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Abstract 

A multiplex polymerase chain reaction (mPCR) method for simultaneous 
detection of Aeromonas hydrophila, Streptococcus agalactiae, Klebsiella 

pneumoniae, Edwardsiella tarda, and E. ictalur was developed to rapidly 
and accurately identify the five most common bacteria that infect aquatic 

animals. The expected amplicons for ahe2 gene of A. hydrophila, cpsE 
gene of S. agalactiae, khe gene of K. pneumoniae, mukF gene of E.tarda, 

and the serC gene of E. ictaluri were 853 bp, 685 bp, 428 bp, 356 bp, and 
124 bp, respectively. In the single PCR assays, the minimum detectable 

DNA contents were 13.2 pg for A. hydrophila, 27.4 pg for S. agalactiae, 
1.95 pg for K. pneumoniae, 1.63 pg for E. tarda, 1.02 pg for E. ictalur. 

The detection limits of the multiplex PCR were 0.66 ng, 1.91 ng, 0.68 ng, 

0.41 ng, 0.71 ng for A. hydrophila, S. agalactiae, K. pneumoniae, E. tarda 
and E. ictalur, respectively. The established multiplex PCR is significant for 

the rapid detection of common pathogenic bacteria of aquatic animals and 
provides the basis for the diagnosis of fish diseases. 
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Introduction 

Bacterial diseases are common worldwide and result in significant economic losses in the 

fish farming industry. For example, Aeromonas hydrophila is a ubiquitous aquatic 

microorganism that has been associated with hemorrhagic septicemia. Infections by A. 

hydrophila have been reported in Carassius auratus, Parabramis pekinensis, Cirrhinus 

molitorella, Cyprinus carpio, Hypophthalmichehys molitrix, Aristichthys nobilis, 

Ctenopharyngodon idellus, Plecoglossus altivelis, Lateolabrax japonicas, Salmo gairdneri, 

Tilapia nilotica, Ictalurus punctatus, Monopterus albus and Channa striata (Lu, 1992; Duc 

et al., 2013). Streptococcus agalactiae can cause septicemia and meningoencephalitis, 

which occurs in Oreochromis spp, Salmo gairdneri, Cyprinus acutidorsalis, Mugil cephalus 

and Pagrosomus major (Evans et al., 2002). Klebsiella pneumoniae, which causes rot 

disease, has been reported in Shrimp, Eriocheir sinensis, Hypophthalmichehys molitrix, 

Anguilla japonica and Trionyx sinensis (Singh and Kulshreshtha, 1992; Tang et al., 2007; 

Deng et al., 2009; Xu and Shu, 2002). Edwardsiella tarda leads to serious systemic 

septicemia and affects a wide range of host fish such as Scophthalmus maximus, 

Paralichthys olivaceus, Ictalurus punctatus, Anguilla anguilla, Pelteobagrus fulvidraco, 

Astronotus ocellatus, Paralichthys lethostigma, Tilapia nilotica, Hypophthalmichthys 

molitrix, Scortum barcoo, etc. (Xu and Zhang, 2014; Mohanty and Sahoo, 2007; Park, 

Aoki, and Jung, 2012). E. ictalur usually produces enteric septicemia, which mainly 

appears in Ictalurus punctatus and has also been reported in Micropterus salmoniodes, 

Aristichthys nobilis, Plecoglossus altivelis and Trionyx sinensis (Nagai and Nakai, 2014; 

Chen, 2004).  

 Accompanying the rapid development of aquaculture and the expansion of scale 

breeding, highly intensive aquaculture conditions create serious risks for the spread of 

contagious diseases in fish populations. Therefore, detection of pathogens from farmed 

fish is essential for effective fish disease control. Polymerase chain reaction (PCR) is an 

effective tool for diagnostics. PCR assays have been developed for the rapid detection 

and identification of microorganisms (Yogananth et al., 2009; Lan et al., 2008; 

Panangala et al., 2007). However, a multiplex PCR assay is necessary if single primer 

sets are used on a large number of clinical samples. The objective of the present study 

was to develop a multiplex PCR (mPCR) assay to detect five major fish pathogens: A. 

hydrophila, S. agalactiae, K. pneumoniae, E. tarda and E. ictalur that cause disease in 

fish. 

