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Abstract

Proper expression of genes requires communication with their regulatory elements that can be 

located elsewhere along the chromosome. The physics of chromatin fibers imposes a range of 

constraints on such communication. The molecular and biophysical mechanisms by which 

chromosomal communication is established, or prevented, have become a topic of intense study, 

and important roles for the spatial organization of chromosomes are being discovered. Here we 

present a view of the interphase 3D genome characterized by extensive physical 

compartmentalization and insulation on the one hand and facilitated long-range interactions on the 

other. We propose the existence of topological machines dedicated to set up and to exploit a 3D 

genome organization to both promote and censor communication along and between 

chromosomes.
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Chromosomal communication

Communication involves transfer of information from one party to another. This can be 

achieved in at least two mechanistically distinct ways: first, the parties directly interact, e.g. 

two or more people directly speaking to each other. Second, information can be transmitted 

from one location to another via media or intermediates and it is then received by the 

appropriate partner(s) at their respective locations. For the first mechanism, the two parties 

need to be physically close, for the second, there needs to be a means to send, transport and 

receive information from one place to another. Do similar mechanisms operate inside the 
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cell nucleus where genes are regulated by communicating with regulatory elements that can 

be located elsewhere in the genome? Here we explore the idea that the spatial organization 

of a genome, and its physical properties, could constitute an effective mechanical 

communication device.

Genes do not work as single, isolated units. Their expression is modulated by regulatory 

elements that can be located from as little as a kb up to as much as several Mb away, 

although the precise distance distribution between genes and their regulatory elements is still 

poorly known (Bickmore, 2013; Bulger and Groudine, 1999; Carter et al., 2002; Gibcus and 

Dekker, 2013; Kleinjan and van Heyningen, 2005; Li et al., 2012; Sanyal et al., 2012; 

Schwarzer and Spitz, 2014; Tolhuis et al., 2002; West and Fraser, 2005). Since in a given 

cell thousands of genes are expressed throughout the genome, there is a corresponding 

abundance of long-range communication between genes and regulatory elements occurring 

at any moment in each cell nucleus. Over the last decade much has been learned about how 

this is achieved, revealing critical roles for the spatial organization of chromosomes.

Microscopy-based technologies, such as Fluorescence In Situ Hybridization (FISH) and live 

cell imaging, and increasingly high resolution chromosome conformation capture (3C) - 

based methods (Bickmore, 2013; Dekker et al., 2013; Dekker et al., 2002; Fraser et al., 

2015; Hsieh et al., 2015; Kalhor et al., 2011; Lieberman-Aiden et al., 2009; Rao et al., 2014; 

Shachar et al., 2015; Tang et al., 2015) have been instrumental in determining how 

chromosomes are folded at different length scales (kb up to Gb), and this in turn is starting 

to provide answers to some long-standing questions related to gene regulation and other 

chromatin - templated processes. One mechanism by which distal regulatory elements can 

control genes located far away in the genome is through long-range physical interactions 

(Figure 1). For instance, enhancer and insulator elements often engage in physical contacts 

with their target promoters (Carter et al., 2002; Li et al., 2012; Sanyal et al., 2012; Tolhuis et 

al., 2002), pointing to direct molecular association as a means for long-range 

communication.

Although such physical associations appear to account for a significant fraction of long-

range gene regulatory events, not all chromosomal communications involve direct contacts 

between the corresponding loci (Figure 1). An example is the case of X chromosome 

inactivation in female mammals. In this case, the Xist RNA is expressed from one X 

chromosome only and this RNA spreads along the length of the entire chromosome resulting 

in gene repression through the Xist-dependent recruitment of a set of silencing complexes 

(Chu et al., 2015; Galupa and Heard, 2015; Gendrel and Heard, 2014; Jeon et al., 2012; 

Wutz et al., 2002). Here communication along the inactivated X chromosome occurs not by 

direct physical interactions, but by cis-spreading of a signal, a non-coding RNA, that 

delivers silencing proteins to most of the genes linked in cis to the Xist gene. X-

chromosome inactivation also requires initial inter-chromosomal communication to ensure 

that only one X chromosome expresses Xist. Though Xist loci of the two X chromosomes 

do transiently interact (Augui et al., 2007; Masui et al., 2011; Xu et al., 2006), implying 

physical communication, critical information is transmitted by diffusible proteins such as 

Rnf12 (Barakat et al., 2014; Galupa and Heard, 2015). The latter mode of communication 

includes the general, and widespread action of transcription factors encoded at one locus but 
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acting throughout the genome. Thus, communication involves direct physical associations, 

cis-spreading of information, as well as diffusional signals including proteins and RNAs, 

that can move between chromosomes (Figure 1). In this perspective we do not discuss 

diffusion-based communication through transcription factors, and instead focus on 

communication through long-range chromatin interactions and spreading of signals in cis 

along chromosomes. In addition, we mostly discuss chromosome organization and long-

range communication in mammalian genomes, even though other organisms including 

bacteria may employ similar mechanisms.

