing “operational

definitions” for TDD as sets of specific rules for development episodes, they showed that it is possi-

ble to characterize and assign TDD compliance to individual software development episodes. They

implemented their approach in Zorro, a software system capable of software process measurement,

development episodes inference, categorization, and classification by the TDD conformance. As

Zorro is based on pre-defined partitioning and classification rules reflecting our understanding of

TDD processes, the authors acknowledged that the application of machine learning techniques may

improve systems performance and advance our understanding of software processes.

1.5.3 Knowledge discovery from time series

Both demands for machine learning methods application to the problem of software measurements

analysis identified in the previous section can be potentially met by the techniques developed in the

research area concerned with unsupervised and semi-supervised knowledge discovery from time se-

ries. Time series are typically used as a proxy representing a large variety of real-life phenomena in

a wide range of fields including, but not limited to physics, medicine, meteorology, music, motion
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capture, image recognition, signal processing, and text mining [78]. While time series usually rep-

resent observed phenomena directly by recording their measurable progression in time, pseudo time

series are often used for representation of various high-dimensional data by combining data points

into ordered sequences. For example in spectrography data values are ordered by the component

wavelengths [79], in shape analysis the order is the clockwise walk direction starting from a specific

point in the outline [80], in image classification the order is the frequency of pixels sorted by color

component values [81].

Many important problems of knowledge discovery from time series reduce to the core task of

finding characteristic, likely to be repeated, short sub-sequences that efficiently capture the studied

phenomena specificity. In early work these were called as frequent patterns [82], approximate

periodic patterns [83], primitive shapes [84], class prototypes [85], or understandable patterns [86].

Later, similarly to Bioinformatics, these were unified by the term motif [87]. Once discovered, time

series motifs can be used for research hypothesis generation by their association with known or

proposed phenomena [87]. Recent advances in the finding of time series motif and in particular

work based on shapelets [88] [89] [90] and bag of patterns [91] show the great potential of time

series motif-based data mining application to almost any phenomena that can be represented as time

series.

Since software telemetry streams are in fact time series, that represent the evolution of a software

system and a software process measurements in time, their motifs can potentially be discovered and

associated with sensible product and process characteristics.

1.5.4 Research hypothesis

In previous sections, I have outlined evidence for the limited performance of traditional Engineering-

like software development as well as the the problems encountered by traditional approaches to soft-

ware process design and improvement when they attempt to take into account the variety of human

factors that fall beyond a typical sequence of the development actions. I have identified a number of

key differences of FLOSS software development that foster developer- and user-centric processes

and which, if systematically studied, can potentially shed light on the role of human-driven aspects
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in software development and to improve our overall understanding of software processes. I have

pointed out a growing wealth of publicly available software process artifacts that enables systematic

FLOSS processes analyses and highlighted the need for novel techniques capable of mining these

datasets. Finally, I have explored the possibility of knowledge discovery by time series mining

techniques application to software measurements.

All these, along with the results of previous research that has shown that it is possible to discover

recurrent behaviors on all levels of software development process hierarchy [17] in industrial [70]

and open-source [66] settings, lead to my research hypothesis, that it is possible to discover the

basic blocks of software processes - recurrent behaviors - from public software process artifacts.

1.5.5 Software Trajectory Analysis (STA)

Following this hypothesis, I have defined Software Trajectory - an abstract representation of soft-

ware product and process evolution. As the term trajectory is used in Physics for the approximate

path that a moving object draws in a physical space, or in Mathematics, where trajectory defined as

the reduced in complexity sequence of states of a dynamic system (a Poincaré’ map), Software Tra-

jectory is a curve that only approximately describes the path drawn by an evolving software system

or by an ongoing software process in the chosen metric space. The analytical technique based on

software trajectory construction and its analysis I have called Software Trajectory Analysis (STA).

In a preliminary pilot study targeting the possibility of characteristic subsequences discovery from

software telemetry streams, I have added an analytical module based on characteristic patterns min-

ing to Hackystat system. This early STA implementation exploited the transformation of real-valued

software telemetry streams into short overlapping symbolic sequences with Symbolic Aggregate ap-

proXimation (SAX) [92] and their consequent occurrence frequency (i.e., support) -based ranking.

While the pilot STA implementation required the user to specify a number of non-intuitive param-

eters for SAX transform and a threshold for the pattern discrimination, some of the discovered

frequent patterns were easily associated with characteristic recurrent software development behav-

iors, such as consistent effort or frequent testing, and the system performance was found satisfactory

[93]. Later, the system was improved by the addition of symbolic motif-mining and visualization
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Figure 1.2: The Software Trajectory Analysis design overview. At first, software measurements are

acquired directly from an external measurement engine such as Hackystat, or/and by collecting and

measuring of software artifacts. Next, the measurements are used by an expert for construction of a

set of software trajectories that potentially can shed light on a research question. Finally, recurrent

characteristic patterns are discovered and weighted by class importance with SAX-VSM.

algorithms, which not only made the frequent patterns discovery subsystem more efficient, but aided

in patterns comprehension through an intuitive visualization.

However, when the system was applied to time series built by measurement of public software ar-

tifacts, its performance significantly deteriorated, affected by coarse granularity, poor informational

content, noise, and a significant amount of missing values.

Addressing the identified data-mining techniques limitations, I have developed a novel unsuper-

vised technique for time series classification called SAX-VSM, that enables discovery and ranking

of class-characteristic patterns, requires no input parameters, and is rotation-invariant and robust

to the noise and missing values [94]. In turn, as I shall show later, SAX-VSM -based STA im-

plementation whose overview is shown in Figure 1.2 is capable to discover sensible characteristic

subsequences from a wide variety of software process artifacts.

Taking into account all of the above, Software Trajectory Analysis is an automated systematic

approach to recurrent behaviors discovery based on software artifact measurements and mining.

In contrast with previously proposed systems that were built upon quantitative analyses of atomic

development entities such as actions or episodes, or were relying on pre-defined reference process

models, STA focuses on the unsupervised discovery of naturally occurring phenomena - recurrent

behaviors.

By its design, Software Trajectory Analysis addresses a number of known issues that previously
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complicated and limited large scale studies on software processes. First of all, Software Trajectory

removes all in-process (real-time) measurement costs and privacy concerns since it relies solely on

off-line measurements of public software artifacts. Secondly, STA does not depend on any prior

knowledge about software processes or any model - unsupervised data mining techniques, such as

SAX-VSM, intended to be used in order to bootstrap knowledge by extracting of data summaries.

Finally, STA does not aim at the discovery of complete processes or rigid rules for software devel-

opment, instead, it yields a set of possible behaviors applicable in a particular situation, i.e. a “point

in the software project life cycle” [95].

1.6 Contributions

My contributions include the Software Trajectory Analysis approach (STA) for recurrent behaviors

discovery from software process artifacts, the SAX-VSM algorithm for interpretable time series

classification that powers-up STA, their implementation, and empirical evaluation:

1. Software Trajectory Analysis. The inherent complexity and longevity of software devel-

opment processes makes their study in real time expensive and challenging, especially at

large scale. In addition, the contemporary practices of highly distributed software develop-

ment, that usually allow the significant variation in software processes, demand new analytical

techniques.

In this work I propose STA – a software process analysis technique that targets the off-line

discovery of recurrent behaviors through the systematic analysis of software process artifacts

[93] [96]. STA represents a significant contribution to the field of Software Engineering where

it can be applied to problems of software process discovery, software process elicitation,

software process improvement, and mining of software repositories.

2. Interpretable time series classification with SAX-VSM. In order to improve STA perfor-

mance, I have invented a novel algorithm for interpretable time series classification called

SAX-VSM, which I present in this dissertation. SAX-VSM is a general algorithm that repre-

sents a significant contribution to the field of time series classification addressing its two core
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problems: the characteristic feature selection and the classification results interpretation [94].

SAX-VSM automatically discovers and ranks time series patterns by their class-characteristic

power, which not only facilitates time series classification, but provides an interpretable class

generalization. These algorithm’s strengths are essential for STA performance – they facili-

tate unsupervised characteristic patterns discovery from software trajectories and convey the

understanding of performed software processes by association of the discovered patterns with

recurrent behaviors.

3. Symbolic Aggregate Discretization (SAX) parameters optimization. SAX-VSM relies on

the symbolic discretization procedure (SAX) that requires three parameters to be specified as

input. The parameter values are non-intuitive to pick and to the best of my knowledge no

solution exists for their optimization. In this work I propose a SAX parameters optimization

procedure that guarantees to find the optimal parameters set for SAX-VSM-based time series

classification. The approach is based on a general parameters optimization scheme called

DIRECT [2] and a common cross-validation-based cost function. The proposed optimization

process converges to the optimal parameters set by orders of magnitude faster than a grid-

based search [94].

This general solution for SAX parameters optimization is a significant contribution to the

field of time series analysis and classification since it can be adopted for other SAX-based

algorithms. In STA this technique aids discovery of the best process-characteristic recurrent

behaviors duration and their discretization granularity.

4. Novel time series class-characteristic subsequence heatmap-like visualization. SAX-VSM

ranks all extracted via sliding window time series subsequences by their class-characteristic

potential. By combining the rank coefficients of all subsequences that span a time series point,

it is possible to color each point according to its class-characteristic power. This visualiza-

tion produces a heat map-like time series plot that instantly highlights time series segments

according to their class specificity [94].

In STA this technique enables rendering of many characteristic recurrent behaviors in a single
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comprehensive display that aids understanding and interpretation of recurrent behaviors by

their association with software trajectory structural features. This technique is a significant

contribution to the field of time series data mining and knowledge discovery.

5. SAX-VSM implementation and empirical evaluation. SAX-VSM was implemented in

Java and open-sourced [97]. I developed SAX-VSM over a period of five years, and it cur-

rently consist of over 60,000 lines of source code. This software library represents a signifi-

cant contribution to the fields of time series analysis, classification, and data mining.

I have evaluated SAX-VSM classification accuracy, parameters optimization efficiency, and

the interpretability of results on a set of 45 classic time series classification problems. The re-

sults of evaluation show, that the proposed algorithm is competitive with, or superior to, other

techniques in time series classification. At the same time, SAX-VSM is capable to efficiently

and effectively discover and rank class-characteristic patterns providing the superior results

interpretability and meaningful visualization [94].

6. STA reference implementation and evaluation. Software Trajectory Analysis was also

implemented in Java and open-sourced [98]. I developed STA over a period of five years and

the project is currently consist of over 40,000 lines of source code.

This dissertation presents the results of STA performance empirical evaluation based on use

case studies. Specifically, the case studies-based evaluation shows STA capacity to discover

recurrent behaviors including:

(a) the software release characteristic recurrent behaviors from Android OS and PostgreSQL

software development processes;

(b) the “Commit Fest” characteristic recurrent behaviors from PostgreSQL software devel-

opment process;

(c) the characteristic daily and weekly activity patterns of top StackOverflow contributors.

STA reference implementation and its performance evaluation represent a significant contri-

bution to the field of Software Engineering and to the area of Mining Software Repositories in
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particular, as they not only indicate the feasibility of recurrent behaviors discovery, but allow

to jump-start new research projects.

1.7 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 discusses related work from software

process discovery and software repository mining areas. Chapter 3 discusses relevant work from

research areas concerned with time series classification and temporal data mining, and proposes

the SAX-VSM algorithm. Chapter 4 shows the Software Trajectory Analysis framework design,

explains its implementation, and presents results of its empirical evaluation. Chapter 5 concludes

and discusses several directions for future study.

Design and programming are human

activities; forget that and all is lost.

Bjarne Stroustrup
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CHAPTER 2

PRIOR AND RELATED WORK

Software Trajectory Analysis (STA) consists of two components: the software artifacts retrieval and

measurement machinery (i.e., a data assimilation layer), and the software trajectory characteristic

patterns discovery module (i.e., a data analysis layer). A high-level overview of the information

flow through these components is shown in Figure 2.1.

The artifacts retrieval and measurement machinery refers to a way that software artifacts are

collected, measured, and enriched with metadata. Currently, STA is capable of retrieving and pro-

cessing the data from OSS Software Configuration Management system (SCM) components such

as version control, defect management, and communications management systems. In addition,

STA is able to assimilate data from other data sources among which are community-driven Q&A

websites and the Hackystat system [93].

STA is not limited only to these data sources. As public repositories are highly heterogeneous and

continuously evolving, STA adopts the Software Repository Mining (MSR) strategy for data assim-

ilation, unification, and off-line enrichment, where public artifacts are retrieved and stored “as is”

(i.e., mirrored) first, measured second, and enriched with metadata as the final step [99] [100] [101].

Similarly to other systems for mining software repositories, STA relies on a relational database en-

gine for data storage and indexing – this solution not only enables an interactive workflow and a

federated access to the data, but allows for effective measurements partitioning and aggregation,

which is an essential capability for efficient software trajectories construction. Overall, the STA

data assimilation layer is designed in a way that conforms to the field’s best practices allowing its

extension for any data source that is capable of providing data for STA analysis.

The software trajectory characteristic patterns discovery module is an analytical machinery that is

responsible for discovery of characteristic recurrent patterns in a set of software trajectories provided

as the input. Conceptually, this module can embed any data mining algorithm that is capable of

discovering recurrent patterns from sequential data, such as one of the numerous algorithms for

time series motif discovery [102].
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Figure 2.1: An overview of the data flow in Software Trajectory Analysis. Software artifacts are

retrieved, enhanced, and measured within the data assimilation layer. Next, based on the user input,

classes of software trajectories are constructed. In turn, the data analysis layer performs comparative

analyses of software trajectories that yield sets of ranked class-characteristic behaviors. Note, that

for the clarity only two classes of trajectories shown whereas STA is capable of discovering class-

characteristic patterns from many classes at once.

However, the specificity of software trajectories and the pattern of interest, i.e., recurrent behav-

ior, places a number of constraints that limit the applicability of known algorithms. First of all,

the algorithm must be able to discover recurrent patterns without any prior knowledge about their

length, shape, amplitude, and occurrence frequency, as these are naturally expected to differ be-

tween projects, problems, or even subsets of trajectories from the same project. Secondly, it must

be capable to learn from a very small training data set – the property that has been shown crucial in

predictive modeling and knowledge mining from software repositories where data is sparse [103].

And finally, the algorithm must provide an automated mechanism for patterns ranking according

to their relevance in order to allow their efficient review by human experts since it is impossible to

define a pattern “interestingness” or “importance” a priori.

The STA characteristic patterns discovery module implementation relies on SAX-VSM, a novel

algorithm for characteristic patterns discovery from time series that I shall propose, describe, and

evaluate in the Chapter 3. This algorithm has been designed to address all of the aforementioned

requirements.
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Later in this chapter, in order to relate Software Trajectory Analysis to other research and to

position it among other work, I shall discuss previous work from several research areas. To start,

since STA is designed for software measurements analyses, I provide background on software mea-

surements and the evidence of their correlation with software processes. Next, I briefly discuss

my earlier exploratory studies conducted with previous STA implementations. Finally, I review

research relevant to STA from the Mining Software Repositories (MSR) research field focusing on

recurrent behaviors discovery. The work relevant to time series characteristic patterns discovery and

SAX-VSM will be discussed in the next Chapter.

2.1 Software measurements

As in all other Engineering fields, measurements are used in Software Engineering in order to estab-

lish a systematic approach to software development which provides control over software processes,

facilitates their improvement, and, most importantly, makes their result predictable. In addition,

software measurements enable scientific research.

2.1.1 Software measurement history

According to Fenton [104], the history of measurements in Software Engineering dates back to the

mid-1960’s “...when the Lines of Code metric was used as the basis for measuring the productivity

and effort...”, which in fact, predates the establishment of Software Engineering as an independent

discipline [13]. Much of the early research concerned with software measurements has been driven

by the need for the resource model prediction and forecasting [104], whereas later research has

extended towards the problem of software process management [105].

Probably the earliest published work outlining close relations of software measurements and soft-

ware processes is “Software project forecasting” by DeMillo and Lipton [95] where they point out

that software measurements create a basis which allows practitioners and researchers to be “ratio-

nal and objective” about software processes. Remarkably, the authors refer to even earlier notes by

Perils, Sayward, and Shaw, who emphasized the role of software measurements in software process

management, saying that “the purpose of software metrics is to provide aids for making optimal

23



choice at several points in the life cycle”.

With time, the increasing understanding of software measurements objectiveness and their ability

to reflect the state of software processes led to the development of measurement-based strategies for

software process management and improvement. For example, one of the pioneering strategies for

global software process improvement, Total Software Quality Management (TSQM), relies on a set

of ten explicitly defined software process and product metrics ranging from the low level product

metrics of Lines of Code and Design Complexity to the high-level project management metrics

of Schedule and System Testing Progress [106]. Similarly, a local strategy for software process

improvement, Personal Software Process (PSP), relies on the broad range of software metrics [107].

In addition to playing an important role in software process management and forecasting, software

measurements have become ubiquitous in scientific research. For example in the research field of

Empirical (or as it also called Experimental) Software Engineering (ESE), researchers use measure-

ments and experimentation as the basis for research hypotheses generation and their investigation

[73].

Recently, due to the proliferation of open source software development and advancements in

public software project hosting solutions, a new research area called Mining Software Repositories

(MSR) has been established within the ESE field. MSR is specifically concerned with application

of analytical techniques to public software repositories [99] [108] [109], thus, the research work

from this field is one of the most relevant to my research.

2.1.2 Software measurement theory

In science and in engineering, measurements allow us to formally characterize attributes of an entity

by assigning them a numerical, boolean, or symbolic value. The choice of the value type depends

on the measurement criteria, such as a dimension, a level, or a degree. Ultimately, the chosen

criteria and the scale of used values shall enable an intuitive and precise quantitative comparison

between attributes regardless of their qualitative similarity or difference, as it was pointed out by

Chapin [110]. In addition, measurement units and scales are usually standardized in order to enable

a global comparability.
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An entity in Software Engineering can be a physical object, such as a program or a use case dia-

gram, an event, such as a software release, or a software artifact, such as a bug report. A measurable

entity’s attribute can be its property or a feature, such as the program’s size, the amount of defects

discovered during testing, or the usability of a software system.

Further, attributes are usually divided into two categories: internal and external. While measures

for internal attributes are computed based on the entity itself, external attribute measures depend on

both the entity and the environment in which it resides – for example a software system testing time

varies depending on the performance of a test server.