    

Materials and Methods 

Source of the bacteria. Strains of A. hydrophila B11, S. agalactiae SF-96-5508, K. 

pneumoniae B12, NTUH-K2044, E. tarda B79 E. ictalur ETV, Flavobacterium cloumnare 

EU395799 and Escherichia coli Top10 were kindly supplied by the Institute of 

Hydrobiology, Chinese Academy of Sciences. Strains of A. hydrophila 1.927, 1.2017, 

1.1816, 1.1814 and S. agalactiae 1.1481 were purchased from China general 

microbiological culture collection center. Strains of E. tarda CCTCC AB 2010161, CCTCC 

AB 206580 and CCTCC AB206591 were purchased from China center for type culture 

collection. Strains of E. ictalur GXEi0501, GXEi0602 were purchased from Guangxi 

Veterinary Research Institute. A strain of S. agalactiae 32420 was purchased from the 

National center for medical culture collections. A strain of S. agalactiae 10465 was 

purchased from China center of industrial culture collection. K. pneumoniae B0094, 

Aeromonas sobria LD081008A, Pseudomonas fluorescens B0115 and Staphylococcus 

aureus B0125 were purchased from the national aquatic pathogen library, Shanghai 

Ocean University. 

Genomic DNA extraction. Bacteria were inoculated into tryptic soy broth (TSB). A. 

hydrophila, S. agalactiae, K. pneumoniae, E. tarda, E. coli, A. sobria, P. fluorescens and 

S. aureus were incubated at 37°C for 24 h, E. ictalur was incubated at 28°C for 48 h. F. 

cloumnare was incubated in Shieh at 25°C for 48 h. All the cultures were incubated and 

shaken at 200 rpm in an orbital incubator. The bacteria were harvested by centrifugation 

at 12000 g for 1 min, and the supernatant was discarded. DNA was extracted from the 

cell pellets of all samples following the instructions of the bacteria genomic DNA 

extraction kit (TIANGEN, China). 
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Primer design. Target sequences of the ahe2 gene of A. hydrophila and the cpsE 

gene of S. agalactiae were downloaded from the National Centre for Biotechnology 

Information (NCBI). Specific primers corresponding to each bacterium were designed 

with primer premier 5.0. Primers for the khe gene of K. pneumoniae, the mukF gene of 

E. tarda, the serC gene of E. ictalur described by He et al., 2012; Jiang et al., 2008; Liu 

et al., 2013 (Table 1). 
Table 1. Specific primer and their target genes for the bacteria used in this study 

Bacteria Primers Target gene  Size (bp) 

Aeromonas 
hydrophila 

F:GGGCAATGACCTCAACCTC Serine protease  
(ahe2) 

853 

R:CGAGGAGGTGCCGTTCAT 

Streptococcus 
agalactiae 

F:TTATATCGCTGTCTGTATCTTGGACT Capsule (cpsE) 685 

R:GCGTGTTCCTACTAAACTCATATCAC
C 

Klebsiella 
pneumoniae 

F: TGATTGCATTCGCCACTGG  haemolysin 
(khe)  

428 

R: GGTCAACCCAACGATCCTG  

Edwardsiella tarda F:TTGCTGGCTATCGCTACCCTT mukF 356 
R:AACTCATCGCCGCCCTCTTCT 

Edwardsiella 
ictalur 

F: CATGATAATACCCGGTGTTGG Phosphoserine 
transaminase 

(serC) 

124 
R: GTATTGCTGGGGAACAACTC 

 

Reaction conditions. The optimized PCR was set up in a 25 μL reaction mixture 

comprising 2.5 μL of 10× Taq Buffer, 2 μL of MgCl2 (25 mM), 2 μL of dNTP (2.5 mM), 1 

μL (10 μM) each of forward and reverse primers, 0.25μL of rTaq DNA polymerase (5 

U/μL, NovoGene, China), 1 μL of DNA and nuclease free water to 25μL. 