Not all chromosomal communication is for regulating gene expression. An interesting 

example is intra-chromosomal communication to control somatic recombination in the 

immunoglobulin loci, such as V(D)J recombination and antibody class switching. During 

these processes specific pairs of double-stranded breaks located up to 200 kb apart need to 

interact to be joined for successful recombination events. Recent studies (Dong et al., 2015; 

Gostissa et al., 2015) have revealed a surprising orientation bias in the IGH class switch 

recombination process where genomic orientation is preserved in the vast majority of 

recombination events prior to any further selection. During the process recombination 

occurs between recombination sequences that undergo AID-dependent DNA break 

formation. Interestingly, re-joining of ends is orientation-specific implying long-range 

communication between the break sites in a manner that maintains the relative orientation of 

the sites even when they are separated by hundreds of Kb. Thus, communication between 

two sites where double-stranded breaks are initiated requires not only direct proximity 

between them, but also preservation of their genomic orientation, pointing to specific 

processes to facilitate and or mediate their association in a directional manner (discussed 

below in more detail).

With the phenomenon of long-range communication well established, and the roles of 

chromosome structure and dynamics becoming increasingly clear, many new questions 

arise: First, how are long-range interactions established, i.e. how do distal elements find one 

another inside the crowded nucleus? Further, what determines specificity of such 

interactions and what prevents any of the thousands of active regulatory elements in the 

genome from inappropriately engaging in contacts with any of the thousands of genes? How 

do signals spread along chromosomes and how can such spreading be contained to a single 

chromosome (e.g. X-chromosome inactivation)? How is robustness and precision achieved 

so that important communication is efficiently and rapidly established in most or all cells? 

Answers to these questions start to emerge now that deeper knowledge is obtained about 

nuclear organization, the structural compartmentalization of chromosomes, the physical and 

mechanical properties of chromosomes and their dynamics, and the identification of 

molecular machines that can actively fold chromosomes to orchestrate and guide long-range 

communication.

Physics of chromosomal communication

Chromosomes are long polymers and many of their structural properties, dynamics and cell-

to-cell variability in folding can be understood from their polymer nature. In fact, the 

polymer state of chromosomes has critical consequences for which pairs of loci have an 
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opportunity to interact, the kinetics of their search for each other, and the number of cells in 

the population in which interactions occur (Figure 2). To illustrate this we will first explore 

the scenario in which the 3D genome is determined solely by the physical polymer state of 

chromosomes.

Three physical phenomena are central to our understanding of spatial genomic 

communication: the short-range character of molecular interactions, the polymeric nature of 

chromosomes, and the localized dynamics of chromosomal loci (Figure 2). Below we 

discuss implications of these aspects to genomic communications.

Short-range character of molecular interactions

Interactions between genomic loci rely on affinity of protein-protein and protein-DNA 

interactions. Hydrophobic, electrostatic, hydrogen-bonded and van der Waals in nature, 

these interactions are either short-range or screened by the high ionic strength of the 

nucleoplasm. As a result, protein and DNA interphases of a pair of genomic loci can attract 

each other only if located closer than ~1-5 nm. The affinity of two DNA-bound proteins will 

not attract these loci to each other unless they are already very close to each other in space 

(Figure 2A). Thus formation of most genomic interactions will rely on initially stochastic 

contacts between genomic loci.

Polymeric nature of chromatin

Since genomic communications rely on contacts that are already formed, it is the frequency 

of these contacts that determines possible genomic communications. The polymeric nature 

of chromosomes makes loci close along the linear genome interact much more frequently 

than more distant loci or loci located on different chromosomes (trans interactions). Despite 

of this most of interactions are extremely infrequent due to a large volume that is explored 

by any one locus (Figure 2B). If chromosomes were a melt of polymers in a spherical 

nucleus of volume V=300 um3 (Rnucleus≈4um (Milo et al., 2010)) two loci from different 

chromosomes would be in a Hi-C contact (Rc≈100-150nm) with the probability Ptrans≈

(R/cRnucleus)~10−5, i.e. in only a few out of 100,000 cells. In an otherwise unconstrained 

polymer melt, two loci separated by 10Mb would be on average R(10Mb)~4um apart and 

interact as infrequently as trans loci. Correspondingly, loci separated by 1Mb or 100Kb 

(R(1Mb) ≈ 1.4um and R(100Kb) ≈ 0.4um) would interact with the probability P(1Mb)≈

(Rc/R)3~10−3−10−4, P(100Kb)~10−2 and thus in a few out of 10,000 and 100 cells 

respectively. Two factors would lead to higher contact frequencies: chromosome dynamics 

and local compaction of chromatin at all levels.