Finally, as pointed out by Fenton [111], there are two broad types of measurements: direct and

indirect. While direct measurements of an attribute do not depend on any other attributes, indirect

measurements involve measurements of one or more other attributes. As an example of a direct

measurement, consider the size of a system source code or the time developers spent on project. In

contrast, the module defect density (ratio of defects number and the module size), or the requirement

stability (ratio of initial requirements and total requirements) are indirect measurements.

2.1.3 Software measurements in STA

Software Trajectory Analysis is designed for analyses of software measurements in order to enable

recurrent behaviors discovery. In particular, STA exploits the sequential dependency of consecutive

measurements for discovering recurrent characteristic patterns in their dynamics (i.e., structural

patterns), which, as I hypothesize, reflect recurrent behaviors.

This approach builds upon previous work that confirmed the feasibility of software processes

inference through observations (i.e., measurements) of their effect on software product evolution

and indicated the possibility of recurrent behaviors discovery.

As an specific example, confirming the observability of software processes through software prod-

uct measurements, consider the de-facto industrial standard for software measurements application

provided by Software Engineering Institute (SEI) in their guidebook [25]. In particular, the au-

thors focus on the software process execution variability issue that significantly affects the software

project’s schedule and the resulting software system quality. To address the issue, they propose
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Figure 2.2: An illustration of the relations between software measurements and key responsibilities

in project management from SEI Guidebook [25]. Note, that product and process measurements are

the only input into the analyses and the process control blocks.

a methodology based on implementation of a continuous software product and process measure-

ment program, that allows for continuous assessment of the software processes variability enabling

a “real-time” software process control. Figure 2.2 illustrates their approach.

Hackystat, the “parent” system of STA, is another relevant study that extends the applicability of

continuous measurements and confirms the possibility of software process understanding through

the analysis of recurrent behaviors [74]. As pointed out by the authors, the visual comprehension

of measurements variability and pattern collocations enables “emergent knowledge that one state

variable appears to co-vary with another in the current project context”, allowing for process im-

provement activities [74].

As an example indicating the possibility of recurrent behaviors discovery through measurements,

consider the study by Hindle et al. [66] discussed in the Section 2.5.2 of this chapter that proposes

a methodology for recurrent behaviors detection based on Fourier Transform analysis.

STA extends previous approaches built for software measurements analysis by providing an au-

tomation for characteristic patterns discovery from software process and product measurements,

which, as I expect, shall aid in understanding of recurrent behaviors and their role and effect in
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software processes.

2.2 Mining Software Repositories

As mentioned before, mining software repositories is a well established research direction since

mid-1970’s, when Meir Lehman pioneered the software evolution theory by studying historical

records from software repositories [112]. For the last decade, researchers working in the field dis-

cuss their approaches and findings in a number of venues. Among these are the Predictive Model

in Software Engineering (PROMISE) workshop and the Working Conference on Mining Software

Repositories (MSR) which are held within the annual International Conference on Software En-

gineering (ICSE) and specifically focus on the analysis of software repository artifacts. In order

to enable the comparison of proposed techniques performance, both venues encourage researchers

to apply them to reference datasets. While PROMISE maintains the same reference dataset over

years [65], MSR offers a so-called MSR challenge dataset annually [113] [114]. Note however,

that the PROMISE research is mainly concerned with the development of predictive models for

Software Engineering [115], whereas MSR traditionally uses data from public software repositories

stimulating the diversification of research directions [99] [109] [64].

2.3 Understanding Public Software Repositories

Traditionally, software repositories contain a variety of artifacts produced during the software life-

cycle and can be categorized by their purpose. Previous research assigns software repositories into

three main categories: source code control, defect tracking, and archived communications systems

[108], but other types of repositories exist. These may contain various information, such as software

system runtime logs, system testing logs, historical measurements, documentation, tutorials, etc.

Recently, a novel type of repositories was proposed for MSR studies – a historical information

collected within the community-based question answering service Stack Overflow [114].

As pointed out in previous review studies [99] [64] [116] there are a number of issues associated

with mining of public repositories which not only create technical difficulties for scientific research,
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but also affect its validity. The chief problem is that public project repositories are highly heteroge-

neous - each is managed and operated mostly in isolation serving a particular project and community

needs, therefore having no explicit interactions with other projects. Furthermore, within a project’s

repository, its SCM subsystems such as version control, defect-tracking, and mailing list, are rarely

“connected” [117]. This issue of heterogeneity directly affects MSR studies generality since tools

working for and results obtained from one repository, are rarely applicable to another. Yet another

issue is that while the public availability of software artifacts mitigates observability and privacy

issues, the nature of these artifacts creates a number of other challenges which limit the possible

scope of the scientific research and significantly elevate its complexity. Among others, four issues

are usually cited as the most significant:

• First of all, the artifacts are created by developers and users not in order to enable scientific

research, but rather to support software development activities. Therefore, the informational

content of these artifacts is rather poor and additional evidence (i.e., metadata) is often needed

[62] [118] [119].

• Second, the majority of these artifacts (change records, defect reports, assigned tasks, etc.)

typically represent a snapshot of the software project state rather than reflect any of the per-

formed actions. Thus, it might be simply impossible to infer complete software development

processes [120]. Also, this fact effectively renders unusable (within public MSR domain)

most if not all of previously developed event-based process and behavior discovery tools as

their starting point is an event log [40].

• Third, the project’s contributors not only create and submit artifacts to repositories on their

own volition, but most of software change management systems (such as Git, Subversion, and

Gerrit) encourage an asynchronous workflow where the locally created artifacts may remain

uncommitted and therefore unaccounted for, as it has been shown previously [121] [122]. For

the same reason, it is often impossible to know exactly when the artifact’s content was created.

• Finally, the vast volume of produced artifacts, their high dimensionality, and significant noise

demand for automated, high throughput and robust analysis techniques [99] [64] [108] [123].
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These issues not only create significant external threats to MSR research validity, but usually are

impossible to resolve without altering the normal flow of OSS software process, for example by

implementing a special measurement program, or by introducing instrumented source code editors

and development tools (as in Hackystat). Typically, MSR researchers deal with them by seeking for

additional evidence in order to support their conclusions [59] [60].

2.3.1 Public software artifacts

Public software repositories offer a wide range of software process and product artifacts for anal-

yses. Among others, these include source code change records, defect reports, feature requests,

accepted, rejected and assigned tasks, developer communications, documentation, tutorials, etc. All

these allow developers and users to instantly obtain a “snapshot” of the project, i.e., to retrieve the

latest (or any previous) source code revision and a complete overview of the software project state,

along with the lists of open and closed issues, past and future plans, and other information.

However, while being exceptionally convenient for the project participants, users, and manage-

ment, this snapshot-oriented nature of public software artifacts creates numerous difficulties for

software process research as a “snapshot” rarely reflects finished, ongoing, or planned processes

– the issue that limits the feasibility and compromises the validity of performed studies as I have

mentioned above.

I acknowledge this software process observability problem when working with public software

process artifacts and intentionally avoid discussing and concluding on software processes. Instead,

what I shall focus on in this dissertation is the validation of the proposed technique’s ability to

capture process-characteristic recurrent behaviors when snapshots are viewed in their dynamics.

Nevertheless, I hypothesize that in addition to the fact that the evolution of software measurements

in time reflects recurrent development behaviors, some of these can be characteristic of certain

aspects of software processes. Therefore, by discovering recurrent patterns in the evolution of

software measurements it shall be possible to at least partially infer and evaluate performed software

development actions or processes.

Further in this section I review a number of common public software repositories and their arti-
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facts to whose measurements STA already has been or potentially can be applied.

2.3.1.1 Source code management system

Source code management systems keep track of the main output of a software project – its source

code, which is also the main subject of scientific research. Metrics derived from the source code

artifacts are predominant in studies concerned with software evolution, complexity, maintainabil-

ity, and quality, as well as those that are concerned with productivity, project planning, and cost

estimation (i.e., management) [108].

Typically, the evolution of source code is recorded as a sequence of consecutive change records,

which are simple artifacts tracking the change of each source code line. Despite the artifact’s sim-

plicity, tracing source code evolution through the analysis of change records can become increas-

ingly difficult as developers branch the source code tree, merge it back, or abandon branches [124].

While a large number of metrics can be derived through source code and change records analyses,

it offers probably the most functional one – the count of physical lines of code (LOC). Other source

code metrics, such as the count of logical lines of code (LLOC), function points (FP), or software

system complexity are much less used as they are language-dependent and their derivation involves

significant data processing overhead.

2.3.1.2 Defect tracking system

Normally, the software project defect repository serves as a centralized system for managing all of

software project Quality Assurance (QA) activities providing users and developers with a means to

report and to discuss improper system behavior. In some projects, the defect repository is also used

to keep a track of requests for future system features and related discussions.

Artifacts from defect repositories are numerous and complex, as they may contain system logs,

input and output files, screen-shots, etc. Their main purpose is to provide users with up to date

information about system defects, their severity, and, if implemented in the system, with additional

information about their technical nature and resolution plans.

By studying defect records, researchers can address many research questions which are concerned
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with software quality, developer’s expertise, and the project’s technical debt [99]. In addition, defect

records are traditionally used for predictive modeling. For example, the ability to build predictive

model for future bugs by their association with source code file change patterns (i.e., activity) has

been shown by Zimmermann et al. in [103], whether Livshits & Zimmermann have shown a defect

predictive model based on characteristic code fragments [125]. An interesting approach for software

testing processes optimization based on the identification of source code “hot spots” through mining

of the bug reports history has been shown by Ostrand & Weyuker in [126].

2.3.1.3 Developer communications

As OSS projects are usually developed by distributed teams that typically lack the ability for face-to-

face meetings, emails, mailing lists, and newsgroups are used as primary communication channels

between project participants.

Developer communications artifacts, such as email messages, mailing list posts, and newsgroup

messages include agent identification, timestamps, topics, and other data, that provide information

allowing for not only process agents identification, but also understanding of their actions and pro-

cess coordination activities (i.e., roles).

For example Ying et al. in [127] proposed an interesting research direction of mining developer

communications content for understanding of software quality, while Huang et al. in [128] used

developer communications to build a developer interaction network and to partition developers by

level of their involvement into the project or by technical expertise.

2.3.1.4 Q&A websites

Frequently, professional software developers, amateur programmers, and computer hobbyists seek

answers to various questions using the Internet. Among others resources, the Internet offers com-

munity-driven platforms, such as the Stack Overflow (SO) website that explicitly targets program-

mers and is dedicated to software-, hardware-, and computer system administration-related issues.

While other types of artifacts available, the ones distributed by SO team are probably the most

used in the MSR research. These are distributed monthly and contain the historical information
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about questions and answers along with their change history including voting data. In addition, the

SO team provides rich metadata about their service contributors. The public Stack Overflow dump

was selected as the reference dataset in recent 2013 MSR Challenge [114] which collected a number

of submissions proposing interesting data analysis approaches.

While many of these are concerned with programming-related questions, such as identifying top-

ics relevant to particular development communities [129], mining additional technical expertise

[130] [131], or identifying problematic APIs [132] [133] and documentation [134], some studies

address broad phenomena such as collaborative problem solving [135], knowledge sharing [136]

[137], and contributor behaviors [138] [139].

2.3.1.5 Metadata

Often, as reported by Begel et al. [119] who conducted a survey at Microsoft, in order to understand

performed software processes, quantitative information about source code change is not sufficient.

Through the survey, the authors accounted for 31 types of informational needs necessary for un-

derstanding and coordinating software processes, among which the need for the software change

metadata was clearly articulated. Amid other reasons, it was found that metadata allows developers

to learn the rationale behind software change, find responsible people, discover and track dependen-

cies, and to learn about the status of items in progress. The authors concluded that the majority of

developer needs were concerned with people, not the code, and that metadata is essential in meeting

these requests.

Similarly, Kim et al. [140] proposed a system for software repositories data collection, storage,

and a universal data-exchange language and emphasized the importance of metadata for information

management. In addition, the authors showed that it is possible to create a public, metadata-centric

system for interfacing closed-source software repositories to public open-source repositories.

Based on these and other results, I have designed the STA database storage in an extensible

metadata-centric manner. New types of metadata can be defined by the user and associated with

existing and newly collected artifact entities and measurements. In turn, within the process of

software trajectories definitions, the metadata allows for efficient data partitioning and retrieval.

32



2.4 Data assimilation

Currently, there is a voluminous amount of research literature that deals with mining of public

software repositories [109] which, in fact, extends an even larger body of research work that covers

studies based on mining private software repositories and databases [125] [141] [142].

While the majority of published work is concerned with analyses of a repository information for

better understanding of software systems evolution [143] [140], understanding and improving soft-

ware processes [144], and with studying the impact of software tools on the processes and products

[145], some effort has been made towards automation of the historical data retrieval, measurements,

and its representation. A number of the proposed solutions allows for the real-time interactive repos-

itories exploration implemented by extending repository management tools such as CVS, SVN, etc.

with a front-end engine, such as Bonsai [146], or JReflex [147], while others, such as CVSAnalY

[148], softChange [149], and TA-RE [140] propose an approach based on the off-line artifacts re-

trieval, pre-processing, and on-demand analysis.

Similarly to the latter, STA relies on the off-line retrieval, mirroring, and pre-processing of public

software artifacts as shown in Figure 2.3. Note, that since STA has been initially designed as a

Hackystat extension [93], it does not need any specific parser and is capable of real-time collection

of Hackystat data.

2.5 Relevant MSR research on recurrent behaviors discovery

As I have shown above, MSR is a very diverse research field concerned with a variety of problems.

But in this section I focus on previous MSR work that is specifically concerned with the application

of analytical techniques to sequences of software artifact measurements – the approach that STA

builds upon.

2.5.1 Itemset mining

In data mining, frequently occurring items (actions, events) are often used in order to discover

implicit knowledge from large datasets. As I have mentioned earlier in Section 1.3, techniques based
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Figure 2.3: A detailed overview of the Software Trajectory Analysis data assimilation layer. At

first, software artifacts are mirrored from software repositories, measured, converted into universal

to STA format by repository-specific parsers, and stored in the dedicated relational database. In turn,

stored in STA DB entities can be further enhanced with additional measurements and metadata.

on frequent items mining were previously applied for software process discovery from development

event logs by Cook and Wolf [42] [43] [44] and by Rubin et al. [150]. Unfortunately, since public

software repositories do not offer development event logs [120], these techniques can not be adopted

for mining software repositories in their proposed form.

Nevertheless, sequential item mining has found a number of applications in MSR. For example

Zimmermann et al. in [143] developed a system called ROSE for the identification of co-occurring

changes in a software system that aids in future change prediction. For the same purpose, Kagdi et

al. [151] developed a sequential pattern mining technique capable of discovery of ordered sequences

of frequently changed files. Livshits & Zimmermann [125] developed DynaMine – the system for

bug prediction based on mining of frequent function call patterns.

Potentially, itemset mining techniques can be applied to STA results. For example it may be

possible to discover ordered, or unordered sequences of recurrent behaviors which can be further
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Figure 2.4: Figures from the previous study by Hindle et al. [66] confirming the existence of

periodicity in daily changes (left panel) and the possibility of their frequency discovery using Fourier

transform (right panel).

associated with particular development actions.

2.5.2 Time series analysis

Because the majority of software artifacts are time stamped, some MSR research seeks to quantita-

tively analyze ordered in time sequences of software artifacts or their measurements as these may

carry useful information about software processes and recurrent behaviors.

For example Herraiz et al. [152] applied Autoregressive Integrated Moving Average (ARIMA)

model to software evolution measurements for prediction of future changes. The authors has shown

that it is possible to predict a number of future changes in Eclipse by the means of resulting non-

explanatory statistical model.

Similarly, Antoniol et al. [69] have explored the application of a common signal processing

toolkit built upon Linear Predictive Coding (LPC) and Cepstrum coefficients to modeling of soft-

ware artifact histories. In particular, the authors have shown that it is possible to identify files with

very similar size change histories by using the proposed approach.

The temporal segmentation of time series has been applied to mining of Eclipse change log by

Siy et al. [153]. The authors have demonstrated that by partitioning of continuous development

activities into the smaller segments whose duration is close to the software release cycle, it is pos-

sible to discover “stronger trends” (i.e., characteristic behaviors). For example they have found that

developers tend to focus on a particular file subset within a release cycle duration. In addition, they
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were able to detect similar change activity patterns among developers.

Finally, Hindle et al. in [66] outlined an approach for discovery of recurrent behaviors from soft-

ware measurements by Fourier analysis. The left panel of the Figure 2.4 from their work indicates

that the studied signal carries potentially distinguishable periodic behaviors, moreover, they were

able to detect a promising smear of frequencies between 18 and 19 [days] as it is shown at the right

panel. Unfortunately this direction was not further investigated.

2.6 Summary

In this chapter I have reviewed the most relevant to my work previous contributions to the fields of

Software Project Management and Mining Software Repositories. Specifically, I have provided the

evidence for a tight correlation between product and process evolution and their measurements that

enables my research, showed relevant previous work which indicate its feasibility, and enumerated

challenges associated with mining of software repositories that shape STA design.

In addition, I have discussed my experiences with earlier STA implementations which confirmed

a satisfactory performance of the proposed approach based on measurements partitioning and their

symbolic discretization that mitigate for the lack of baselines and noise respectively. Note that at the

same time, previous STA experimentation revealed the demand for a new analytical technique that

is capable of unsupervised characteristic patterns discovery and ranking. In the next chapter I show

a technique called SAX-VSM that addresses the demand and enables unsupervised characteristic

patterns discovery from time series.

Without the right information, you’re just

another person with an opinion.

Tracy O’Rourke, CEO of Allen-Bradley
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CHAPTER 3

INTERPRETABLE TIME SERIES CLASSIFICATION

3.1 Introduction

As I have shown in previous chapters, despite the fact that public software repositories offer a vari-

ety of software artifacts and accompanying information for scientific research, their intrinsic com-

plexity and the immaturity of currently available analysis techniques, which often lack generality,

automation, and efficiency, limit the breadth and scope of the current MSR research [64] [99].