In the single PCR assays, the cycling conditions consisted of an initial denaturation (95°C 

for 3 min), followed by 35 cycles of denaturation (95°C, 30 s), primer annealing (59°C 

for the ahe2 gene of A. hydrophila and the cpsE gene of S. agalactiae, 57°C for the khe 

gene of K. pneumoniae and the serC gene of E. ictalur, 60°C for the mukF gene of E. 

tarda, 30 s, respectively.), and extension (72°C, 1 min). After a final extension (72°C, 10 

min), the PCR products were held at 4°C. The reaction products were checked by 2% 

agarose gel electrophoresis.   

In the mPCR assay, the primer annealing was set at 59°C, 30 s, the other cycling 

conditions were same as the single PCR assay. 

Specificity analysis. The five primer sets were used with the specific DNA or with 

mixed DNAs from other bacteria to test their specificity.  

Sensitivity analysis. The genomic DNA contents were serially diluted by 5 or 10 

times and subjected to PCR amplification. The minimum concentrations of DNAs were 

considered as the sensitivity of m-PCR detection. 

Fish tissue analysis. Genomic DNA of liver, spleen, and muscle tissue from 

Cyprinus carpio was extracted and mixed with bacterial DNA of the five bacterial 

pathogens as simulated diseased samples. Following m-PCR amplification and detection, 

the mixed DNAs were evaluated in practice. 

 

Results 

Primer specificity. Based on the designed primer sets, the specificities of each set against 

bacterial DNAs obtained from A. hydrophila, S. agalactiae, K. pneumoniae, E. tarda, E. 

ictalur were examined. For all primer pairs, only a band for the specific bacteria appeared 

(Fig. 1a-b). When DNA from other bacteria strains was evaluated, no bands were visible 

on gel electrophoresis (Fig. 1c). 
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Fig. 1 Specificity of single PCR of DNA from 
Aeromonas hydrophila, Streptococcus agalactiae, 
Klebsiella pneumoniae, Edwardsiella tarda and E. 
ictalur. (a): Lane M, 100 bp DNA marker; lane 1-
5=A. hydrophila B11, 1.927, 1.2017, 1.1816 and 
1.1814 (853 bp) respectively; lane 6-9=S. 
agalactiae SF-96-5508, 1.1481, 32420 and 10465 
(685 bp) respectively; (b): lane 1-3=K. pneumoniae 
B12, NTUH-K2044 and B0094 (428 bp) respectively; 
lane 4-7=E. tarda B79, CCTCC AB 2010161, CCTCC 
AB 206580 and CCTCC AB206591 (356 bp) 
respectively; lane 8-10=E. ictalur ETV, GXEi0501 
and GXEi0602 (124 bp) respectively; (c): Lane M, 
2000 bp DNA marker; lane 1, Flavobacterium 
cloumnare; lane 2, Escherichia colI; lane 3, 
Aeromonas sobria; lane 4, Pseudomonas 
fluorescens; lane 5, Staphylococcus aureus. 
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Detection sensitivity. After diluting the target DNA by 5 or 10 times, the minimum 

detectable DNA contents were determined as 13.2 pg for A. hydrophila (Fig. 2a), 27.4 pg 

for S. agalactiae (Fig. 2a), 1.95 pg for K. pneumoniae (Fig. 2b), 1.63 pg for E. tarda (Fig. 