Localized dynamics of chromatin

The polymeric nature of chromosomes significantly limits mobility of individual loci: 

moving one locus would require moving its neighbors and their neighbors etc., which is 

slow and may be further limited by steric and topological interactions with other nearby 

chains. As a result, polymers show highly localized mobility with the displacements 

increasing as time to the power of approximately ¼ (either due to Rouse diffusion or 

reptation, compared to normal diffusion where the power is ½). Such diffusion has been 

observed for chromosomal loci in yeast (Hajjoul et al., 2013) and mammalian cells 
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(Bronstein et al., 2009; Lucas et al., 2014). There are two important consequences of this 

localized diffusion (Figure 2C): (i) in a given cell, a locus extensively explores its spatial 

neighborhood (~150-300nm in 100 sec, 0.5-0.8um in 1 hour and ~1-1.5um in 24h, i.e. the 

length of a typical cell cycle), thus allowing communications between spatially proximal 

loci; (ii) communications at a distance, however, are strongly suppressed since only small 

spatial distances are explored by a locus during a single cell cycle. Thus loci that happen to 

be sufficiently close in space upon exit from mitosis can interact, while those that are further 

apart would not have sufficient time to find each other and will have to wait for the next cell 

cycle to get a chance of interacting (Strickfaden et al., 2010). Even when interacting loci are 

within a distance that can be spanned within a cell cycle (e.g. ~1um), communication 

between them would require them first to find each other by this localized diffusive process, 

which makes time of the response highly variable.

Difficulty to insulate interactions

Difference in scales between sizes of chromosomal loops and sizes of individual proteins 

makes it challenging for a single protein to insulate long-range interactions. Even 100Kb of 

genomic separation between an enhancer and a promoter implies about ~2000-4000nm of 

10-20nm fiber that is folded into an area of about ~300-500nm in radius. It’s mysterious 

how 3-5nm size protein bound somewhere along this chain can significantly influence 

frequencies of interactions between its monomers (Figure 2D). Recent simulation studies 

have shown that although formation of a 30Kb chromatin loop can facilitate intra-loop 

interactions, insulation of the loop interior from the exterior is very modest with about 30% 

reduction in the contact frequency Benedetti et al., 2014; Doyle et al., 2014). Polymer 

simulations (Fudenberg et al., 2015) have also shown that even a bulky protein assembly on 

a chromatin fiber cannot serve as a reliable insulator providing no insulation beyond the size 

of the bulky assembly. Similarly, local changes in the flexibility of the chromatin fiber that 

can be induced by an insulator cannot provide robust insulation between regions distant 

from the insulator along the genome (Fudenberg et al., 2015).

Taken together, these physical considerations demonstrate that the polymeric nature of 

chromosomes leads to spatial insulation of distal genomic regions and high cell-to-cell 

variation of their contacts, while at the same time allowing frequent contacts between 

genomically proximal regions. For small genomes such as yeast and C. elegans, this may be 

sufficient to ensure appropriate gene regulation. However for larger genomes this will 

become a highly stochastic process leading to tremendous cell-to-cell variation in gene 

expression.

Hence, in order to achieve robust, precise and reproducible cell type-specific gene 

expression patterns across the genome additional layers of chromosome organization are 

required so that communications between more distal regions can be actively facilitated 

while interactions between more proximal loci can be moderated both ways: they can be 

facilitated in some cases, but may need to be actively prevented (insulated) in other cases to 

prevent inappropriate gene – regulatory element interactions. It is now becoming clear that 

cells have evolved mechanisms to compartmentalize chromosomes at all scales, which allow 
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more precise control of interactions between some sets of loci, while preventing others in the 

majority of cells.

3D Genome Compartmentalization

Years of microscopic observations and 3C-based studies have revealed that the spatial 

organization of the genome is not just a melt of otherwise uniform polymers: chromosomes 

are characterized by structural compartmentalization at many levels (Bickmore, 2013; 

Bickmore and van Steensel, 2013; Bouwman and de Laat, 2015; Gibcus and Dekker, 2013; 

Sexton et al., 2007). At the level of the whole nucleus, individual chromosomes occupy 

1-2um territories that change their nuclear position upon every cell division, thus 

randomizing pairs of neighboring chromosomes (Branco and Pombo, 2006; Cremer and 

Cremer, 2001; Kind et al., 2013). Since inter-chromosomal interactions are mostly restricted 

to the zones where adjacent territories touch (Branco and Pombo, 2006), and a limited 

spatial range of interactions that can be formed within a cell cycle (~1um, see above), 

interactions between chromosomes should be highly cell-to-cell variable. Communication 

within chromosomes, however, can be more robust as a single locus explores a good fraction 

of its chromosomal territory during interphase. Within territories chromosomes are 

compartmentalized in different types of sub-chromosomal domains.