Addressing this problem, I propose the Software Trajectory Analysis approach – an automated

and efficient technique for mining of software repositories, that is specifically concerned with the

discovery of recurrent behaviors. This approach is motivated by the evidence that recurrent behav-

iors are the basic building blocks of software processes [10] [11] [38] and builds upon the hypothesis

that it is possible to discover recurrent behaviors by the analysis of a specific data type – “software

trajectories” – that are sequences of temporally ordered software artifact measurements (i.e., time

series constructed of measurements). While the motivation, background, and evidence leading to

this hypothesis were thoroughly discussed in previous chapters, here, I introduce a technique that

provides the means for its investigation. For this, I turn to another research field, which is concerned

with the analysis of probably the oldest known data type – the time series [154] – and in particular to

the research area of Time Series Classification (TSC). Since some of the techniques that have been

developed and discussed within TSC research field are concerned with the unsupervised discov-

ery of class-characteristic features, and specifically with the ability to discover class-characteristic

patterns, which enable the classification, the use of such a technique in STA can be effectively trans-

lated into the ability to discover class-characteristic meaningful patterns from software trajectories.

Later in this Chapter I shall review the current state of the art in TSC, propose a novel algorithm

for interpretable time series classification built upon the discovery of class-characteristic patterns,

evaluate its performance and the ability to provide an insight into the data and results, and discuss

the algorithm’s use in STA.
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3.2 Time Series classification

Time series classification is a well-established and increasingly popular area of research providing

solutions to a wide range of fields, including, but not limited to data mining, image and motion

recognition, environmental sciences, health care, and chemometrics. Within the last decade, many

time series representations, similarity measures, and classification algorithms have been proposed

following the rapid progress in data collection and storage technologies [155]. Nevertheless, to date,

the best overall performing classifier in the field is the one nearest-neighbor algorithm (1NN), that

can be easily tuned for a particular problem by choosing either a distance measure, an approximation

technique, or smoothing [155]. The 1NN classifier is simple, accurate, robust, depends on a few

parameters, and requires no training [155] [156] [157].

However, the 1NN technique has a number of significant disadvantages, where the major short-

coming is the inability to offer any insight into the classification results. Another serious limitation is

the need for a significantly large training set representing a within-class variance in order to achieve

an acceptable accuracy. Finally, while having trivial initialization, the nearest neighbor classifica-

tion is computationally expensive. Thus, the demand for an efficient and interpretable classification

technique capable of processing large data volumes remains.

Here, I propose an alternative to 1NN algorithm that addresses the aforementioned limitations.

In particular, the proposed technique provides a superior interpretability, learns efficiently from a

small training set, and has a low computational complexity.

3.3 Prior and related work in TSC

Almost all of the existing techniques for time series classification can be divided into two major cat-

egories [78]. The first category includes techniques based on shape-based similarity metrics where

distance is measured directly between time series points. A classic example from this category

is the nearest-neighbor classifier built upon Euclidean distance [158] or Dynamic Time Warping

(DTW) [159]. The second category consists of classification techniques based on structural simi-

larity metrics which employ a high-level representation of time series, based on their global and/or
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local features, for their similarity assessment. Examples from this category include classifiers based

on a time series representation obtained with Discrete Fourier Transform [160] or Bag-Of-Patterns

[91]. The development of these distinct categories can be explained by the significant difference in

their performance: while shape-based similarity techniques are virtually unbeatable on short pre-

processed time series [156], they usually fail on data sets that contain long and noisy time series,

where structure-based solutions demonstrate the superior performance [91].

Two promising alternatives combining the strengths of techniques from both categories were

recently proposed. The first is the Time Series Shapelet approach that allows for a superior inter-

pretability and delivers a compact solution [88]. A shapelet is a short time series “snippet” (i.e.,

subsequence) that is a representative of class membership and is used for the decision tree construc-

tion facilitating class identification and interpretability. In order to find the branching shapelet, the

algorithm exhaustively searches for the best discriminatory subsequence on data split via an infor-

mation gain measure. The algorithm’s classification is built upon the similarity measure between

the branching shapelet and a full time series, defined as the distance between the shapelet and the

closest subsequence in the time series when measured by the normalized Euclidean distance. This

exact technique, potentially, combines the superior precision of exact shape-based similarity meth-

ods, and the high-throughput classification capacity of feature-based techniques. However, while

demonstrating a superior interpretability, robustness, and similar to 1NN algorithm performance,

shapelets-based technique is computationally expensive, O(n2m3), where n is a number of objects

and m is the length of a longest time series, making its adoption for many-class classification prob-

lems difficult [161]. While a better solution was recently proposed (O(nm2)), it is an approximate

approach based on indexing [162].

The second technique with interpretable results is the nearest neighbor classifier built upon the

Bag-Of-Patterns (BOP) representation of time series [91] which is equated to an Information Re-

trieval (IR) “bag of words” concept and is obtained by extraction, transformation with Symbolic

Aggregate approXimation (SAX) [92], and counting the occurrence frequency of short overlapping

subsequences (i.e., patterns) along the time series. By applying this procedure to a data set, the

algorithm converts it into a vector space, where original time series are represented by the pattern
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occurrence frequency vectors. As the authors has shown, these can be classified with a 1NN clas-

sifier built with Euclidean distance, or with Cosine similarity that is applied to raw frequencies or

their weighted with term frequency-inverse document frequency (i.e., tf∗idf [7]) values. BOP clas-

sification has several advantages: its complexity is linear (O(nm)), it is rotation-invariant since it

accounts for local and global structures simultaneously, and it provides an insight into the patterns

distribution through frequency histograms. The authors have concluded that the best classification

accuracy of BOP-represented time series is achieved by using 1NN classifier based on Euclidean

distance.

3.4 SAX-VSM classification algorithm

I propose the time series classification algorithm called SAX-VSM that extends both aforemen-

tioned techniques (i.e., shapelet and BOP). In particular, while similar to shapelet-based approaches

the algorithm targets the discovery of time series subsequences which are the best characteristic rep-

resentatives of a class, instead of the iterative search for a class-discriminating shapelet, SAX-VSM

ranks by importance all potential candidate subsequences at once with a linear computational com-

plexity of O(nm). To achieve this, similar to that proposed in BOP, SAX-VSM converts all training

time series into bags of SAX words and employs tf∗idf for their ranking and Cosine similarity for

classification. Nonetheless, instead of building n bags for each of the training time series, SAX-

VSM builds a single bag of words for each of the classes, which enables effective learning and

highly efficient classification (O(m)).

As I shall show, these distinct features - the comprehensive summarization of the class’ patterns

variability with a single bag of words and the ranking of each word class-characterization poten-

tial - allow SAX-VSM to achieve a high classification accuracy while providing an exceptional

interpretability of the classification results.

3.4.1 Preliminaries

Before describing the algorithm, I shall introduce key terms and concepts used throughout this

section, beginning with the data type. Formally speaking, a time series is an ordered sequence
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of pairs T = ((p1, t1), (p2, t2), ..., (pi, ti), ..., (pm, tm)) where values pi ∈ R
n and timestamps are

ordered t1 < t2 < ... < ti < ... < tm and possibly not equidistant, i.e., |ti − ti−1| 6= |ti − ti+1|.

However, in the research literature, without the loss of generality, equispaced data is typically

considered implying that the raw time series can be treated (i.e., interpolated, aggregated, or ap-

proximated) in order to become equispaced. Therefore, it is assumed here that the time series is a

vector of scalar observations: T = (t1, . . . , tm), where ti ∈ R
n.

Note, that not-equispaced, irregular data is one of the issues when mining software repositories,

as I have discussed previously in the Section 2.3, and for this reason STA and SAX-VSM have

been designed to effectively mitigate for this: STA aggregates raw measurements into software

trajectories first, SAX-VSM aggregates and approximates them second.

In order to rank subsequences by their class-characterization importance, SAX-VSM needs to

transform continuous time series data into the symbolic (i.e., discrete) representation at first. The

algorithm relies on SAX [4] for discretization and follows the best practices of its application.

Specifically, it employs the subsequence discretization implemented via a sliding window, as it

is illustrated in Figure 3.1. By sliding a window along the input time series, SAX-VSM extracts

short overlapping subsequences and discretizes each of them with SAX. The advantage of this

process is that it allows for a better recognition of a localized phenomena as it has been shown in

the previous research work targeting motifs (recurrent subsequences) [87] and discords (anomalous

subsequences) [163] discovery.

A time series subsequence of length k of a time series T = (t1, t2, ..., tm) of length m is a time

series Ti,k = (ti, ti+1, ..., ti+k−1) where 1 ≤ i ≤ m − k + 1, i.e., a contiguous fragment of the time

series.

Subsequence-based SAX discretization requires three parameters to be provided as the input [4].

Currently, to the best of my knowledge, no efficient solution exists for their optimal selection. In this

work I address this problem by using a cross-validation procedure and a parameters optimization

scheme based on the dividing rectangles (DIRECT) algorithm that finds optimal parameter values

within bounded intervals (i.e., in the range within a minimal and the maximal possible parameter

values) [2]. DIRECT is a derivative-free optimization process that possesses local and global op-
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Figure 3.1: An illustration of the sliding window technique from [4]: a time series T of length

128, the subsequence C67 (of length p=16), and the first 8 overlapping subsequences extracted by a

sliding window.

timization properties; converges relatively quickly, and yields a deterministic, optimized solution.

While other optimization techniques exist and some of them may perform better, the performance

evaluation of the parameters selection scheme is beyond the scope of my current work.

In the following subsections, I shall review all the techniques which are embedded in SAX-VSM.

Subsection 3.4.2 reviews SAX - a symbolic discretization technique, Subsection 3.4.4 discusses nu-

merosity reduction strategies, Subsection 3.4.3 reviews bag of words abstraction. Terms weighting

and Vector Space Model are discussed in the Subsection 3.4.5. SAX-VSM algorithm is presented

in the Subsection 3.4.6.

3.4.2 Symbolic Aggregate approXimation (SAX)

Discretization of a continuous data into the small number of finite values is highly desirable and

often vital for enabling application of machine learning algorithms to datasets reflecting real life

phenomena. Hence, probably hundreds of discretization techniques have been developed and are

currently available for researchers dealing with knowledge discovery [164]. Among them, the sym-

bolic representation of time series has attracted much attention by enabling the application of nu-

merous string-processing algorithms, bioinformatics tools, and text mining techniques to continuous

data.

One of the most popular algorithms for conversion of time series into symbolic representation is

the Symbolic Aggregate approXimation [92]. This technique provides a significant reduction of the

time series dimensionality and a lower-bounding to Euclidean distance metric, which guarantees no
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Figure 3.2: An illustration of the SAX approach taken from [4] depicts two pre-determined break-

points for the three-symbols alphabet and the conversion of the time series of length n = 128 into

PAA representation followed by mapping of the PAA coefficients into SAX symbols with w = 8
and a = 3 resulting in the string “baabccbc”.

false dismissal [4]. These properties are often leveraged by many time series analysis techniques

which exploit SAX in order to increase their efficiency. For example, the adoption of SAX index-

ing allowed for a significantly faster shapelet discovery in [162], although rendering the algorithm

approximate.

Given a time series T of a length n, SAX produces its symbolic approximation Ŝ of a length w

where letters are taken from an alphabet A. Along with T , two parameters must be specified as the

input: the alphabet size α and the size of the word to produce w. The algorithm, whose overview is

shown in Figure 3.2, works as follows.

At first, since it is meaningless to compare time series with different offsets and amplitudes [156],

the input time series T is normalized to unit of standard deviation. This normalization procedure,

also known as z-normalization or “normalization to Zero Mean and Unit of Energy”, allows to

minimize the effect of the time series amplitude while preserving time series structural specificities

[165]. In order to obtain the normalized time series T̃ , the input time series mean is subtracted from

each point and the resulting value is divided by their standard deviation:

t̃i =
ti − µ

σ
, i ∈ 1, .., n (3.1)

If, however, the standard deviation value falls below a fixed threshold, the normalization procedure

is not applied in order to avoid a possible over-amplification of the background noise, as it has been
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Table 3.1: An example of the SAX alphabet lookup table that contains the breakpoints dividing a

Gaussian distribution in an arbitrary number (from 2 to 11) of equiprobable regions.

❍
❍
❍
❍
❍

βi

α
2 3 4 5 6 7 8 9 10 11

β1 0,00 -0,43 -0,67 -0,84 -0,97 -1,07 -1,15 -1,22 -1,28 -1,34

β2 0,43 0,00 -0,25 -0,43 -0,57 -0,67 -0,76 -0,84 -0,91

β3 0,67 0,25 0,00 -0,18 -0,32 -0,43 -0,52 -0,60

β4 0,84 0,43 0,18 0,00 -0,14 -0,25 -0,35

β5 0,97 0,57 0,32 0,14 0,00 -0,11

β6 1,07 0,67 0,43 0,25 0,11

β7 1,15 0,76 0,52 0,35

β8 1,22 0,84 0,60

β9 1,28 0,91

β10 1,34

shown in [4].

At the second step, the dimensionality of the normalized time series is reduced to w by obtaining

its Piecewise Aggregate Approximation (PAA). For this, T̃ is transformed into a vector of PAA

coefficients C (|C| = ω) by dividing it into equal-sized segments and computing their mean values:

ci =
w

n

n
w

i∑

j= n
w

(i−1)+1

t̃j (3.2)

Note, that for any Lp norm this transformation satisfies to a lower-bounding condition and guaran-

tees no false dismissals [3] [166].

Discretization is performed at the final step of the SAX algorithm where each of the PAA co-

efficients obtained at the previous step is converted into a letter ĉ of the alphabet A by the use of

lookup tables (as shown in Table 3.1) which define a list of breakpoints B = β1, β2, ..., βa−1 such

that βi−1 < βi and β0 = −∞, βa = ∞ that divide the area under N(0, 1) into a equal areas. The

design of these tables rests on the assumption that normalized time series tend to have Gaussian dis-

tribution [167] [92]. By assigning a corresponding alphabet symbol αj to each interval [βj−1, βj),

the conversion of the vector of PAA coefficients C into the string Ĉ implemented as follows:

ĉi = αj, if ci ∈ [βj−1, βj) (3.3)

44



Table 3.2: An example of the MINDIST function lookup table for the a = 11

a b c d e f g h i j k

a 0,00 0,00 0,43 0,73 0,99 1,22 1,45 1,68 1,94 2,24 2,67

b 0,00 0,00 0,00 0,30 0,56 0,79 1,02 1,26 1,51 1,82 2,24

c 0,43 0,00 0,00 0,00 0,26 0,49 0,72 0,95 1,21 1,51 1,94

d 0,73 0,30 0,00 0,00 0,00 0,23 0,46 0,70 0,95 1,26 1,68

e 0,99 0,56 0,26 0,00 0,00 0,00 0,23 0,46 0,72 1,02 1,45

f 1,22 0,79 0,49 0,23 0,00 0,00 0,00 0,23 0,49 0,79 1,22

g 1,45 1,02 0,72 0,46 0,23 0,00 0,00 0,00 0,26 0,56 0,99

h 1,68 1,26 0,95 0,70 0,46 0,23 0,00 0,00 0,00 0,30 0,73

i 1,94 1,51 1,21 0,95 0,72 0,49 0,26 0,00 0,00 0,00 0,43

j 2,24 1,82 1,51 1,26 1,02 0,79 0,56 0,30 0,00 0,00 0,00

k 2,67 2,24 1,94 1,68 1,45 1,22 0,99 0,73 0,43 0,00 0,00

SAX also introduces a new metric for measuring the distance between strings by extending the

Euclidean and PAA [3] distances. The function returning the minimal distance between two sym-

bolic representations of the original time series Q̂ and Ĉ is defined as

MINDIST(Q̂, Ĉ) ≡

√
n

w

√√√√
w∑

i=1

(dist(q̂i, ĉi))2 (3.4)

where the dist function is implemented by using lookup tables specific to a set of used breakpoints

(alphabet size) as shown in Table 3.2, and where the singular value for each cell (r, c) is computed

as

cell(r,c) =





0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c)−1, otherwise

(3.5)

As shown by Lin et al. [92], the SAX distance metric is lower-bounding to the PAA distance, i.e.

n∑

i=1

(qi − ci)
2 ≥ n(Q̄ − C̄)2 ≥ n(dist(Q̂, Ĉ))2 (3.6)

The SAX lower bound was later examined by Ding et al. [168] and was found to be superior

in precision to the spectral decomposition methods on non-periodic data sets while only “slightly”

inferior to other techniques on periodic data. This findings and the capacity of SAX to be tuned for

data specificities made it the best option for symbolic discretization step of SAX-VSM.
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3.4.3 Bag of words representation of time series

Following its introduction, SAX was shown to be an efficient tool for solving problems of finding

time series motifs (recurrent patterns) and discords (anomalous patterns) in time series [87, 163].

The authors employed a sliding window-based subsequence extraction technique and augmented

data structures (hash table in [87] and trie in [163]) in order to index observed SAX words. Fur-

ther, by analyzing their occurrence frequencies and locations, they were able to capture frequent

and rare SAX words representing motifs and discords subsequences respectively. Later, the same

technique based on the combination of sliding window and SAX was used in the numerous works,

most notably in time series classification using bag of patterns (BOP) [91] and in the Fast-Shapelet

algorithm [162].

I also use this sliding window technique to convert a time series T of a length n into the set

of m SAX words, where m = (n − ls) + 1 and ls is the sliding window length. By sliding

a window of length ls across time series T , extracting subsequences, converting them into SAX

words, and placing these words into an unordered collection, the algorithm builds the bag of words

representation of the original time series T .

3.4.4 SAX numerosity reduction

Previously, the analysis of SAX-based algorithms performance by Keogh et al. [87] and Lin et al.

[163] revealed that the best matches for a sliding window subsequence tend to be its neighbors,

specifically the subsequence one point to the right and the subsequence one point to the left – due

to the smoothing effects of PAA approximation and SAX discretization. The authors defined these

matching subsequences as trivial matches and found that in a smooth region of a time series the

amount of trivial matches can be large enough to dominate over true matches due to the over-

counting – an issue which may significantly bias the result and even make it meaningless [169] for

SAX-based techniques. Hence, they have concluded, when extracting subsequences from the time

series via a sliding window the trivial matches should be excluded.

The authors proposed a sampling strategy based on a MINDIST (Eq. 3.4) distance function de-

signed in order to avoid the trivial and degenerate solutions. If l consecutive SAX words

46



Ŝi,k, Ŝi+1,k, ..., Ŝi+l−1,k corresponding to subsequences Ti,k, Ti+1,k, ..., Ti+l−1,k extracted with slid-

ing window have been found equal when using MINDIST, they kept only the first entry Ŝi,k. The

authors also noted that, similarly to the run length encoding data compression technique, if one

would ever need to retrieve all the occurrences of Ŝi,k, they can be found by sliding the window

from the first occurrence to the right until the word which is different from Ŝi,k is found.