2c), 1.02 pg for E. ictalur (Fig. 2d) in the single PCR reactions. The detection limits of the 

multiplex PCR was in the range of 0.66 ng, 1.91 ng, 0.68 ng, 0.41 ng, 0.71 ng for A. 

hydrophila, S. agalactiae, K. pneumoniae, E. tarda and E. ictalur (Fig. 2d). 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
Fig. 2 Sensitivity of the detection of A. hydrophila, S. agalactiae, K. pneumoniae , E. tarda and E. ictalur by 
single PCR and mPCR. (a): Lane M, 100 bp DNA marker; lanes 1-4=1 to 10-3 dilutions of A. hydrophila, 
respectively; lane 5, the 2×10-4 dilution of A. hydrophila; lanes 6-10=1 to 10-4 dilutions of S. agalactiae, 
respectively; (b): Lane M, 100 bp DNA marker; lanes 1-5=1 to 10-4 dilutions of K. pneumoniae; lane 6, the 
2×10-5 dilution of K. pneumoniae ; (c): Lane M, 100 bp DNA marker; lanes 1-5=1 to 10-4 dilutions of E. tarda, 
respectively; lane 6, the 2×10-5 dilution of E. tarda; (d): Lane M, 100 bp DNA marker; lanes 1-6=1 to 10-5 
dilutions of E. ictalur, respectively; lanes 7-9=1 to 10-2 dilutions of A. hydrophila, S. agalactiae, K. pneumoniae, 
E. tarda and E. ictalur, respectively. 
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mPCR. The genomic DNAs of the five bacterial pathogens were mixed to see 

whether single or multiple species of pathogen were effectively amplified. The results 

demonstrated that all combinations of the pathogenic DNA could be detected successfully 

(Fig. 3). 
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Fig. 3 The results of mPCR amplification of 
genomic DNA from two, three, four or five 
bacteria with different combinations of 
target PCR templates. (a): Lane M, 100 bp 
DNA marker; lane 1, A. hydrophila and S. 
agalactiae; lane 2, A. hydrophila and K. 
pneumoniae; lane 3, A. hydrophila and E. 
tarda; lane 4, A. hydrophila and E. ictalur; 
lane 5, S. agalactiae and K. pneumoniae; 
lane 6, S. agalactiae and E. tarda; lane 7, 
S. agalactiae and E. ictalur; lane 8, K. 
pneumoniae and E. tarda; lane 9, K. 
pneumoniae and E. ictalur; lane 10, E. 
tarda and E. ictalur; (b): Lane M, 100 bp 
DNA marker; lane 1, A. hydrophila, S. 
agalactiae and K. pneumoniae; lane 2, A. 
hydrophila, S. agalactiae and E. tarda; 
lane 3, A. hydrophila, S. agalactiae and E. 
ictalur; lane 4, A. hydrophila, K. 
pneumoniae and E. tarda; lane 5, A. 
hydrophila, K. pneumoniae and E. ictalur; 
lane 6, A. hydrophila, E. tarda and E. 
ictalur; lane 7, S. agalactiae , K. 
pneumoniae and E. tarda; lane 8, S. 
agalactiae , K. pneumoniae and E. ictalur; 
lane 9, S. agalactiae , E. tarda and E. 
ictalur; lane 10, K. pneumoniae, E. tarda 
and E. ictalur; (c): Lane M, 100 bp DNA 
marker; lane 1, A. hydrophila, S. 
agalactiae, K. pneumoniae and E. tarda; 
lane 2, A. hydrophila, S. agalactiae, K. 
pneumoniae and E. ictalur; lane 3, A. 
hydrophila, S. agalactiae, E. tarda and E. 
ictalur; lane 4, A. hydrophila, K. 
pneumoniae, E. tarda and E. ictalur; lane 
5, S. agalactiae, K. pneumoniae, E. tarda 
and E. ictalur; lane 6, A. hydrophila, S. 
agalactiae, K. pneumoniae, E. tarda and E. 
ictalur. 
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Fish tissue. Following mPCR amplification and detection with the mixed DNAs, the 

diagnostic efficiency was maintained with predicted amplicons, which suggests that no 

interfering effects occurred (Fig. 4). 

 

 
 
Fig. 4 The results of mPCR amplification of genomic DNA from five bacteria in combination with genomic DNA 
from Cyprinus carpio tissue. Lane M, 2000 bp DNA marker; lane 1, mixture of genomic DNA from the target 
bacteria and Cyprinus carpio liver  ; lane 1, mixture of genomic DNA from the target bacteria and Cyprinus 
carpio spleen; lane 1, mixture of genomic DNA from the target bacteria and Cyprinus carpio muscle. 
 