At the scale of several Mb, animal chromosomes show characteristics of space-filling 

polymers, i.e. continuous genomic regions occupy continuous chromosomal volumes 

(Shopland et al., 2006). This space-filling character of 0.1-10Mb of chromosomes is evident 

from microscopy data that show linear (or sub-linear) scaling of occupied volume with the 

length s of a stained genomic region (V(s)~sα α≤1), and from the scaling R(s)~s1/3 of the 

spatial distance between pairs with their genomic separation s (Rosa and Everaers, 2008; 

Halverson et al., 2014), As a result of this space-filling organization, spatial distances 

between chromosomal regions become much smaller than they would be in a polymer melt 

with R(10Mb)≈1.5-2um, R(1Mb)≈0.5um (for inactive chromosomal region and 1.5um for 

active ones) and R(100Kb)≈0.2um (Jhunjhunwala et al., 2008; Tark-Dame et al., 2014). 

Combined with the ranges that can be explored within 1h or 24h (see above) we estimate 

that loci separated by 10Mb are still unlikely to find each other within a cell cycle, while 

loci separated by less than 1Mb can find each other within a cell cycle and likely within a 

couple of hours. Faster (minute scale) temporal response would require ~100Kb separation 

between loci that based on these estimates are expected to interact very frequently.

Chromosome organization at the megabase level is also characterized by interactions 

between functionally distinct compartments: large blocks of active chromatin (on average 

3-5 Mb in size) associate with other active chromatin domains, while inactive chromatin 

associates with other inactive regions (Lieberman-Aiden et al., 2009; Zhang et al., 2012). At 

the scale of several hundreds kb smaller domains, often referred to as topologically 

associating domains (TADs) can be detected (Crane et al., 2015; Dixon et al., 2012; Nora et 

al., 2012; Sexton et al., 2012). These domains are defined by the preferential interaction of 

loci located within them and the relative (about two-fold) depletion of interactions between 

loci located in different TADs. Though TADs can be distinct in structure, function and cell-

to-cell variability in different organisms, in mammals (Dekker and Heard 2015), TADs are 
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to a large extent tissue invariant, whereas the larger compartments are related to the cell type 

and the set of genes and regulatory elements that are active. It has been proposed that TADs 

are the invariant building blocks of chromosomes and that in a given cell type TADs of 

similar chromatin status form the larger cell type-specific compartments through a process 

of self-assembly (Dekker, 2014; Gibcus and Dekker, 2013).

The 3D genome as censor

Compartmentalization of chromosomes into structural domains has significant consequences 

for chromosomal communication. Loci located within TADs are relatively insulated from 

loci outside the domain, while they can readily interact with other loci within the domain. 

Several recent studies have now shown that the formation of insulated topological domains 

indeed prevents, or censors, physical and functional communication between genes and 

distal regulatory elements. In one elegant series of experiments Lupianez and co-workers 

engineered CRISPR/Cas – mediated genomic rearrangements and found that relocating 

TAD boundaries and regulatory elements can have major impact on gene expression by 

allowing otherwise inappropriate, or preventing normal long-range communication with 

distal regulatory elements (Lupiáñez et al., 2015). For instance, an inversion around a TAD 

boundary that results in repositioning of a set of limb enhancers within the same TAD as the 

wnt6 gene, leads to inappropriate interactions between them and the gene and up-regulation 

of wnt6 in limb tissues where the enhancers are active.

These studies suggest that there is only limited specificity to enhancer-promoter interactions 

and that a critical factor in determining which enhancers regulate any gene is the co-location 

within the same insulated chromosomal domain (de Laat and Duboule, 2013; Gibcus and 

Dekker, 2013; Schwarzer and Spitz, 2014). This in turn would predict that enhancers act on 

the entire domain. Several lines of evidence suggest that this is indeed the case. First, 

analysis of gene expression during differentiation of ES cells into neural progenitor cells 

showed that genes located in the same TAD tend to be more correlated in their expression 

pattern than genes located in adjacent TADs (Nora et al., 2012). Second, Symmons and co-

workers used a functional genomic approach in which they used transposable elements to 

insert reporter genes in a large number of positions along the chromosomes (Symmons et al., 

2014). They then analyzed where in the mouse these reporter genes were expressed and 

found that sets of reporter genes integrated in contiguous domains displayed highly similar 

tissue specific expression. Strikingly, these domains displayed strong correlations with 