While the authors found the inclusion of the numerosity reduction vital for motif and discord

discovery applications, intuitively, since SAX-VSM deals with the classification, an aggressive nu-

merosity reduction may in fact reduce the classification performance as it has been shown in the

original BOP work [91]. Moreover, by the design of tf∗idf statistics (Eq. 3.10), the over-counting

effect is significantly mediated by the inverse document frequency idf that efficiently reduces the

effect of high word counts proportionally to their inter-class occurrence.

In order to clarify this issue, I have conducted an exploratory study of the SAX numerosity re-

duction effect on SAX-VSM performance. In a series of experiments, I have found, that for most of

used data sets, the application of numerosity reduction significantly reduces the DIRECT scheme

convergence time and, sometimes, improves the classification accuracy. Furthermore, once I have

relaxed the trivial match constraints by the substitution of MINDIST with a distance function based

on the Hamming distance [170], I was able to slightly improve the classification accuracy for more

than half of the data sets used for SAX-VSM performance evaluation as shown in Table 3.6 (SAX-

VSM accuracy results obtained with the “exact” value of numerosity reduction parameter). The

HAMMING distance function for two SAX words Q̂ and Ĉ of the same length w is defined as the

count of letters in which they differ:

HAMMING(Q̂, Ĉ) ≡
w∑

i=1

I(q̂i, ĉi),

where I(q̂i, ĉi) =





1, if q̂i 6= ĉi

0, if q̂i = ĉi

(3.7)

For further use, I abbreviate the numerosity reduction strategy based on the previous work (i.e.,

on MINDIST function) as CLASSIC, while the one based on HAMMING distance as EXACT.
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Note that, as the experimental evaluation has shown, the effect of the numerosity reduction strat-

egy may or may not be significant for a particular dataset, moreover, since this effect is impossible to

know in advance, the numerosity reduction strategy becomes yet another parameter which needs to

be properly selected in order to achieve the best SAX-VSM performance for a given dataset. There-

fore, in total, there are four parameters which need to be optimized for the SAX-VSM application

to a particular dataset.

3.4.5 Vector Space Model (VSM) adaptation

I use the Vector Space Model exactly as it is known in Information Retrieval (IR) [171] for manip-

ulations with abstracted by SAX words time series subsequences.

Similarly to IR, I define and use the following expressions:

• term - a single SAX word;

• bag of words - an unordered collection of SAX words, i.e., terms;

• corpus - a set of bags;

• term frequency matrix - a matrix defining the term occurrence frequency for each bag, whose

rows correspond to all observed in a corpus terms and whose columns correspond to bags;

• term weight matrix - a similar to term frequency matrix structure defining the weight coeffi-

cient of a term for each of the corpus’ bags;

• document (bag) term weight vector - a column of the weight matrix defining weights of all

terms for a single bag.

Note however, that I use terms bag of words and document for abbreviation of an unordered collec-

tion of SAX words interchangeably, while in IR these usually bear different meaning as a document

presumes words ordering (i.e., semantics). Although similar definitions, such as bag of features

[172] or bag of patterns [91], were recently proposed for techniques built upon SAX [91], I use the

traditional bag of words definition since it reflects my workflow best.
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Table 3.3: The SMART notation.

Term frequency Document frequency Normalization

n (natural): tft,d n (no): 1 n (none): 1

l (logarithm): 1 + log(tft,d) t (idf): log N
dft

c (cosine): 1√
w2

1
+w2

2
+...+w2

M

a (augmented): 0.5 +
0.5×tft,d

max(tft,d)
p (prob idf): max

(
0, log N−dft

dft

)
b (byte size): 1

CharLengthα , α < 1

b (boolean):

{
1, if tft,d > 0

0, otherwise

L (log average):
1+log(tft,d)

1+log(avetǫd(tft,d))

Given a training set of time series, that is typically built from labeled sets of time series (i.e.,

“classes”), SAX-VSM builds a single bag of SAX words for each of the classes by processing all

class’ time series with a sliding window and SAX. Then, these bags are combined into a corpus

which in turn is transformed into the term frequency matrix, whose rows correspond to the set of

all SAX words (terms) found in all classes, whereas each column denotes a class of the training

set. Each element of this matrix is an observed frequency of a term in a class. Note, that because

SAX words extracted from time series of one class are often not among other classes, as it is shown

further in the Section 3.7.2, this matrix is usually sparse.

Following to the common in IR workflow, SAX-VSM employs the tf∗idf weighting scheme [173]

for each element of this matrix in order to transform the frequency value into a weight coefficient.

The tf∗idf weight for a term is defined as a product of two factors: term frequency (tf) and inverse

document frequency (idf). For the first factor, I use logarithmically scaled term frequency (Table

3.3) [173]:

tft,d =





1 + log(ft,d), if ft,d > 0

0, otherwise

(3.8)

where t is a term and d is a bag of words (the document in IR terms), and ft,d is a frequency of the

term in the bag. For the second factor I use inverse document frequency:

idft,D = log10

|D|

|d ∈ D : t ∈ d|
= log10

N

dft

(3.9)
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where N is the cardinality of corpus D (the total number of bags) and the denominator dft is a

number of bags where the term t appears.

Thus, the tf∗idf value for a term t in the document d of a corpus D is defined as:

tf ∗ idf(t, d, D) = tft,d × idft,D = log(1 + ft,d) × log10
N

dft

(3.10)

for all cases where ft,d > 0 and dft > 0, or zero otherwise. Once all terms of a corpus are weighted,

the term frequency matrix becomes a term weight matrix and its columns are used as the class’ term

weight vectors that facilitate the classification with Cosine similarity.

The Cosine similarity measure between two vectors is defined by their inner product and magni-

tude. For two vectors a and b that is:

similarity(a, b) = cos(θ) =
a · b

||a|| · ||b||
=

n∑
i=1

ai × bi

√
n∑

i=1
(ai)2 ×

√
n∑

i=1
(bi)2

(3.11)

3.4.6 SAX-VSM implementation

As many other time series structure-based classification techniques, SAX-VSM consists of two

phases - the training (i.e., learning of class-characteristic patterns) and the classification. Within

the training phase, SAX-VSM discretizes all labeled time series with SAX and builds N bags of

SAX words, where N is the number of classes. Then, by applying the tf∗idf weighting scheme

to the corpus of N bags it obtains N weight vectors which it uses for the time series classification

procedure built upon the Cosine similarity. The schematic overview of the algorithm training and

classification phases is given in Figure 3.3.

3.4.6.1 Training

SAX-VSM training starts by the transformation of all labeled time series into SAX representation.

This process is configured by four parameters: the sliding window length (W), the number of PAA

segments per window (P), SAX alphabet size (A), and the numerosity reduction strategy. Note that

each subsequence extracted with a sliding window is normalized (Sec. 3.4.2) before being processed
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Figure 3.3: An overview of the SAX-VSM algorithm: at first, labeled time series are converted

into bags of words using SAX; secondly, tf ∗ idf statistics is computed resulting in a single weight

vector per training class. For the classification, an unlabeled time series is converted into the term

frequency vector and assigned a label of the weight vector that yields a maximal cosine similarity

value. This is ltc.nnn weighting schema in SMART notation (Table 3.3).

with PAA, however, if the standard deviation value falls below a fixed threshold, the normalization

is not applied in order to avoid over-amplification of the background noise [92].

By applying this procedure to all time series from N training classes, the algorithm builds a

corpus of N word bags. Then, it computes weights of all of the corpus’ terms using tf∗idf and

outputs N real-valued weight vectors of equal length representing training classes.

Because the whole training set must be processed, training of SAX-VSM classifier is computa-

tionally expensive (O(nm), where n is the number of time series and m is the maximal length of

the time series). However, there is no need to maintain an index of training time series, or to keep

any of them in the memory at runtime – the algorithm simply iterates over all training time series

building bags of SAX words incrementally. Once built and weighted with tf∗idf , the corpus is

discarded – only the resulting set of N real-valued weight vectors is retained for the classification.
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Figure 3.4: An illustration of the DIRECT-driven SAX-VSM parameters optimization for Syn-

theticControl dataset. The left panel shows all points sampled by DIRECT in the space

PAA ∗ W indow ∗ Alphabet. The red points correspond to high error values while green points

correspond to low error values in cross-validation experiments. Note the green points concentration

at W =42. Middle panel shows the classification error heat map obtained by a complete scan of

all 432 points of the hypercube slice when W =42. Right panel shows the classification error heat

map of the same slice when the parameters search was optimized by DIRECT, the optimal solution

(P =8,A=4) was found by sampling just 43 points.

3.4.6.2 Classification

In order to classify an unlabeled input time series, SAX-VSM transforms it into a terms frequency

vector using exactly the same sliding window technique and SAX parameters set that were used for

the training. Then, it computes cosine similarity values between this vector and N tf∗idf weight

vectors that represent training classes. The input time series is assigned to the class whose vector

yields the maximal cosine similarity value.

3.5 Parameters optimization

As shown above, in total, SAX-VSM requires four discretization parameters to be specified upfront

from which three (the sliding window length, the PAA size, and the SAX alphabet size) may vary

in a wide range. Unfortunately, to the best of my knowledge, there is no efficient solution known

for their selection.

Addressing this issue I propose a solution based on a common cross-validation and DIRECT

(DIviding RECTangles) optimization scheme [1]. As I shall show, the combination of these tech-

niques allows for an optimal parameter selection while using only the training data. For brevity, I
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Figure 3.5: An illustration of the numerosity reduction strategy effect on DIRECT-driven parameters

optimization process. The points represent the error rate in cross-validation experiments and are

colored according to its value: the red color indicates high error values, while the green corresponds

to low error values. Note that dense points collocations are differ among strategies, which indicates

the difference in their error function gradient.

omit the detailed explanation of the DIRECT algorithm background and motivation, referring the

interested reader to the original work [2] for additional details.

DIRECT is designed to deal with a parameters optimization problems of form:

min
x

f(x), f ∈ R, x, XL, XU ∈ R, where XL ≤ x ≤ XU (3.12)

where f(x) is the error function, and x is the parameters vector. At the first step DIRECT scales

the search domain to the unit hypercube. The function is then evaluated at the center point of the

hypercube. As pointed in [2], computing the function value at the center is an advantage of the

method when dealing with problems in higher dimensions. Then, DIRECT iteratively performs

two procedures - partitioning the hypercube into smaller hyper-rectangles and identifying a set of

potentially-optimal ones by sampling their centers. At each step, the function is evaluated at the

center points of all potentially-optimal hyper-rectangles. The procedure continues interactively until

the error function converges. Note, that DIRECT is guaranteed to converge to the global optimal

function value, as the number of iterations approaches to infinity [2].
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Since DIRECT is designed to search for global minima of a real valued function over a bound

constrained domain, whereas SAX parameters are natural numbers, I employ the rounding of a

reported solution values to the nearest integer. Figure 3.4 illustrates the application of leave-one-out

cross-validation and DIRECT to the SyntheticControl data set [174] which consists of 6 classes.

In this case, the algorithm converged after sampling just 130 out of 13,860 possible parameters

combinations – that is over 100x speedup.

Figure 3.5 shows the effect of each of the numerosity reduction strategies on parameters op-

timization process with DIRECT for Beef dataset that features time series classes obtained by

measuring a degree of beef contamination by adulterants with mid-infrared spectroscopy [175].

Sixteen iterations of DIRECT were performed for each experiment. The optimal solution (Win-

dow=19, PAA=17, Alphabet=3) was found with EXACT numerosity reduction strategy in 8 iter-

ations; without numerosity reduction, optimization process converged in 10 iterations, while with

MINDIST-based numerosity reduction in 9 iterations. Note the differences in sampled locations

between strategies: without numerosity reduction, DIRECT efficiently found the minima location

after sampling of 317 locations, whether with reduction, a number of close to optimal locations was

found earlier and thus sampled more rigorously. 365 locations were sampled with MINDIST-based

numerosity reduction, and 369 locations with Hamming-based numerosity reduction, which indi-

cates an increase in the optimization process sensitivity when a numerosity reduction is used.

Note, that the parameters optimization scheme discussed above does not include the numerosity

reduction strategy. The reasons for this is that the numerosity reduction strategy mostly affects the

parameters optimization scheme convergence speed rather than the accuracy of the classification,

thus, for the most cases, it can be simply pre-defined to EXACT.

3.6 Intuition behind SAX-VSM

First, by combining all SAX words extracted from all time series of single class into a single bag of

words, SAX-VSM manages to effectively capture and summarize the observed intraclass variability

even from a small training set.

Second, by normalizing, smoothing, approximating time series subsequences, and discarding
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Table 3.4: Description of the datasets used in performance evaluation.

Class type Dataset Datasets

Image data 50 words, Adiac, Yoga , Face Four, Face all, Faces UCR, Fish,

Swedish Leaf, OSU Leaf, Arrow Head, Shield, Diatom, Medical Images

Motion data Gun-Point, Cricket, Cricket-NEW, Sony AIBO walk, Pass Graph,

uWaveGesture

Spectroscopy data Beef, Coffee, Olive Oil, Wheat

Synthetic datasets Cylinder-Bell-Funnel, Synthetic Control, Two Patterns, Mallat

Energy consumption Italy Power Demand, Electrical Devices

Medical measurements ECG200, ECG 5 days, Medical images, ECG Thorax

Other measurements obtained with instruments Trace, Lightning 2, Lightning 7, Wafer, Ford A, Ford B,

Chlorine concentration, Starlight

their original ordering, SAX-VSM focuses exclusively on the local structural phenomena regardless

of the data distortion by the rotation and its corruption by the noise or values loss.

Third, tf∗idf statistics naturally highlights terms that are unique to the class by assigning them

high weights, whereas terms that observed in multiple classes are assigned low, inversely propor-

tional to their interclass presence, weights. This improves the selectivity of the classification by

decreasing the contribution of “confusive” multi-class terms, while increasing the contribution of

unique “class-defining” terms to the final similarity measurement value.

Ultimately, the algorithm compares the set of subsequences extracted from an unlabeled time se-

ries with the weighted set of all characteristic subsequences representing the whole of the training

class. Thus, an unknown time series is classified by its similarity not to a given number of “neigh-

bors” as in kNN or BOP classifiers, or to a single characteristic subsequence, as in shapelet-based

classifier, but by the combined similarity of all its subsequences to all known discriminative patterns

found in the whole of the class.

3.7 SAX-VSM performance evaluation

I have proposed a novel algorithm for time series classification based on SAX approximation of

time series and Vector Space Model called SAX-VSM. In this section I describe a set of experiments

assessing its performance and exploring its ability to provide an insight into the classification results.
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Table 3.5: Classification accuracy comparison for state of the art nearest-neighbor, interpretable,

and SAX-VSM classifiers.

Dataset
Num. of

classes

1NN-

Euclidean
1NN-DTW Fast Shapelets

Bag Of

Patterns
SAX-VSM

Adiac 37 0.389 0.391 0.514 0.432 0.381

Beef 5 0.467 0.467 0.447 0.433 0.3

CBF 3 0.148 0.003 0.053 0.013 0.002

Coffee 2 0.250 0.180 0.067 0.036 0.0

ECG200 2 0.120 0.230 0.227 0.140 0.140

FaceAll 14 0.286 0.192 0.402 0.219 0.207

FaceFour 4 0.216 0.170 0.089 0.011 0.0

Fish 7 0.217 0.167 0.197 0.074 0.017

Gun-Point 2 0.087 0.093 0.060 0.027 0.007

Lightning2 2 0.246 0.131 0.295 0.164 0.196

Lightning7 7 0.425 0.274 0.403 0.466 0.301

Olive Oil 4 0.133 0.133 0.213 0.133 0.133

OSU Leaf 6 0.483 0.409 0.359 0.236 0.107

Syn.Control 6 0.120 0.007 0.081 0.037 0.010

Swed.Leaf 15 0.213 0.210 0.270 0.198 0.251

Trace 4 0.240 0.0 0.002 0.0 0.0

Two patterns 4 0.090 0.0 0.113 0.129 0.006

Wafer 2 0.005 0.020 0.004 0.003 0.0006

Yoga 2 0.170 0.164 0.249 0.170 0.164

3.7.1 Analysis of the classification accuracy

I have evaluated SAX-VSM accuracy on 45 datasets, whose majority was taken from the benchmark

data disseminated through the UCR repository [174]. These datasets represent a variety of data types

that reflect typical TSC domain problems. Table 3.4 describes their origin.

Table 3.5 compares the classification accuracy of SAX-VSM with previously published results

for four competing classifiers: two state-of-the-art 1NN classifiers based on Euclidean distance

and DTW, and two interpretable classifiers based on recently proposed Fast-Shapelets technique

[162] and BOP [91] on 19 datasets. I have selected these particular techniques in order to position

SAX-VSM in terms of the classification accuracy and the results interpretability.

Table 3.6 compares the classification accuracy of SAX-VSM with 1NN state of the art classifiers

based on Euclidean and DTW distances on all 45 datasets. Fast-Shapelet and BOP classifiers were

excluded from this comparison table because their performance for these datasets is unknown.
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Table 3.6: Classification accuracy comparison for state of the art nearest-neighbor and SAX-VSM

classifiers.

Dataset
Num. of

classes

Training

set size

Testing

set size

Series

length

1NN-

Euclidean

1NN-

DTW

SAX-

VSM
Discretization param.