Discussion 

The aim of this study was to develop a simple and sensitive novel PCR method for 

simultaneous identification of common pathogens that cause disease in fish. Primers 

were designed to uncover different length fragments of 853 bp, 685 bp, 428 bp, 356 bp, 

and 124 bp from A. hydrophila, S. agalactiae, K. pneumoniae, E.tarda, and E. ictaluri. 

The primer specificities of each set were examined. The size of PCR products was as 

expected with no additional fragments from target pathogens (Fig. 1). Detection 

sensitivity was important to the efficiency of PCR amplification. After serially diluting the 

target DNA by 5 or 10 times, the minimum detectable DNA contents were determined as 

0.66 ng for A. hydrophila, 1.91 ng for S. agalactiae, 0.68 ng for K. pneumoniae, 0.41 ng 

for E. tarda, 0.71 ng for E. ictalur in the multiplex PCR (Fig. 2). These results suggest 

that the established multiplex PCR is sensitive to the rapid detection common pathogenic 

bacteria of aquatic animals. 

Traditional methods of diagnosis are carried out by culturing bacteria on agar 

plates followed by biochemical characterization (Zhang et al., 2010). Some 

disadvantages of these techniques are: the length of time taken, which could delay 

effective treatment of fish diseases; and compared with PCR assay, it is not accurate to 

detect pathogenic bacteria by colonies morphology and bacterial characteristics, etc.  

The molecular assay using real-time quantitative PCR could be a rapid and sensitive 

diagnostic tool to detect pathogens (Bilodeau et al., 2003; Griffin et al., 2013) however, 

this requires high quality equipment, high costs, and complex operation, which makes it 

non-optimal for the detection of bacteria pathogens. The specific, easy to use, low-cost 

mPCR system developed in this study could simultaneously detect A. hydrophila, S. 

agalactiae, K. pneumoniae, E. tarda and E. ictalur. 

PCR has been widely applied to detect various viruses and bacteria (Pollard et al., 

1990; Lan et al., 2008; Sakai et al., 2007). Bacterial diseases may be diverse and 

depend on the farmed species, and culture area; therefore it is difficult to assess disease 

outbreaks using a universal diagnostic measure or procedure, especially when newly 

emerging diseases are probable. And it would be undetected if two or several pathogenic 

bacteria affected the fish. To avoid wasting time using a single PCR, an mPCR assay was 
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developed for simultaneous detection of A. hydrophila, S. agalactiae, K. pneumoniae, E. 

tarda and E. ictalur. This new mPCR assay is important for the diagnosis of fish diseases.  

Identification of virulence genes is useful for the diagnosis of fish disease. 

Pathogenic bacteria may have virulence genes that are absent in nonpathogenic bacteria. 

Virulence genes may also be present in both pathogenic and nonpathogenic bacteria, but 

may be functional only in pathogenic ones (Srinivasa Rao et al., 2003). The ahe2 gene of 

A. hydrophila, the cpsE gene of S. agalactiae, the mukF gene of E. tarda, the serC gene 

of E. ictalur are virulence genes (Li et al., 2011; Schaffner et al., 2014; Srinivasa Rao et 

al., 2003; Rodrigues et al., 2006). The mukF gene of E. tarda was present only in 

virulent and not in avirulent strains, indicating that they are specific to pathogenic E. 

tarda (Srinivasa Rao et al., 2003). However the ahe2 gene of A. hydrophila, the cpsE 

gene of S. agalactiae and the serC gene of E. ictalur are associated with their toxicity (Yu 

et al., 2005; Rodrigues et al., 2006). If using avirulence genes to diagnose diseased fish 

that were infected with nonpathogenic bacteria, the diagnosis would be incorrect. 

Detection of these virulence genes will be useful for diagnosing the cause of fish diseases 

as they emerge. 
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