TADs. Third, more recently analysis of enhancer-promoter interactions around the CFTR 

locus showed that the CFTR promoter engages with distinct cell-type specific distal 

enhancers and CTCF-bound loci in different tissues. Intriguingly, all these are contained 

within one tissue-invariant TAD (Smith et al., 2016; Yang et al., 2015). ChIA-PET analyses 

of CTCF-anchored loops between TAD boundaries and RNA polymerase-anchored 

chromatin loops also showed that gene regulatory interactions between gene promoters and 

their distal regulatory elements occur mostly within TADs (Tang et al. 2015). Thus, TADs 

appear to represent functional domains and TAD boundaries act as censors of 

communication by not allowing enhancers to reach genes located in adjacent TADs.
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How do TAD boundaries prevent long-range physical and functional communication? This 

remains a poorly understood process, but recent genome editing experiments and chromatin 

folding simulations have led to some intriguing insights. First, TAD boundaries often 

contain CTCF binding sites (Dixon et al., 2012; Rao et al., 2014) or related architectural 

proteins in flies (Hou et al., 2012). Recently several studies independently found that the two 

boundaries of many TADs contain CTCF sites that are positioned in opposite orientation and 

that these sites engage in long-range interactions with each other (de Wit et al., 2015; 

Gómez-Marín et al., 2015; Guo et al., 2015; Rao et al., 2014; Vietri Rudan et al., 2015). 

Thus, one view of a TAD is that it involves formation of a chromosomal loop between two 

boundaries and that CTCF site orientation is of critical importance in setting up these loops. 

There is now direct experimental evidence for this model. Guo and co-workers (Guo et al., 

2015) and de Wit and co-workers (de Wit et al., 2015) showed that changing the orientation 

of CTCF sites disrupts chromatin loops with distal CTCF sites that were in the opposite 

orientation. Further Sanborn and co-workers showed that genetic perturbation of CTCF sites 

re-organizes loops configurations as predicted by the orientation of the sites (Sanborn et al., 

2015).

Physical and molecular mechanisms underlying structural and functional insulation of 

genomic communications by TAD boundaries remain to be understood (Fig 2E). TADs are 

characterized by about two-fold increase in the frequency of chromatin contacts inside a 

TAD as compared to contacts between TADs. Such modest increase of intra-TAD contacts 

cannot significantly insulate loci that belong to neighboring TADs. Formation of loops 

between TAD boundaries is expected to have similarly modest effect on contacts between 

elements that are not located right at the contacting boundaries. Recent simulations (Doyle 

et al., 2014; Benedetti et al., 2014) have shown that formation of a chromatin loop can 

facilitate interactions located within a loop or suppress interactions between the loop and the 

rest of the chromosomes, but the effect is still limited to about two-fold change in contact 

frequencies. It is possible, however, that the two-fold change in the frequency of interactions 

can be amplified by highly cooperative mechanism of gene activation taking place at 

promoters (Mirny, 2010; Ptashne, 2014). Such amplification of response still cannot address 

cell-to-cell variation as some cells may simply not get a contact between an enhancer and its 

target gene within a TAD, while others can get contacts outside of a TAD, making it hard to 

attribute critical regulatory roles to mere compaction or a looping of the TAD. It is likely 

that other intra-TAD mechanisms are involved.

A few models of TAD formation have been recently proposed. Two studies (Giorgetti et al., 

2014; Hofmann and Heermann, 2015) suggested that TADs should be formed by dynamic 

intra-TAD interactions that lead to a highly diverse ensemble of TAD conformations. They 

however, did not propose a specific molecular mechanism for such preferential intra-TAD 

dynamic interactions. Two other studies suggested that TADs could result from preferential 

interactions between two or more types of interacting loci, with a TAD corresponding to a 

continuous segment of loci of a single type (Barbieri et al., 2012; Jost et al., 2014). Such 

mechanism ultimately produces alternating patterns at the genome-wide scale that are 

characteristic of compartments, rather than TADs, but nevertheless may be an adequate 

model for Drosophilla Hi-C data where TADs and compartments may be hard to delineate 
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or distinguish from each other (Ulianov et al., 2015). A major limitation of such models for 

mammalian TADs is that a boundary deletion would not produce a merger of neighboring 

TADs as have been recently experimentally demonstrated. A different model of TAD 

formation in Drosophilla was proposed in (Ulianov et al., 2015) where each monomer can 

interact is at most one more (saturating bonds), and inter-TAD regions that are enriched in 

highly expressed genes are non-interacting. Although rather artificial, the assumption of 

saturating bonds turned out to be critical for success of the model. Another intriguing 

mechanism giving good agreement to the observed TAD organization and relying on the 

special role of boundaries relies on supercoiling (Benedetti et al., 2013), though the role of 

supercoiling in eukaryotes remains to be understood. Observed domain organization in 

Caulobacter (Le at el., 2013) has been attributed to transcription that can lead to local 

unwinding of supercoiled DNA, thus creating a linker between neighboring domains. It 

remains to be seen whether transcription can play a role in formation of TADs in 

mammalian chromosomes.