Synthetic Control 6 300 300 60 0.12 0.007 0.0133 45,7,5,exact

CBF 3 30 900 128 0.148 0.003 0.0021 55,4,12,nored

Gun Point 2 50 150 150 0.087 0.093 0.066 32,12,9,exact

50 words 50 450 455 270 0.369 0.310 0.3582 190,10,3,exact

Trace 4 100 100 275 0.24 0.0 0.0000 220,16,11,exact

Adiac 37 390 391 176 0.389 0.396 0.3810 100,24,16,nored

Yoga 2 300 3000 426 0.170 0.164 0.1639 70,14,15,nored

Beef 5 30 30 470 0.467 0.5 0.3 19,17,3,exact

Coffee 2 28 28 286 0.25 0.179 0.0 107,22,3,nored

Olive Oil 4 30 30 570 0.133 0.133 0.1330 460,52,13,classic

ECG200 2 100 100 96 0.12 0.23 0.1400 44,9,5,exact

ECG 5 days 2 23 861 136 0.065 0.232 0.0100 41,11,4,exact

Face all 14 560 1,69 131 0.286 0.192 0.2065 42,8,4,nored

Face four 4 24 88 350 0.216 0.170 0.1112 67,7,5,exact

Fish 7 175 175 463 0.217 0.167 0.0171 99,19,8,nored

Swedish Leaf 15 500 625 128 0.213 0.210 0.2512 49,9,7,exact

OSU Leaf 6 200 242 427 0.483 0.409 0.0867 33,8,12,nored

Lightning 2 2 60 61 637 0.246 0.131 0.1967 169,15,3,nored

Lightning 7 7 70 73 319 0.425 0.274 0.3287 97,17,3,nored

Wafer 2 1 6,174 152 0.005 0.020 0.0010 34,32,7,classic

Two Patterns 4 1 4 128 0.09 0.0 0.0040 107,12,3,nored

Ford A 2 3,601 1,32 500 0.3182 0.484 0.1272 80,10,5,exact

Ford B 2 3,636 810 500 0.4086 0.495062 0.2567 80,10,5,exact

Chlorine Concentration 3 467 3840 166 0.35 0.352 0.3341 30,27,5,classic

Cricket 2 9 98 166 0.0511 0.0102 0.0102 165,10,4,exact

Cricket - NEW 2 9 98 166 0.4375 0.125 0.2343 165,10,4,exact

Sony AIBO walk 2 20 601 70 0.3045 0.2745 0.2628 54,4,16,exact

PassGraph 2 69 131 364 0.3664 0.2824 0.2812 119,10,15,nored

Wheat Spectrography 7 49 726 1050 0.44 0.457 0.2790 130,50,10,nored

Arrowhead 3 36 175 625 0.32 0.32 0.3028 113,11,3,classic

Shield 3 30 129 1179 0.1395 0.1395 0.0772 150,12,4,nored

Mallat 8 320 2080 256 0.0235 0.0312 0.0274 214,10,15,nored

uWaveGesture X 8 896 3582 315 0.2607 0.2725 0.2635 260,7,5,exact

uWaveGesture Y 8 896 3582 315 0.3384 0.3659 0.3534 240,10,4,exact

uWaveGesture Z 8 896 3582 315 0.3504 0.3417 0.3400 258,8,4,exact

Diatom Size Reduction 4 16 306 345 0.0654 0.0327 0.0653 174,15,18,exact

Medical Images 10 381 760 99 0.3158 0.2631 0.4802 29,9,5,exact

Words Synonyms 25 267 638 270 0.3824 0.3511 0.4404 198,10,3,exact

FacesUCR 14 200 2050 131 0.2307 0.0951 0.0751 38,8,3,exact

Symbols 6 25 995 398 0.1005 0.0503 0.1015 112,12,5,exact

Starlight Curves 3 1000 8236 1024 0.0632 0.093 0.0807 172,15,11,exact

Italy Power Demand 2 67 1029 24 0.0949 0.0495 0.1166 13,16,5,exact

ElectricalDevices 7 8953 7745 96 0.9132 0.9132 0.3227 17,13,6,nored

ECG Thorax1 42 1800 1965 750 0.171 0.209 0.2340 44,15,14,exact

ECG Thorax2 42 1800 1965 750 0.120 0.135 0.1450 44,15,14,exact
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Figure 3.6: An example of the three classes from CBF dataset.

Note, that in the evaluation, I followed the train/test data split as provided by UCR. At first, the

train data was used in the cross-validation for optimization of SAX parameters using DIRECT.

Second, once found, the optimal parameter settings were used to assess SAX-VSM classification

accuracy on the test data. The last column of table Tables 3.5 and 3.6 reports the SAX-VSM classi-

fication accuracy and the parameter settings.

3.7.2 Scalability analysis

For synthetic data sets, it is possible to create as many instances as one needs for the experimen-

tation. Moreover, the ground truth corresponding to their features and patterns is always known

through their design. I have used Cylinder-Bell-Funnel [176] and Two Patterns [177] synthetic

datasets in order to investigate and to compare the performance of SAX-VSM and 1NN Euclidean

classifier on increasingly large data sets.

3.7.2.1 Cylinder-Bell-Funnel (CBF) dataset

The CBF problem was introduced in [176] and since then has been routinely used in TSC for the

investigation of a classifier performance behavior. The dataset represents a classical problem of

time series classification where the class assignment is made upon the detection of a single global

pattern. The goal is to separate three classes of objects: cylinder (c), bell (b), and funnel (f ).

Figure 3.6 shows examples of time series from each of the classes. The Cylinder is characterized

by a plateau, the Bell by an increasing linear ramp followed by a sharp drop, while the Funnel is

characterized by a sharp rise followed by a gradual decrease. The class-characteristic feature start,
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its duration (length of the plateau and ramps) and the amplitude are randomized. Gaussian noise is

also added to each time series point:

c(t) = (6 + η) · χ[a,b](t) + ǫ(t)

b(t) = (6 + η) · χ[a,b](t) · (t − a)/(b − a) + ǫ(t)

f(t) = (6 + η) · χ[a,b](t) · (b − t)/(b − a) + ǫ(t)

, where χ[a,b] =





0, t < a

1, a ≤ t ≤ b

0, t > b

(3.13)

where η and ǫ(t) are drawn from a standard normal distribution N(0, 1), a is an integer drawn

uniformly from the interval [16, 32] and (b − a) is drawn uniformly from [32, 96].

3.7.2.2 Two patterns dataset

As mentioned, the CBF problem demands a classifier to make the decision based on a single global

pattern. Contrary, the Two Patterns problem requires a classifier to recognize ordered occurrences

of two local patterns.

In particular, patterns that are used to define classes are the upward step and the downward step, as

it is shown in Figure 3.7. Class DD corresponds to two downward steps, DU to the succession of a

downward and an upward step, etc. The position and the duration of these patterns are randomized,

which creates an additional challenge for a classifier to distinguish classes with similar patterns, i.e.,

UD and DU . The signal surrounding patterns is randomized with the Gaussian noise. As pointed

by the dataset author, this problem is particularly challenging for classical learning algorithms that

do not account for the sequential measurements dependency [177].

3.7.3 Classification scalability

In a series of experiments, I varied the training data set size from 5 to 1, 600 instances of each

time series class, while the test data set size remained fixed to 10, 000 instances. For small training

sets, SAX-VSM was found to be significantly more accurate than 1NN classifier based on Euclidean

distance but less accurate than 1NN classifier based on DTW. However, by the time there were more

than 400 time series in a training set, there was no statistically significant difference in accuracy

between all classifiers, as shown at left panels of Figures 3.8 and 3.9.
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Figure 3.7: An example of the four classes from Two Patterns dataset.

As per the running time cost, to no surprise, the DTW-based classifier was found to be the most

expensive technique. Due to the comprehensive training, SAX-VSM was found to be more expen-

sive than 1NN Euclidean classifier on small training sets, but outperformed it on larger training

sets.

However, SAX-VSM can perform the training offline and can load class-characteristic tf∗idf

weight vectors when needed. If this option can be utilized, the proposed classifier performs signifi-

cantly faster than both 1NN classifiers as shown at the right panels of Figures 3.8 and 3.9.

3.7.3.1 SAX-VSM training scalability

In another series of experiments I have investigated the scalability of the algorithm with unrealistic

training set sizes - up to one million of instances of each of CBF classes. As expected, with the

growth of the training set size, the curve for a total number of distinct SAX words and curves for

dictionary sizes of each of CBF classes reflected a significant saturation as it is shown at the left

panel of Figure 3.10. For the largest of training sets - 106 instances of each class - the size of the

dictionary peaked at 67, 324 of distinct words (which is less than 10% of all possible words of length

7 from an alphabet of 7 letters), and the largest tf∗idf vector accounted for 23, 569 values (Figure
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Figure 3.8: Classification accuracy and run time comparison for SAX-VSM and 1NN classifiers on

CBF data. SAX-VSM performs significantly better than 1NN Euclidean classifier with a limited

amount of training samples, but not as good as 1NN DTW classifier (left panel). While SAX-VSM

is fastest in the classification, its performance is comparable to 1NN Euclidean classifier when the

training time is accounted for (right panel).
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Figure 3.9: Classification accuracy and run time comparison for SAX-VSM and 1NN classifiers on

Two Patterns data. Experiment reveals that on small training set sizes the problem is much harder

for SAX-VSM and 1NN Euclidean classifiers than it is for the 1NN DTW classifier. Nevertheless,

similarly to the previous experiment, SAX-VSM performs better than 1NN Euclidean classifier in

terms of the both: accuracy and speed.

3.10, right). In my opinion, this result reflects two characteristics of the data set chosen: the first

is that the diversity of words which are possible to encounter in CBF dataset is quite limited by its

classes configuration (i.e., single global pattern) and by the choice of SAX parameters (smoothing).

The second specificity is that IDF (Inverse Document Frequency, 3.9) efficiently limits the growth

of dictionaries by eliminating those words, which are observed in all classes.

The similar behavior was observed in the experimentation with Two Patterns dataset. The Figure

3.11 shows the rapid saturation of SAX word dictionaries as a training dataset grows in size.
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Figure 3.11: An illustration of the SAX-VSM class-characteristic pattern vectors size evolution for

the Two Patterns dataset with increasingly large training set size (left panel), and the distribution of

terms in the Two Patterns corpus for a training set of one million time series of each class.

3.7.4 Robustness to noise

As shown, the growth of the dimensionality of tf∗idf weight vectors follows the growth of the

training set size, which indicates that SAX-VSM is continuously learning from the observed class

variability. Since the weight of each of overlapping subsequences extracted from time series via

sliding window contributes only a small fraction to the final similarity value, and since each sub-

sequence represents a localized structural phenomenon, intuitively, the SAX-VSM classifier shall

be robust to the noise and to the partial signal loss. In this case, the cosine similarity between two

high dimensional weight vectors may not degrade significantly enough to cause misclassification

(Equation 3.11).
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Figure 3.12: An illustration of the SAX-VSM classification performance evolution on CBF dataset

with added noise (left panel, the random noise amplitude varies up to 100% of that of the signal

value), and with a signal loss (right panel, the start and stop of the“lost interval” were chosen

randomly). SAX-VSM Opt curves correspond to the results obtained with the “optimized” for each

case SAX parameters.

In one series of experiments, by fixing a training set size to 250 time series, I have varied the

standard deviation of Gaussian noise in CBF model (whose default value is about 17% of a signal

level). I have found, that SAX-VSM increasingly outperformed 1NN Euclidean classifier with the

growth of the noise level (Fig.3.12 Left). Further improvement of SAX-VSM performance was

achieved by the tuning of the PAA smoothing through a gradual increase of the sliding window size

proportionally to the growth of the noise level (Fig.3.12 Left, SAX-VSM Opt curve).

In another series of experiments, I replaced up to 50% of an unlabeled time series span with a

randomly placed stretches of the Gaussian noise, mimicking the signal corruption. Again, SAX-

VSM performed consistently better than 1NN Euclidean classifier regardless of the training set

size, which I have varied from 5 to 1’000. The SAX-VSM Opt curve at Fig.3.12 (Right) depicts an

experiment where the training set size was fixed to 50 time series of each class and when the sliding

window size was decreased inversely proportionally to the signal loss growth.

3.7.5 Interpretable classification

While the classification performance results in previous sections confirms that SAX-VSM classifier

has a comparable to state of the art classification performance, its major strength is in the level of

allowed interpretability of classification results.

Previously, in the original shapelets work [88, 89], it has been shown that the resulting decision
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tree offers an insight into the data specificity through class-characteristic patterns. In the successive

work based on shapelets [161], it was also shown that the discovery of multiple shapelets provides

increasingly better resolution and intuition into the interpretability of classification.

However, as the authors noted, the runtime cost of multiple shapelets discovery in a many class

problems can be prohibitive to the approach applicability. In contrast, SAX-VSM extracts and

weights all patterns at once, without any added cost. Therefore, it could be the only choice for

interpretable classification in many class problems.

Further in this section, I propose a SAX-VSM based heatmap-like time series class specificity vi-

sualization that provides insight into the classification result and show the utility of the subsequence

ranking for interpreting of the class-characteristic data specificity.

3.7.5.1 Heatmap-like visualization

Since SAX-VSM builds tf∗idf weight vectors using all subsequences extracted from a training set, it

is possible to find out the weight of any arbitrary selected subsequence. This feature enables a novel

visualization technique that can be used to gain an immediate insight into the layout of “important”

class-characterizing subsequences as it is shown in Figures 3.13 and 3.14.

In order to highlight class-characteristic subsequences, the color hue value for each point is com-

puted as the combination of tf∗idf weights of all subsequences that span the point. If the sub-

sequence is found to be characteristic to other than the analyzed time series class, its weight is

subtracted, if it belongs to the same class, the weight is added.

This type of visual analysis allows for an immediate insight into the classification results as for

any of the classified time series it is possible to visualize which subsequences were found class-

characteristic for each of the classes and to which degree.

3.7.5.2 Gun Point data set

By following the previously mentioned shapelet-based work [88] [161], I have used a well-studied

Gun/Point data set [178] to explore the interpretability of classification results. This data set contains

two classes: time series in the Gun class corresponds to the actor’s hand motion when drawing a
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Figure 3.13: An example of the heatmap-like visualization that exploits SAX-VSM subsequence

ranking in order to highlight time series segments that are highly characteristic to the class. High-

lighted by the visualization features corresponding to a sudden rise, plateau, and a sudden drop in

Cylinder, increasing trend in Bell, and to a sudden rise followed by a gradual drop in Funnel, align

exactly with the design of these classes [176].
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Figure 3.14: An example of the heatmap-like visualization for Two Patterns dataset, which also

confirms the proposed algorithm’s ability to capture the class specificity in more challenging than

CBF settings where class-characteristic patterns are local and ordered [177].

replicate gun from a hip-mounted holster, pointing it at the target for a second, and returning the gun

to the holster; time series in the Point class corresponds to the actor’s hand motion when pretending

of drawing a gun — the actor points her index finger to a target for about a second, and then returns

the hand to her side.

Similarly to previously reported results [88] [161], SAX-VSM captured all distinguishing features

as shown in Figure 3.15. The most weighted by SAX-VSM pattern in Gun class corresponds to

fine extra movements required to lift and aim the prop. The most weighted pattern in Point class
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Figure 3.15: Best class-characteristic subsequences (right panels, bold lines) discovered by SAX-

VSM in the Gun/Point data set. Left panels show actor’s stills and the time series annotation made

by an expert while the right panels show locations of characteristic subsequences. Note, that while

the upward arm motion found to be more “important” in the Gun class (gun retrieval and aiming),

the downward arm motion better characterizes the Point class (note the “overshoot” phenomena in

propless arm return). This result aligns with previous work [88] and [161]. (Stills and annotation

are used with a permission from E. Keogh)

corresponds to the “overshoot” phenomena that is causing the characteristic dip in the time series.

Also, similarly to the original GunPoint work [178], as second to the best pattern in Point class,

SAX-VSM highlighted the lack of distinguishing subtle extra movements required for lifting a hand

above the holster and reaching down for the gun.

3.7.5.3 OSU Leaf data set

According to the original data source, A.Grandhi [180], with the growth of digitized data volumes,

there is a huge demand for automatic management and retrieval of various images. The OSULeaf

data set consist of curves obtained by image segmentation and boundary extraction (in the anti-

clockwise direction) from digitized leaf images of six classes: Acer Circinatum, Acer Glabrum,

Acer Macrophyllum, Acer Negundo, Quercus Garryana and Quercus Kelloggii. The authors of

the original work were able to solve the problem of leaf curve classification by using the nearest

neighbor classifier built upon DTW distance achieving 61% of the classification accuracy.
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Figure 3.16: The best class-characteristic subsequences (top panels, bold lines) discovered by SAX-

VSM in the OSULeaf dataset. These patterns align exactly with well known in botany leaves dis-

crimination techniques by the lobe shape, serration, and tip type [179].

Since SAX-VSM performed significantly better on this problem, I have investigated the classi-

fication results. In contrast to NN classification results that do not offer any insights, SAX-VSM

application yielded a set of class-specific characteristic patterns for each of six classes of leaves

from OSULeaf data set. Further patterns investigation revealed, that they closely match known

techniques for leaves classification based on their shape and margin [179]. Highlighted by SAX-

VSM features include the slightly lobed shape and acute tips of Acer Circinatum leaves, the serrated

blade of Acer Glabrum leaves, the acuminate tip and a characteristic serration of Acer Macrophyl-

lum leaves, the pinnately compound leaves arrangement of Acer Negundo, the incised leaf margin

of Quercus Kelloggii, and the lobed leaf structure of Quercus Garryana. Figure 3.16 shows a subset

of these characteristic patterns and the original leaf images with highlighted features that correspond

to SAX-VSM discovered patterns.
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Figure 3.17: The best class-characteristic subsequences (left panels, bold lines) discovered by SAX-

VSM in the Coffee data set. Right panels show zoom-in view on these subsequences in Arabica and

Robusta spectrograms. These discriminative subsequences correspond to the chlorogenic acid (best

subsequence) and to the caffeine (second to best) regions of spectra. This result aligns with the

ground truth and the original work based on PCA [79] exactly.

3.7.5.4 Coffee data set

Another illustration of interpretable classification with SAX-VSM is based on the Coffee dataset

[79]. The time series for this problem were obtained with the Fourier transform infrared spec-

troscopy instrument equipped with a diffuse reflection sampling station (DRIFT). The raw time

series were truncated to 286 data points which represent the observed spectra within the 800-1900

cm−1 range.

The two top-ranked by SAX-VSM subsequences in both datasets correspond to spectrogram in-

tervals accounting for abundances of Chlorogenic acid (the best characteristic pattern) and Caffeine

(the second to best characteristic pattern). These two chemical compounds are known to be re-

sponsible for the flavor differences in Arabica and Robusta coffees; moreover, these spectrogram

intervals were also reported as discriminative when used in the PCA-based classification technique

developed by the authors of the original work [79].
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3.7.5.5 Characteristic pattern utility

As shown above, via discovered by SAX-VSM class-characteristic patterns we can learn the in-

herent structure of the analyzed data in a manner that allows intuitive interpretation of classification

results. In addition, ranked class-characteristic pattern vectors provide a compact way to summarize

data classes.

Note, that in contrast to shapelet-based techniques, which are based on the single class-characteristic

pattern, SAX-VSM generates a ranked list of patterns, which, once computed, allows much deeper

insight into the studied phenomena through the examination of second best, third, and so on, pat-

terns. When compared with BOP approach, where a list of ranked patterns is built for each class’

entity, SAX-VSM, which aggregates patterns into a single bag, provides a naturally better way to

summarize the class-characteristic specificity.

3.8 Clustering

Clustering is a generic technique used for data partitioning, visualization, and exploration. In addi-

tion, clustering is an important subroutine in many data mining algorithms [181]. Since clustering

algorithms are built upon a distance function, that computes similarity between clustered entities,

the algorithm’s performance is highly dependent on the performance of the chosen distance func-

tion. Thus, an experimental evaluation of the proposed in this chapter technique in clustering shall

provide an additional perspective on its performance and the applicability beyond the classification.

3.8.1 Hierarchical clustering

Probably, one of the most used clustering algorithms is hierarchical clustering which requires no

parameters to be specified as input [182]. It computes pairwise distances between all objects and

produces a nested hierarchy of clusters offering the efficient data partitioning and visualization.

Previously, it has been shown that the bag-of-patterns time series representation along with the

Euclidean distance provide superior clustering performance[91]. For comparison, I have performed

a similar experiment that only differ in the time series representation and the distance metric – I
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have used tf∗idf weight vectors obtained from SAX-VSM and the Cosine similarity. Confirming

previous work, I have found, that the combination of SAX and Vector space model outperforms

classical shape-based distance metrics. For example, Figure 3.18 depicts the result of a hierarchical

clustering of the data subset from SyntheticControl dataset. Obviously, the data partitioning obtained

with SAX-VSM clustering is superior those based on Euclidean and DTW distance metrics as it

properly splits data into three valid branches.
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Figure 3.18: A comparison of the distance metrics performance in hierarchical clustering for the

subset of three SyntheticControl classes: Normal, Decreasing trend, and Upward shift. The Eu-

clidean distance and Dynamic Time Warping were applied to raw time series while the Cosine

similarity was applied to their representation as term weights vectors. Complete linkage was used

to generate clusters. Only SAX-VSM was able to partition the data properly.

3.8.2 k-Means clustering

Another popular choice for data partitioning is k-Means clustering algorithm [183]. The basic

intuition behind this algorithm is that through the iterative reassignment of objects into different

clusters the intra-cluster distance is minimized.

As it has been shown before, k-Means algorithm scales much better than hierarchical partitioning

techniques [184]. In addition, k-Means clustering is also well studied in IR field. For example in

[185], the authors extensively examined seven different criterion functions for partitional document

clustering and found, that k-prototypes partitioning with cosine dissimilarity (the approach similar

to SAX-VSM) delivers an excellent performance.

Following this work, I have implemented a similar to [186] spherical k-means algorithm and
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found, that it converges quickly and delivers a satisfactory partitioning on short synthetic data sets.

Further, I have evaluated the technique on the long time series from PhysioNet archive [187], from

which I have extracted 250 time series corresponding to five vital signals: two ECG leads (aVR and

II), RESP, PLETH, and CO2 waves, trimming them to 2’048 points. Similarly to BOP experimen-

tation [91], I have applied a reference k-Means algorithm implementation based on the Euclidean

distance [188] [189] to this dataset achieving the maximum clustering quality of 0.39, when mea-

sured as proposed in [190] on the best clustering (the one with the smallest objective function in 10

runs). SAX-VSM based spherical k-Means implementation outperformed the reference technique

yielding clusters with the quality of 0.67, confirming the superior performance of the combination

of weighted subsequence based time series representation and Cosine similarity.

3.9 Conclusions an discussion

In this Chapter, I have proposed a novel interpretable technique for time series classification that is

based on class-characteristic patterns discovery. As I have shown above and summarized in Table

3.7, that SAX-VSM is competitive with, or superior to, other classification techniques on a variety

of classical data mining problems. In addition, I have described a number of advantages of the

proposed algorithm over existing structure-based time series classification techniques emphasizing

its capacity to discover and rank short subsequences by their class characterization power.

By an experimental evaluation, I have shown that this particular feature – the ability to discover

and rank class-characteristic subsequences – can be exploited for data mining and machine learning

purposes. In such contexts, SAX-VSM can be used as an exploratory tool that aids in the discovery

of data set characteristic patterns. Therefore, its application for software trajectory characteris-

tic patterns discovery problem is natural. Similar to that in the discussed previously classification

problems of CBF, Two Patterns, Coffee, OSU Leaf, and Gun/Point, I expect SAX-VSM to be ca-

pable to highlight software trajectory subsequences that can be easily interpreted and attributed to

characteristic behaviors associated with particularities of software processes.
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Table 3.7: Comparison of time series classification algorithms characteristics.

Classification Training Accuracy Classification Major

algorithm required? efficiency strengths weaknesses

1-NN Euclidean no low slow fast start slow classification

1-NN DTW no highest slowest
fast start,

the best accuracy

very slow

classification

and parameters

optimization

Fast Shapelets yes low fast

some interpretabil-

ity, superior

compactness,

fast classification

very slow training

Bag Of Patterns yes high fast
interpretability,

fast classification

unintuitive

parameters

SAX-VSM yes high fast

superior in-

terpretability,

classifier’ com-

pactness, fast

classification

slow parameters

optimization

The ability to focus attention on important

things is a defining characteristic of

intelligence.

Robert J. Shiller.
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CHAPTER 4

RESULTS

In preceding chapters, I have discussed a number of phenomena which provide the motivation for

my exploratory study investigating the possibility of recurrent behaviors discovery from software

artifacts, reviewed the relevant previous work from the research field of software repository mining,

identifying unexplored and under-explored directions, and proposed a novel generic temporal data-

mining technique called SAX-VSM, which, potentially, can automate the discovery of recurrent

behaviors from software artifact measurements.

In this chapter, I shall present, evaluate, and discuss SAX-VSM-based implementation of the

Software Trajectory Analysis framework (STA) that provides an end-to-end generic and customiz-

able solution for the problem of recurrent behaviors discovery from software trajectories. As I shall

show, throughout my exploratory study STA has evolved from a narrow focused tool to a univer-

sal framework that facilitates software artifacts collection, their measurements, software trajectories

construction, and, the most importantly, enables the recurrent behaviors discovery.

4.1 Software Trajectory Analysis system overview

Before presenting and discussing the current STA implementation, I shall briefly review its back-

ground starting with the software trajectory definition.

Recall, that the software trajectory is defined as an abstract representation of the software product

and/or process evolution by a series of temporally ordered measurements. In other words, it is a

field-specific abstraction that technically is the time series with attached contextual meaning. Intu-

itively, this abstraction in Software Engineering is similar to that used in Physics, where trajectory

is an approximate path that a moving object draws in a physical space, or in Mathematics, where

trajectory is defined as a reduced in complexity sequence of states of a dynamic system (a Poincaré’

map).

Note, since software metrics are numerous, many kinds of software trajectories describing a soft-

ware product and process evolution can be constructed, including multidimensional trajectories. For
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example a trajectory whose points consist of two measurements – churn (i.e., the velocity of soft-

ware process) and cyclomatic complexity – can be constructed in an attempt to assess the system’s

complexity evolution. Current STA implementation is unable to work with multidimensional data

type. Nevertheless, it can be adopted and used for multidimensional data, as I shall discuss in the

Section 5.4 that is concerned with the future work.

Software Trajectory Analysis was proposed as a paradigm (i.e., a model) which, potentially, en-

ables the extraction of meaningful patterns from software trajectories [191]. As a particular criterion

for the pattern meaningfulness, its association with recurrent behaviors is considered.

Note, that STA was envisioned as a part of a larger, already existing system, called Hackystat

[74], which provides an automation for sophisticated software process and product measurements.

However due to a number of reasons, discussed throughout this chapter and in particular in Section

4.2.2, STA evolved into a stand alone tool which nevertheless can be plugged into Hackystat without

any significant effort, thanks to the generality of the implementation.

4.1.1 Software Trajectory Analysis implementation

Discussed in this dissertation STA is implemented in Java and relies on a number of auxiliary li-

braries which aid in data collection [192], storage [193], and analysis [94]. STA also relies on the

relational database engine which aids in data indexing and software trajectories construction.

STA does not have a single universal implementation. Currently, there exist three implementa-

tions customized for a particular case study (discussed in Sections 4.3.1, 4.3.2, and 4.3.3). This

is due to the interactive nature of data mining, where a number of data and problem-specific ab-

straction and aggregation steps need to be performed sequentially in order to extract the knowledge.

Typically, a project-specific STA implementation consists of a number of executable modules that

need to be run sequentially in order to collect software artifacts, transform them into measurements,

and to load these into the database. Similarly there are executable modules whose purpose is to

extract and to analyze software trajectories. Therefore, in the following sections I shall discuss STA

at the abstract level pointing out its specificity and limitations.
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4.1.1.1 STA is generic

The SAX-VSM algorithm on which STA relies for patterns discovery, does not require the user to

specify any baseline thresholds when performing analyses. The system is capable to discover class-

characteristic software trajectory patterns directly from the provided data. All discussed in this chap-

ter case-studies, namely the Android OS and PostgreSQL release patterns discovery, PostgreSQL

maintenance pattern discovery, and StackOverflow user pattern discovery, are built upon this fea-

ture.

In addition to the class-characteristic patterns discovery, SAX-VSM ranks discovered patterns by

their class-characteristic power – the property which I relate to interestingness and meaningfulness.

The adequacy of this relation is examined in all three case studies.

As it is, STA can be applied to two or more sets of software trajectories that represent logical

classes, such as different projects, teams, developers, etc. Alternatively, software trajectory classes

can be defined as those generated by the same entity but within distinct, non-overlapping time

intervals. These intervals can be associated with specific processes (such as software release or

Scrum spike) or other external and internal constraints. This approach is used in the Android OS

and PostgreSQL case studies, where software trajectory classes are defined by using different time

intervals while the software trajectory-generating entities are staying the same.

Yet another STA specificity is that it does not place any constraints on the form of a provided

dataset. Specifically, by its design, it is robust to any kind of asymmetry among volumes of the input

classes and unequal lengths of software trajectories within and among the classes. For example, in

PostgreSQL case study, software trajectory lengths varied from few dozens to few hundreds of

points within a class.

Finally note that built upon the core Information Retrieval algorithm that is Vector Space Model,

STA can be finely tuned in many ways in order to achieve the goal. Among other refinements

are various weighting scheme (shown in Table 3.3), characteristic vector improvement through the

relevance feedback [7], and other tuning techniques [194].
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Figure 4.1: A schematic overview of the very first and the latest STA implementations. Note the STA

evolution from a thin layer embedded into the larger system relying on external data assimilation

and processing mechanisms to an end-to-end generic solution for software artifact measurements

analysis.

4.1.1.2 STA is a two-components system

In order to enhance STA’s generality, and to reduce the overall system complexity, a decision was

made to decouple the data assimilation and the data analysis components using a relational database.

This solution, shown at the right panel of Figure 4.1, allowed to successfully cope with a variety

of data formats from numerous software process management and configuration systems since the

internal STA data format stays unchanged for all upstream analyses allowing for interactive and

efficient trajectory classes definition and their characteristic pattern discovery.

While the database schema supporting this design varies from project to project accommodating

specific data types, it is usually simple as it only contains few tables that store artifact measure-

ments and entities that facilitate their partitioning, such as user and project records. As an example,

consider the database schema used in the Android OS case study shown in Figure 4.2. There, ta-

bles change target and android change contain information about source-code change events
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Figure 4.2: An example of the STA database schema used in Android OS case study which targets

the discovery of recurrent behaviors from a history of software change records. As shown, the

schema can be divided into three structural components where the change records and their summary

measurements constitute the main table (middle). These are complemented by the information about

the atomic changes (right). The tables enumerating sub-projects and committers (left) are used for

the data partitioning, i.e., software trajectories construction.

and their measurements, while other tables, namely change people and change project, allow

for the efficient software trajectories construction when using a simple SQL SELECT query. For

example the following query retrieves a software trajectory for the Android OS contributor:

SELECT sum(c.added_lines) ‘value‘,

DATE_FORMAT(c.author_date, "%Y-%m-%d") ‘date‘ from OMAP.change c

where c.author_id=174 and c.project_id=1

AND c.author_date BETWEEN "2012-03-26" AND "2012-04-01"

GROUP by ‘date‘ order by ‘date‘;

Currently, STA relies on MySQL database server [195], but any other relational database engine

can be used since all database communications are performed through an object-relational mapper

called MyBATIS [193] which can be re-configured independently from STA source code.
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4.1.1.3 STA limitations

There are two major limitations of Software Trajectory Analysis that are associated with its current

implementation.

The first limitation is that the two or more classes analysis paradigm is not suitable for the study

of a single trajectory or a single class of trajectories. While recently I have proposed a solution

that enables the discovery of recurrent patterns from a single time series that is built upon symbolic

discretization, grammatical inference, and the resulting grammar complexity analysis [196], it is not

discussed in this dissertation as it is not yet evaluated.

The second limitation is that while it is asserted that the application of STA to two or more classes

of software trajectories guarantees (by design) to yield a ranked lists of class-characteristic patterns,

where recurrent patterns shall be ranked as the most important, it may fail to do so. Such STA

behavior is well understood and is directly linked to the specificity of the input data: if it contains

patterns that are similar across classes under analysis, they are dismissed from the resulting list

by the idf component of VSM weighting schema as shown in Equation (3.10). In addition, when

working with only two classes of trajectories, due to this phenomena STA reports only patterns that

appeared in a single class, which is a very conservative approach. For example, consider that a SAX

word accounts for 50% of all words in Class 1 and has been observed only once in Class 2: currently,

in spite of the apparently high class-characteristic potential of the word, it will be discarded since

its idf = 0 and consequently tf∗idf = 0.

In order to handle this two-class issue, I employ a technique that is based on the re-labeling of

samples and clustering, as discussed in the Android OS and PostgreSQL case studies. For this,

all the trajectories are re-labeled with unique names and treated with SAX-VSM at first; next, the

k-means clustering procedure (where k is set to 2) is applied; finally, the clusters are labeled by the

members voting and their centroids are considered as class-characteristic pattern vectors. As I shall

show, this approach demonstrates a promising performance. Note that this solution is not new and

was pointed out before in a number of studies [197] [7] [194].
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4.2 STA Pilot studies

Probably the most valuable in terms of insight gained into the problem of recurrent behaviors dis-

covery from software artifacts were two exploratory studies conducted within the feasibility study

phase of my research work. While the first study confirmed the possibility of recurrent behav-

iors discovery from artifact measurements, the SAX-VSM algorithm was developed and evaluated

throughout the second study.

4.2.1 Feasibility study 1: mining Hackystat software telemetry streams

In order to investigate the feasibility of recurrent behaviors discovery from software process mea-

surements, I have conducted a pilot study consisting of two experiments. The first experiment was

based on the software telemetry streams discretization with SAX [4], patterns extraction, and their

frequency-based analysis. The second experiment was based on the association rule mining algo-

rithm application to series of software development events.

Software telemetry is a data type data that is generated by the Hackystat [75], which is an in-

process software engineering measurement and analysis system. Software telemetry is collected

with automation and is characterized by high consistency that enables unprecedented insight into

performed processes, as I have already discussed in Section 1.5.2. Effectively, by offering the

efficient data collection, storage, retrieval mechanisms, and most importantly the consistent, fine-

grained data, Hackystat provided an ideal testbed for the STA feasibility study.

The data used in the study was collected from the development and deployment environments uti-

lized by students participating in the Software Engineering class. The dataset represents Hackystat

metrics collected during sixty days of a classroom project by eight students.

An overview of the pilot Hackystat-based STA targeting recurrent behaviors discovery is shown

at the left panel of Figure 4.1. As mentioned, the first experiment was based on two analytical tech-

niques: the discretization of time series with SAX, that effectively translates real-valued telemetry

streams into strings, and the occurrence frequency (i.e., support) -based discovery of recurrent pat-

terns that is similar to that formalized and discussed later by Lin et al. in [91].

As I have shown in [93] this approach demonstrated the feasibility of recurrent behaviors dis-
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Figure 4.3: Results of the pilot STA study. The left panel shows eight software trajectories that are

Hackystat telemetry streams corresponding to development effort [74] collected from eight devel-

opers in the course of two months. The right panel shows a hierarchical clustering of developers

by the comparison of trajectory-corresponding sets of recurrent patterns discovered with SAX dis-

cretization [92]. Note two distinct groups discovered by clustering: the one that contains consistent

trajectories (developers #2 and #7) and the one with less consistent trajectories.

covery by mining of frequently occurring symbolic patterns, i.e., time series motifs [92]. Consider

an example of recurrent behaviors discovery shown in Figure 4.3, where software trajectories re-

flecting the development effort measurements shown on the left and their clustering based on the

Euclidean distance between vectors of symbolic patterns occurrence frequencies shown on the right.

Clearly, the hierarchical clustering process partitioned the set of trajectories separating two devel-

opers (#2 and #7) from the rest. Further investigation of the data revealed that these two developers

demonstrated the most consistent development behavior (when discretized by 4 days window) as

they spent considerable amounts of time working on the project almost daily whereas the rest of the

study participants did not. Thus, the results of STA analysis were found consistent with the ground

truth.

In addition to indicating the feasibility of automated recurrent behaviors discovery through the
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analysis of discretized measurements, the experience with pilot system highlighted a number of is-

sues. It was found that the major issue threatening the external validity of study, was the small scale

of class-room experimentation that simply did not provide an adequate and generalizable coverage

of the studied phenomena. For example, it is possible that in the above experiment some of the

developers characterized by “inconsistent behavior” may simply had their Hackystat sensors mis-

configured or malfunctioning, which is difficult to recognize automatically. The second significant

issue identified through experimentation was the problem of discretization algorithm parameters

selection – they have to be defined as the input, but their proper values are non-intuitive and often

difficult to guess.

The second experiment investigated the applicability of an association rule mining algorithm

called Apriori [198] to the the stream of development event records collected by Hackystat. As I

have shown in [191], this approach also demonstrated a satisfactory performance. However, since it

is impossible to recover the development events from public software artifacts, as discussed in the

Section 2.3, this workflow has not been used in the following STA implementations.