3D genome as an active moderator

Several considerations presented above suggest that spontaneous 3D interactions among 

genomic elements in interphase chromosomes would not be able to provide several 

important aspects of genomic communications such as (a) robust and timely interactions 

among elements separated by up to ~1Mb; (b) reliable insulation between elements that are 

sufficiently close (~100Kb, Fig 2E) on the chromosomes (e.g. insulation across TAD 

boundaries), and spreading of such interactions in cis when insulators are altered (de Wit et 

al., 2015; Guo et al., 2015; Nora et al., 2012; Sanborn et al., 2015); (c) preferential 

interactions among genomic elements that preserve their genomic orientations (e.g. CTCF 

sites (above) or elements of the IgH locus involved in VD(J) recombination and class 

switching (Dong et al., 2015; Gostissa et al., 2015; Hu et al., 2015). We argue that a recently 

proposed loop-extrusion model of chromosome organization during interphase (Fudenberg 

et al., 2015), (Bouwman and de Laat, 2015; Nichols and Corces, 2015; Sanborn et al., 2015), 

can demonstrate many of these characteristics.

Central to this model is the active (ATP consuming) process of loop extrusion, where a 

loop-extruding factor, possibly cohesin during interphase and condensin during mitosis, 

associates with the chromatin fiber and starts creating a progressively larger loop (Figure 

3A). A loop-extrusion mechanism (under similar names of “processive loop enlargement” 

(Nasmyth, 2001), “loop enlargement” (Kimura et al., 1999)) has been suggested as a 

mechanism of chromosome compaction and chromatid segregation (Alipour and Marko, 

2012; Nasmyth, 2001) in mammalian cells, and a mechanism of chromosome segregation 

[see (Gruber, 2014; Reyes-Lamothe et al., 2012), and most recently (Wang et al., 2015)] and 

repair (Allen et al., 1997) in bacteria. Despite of these earlier proposals, the loop-extrusion 

mechanism remains largely hypothetical.

Alipour and Marko have introduced a 1D model of multiple loop-extruding factors binding 

to DNA, which demonstrated that exchanging loop-extruding factors can form stacked 

configurations where a single loop is stabilized by multiple factors (Alipour and Marko, 

2012). More recently Goloborodko et al. (Goloborodko et al., 2015; Goloborodko el al., 
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2016) have demonstrated by simulations that loop-extruding factors that exchange between 

the nucleoplasm and chromatin fiber self-organize chromatin into a dynamic array of 

consecutive loops. Depending on processivity and density of loop-extruding factors, the 

system self-organizes into one of the two steady state regimes: a dense (mitotic) regime 

where loop-extruding factors drastically compact a long chromatin fiber forming an array of 

consecutive loops to generate mitotic chromosomes (Fig 2E), and a sparse (interphase) 

regime where loops are separated by gaps and provide moderate compaction (Fig 2C). Our 

Hi-C study of human mitotic chromosome (Naumova et al., 2013) have provided a strong 

support to these theoretical predictions, demonstrating that an array of consecutive 

stochastically positioned ~100Kb loops that can be formed by loop-extruding condensins, 

and further longitudinally compacted, has a 3D structure that quantitatively agrees with 

mitotic Hi-C data. These studies have not considered its role in TAD formation in 

interphase.

Fudenberg et al. (Fudenberg et al., 2015) and Sandborn et al. (Sanborn et al., 2015) have 

proposed that TADs can be formed by loop extrusion activity of multiple exchanging 

cohesins that are stalled at TAD boundaries. When bound, a cohesin forms a progressively 

larger loop until cohesin encounters an obstacle, either another cohesin or due to interactions 

with boundary proteins, including CTCF (Fig 3A-C). This minimal model of (Fudenberg et 

al., 2015) doesn’t require loading or unloading of cohesins at specific sites or additional 

stabilization of cohesin upon binding to CTCF .. This mechanism was tested by polymer 

simulations, which showed formation of TADs that recapitulate qualitative and quantitative 

characteristics of TADs observed in Hi-C data. Such characteristics include the decay of the 

contact probability curve Pwithin(s) with genomic separation s, when both loci are located 

within the same TAD, and the same curve Pbetween(s) for interactions between neighboring 

TADs. Fudenberg et al., (2015) showed that the best quantitative agreement was achieved 

when each cohesin can extrude a loop of ~100-200Kb each, and cohesin density of DNA is 

about one per 100-200Kb, corresponding to about 30,000-60,000 cohesin molecules per 

diploid genome.

Interestingly, the model of human mitotic chromosome (Naumova et al., 2013) suggested 

mitotic loops to be of about the same ~100Kb size, while requiring much higher (×10-20) 

number of loop-extruders to achieve significant linear compactions of the chromosome 

(Goloborodko et al., 2015). In fact, Naumova et al (Naumova et al., 2013) were the first to 

demonstrate that an array of consecutive loops has a shallow scaling of contact probability 

P(s)~s−0.5, which is similar to that within TADs Pwithin(s)~s−0.6..−0.7 as was more recently 

demonstrated (Fudenberg et al., 2015; Sanborn et al., 2015). In summary, this loop-

extruding model suggests that a TAD is composed by several dynamic loops that are 

constantly extruded by cohesins and dispersed when cohesins dissociate.

A very similar model has been put forward most recently in Sanburn et al. (Sanborn et al., 

2015). This model additionally requires that upon formation of the border-to-border loop, 

interactions with CTCF stabilize a cohesin complex preventing its dissociation, making such 

loop practically irreversible. This model also shows excellent agreement with the Hi-C data, 

with Pwithin(s)~s−0.6..−0.7 scaling, and was able to reproduce qualitatively maps obtained by 

deletions and inversions of specific CTCF sites. The study claims to be able to compute Hi-
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C maps from CTCF occupancy data. According to this model, a TAD is a stable large 

border-to-border loop, while other intra-TAD loops are transient.

These models can explain observed preferential inward orientation of CTCF sites flanking a 

TAD (de Wit et al., 2015; Gómez-Marín et al., 2015; Guo et al., 2015; Rao et al., 2014; 

Vietri Rudan et al., 2015). If cohesin-halting function requires a proper orientation of CTCF 

relative to cohesin, then only those CTCF sites that provide such (inward) orientation will 

serve as TAD boundaries, thus explaining enrichment of such sites at TAD boundaries. 

Interestingly, TADs formed by loop extrusion can also reproduce not only enrichment of 

interactions within a TAD, but also a striking feature observed in about 50% of TADs: an 

enrichment of contacts between two TAD borders, i.e. a border-to-border loop (Rao et al., 

2014).

Nichols and Corces (Nichols and Corces, 2015) and Bouwman and de Laat (Bouwman and 

de Laat, 2015) have also put forward hypotheses that loop extrusion, possibly mediated by 

cohesin, is a mechanism underlying formation of loops between TAD boundaries. In their 

models, cohesin binds to CTCF residing at one of the borders and processively extrude a 

single loop until CTCF residing at another border is reached. Similar to Fudenberg et al. 

(Fudenberg et al., 2015), the model would explain preferential orientation of CTCF sites at 

the borders. These models have not yet been tested by simulations and it remains to be seen 

whether they can reproduce other characteristics of TADs. Based on simulations of 

Fudenberg et al. (2015), stable loops between domain boundaries are inconsistent with 

TADs as a single loop cannot reproduce relatively uniform contact enrichment with a TAD.

What features allow a loop extrusion mechanism to produce TADs with their characteristic 

~two-fold enrichment of contact probabilities? In essence, loop extrusion facilitates 

formation of 3D contacts by an effectively one-dimensaional process that can be controlled 

by proteins bound at TAD boundaries. Insulating action of these boundary elements ensures 

that extruded loops bring together only elements located within a single TAD and not pairs 

located in different domains, leading to enrichment of interactions within TADs. Note that 

effective linear insulation between TADs does not prevent formation of 3D contacts 

between them, but makes them less likely than intra-TAD contacts. Most importantly, 

extrusion-based models provide a molecular mechanism of how DNA-bound proteins, e.g. 

at TAD boundaries, and that are much smaller in size than the formed loops, can reduce the 

frequency of interactions between TADs (Fig 2E, Fig 3C).

We also anticipate that loop extrusion can facilitate functional communications by bringing 

loci (genes and regulatory elements) together in a specific close molecular arrangement (Fig 

3D, e.g. small distance and orientation specific). Such close range contacts may be quite 

different, and functionally distinct, from a stochastic 3D collision between the two loci. 

Although 3D collisions are abundant within as well as between TADs, close molecular 

arrangement provided by loop extrusion would be limited only to elements located within 

the same TAD (Fig 3C,D). This can be a mechanism by which insulating elements at TAD 

boundaries can prevent formation of functional contacts between different TADs and hence 

provide functional insulation that is much more significant than the modest 2-fold difference 

in observed 3D contact frequencies. Importantly, the active process of loop extrusion could 
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also make such functional interactions less stochastic, with smaller cell-to-cell and temporal 

variation, as they are moderated by an active 1D- rather than a diffusive 3D process.

Taken together, these arguments suggest that if functional interactions require specific 

molecular arrangement that can be created by loop extruding factors, rather than 3D 

contacts, then effectively 1-dimensional active loop extrusion can provide features that are 

hard to achieve by 3D contacts. Such features include: (a) smaller cell-to-cell and temporal 

variation of functional interactions between elements located <1Mb apart; (b) reliable 

insulation of functional interactions by CTCF and other boundary occupying proteins, 

despite much small sizes of such proteins than the formed loops; (c) possibility of linear 

spreading of such interactions when boundary elements are removed; (d) preservation of 

genomic orientation between elements when interactions are created by loop extrusion.