4.2.2 Feasibility study 2: mining public software repositories

Following lessons learned during the pilot study and the feedback collected through its discussion

[93], the decision has been made to explore the feasibility of recurrent behaviors discovery from

software trajectories constructed by measuring public software artifacts. The chief reason behind

that decision is an attempt to increase the generality and significance of findings by addressing all

of the essential characteristics for empirical studies based on mining software artifacts proposed

by Gasser et al. [117]: (1) they must reflect a real-life phenomena, (2) provide adequate phenom-

ena coverage, (3) examine representative levels of variance, (4) demonstrate an adequate level of

statistical significance, (5) provide results that are comparable across projects, (6) be reproducible.

Unfortunately, due to much coarser granularity and inconsistency of software trajectories con-

structed by measuring public software artifacts, the original approach to data analysis based on

frequency of observed patterns failed, and an additional study of time series mining techniques has

been conducted using 2012 MSR challenge data [113] from the Android OS repository. Discovery
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of recurrent behaviors associated with the software release pattern was set as the study’s goal.

4.2.2.1 Software release pattern

Previously, in the software engineering literature, it has been proposed, discussed, and shown that

different software development cycles, and in particular the software implementation, release, and

maintenance, impose various constraints on software processes [199] [200] [201] [202]. Later,

Hindle et al. in [61] have shown that it is possible to discover the software release pattern via

partitioning of software process artifacts. The authors aggregated change summaries using STDB

notation (S for source, T for test, B for build, D for documentation) and have shown that the behavior

of STDB summaries changes around the software release.

4.2.2.2 Software release pattern discovery with STA

Taking into account the release pattern significance and the previous experience in its discovery

through analysis of public software artifacts, I have explored the possibility of software release-

characteristic recurrent behaviors discovery using STA and Android OS data. By experimenting

with a number of time series transformation, discretization, and aggregation techniques, as well

as with various distance functions and ranking schema, I found that the common in Information

Retrieval (IR) toolkit called Vector Space Model (VSM) [171] that is based on tf∗idf ranking schema

and Cosine similarity, demonstrated a satisfactory performance. Specifically, as I have shown in

[96], STA based on the discretization with SAX [92] and mining with VSM [171],was found capable

to discover characteristic behaviors in pre- and post- release software trajectories constructed out of

New Lines of Code change record measurements by following the clustering methodology discussed

in Section 3.8.

Consider an example shown in Figure 4.4 for two classes of software trajectories that reflect pre-

and post- release dynamics in counts of New Lines of Code in the Android OS OMAP repository.

The left panel of the figure shows that it is possible to cluster characteristic behaviors corresponding

to different time intervals where pre- and post- release behaviors are clearly separated. The right

panel shows that by using pre- and post- release clusters centroids it is also possible to build a “soft-

82



0.00 0.05 0.10 0.15 0.20 0.25 0.30

Android kernel−OMAP hierarchical clustering,
stream ADDED_LINES, user mask ``*@google.com``

Android 1.5, POST-release

Android 2.0, POST-release

Android 1.0, POST-release

Android 2.0, PRE-release

Android 1.0, PRE-release

Android 1.5, PRE-release Release Classification Release Classification

1.6-pre misclassified beta-pre OK
1.6-post OK beta-post OK
2.2-pre OK 2.0.1-pre OK
2.2-post OK 2.0.1-post misclassified
1.1-pre OK 2.1-pre OK
1.1-post OK 2.1-post OK
2.3-pre OK 2.2.1-pre OK
2.3-post OK 2.2.1-post misclassified

Classi!cation of other OMAP kernel releases using 
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Figure 4.4: An example of the discovery of recurrent patterns in software trajectories constructed by

measuring Android OS repository source code change artifacts. The left panel shows the hierarchi-

cal clustering of pre- and post-release temporal interval-corresponding software trajectories based

on the Cosine similarity applied to ranked vectors of discovered characteristic patterns. The right

panel shows the result of a cross-validation experiment where other pre- and post-release software

trajectories were classified by computing their NN similarity with previously discovered patterns.

ware release behavior classifier” that properly assigns the majority of test intervals collected from

other (not used for training) time intervals surrounding releases. The latter validates the discovered

recurrent patterns characteristic capacity and the overall correctness of approach.

To combat the lack of Android software repositories internal and external connectivity and the

heterogeneity of data formats – also a common issues in the MSR field – in this STA implementation

I had followed state of the art MSR approaches for data integration [117] [101]. In particular,

similarly to a previously developed solution called softChange [100], STA mirrors repositories and

builds its own data storage facility by using a relational database engine as shown in Figure 2.3.

Note, that similarly to the pilot implementation, the experience with second STA highlighted the

same problem of parameters selection. Moreover, this issue became even more significant since

the proposed methodology was found sensitive to parameters selection. In order to address this

issue, I have explored a parameters optimization scheme and implemented a DIRECT algorithm-

based approach [2] that aids in parameters selection – the project that essentially led to SAX-VSM

development.
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4.3 STA 2.0 Case studies

STA 2.0 is the most current implementation of proposed in this dissertation framework targeting the

discovery of recurrent behaviors from software trajectories. It addresses all of the previously iden-

tified weaknesses and embeds all the effective solutions found throughout my exploratory studies.

In particular, STA 2.0 is built upon the SAX-VSM algorithm including the DIRECT-based param-

eters optimization schema, and has a layered design where the trajectory analysis part is decoupled

from the data assimilation part by a relational database.

In the next sections I shall discuss three case studies examining the applicability and performance

of STA 2.0:

• The Android OS software release characteristic behaviors discovery.

• The PostgreSQL software maintenance and software release characteristic behaviors discov-

ery.

• The StackOverflow top ranked users characteristic behaviors discovery.

4.3.1 Case Study 1: Android OS software release recurrent behaviors discovery

As discussed above in Section 4.2.2, during the second pilot study I have used a time interval fixed

to one week and a specific subset of users having corporate e-mails, which, in my opinion, should

have followed some distinguishable software development pattern.

While this approach is logical, and is suitable for a feasibility study, it puts unreasonably strict

constraints on the input data and creates a significant internal validity threat since STA only con-

siders and reports week-long behaviors characterizing a limited group of people, which may not

characterize the performed software processes adequately. This limitation was also pointed out by

the reviewers of the describing the pilot publication [96].

Addressing these limitations, I have designed and performed a new experiment targeting the dis-

covery of the Android OS software release characteristic behaviors when accounting for all available

information.
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Figure 4.5: The dynamics of Deleted LOC measurements throughout Android OS kernel OMAP

evolution. The 12 software release dates shown by vertical lines.

4.3.1.1 Android OS dataset

The data for this study was collected by using the STA toolkit. First, the Android OS kernel OMAP

repository was mirrored in order to avoid the network latency. Next, software change records were

measured by STA using the mirror and populated into a dedicated database, whose schema is shown

in Figure 4.1. This enabled an efficient measurements indexing and instant software trajectory

construction, as explained in Section 4.1.1.2.

Note that while the Android OS dataset contains 102,602 change records authored by 7,103 au-

thors, only 501 users were recognized by STA as active committers. This observation indirectly

supports the exploratory study hypothesis that the studied project development is likely to follow

some form of software process where only “trusted developers” (most of them having a corporate

email address) are allowed to write changes into the repository.
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Table 4.1: Counts of pre- and post- release trajectories corresponding to the Deleted LOC dynamics

per author and time interval within Android OS kernel OMAP project.

Id Release name API level Date Pre-release Deleted LOC Post-release Deleted LOC

trajectories count trajectories count

1 Android 1.0 1 2008-09-23 266 381

2 Android 1.1 2 2009-02-09 302 342

3 Android 1.5 3 2009-04-27 330 177

4 Android 1.6 4 2009-09-15 214 390

5 Android 2.0 5 2009-10-26 252 255

6 Android 2.2 8 2010-05-20 292 368

7 Android 2.3 9 2010-12-06 209 203

8 Android 2.3.3 10 2011-02-09 364 274

9 Android 3.0 11 2011-02-22 308 341

10 Android 3.1 12 2011-05-10 324 416

11 Android 3.2 13 2011-07-15 314 238

12 Android 4.0 14 2011-10-18 186 194

4.3.1.2 Study design

I have used three types of measurements in this study, that is (i) New LOC, (ii) Edited LOC, and

(iii) Deleted LOC considering 12 major releases (Android API levels 1–14, excluding API level 6

and 7 which were the minor improvements [203]) indicated in Table 4.1. The Lines Of Code (LOC)

measurements were used since they represent a programmer’s raw output and has been shown to

reflect the size and complexity of software system along with the productivity of programmers [204]

[205] [206]. Since in experiments software trajectories comprised of Deleted LOC measurements

were found as having the most class-characteristic power, this measurement dynamics throughout

the project history is shown in Figure 4.5 with variable granularity. Note, that the total daily values

within this data stream vary from zero to few thousands while the average activity slowly decreases.

For each of the release dates, the release week was determined and excluded from analyses. In-

tervals equal to four weeks preceding, and four weeks succeeding the release week were extracted

and used in the study while named as pre-release and post-release intervals respectively. For each

contributor that authored a change record resulted in source code lines measurements change within

pre- and post- release intervals, software trajectories were constructed. The total amount of tra-

jectories within pre- and post-release intervals in Deleted LOC measurements is shown in Table

4.1.
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Pre-release centroid

pattern weight

ebbbebbbbbbb 0.1748588272

bbbbbcbbbebb 0.1083403654

bbbbbbbdebbb 0.0901908199

bbbbbbbbdebb 0.0901908199

bbbbbbdebbbb 0.0901908199

. . . . . .

Post-release centroid

pattern weight

edbbbbbbbbbb 0.1995655982

bbbbbebbcbbb 0.1533399084

bbbbbbebbcbb 0.1533399084

bbbbbbbebbcb 0.1533399084

bbbbbbbbebbc 0.1533399084

. . . . . .

Table 4.2: An excerpt from pre- and post-release class-characteristic pattern vectors obtained by

mining the Deleted LOC trajectories in Android OS case study. The total size of each vector is 622

weighted patterns.

Similar to that in the feasibility study, I have used three random software releases in order to

discover pre- and post-release class-characteristic patterns. First, in order to retain more class-

characteristic patterns (addressing the limitation discussed in section 4.1.1.3), trajectories labeled

by two labels (pre- and post- release) were relabeled at first by assigning them to three pairs of

pre- and post- release software trajectory classes labeled as pre-1, pre-2, pre-3, and post-1, post-

2, and post-3 respectfully. At the second step, SAX-VSM was applied to these six classes and

the optimal parameters set was determined with the DIRECT optimization scheme (Section 3.5).

At the third step, software trajectories from each class were discretized into a bag of words with

SAX using optimal parameters and tf∗idf statistics was computed. Finally, the resulting weight

vectors were clustered using SAX-VSM implementation of spherical k-Means clustering (Section

3.8) with k=2 and the resulting cluster centroids, corresponding to pre- and post-release clusters,

were extracted. These centroids were used in the validation step as vectors comprised of class-

characteristic patterns. An example of these vectors is shown in Table 4.2.

The class-characteristic vectors computed at previous step were evaluated for class-characteristic

power using cross validation. For this, a SAX-VSM classifier was constructed and its accuracy was

determined by classifying pre- and post- release trajectories corresponding to all software releases

under analysis.

87



Software metric Train releases Parameters Accuracy Note

added code lines 1,3,5 18,7,12 54.00% biased towards post-

added code lines 4,6,9 15,15,5 58.33% biased towards post-

added code lines 5,8,11 12,10,10 66.66% biased towards pre-

added code lines 1,6,12 28,5,14 66.66% biased towards pre-

edited lines 1,3,5 24,10,4 62.50% biased towards post-

edited lines 4,6,9 24,5,12 58.33% biased towards post-

edited lines 5,8,11 22,7,7 62.50% biased towards pre-

edited lines 1,6,12 18,8,7 58.33% biased towards pre-

deleted lines 1,3,5 24,10,4 58.44% biased towards pre-

deleted lines 4,6,9 12,12,5 75.00%

deleted lines 5,8,11 24,5,7 61.50% biased towards post-

deleted lines 1,6,12 24,5,11 62.50% biased towards pre-

Table 4.3: Statistics for a number of software release classifiers built using the Android OS data. As

shown, a typical classifier for post- and pre- release behaviors based on LOC change measurements

achieves an accuracy above 60%. The best performing classifier demonstrated 75% accuracy and

was trained on using the deleted lines of code measurements corresponding to API level releases

{4,6,9}.

4.3.1.3 Results

The outlined above procedure was applied to 4 random samples each of which consists of 3 releases

(Train releases in Table 4.3) using three types of software trajectories (Software metric in Table

4.3). The accuracy of resulting classifiers is shown in Table 4.3. As shown, the best performing

classifier was built using the intervals corresponding to the set of releases {4,6,9} (i.e., Android OS

API Levels 4, 8, and 11) and the Deleted LOC measurements.

Table 4.4 shows details of the classification with the best performing classifier. As shown, it is

slightly biased towards post-release. The first 5 class-characteristic patterns for both classes are

shown in Table 4.2, while examples of software trajectories containing these are shown in Figure

4.6.

4.3.1.4 Discussion

Quite intriguing and unexpected, the best pre- and post-release class-characteristic patterns were

discovered in software trajectories comprised of the Deleted LOC measurements. These were found

using the discretization parameters of sliding window 12, PAA 12, and alphabet of the size 5, i.e.,
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Class pre- post- classification

cosine cosine result

pre-1 0.0112 0.0076 ok

pre-2 0.0073 0.0095 miscl.

pre-3 0.0108 0.0083 ok

pre-4 0.0223 0.0066 ok

pre-5 0.0093 0.0143 miscl.

pre-6 0.0061 0.0143 miscl.

pre-7 0.0083 0.0088 miscl.

pre-8 0.0120 0.0107 ok

pre-9 0.0186 0.0076 ok

pre-10 0.0095 0.0085 ok

pre-11 0.0128 0.0088 ok

pre-12 0.0115 0.0091 ok

Class pre- post- classification

cosine cosine result

post-1 0.0088 0.0128 ok

post-2 0.0098 0.0074 miscl.

post-3 0.0056 0.0081 ok

post-4 0.0077 0.0175 ok

post-5 0.0049 0.0058 ok

post-6 0.0055 0.0144 ok

post-7 0.0083 0.0100 ok

post-8 0.0100 0.0104 ok

post-9 0.0189 0.0068 miscl.

post-10 0.0116 0.0128 ok

post-11 0.0087 0.0103 ok

post-12 0.0071 0.0072 ok

Table 4.4: The classification results for the Andriod OS release classifier built using Deleted LOC

software trajectory. Higher cosine value corresponds to smaller angle and is better. Overall, this

classifier demonstrated an accuracy of 75%.
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Figure 4.6: Examples of the recurrent behaviors discovered using Deleted LOC software trajectories

from Android OS dataset.

by converting normalized daily measurement into a letter taken from an alphabet of the size 5.

The patterns shown in Figure 4.6 reveal that the best class-characteristic behavior for pre-release
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class when accounting to the Deleted LOC measurements is to perform two deletions of approxi-

mately equal volume separated by three days and followed by a week of inactivity, whereas the best

class-characteristic behavior for the post-release class is to perform decreasing in volume deletions

during two consecutive days followed by 10 days of inactivity. Second best class-characteristic pat-

terns were also found to follow a similar pattern – different in volume source code lines deletion

events separated/followed by a time interval.

Overall, the discovered patterns are impossible to translate into a sensible description without

discussion with developers. Unfortunately, despite of my effort, I was not able to communicate

with key contributors from the Android OS kernel OMAP team.

Through my own investigation of commit messages and source code files corresponding to dele-

tion events of the best pre-release patterns, I have found that majority of them correspond to a

normal software development cycle where the changes were staged, reviewed, and signed off by

the project managers. What was interesting however, is that many of the deletion events were re-

flecting the code clean-up from Linux artifacts (Android OS is based on the Linux kernel), such

as SCSI modules, or other platform hardware-related code, therefore, since observed among many

trajectories, they may reflect a systematic Android OS release-related activities.
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4.3.2 Case Study 2: PostgreSQL software maintenance and software release recur-

rent behaviors discovery

Similar to the previous case study, I have explored the possibility of recurrent behaviors discov-

ery from software trajectories that were constructed by measuring software change artifacts from

PostgreSQL public software repository.

PostgreSQL is an open-source database developed by the PostgreSQL Global Development Group

consisting of a number of volunteers employed and supervised by companies such as Red Hat and

EnterpriseDB [207]. It has a large number of extensions written by contributors and is available for

many platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X.

One of the particular characteristics of the PostgreSQL software development process is its reg-

ular CommitFest events [208]. As PostgreSQL team explains it, a CommitFest (CF) event is a

“periodic break to PostgreSQL development that focuses on patch review and commit rather than

new development” – a description that allows to classify it as a maintenance activity whose purpose

is to promptly review and to respond with a feedback to development community without waiting

for a major release. Contributors are encouraged by the core development team to submit patches

into the development mailing list. Within a CF event, these patches are reviewed, tested, and the

decision for a final review and commit is made. Typically, CFs tend to run for one month with a one

month gap between them, however, when the core team is busy with a PostgreSQL major release,

there may be several months without CF events followed by a ReviewFest (RF), which helps to

pre-organize patches, and a CF .

Up to the data retrieval date, 18 CF events were held. Typically, after reviewing and testing of a

patch submitted for CF, developers assign it to one of the categories: “Needs Review”, “Ready for

Commit”, “Committed”, “Returned with Feedback”, or “Rejected”. While the very first CF event

dealt with 66 patches, from which 37 were committed, the latest CF event dealt with 108 patches in

the review queue out of which 7 were marked for additional review, 14 as ready to commit, 36 were

committed, and 42 were returned with a feedback.
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Figure 4.7: PostgreSQL source code change evolution. The top panel shows dynamics of the weekly

commits into PostgreSQL repository, the middle panel shows Churn, and the bottom panel shows

Edited LOC measurements dynamics throughout the analyzed Commit Fest events. Dotted vertical

lines show the release dates.

4.3.2.1 PostgreSQL dataset

Similar to Android OS study, the PostgreSQL data was collected by using STA data assimilation

toolkit and stored in the same database. The dataset consists of 35,890 change records authored

by 38 authors. The overall commit activity shown at the top panel of Figure 4.7 indicates that the

project has been active throughout the years. The middle and bottom panels of Figure 4.7 show

Churn and Added LOC aggregated software trajectories and Commit Fest events.
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Commit Fest behaviors experiment

Trajectory Discretization LOOCV

class parameters accuracy

added LOC 6,5,8 72.22%

edited LOC 14,5,5 75.00%

deleted LOC 8,6,10 75.00%

added files 12,8,5 65.71%

edited files 12,4,11 66.67%

deleted files 27,7,3 55.17%

Software Release behaviors experiment

Trajectory Discretization LOOCV

class parameters accuracy

added LOC 14,5,7 80.56%

edited LOC 5,5,14 75.00%

deleted LOC 10,5,11 72.22%

added files 16,4,10 64.71%

edited files 6,4,7 80.56%

deleted files 18,5,12 56.25%

Table 4.5: The Leave One Out Cross Validation results for PostgreSQL aggregated software trajec-

tories. The discretization parameters are ordered as the sequence of sliding window size, PAA size,

Alphabet size.

4.3.2.2 Study design

Based on the PostgreSQL development team documentation of their software maintenance process

called Commit Fest [208], the main goal of this study was to discover Commit Fest -characteristic re-

current behaviors. The secondary goal was to explore the software release pattern for 19 PostgreSQL

releases from 6.0 dated by 1997-01-29 to 9.2 dated by 2012-09-10. The releases are shown in Figure

4.7.

In this study, since the average activity of individual contributors is quite sparse, I have used

aggregated software trajectories which were constructed by measuring all change records without

differentiating them by committers or authors. These aggregated trajectories, in turn, were cut into

the pieces representing CF and non-CF software trajectories using stipulated in [208] dates. For ex-

ample, for Added LOC measurements, a single software trajectory was constructed at first, then, its

continuous intervals within Commit Fest intervals were extracted and labeled as CF-corresponding

software trajectories, whereas the rest of continuous intervals was labeled as non-CF software trajec-

tories. The pre- and post-release software trajectory classes were constructed in the similar fashion

but by using four weeks preceding and four weeks succeeding the release week.

Overall there were 18 software trajectories constructed for Commit Fest class and 18 for non-

Commit Fest class, whose length varied in a range from 27 to 183. In addition, 19 software trajec-

tories for pre-Release and 19 software trajectories for post-Release were constructed, each of them

spanning 28 days. Note, that the difference in trajectories length does not affect STA performance
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as it was shown in Section 3.7.4.

For both, PostgreSQL Commit Fest and PostgreSQL Software Release experiments, a common

Leave One Out Cross Validation (LOOCV) [209] evaluation was performed in order to estimate

how accurately an STA-discovered predictive model (that is a VSM classifier based on the class-

characteristic vectors) would perform in practice.

4.3.2.3 Results

The results of LOOCV experiments are shown in Table 4.5. Overall, similar to the Android OS

study, it was found that a resulting characteristic-pattern based classifier performs with an accuracy

above 60%. The best accuracy was achieved by using Edited LOC and Deleted LOC trajectories

for Commit Fest study, whereas patterns from Added LOC and Edited Files software trajectories

characterized the Software Release the best. Figures 4.8 and 4.9 show examples of patterns from

both studies.

4.3.2.4 Discussion

First of all, note that in the PostgreSQL study, a typical classifier built upon class-characteristic be-

haviors discovered with STA achieved a comparable accuracy with that of Android OS study, while

the best classifiers outperformed that of Android OS. Although this can be explained by differences

in the experimental design (random training sample in Android OS and LOOCV in PostgreSQL),

alternatively, the better result can be explained by a nature of used software trajectories – individual

(Android OS) versus aggregated (PostgreSQL).

Second, note that in contrast to the Android OS study class-characteristic behaviors discovered

in PostgreSQL study are easier to comprehend visually and to interpret. Both, the non-Commit

Fest and pre-Software Release patterns are characterized by stretches of low activity interrupted by

large in volume commits (the team focuses on the release and new development), whereas Commit

Fest and post-Software Release trajectories are characterized by stretches of frequent, but moder-

ate activity (team performs maintenance) – both findings are in accord with PostgreSQL process

description [208].
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Figure 4.8: Examples of class-characteristic behaviors discovered by SAX-VSM in PostgreSQL

Commit Fest experiments. Note, that the large commits surrounded by no-activity intervals are

characteristic to the regular development, whereas smaller in the volume, frequent commits are

characteristic to the Commit Fest -corresponding development intervals.
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Figure 4.9: Examples of class-characteristic behaviors discovered by SAX-VSM in PostgreSQL

Software Release experiments. Note, that relatively large commits followed by low activity are

characteristic for pre-release intervals, whereas post-release development is characterized by fre-

quent commits.
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4.3.3 Case Study 3: mining user-characteristic behaviors in Stack Overflow data

Stack Overflow (SO) is a question and answer website created in 2008 that is primarily used by

computer programmers. There, users are actively encouraged to participate in the community by

creating public user profiles and engaging into discussions by asking good questions and providing

relevant answers. As a form of gamification, this desirable user behavior is rewarded with a combi-

nation of a numerical score called reputation, and “badges” that implement a goals framework.

The reputation points are awarded when individual activities are performed, such as asking a

good question, providing a good answer, or commenting. There is a hierarchy of badges, from the

lowest “bronze badges”, that are relatively common and easy to achieve, to “golden badges”, that

are awarded for long term dedication and recognition from the community. Overall, the reputation

and badges are an estimate of how much the community trusts the user and how much valuable

contribution she has provided. Naturally, these incentives lead users to attempt to achieve as much

reputation and as many badges as possible to demonstrate their expertise and to gain respect in the

community. Some of these badges can be awarded recurrently, which explains how user #22656,

Jon Skeet, collected over 11,000 of these as per time of writing.

Several goals were set for this study. The first goal was to explore the STA applicability to

the problem of discovery of characteristic recurrent behaviors from daily and weekly user activity

patterns. The second goal was to explore the applicability of a popular bioinformatics tool called

WebLogo [210], that creates graphical representations (logos) revealing significant patterns from

a multiple sequence alignment. Since STA discovers recurrent patterns in the symbolic space, I

have hypothesized that WebLogo figures shall allow summarizing numerous discovered patterns for

visual comprehension. The third goal was to explore differences among the top SO users daily and

weekly activity patterns in order to gain an insight into their productivity.

4.3.3.1 StackOverflow data

The data used in this study was obtained from the Stack Overflow public release dump that is dated

by August 2012 and contains over four years of the website content evolution. The dataset contains

information about the users, their comments, posts, and related activities, a subset of voting history,
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Figure 4.10: StackOverflow contributors activity weekly dynamics overview. Left panel shows

the evolution of Questions and Answers, whereas the right panel shows the curve of new users

registration.

User Reputation Answer Daily trajectories Weekly trajectories

acceptance rate before & after weighting before & after weighting

Jon Skeet 465166 60% 1401 318 199 113

Darin Dimitrov 343191 59% 1270 347 192 168

Marc Gravell 325797 52% 1384 525 197 153

BalusC 298811 66% 1002 329 142 83

Hans Passant 271982 59% 1165 355 177 148

Table 4.6: Descriptive statistics for the top StackOverflow users.

and records about awarded badges. Overall, the dataset accounts for 1.3M of users which created

10.4M of posts (3.5M of questions, 6.9M of answers), and 14M of comments. In addition, there

is information about 28M of votes. The weekly dynamics of new Questions, Answers, and newly

registered users is shown in Figure 4.10.

For the experimentation I have selected 5 top users whose summary is shown in Table 4.6. Note,

that the top three users were active for the almost whole time span considered in this study.

4.3.3.2 Study design

In order to explore recurrent behaviors of five top StackOverflow users with STA, I have constructed

software trajectories by summarizing amounts of user-created questions, answers, and comments

per hour and per day. These were used to construct the daily and weekly activity trajectories. Next,

each daily trajectory was discretized into a 8-letters string with SAX (i.e., by aggregating values

for consecutive 3 hours) while each weekly trajectory was discretized into 7 letters string (a letter
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Figure 4.11: A comparison of the activity pattern visualization techniques. Figures at left convey

the most information by accounting for each hour and day, showing J. Skeet’s increasing involve-

ment over time. Plots at the middle convey the minimal amount of information by showing aver-

aged summaries. Plots at right are made with WebLogo [210] using discretized with ABC-notation

trajectories – these compactly convey the information about daily/weekly behaviors variance and

frequency by the letter height; the longitudinal aspect is lost, however.

per day). For both discretization procedures I have used an alphabet of the size 3 whose letters

(A, B, C) can be interpreted as (“low”, “medium”, and “high”) activity levels. The intuition behind

this ABC-coding schema is that it shall help to reveal the differences in users daily and weekly

activity dynamics and, possibly, shed a light on the differences in their reputation score.

Within my dissertation proposal, and in the following work [93], I have discussed the possible

use of Bioinformatics tools for the discovery and visualization of patterns extracted from discretized

software trajectories. In this exploratory study, I have utilized a widely known visualization tool

called WebLogo [210] that creates graphical representation of patterns found within a multiple se-

quence alignment. As pointed out by the authors, “. . . sequence logos provide a precise description

of sequences similarity and can rapidly reveal significant features of the alignment otherwise dif-

ficult to perceive”. Each logo generated by the tool consists of stacked letters, one stack for each

position in the sequence. The overall height of each column indicates the sequence conservation at

that position, while the height of symbols within the column reflects the relative frequency of the

corresponding letter at that position.

Figure 4.11 shows a comparison of WebLogo figures with two other visualization techniques con-
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Figure 4.12: WebLogo visualization of daily activity for top SO users. Here, letters (A,B,C) corre-

sponds to (low,medium, and high) levels of activity. Note, that SAX-VSM pattern ranking process

changed the effort distribution. The recurrent behaviors shown at logos were partially confirmed by

respective SO users. The excluded behaviors represent a very common behavioral pattern [211]: the

increasing activity levels from 9AM to 3PM and the decreasing activity levels from 3PM to 12AM.

veying the same information about Jon Skeet’s behaviors: the rug plot, and the averaged curve. As

shown, the logo provides less resolution than a rug plot, but much more than a curve, which makes

it an acceptable visualization tool when accounting for internal symbolic information representation

within STA. While WebLogo allows the user to specify palette of colors for each letter, in this study

I have used the two colors scheme for simplicity and in order to contrast high intensity intervals.

4.3.3.3 Results

The results of STA and WebLogo application to StackOverflow data are shown in Figure 4.12 for

daily patterns and in Figure 4.13 for weekly patterns. In each figure I also compare the WebLogo-

created logos for user-characteristic behaviors before and after applying SAX-VSM ranking. Note,

that the ranking changes not only the amount of observed patterns (Table 4.6) but the activity levels
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Figure 4.13: WebLogo visualization of weekly activity for top SO users. Here, letters (A,B,C)

corresponds to (low,medium, and high) levels of activity. Note, that SAX-VSM pattern ranking pro-

cess changed the effort distribution. The excluded behaviors are likely to represent a very common

behavioral pattern: peaking at the mid-week performance and work-free weekends.

distribution by excluding common patterns and ranking.

The analysis of logo images for daily behaviors reveals that there are significant differences in

the characteristic behavior patterns among the top SO users. For example, Jon Skeet’s logo shows

that his activity peaks in intervals (6AM - 9AM) and (3PM-9PM), which is confirmed by his public

comment [212]: “. . . I have a longish commute both ways each day: a 3G data dongle lets me

answer questions during that time. I spend a fair amount of time in the evening on my computer

for whatever reason (coding, writing talks or articles, etc) - I pop onto SO every so often. While

at work, I tend to check SO while I have tests running, a deploy, or a build . . . ”. Through personal

communication I was also able to confirm the characteristic daily behavior of Marc Gravell, whose

daily routines are structured by commute and other constraints, whereas Darin Dimitrov pointed

out that his activity at SO are not structured in any way, which may explain that his logo images
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Figure 4.14: Clustering of StackOveflow user behaviors with STA. Note that D.Dimitrov’s charac-

teristic behaviors were found very different from those of J. Skeet, while their overall reputation

scores are next to each other.

are more difficult to interpret (especially early morning (1AM-3AM) “C”s and considerably high

weekend activity) and that the vector of his ranked behaviors was clustered separately of that with

Skeet and Gravell as shown in Figure 4.14.

4.3.3.4 Discussion

While STA was able to discover user-characteristic patterns and WebLogo produced easily inter-

pretable figures, clearly, these do not provide a sufficient knowledge why Jon Skeet’s reputation is

so high – in the daily behaviors study (3 green “C” at the top) and in the weekly behaviors study (4

green “C” at the top) his activity patterns were at the level with those of other users. It is hard to

conclude it better than Jon’s own comment [212]: “. . . Often two answers may look quite similar, but

one just about has an edge on the other - either it’s explained just that bit better, or has one more

piece of information, or a code sample. I’d like to hope that I have that sort of edge, and that that’s

why my answer would get more votes in that situation. But hey, I could easily be wrong! . . . ”. Also,

Skeet’s habit of engaging into StackOverflow activities while en route is consistent with previously

reported (non-scientific) observations concerning the impact of daily routines on productivity [213].

It was found that WebLogo provides a very efficient and reasonably effective way to convey the

discretized trajectories summary, however, when a long time interval is considered it may fail to

reveal the longitudinal phenomena evolution when compared with the rug plot-based visualization.

Yet another WebLogo shortcoming is that while providing an excellent position-wise visualization,

it fails to convey full pattern frequencies, which may affect the visualization effectiveness.

Note, that excluded by STA weighting daily behaviors correspond to a typical activity pattern
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expected from an office worker [211], whose activity throughout the work week increases from

9AM, peaks at noon, and gradually degrades within the rest of the day. The excluded weekly

behaviors also likely to be typical for office workers.

The purpose of computing is insight, not

numbers.

Richard Hamming
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CHAPTER 5

CONCLUSION

In this dissertation I have proposed the Software Trajectory Analysis – a generic framework for

recurrent behaviors discovery from software process and product artifacts, whose ultimate premise

is to provide means for empirical guidance of developers and project management in software de-

velopment and decision-making processes. To aid the discovery of recurrent behaviors, I have also

proposed a novel approach for time series classification, that not only enables the discovery and

ranking of class-characteristic patterns, but, as I have shown, aids in interpretability of both: the

classification results and the data specificity. This chapter summarizes my research, discusses its

significance, and suggests future directions.

5.1 Dissertation summary

This dissertation covers a novel approach to the problem of recurrent behaviors discovery from soft-

ware process artifacts. The research field-specific data type, that is software trajectory, its analysis

paradigm, that is Software Trajectory Analysis, and a novel technique for time series classification

and characteristic patterns discovery called SAX-VSM are proposed and evaluated.

In Chapter 1, I have described background for the explored research problem concerned with

software process analysis. Specifically, I have emphasized the importance of an ability to discover

recurrent behaviors offline by mining public software repositories. The concept of software tra-

jectory, that is a temporally ordered sequence of software artifact measurements, and the Software

Trajectory Analysis paradigm were introduced in the same Chapter.

Next, in Chapter 2, I have discussed software metrology and the relevant work from research area

of mining software repositories, while focusing on the recurrent behaviors discovery.

In Chapter 3, addressing the problem of unsupervised knowledge discovery from software tra-

jectories, and in particular the problem of time series class-characteristic patterns discovery, I have

proposed and evaluated a novel technique for interpretable time series classification called SAX-

VSM, which enables the discovery of class-characteristic patterns.
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Finally, in Chapter 4, I have shown and evaluated the performance of a reference implemen-

tations of SAX-VSM-based Software Trajectory Analysis framework which provides end-to-end

generic and customizable solution for the problem of recurrent behaviors discovery from software

trajectories. The implemented system capabilities and limitations were also discussed.

5.2 Research summary

In contrast to the previous body of work in the area of software process analysis, that has been

mostly concerned with identification of previously known behaviors for the purpose of software

project management, the major distinction of this work is that it offers an ability to discover novel,

previously unknown recurrent behaviors offline and in the automated manner.

5.3 Contributions

While the detailed list of contributions has been provided in Section 1.6, to summarize, I would like

to emphasize two significant outcomes of my research.

First is the novel generic algorithm for interpretable time series classification which is yet to be

used by the data mining community. Mining time series data will be an important area of research in

coming years because of the growing ubiquity of time series. I expect SAX-VSM to play important

role in the future development of time series data mining and to serve the practitioners with valuable

insights.

The second important result of my research is that despite discovering best software trajectory

class-characteristic patterns, their corresponding recurrent behaviors were found difficult to interpret

without the domain knowledge and understanding of the studied phenomena context. This result

emphasizes, that the software process design is inseparable from accounting for a project internal

and external constraints as well as for human-specific aspects. This finding reflects the discussed in

Section 1.4 specificities of OSS processes and shall aid in the future studies design.
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5.4 Future work

A number of future directions suggests themselves. These can be divided into two categories -

those that address current limitations of SAX-VSM and those that are concerned with the future

STA-based research. Some immediate extension to the discussed in this dissertation work are:

• SAX-VSM ranking schema improvement. This addresses the possibility of a single soft-

ware trajectory study, the two classes patterns ranking problem, and the patterns numerosity.

Based on my current experience with the application of grammatical inference to discretized

time series [196], I plan to develop a threshold-based extension of the SAX-VSM weighting

schema, explore the possibility of a relevance-feedback algorithm application [194], and to

implement a similar to the MDL principle [214] solution based on the minimal grammar size.

• Variable-length characteristic pattern discovery. This addresses the fixed sliding window

length. It is possible that the best class-characteristic patterns have different lengths among

classes, moreover, the capacity to work with variable length patterns should mitigate for the

discussed in Section 4.1.1.3 effect of the class-characteristic pattern elimination by idf. Based

on the previous application of grammatical inference to time series [215], and my own work

[196], an extension of SAX-VSM was developed and currently being evaluated [216].

• Multivariate software trajectories mining. As I have pointed out in Section 4.1, it is highly

desirable to extend STA capabilities to multivariate trajectories analysis. This direction was

previously explored by Ordón̄ez et al in [217, 218] and the proposed solution can be used.

• In-depth study of a software project. This shall address the discovered recurrent behavior

interpretation shortcoming and to allow a thorough evaluation of the proposed methodology

through online interactions with the development team and project managers.

I expect this dissertation will continue to play important role in the future development of time

series data mining and serve the practitioners in the field of software repository mining with valuable

insights into this fascinating area of research.
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