Other communication in cis

One critical feature of active moderation of contacts within TADs through tracking and loop 

extrusion is that it ensures that loci communicate only in cis. Would such mechanism also be 

involved in other communications? For instance, any tracking mechanism may transport and 

deliver signals, e.g. ncRNAs from one location to another, either within a TAD, or across 

larger sections of chromosomes. One particularly well-studied example is the process of X-

inactivation. In female mammals one X chromosome expresses Xist RNA from one copy of 

the X, and this RNA will ultimately cover the entire X chromosome. The mechanism by 

which Xist spreads is not well understood. One model is that Xist is simply diffusing in 3D 

from its source, the Xist locus (Engreitz et al., 2013). This model is based on the observation 

that upon Xist induction from a still active X, the Xist RNA is found to be associated 

initially with gene dense loci that are also close in 3D to the Xist locus when the X 

chromosome is active. Although this can indeed point to 3D spreading, it may also be 

related to the fact that Xist generally binds more with gene dense regions (Sarma et al., 

2014; Simon et al., 2014). Also, a 3D spreading mechanism cannot prevent spreading of 

Xist to other chromosomes. Therefore a cis-spreading mechanism remains very likely, and 

may involve similar processes as loop extrusion and tracking.

Another exciting example of spreading and tracking through TADs was recently described 

by a set of publications from the Alt lab (Dong et al., 2015; Hu et al., 2015). Alt and co-

workers studied RAG-dependent V(D)J recombination. They found that RAG-mediated 

recombination is constrained within a TAD defined by pairs of convergent CTCF-bound 

elements. Like enhancer-promoter interactions, RAG-dependent recombination involves 

interactions between pairs of sites (recombination signal sequences, RSS). Intriguingly, 

these authors found an RSS orientation dependence of RAG off-target activity within CTCF 

loops spanning up to 2Mb and proposed that RAG complexes initially bind one RSS and 

then track linearly along the chromatin fiber till it encounters a convergent RSS.

Topological machines

The studies highlighted above provide intriguing evidence for directional and cis-guided 

long-range interactions. While DNA extrusion by FtsK and SpoIIIE proteins in bacterial has 

been well established (Gruber, 2014), there is as of yet no direct evidence that eukaryotic 
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complexes are tracking in cis, or extruding loops in eukaryotes. We propose that the cell has 

evolved multiple machineries that we refer to as topological machines that can perform this 

action. We predict that such machines need to have the following characteristics: 1) Bind 

DNA, possibly in a directional manner. 2) Translocate along the chromatin fiber, possibly in 

a directional manner. 3) For looping, the machinery needs two motors moving in opposite 

directions. 4) Their migration can be blocked by other complexes, sometimes in a directional 

manner. Such blocking complexes may be located at TAD boundaries (e.g. CTCF), but can 

be any other complex such as those associated with enhancers, promoters and other 

regulatory elements that will lead to those elements becoming juxtaposed.

Are there any known protein complexes that have such properties? Several proteins are 

known to have translocase activity, several helicase can translocate along dsDNA without 

unwinding the duplex (see (Singleton et al., 2007) for review). These helicases and 

translocases share similarity to mammalian SMC proteins (including cohesin and condensin) 

in the P-loop containing ATPase domains. As was suggested in 1990s (Guacci et al., 1993; 

Hirano et al., 1995; Peterson, 1994) domain architecture of SMC proteins (ATPase, coiled 

coil arm, hinge, coiled coil arm, ATPase) resembles those of cytoplasmic motors such as 

kinesins and myosins, leading to a proposal that SMC proteins constitute chromatin 

mechanochemical proteins that actively drive mitotic condensation. Since then, however, the 

main focus has been on ability of SMC proteins to form a ring that can encircle that DNA. 

SMC complexes have been implicated in a variety of chromosome architectural processes 

such chromatin looping (Crane et al., 2015; Hirano, 2012; Kagey et al., 2010; Nasmyth, 

2001), TAD formation (Crane et al., 2015; Seitan et al., 2013; Zuin et al., 2014), sister 

chromatid cohesion (Guacci et al., 1997; Michaelis et al., 1997; Nasmyth and Haering, 

2009), and chromosome condensation and dosage compensation (Crane et al., 2015; Hirano, 

2012).

Direct evidence that SMC - containing complexes can track in cis, and make orientation-

specific loops is still scant, though some recent in vitro observations suggest SMC 

complexes can slide along DNA (Kim and Loparo, 2016). Interestingly, early work showed 

that condensin could induce compaction of an isolated stretched DNA by dynamically 

introducing loops along the DNA (Strick, 2004). Similarly, at about the same time the 

cohesin complex was shown to be loaded at one chromosomal position and then to be 

moved along the chromatin fiber to other positions (Lengronne et al., 2004).

There are several aspects of this proposed mechanism that are currently difficult to explain 

in molecular terms. First, how can such a machine travel along a highly complex chromatin 

fiber containing nucleosomes and a large set of additional non-histone factors? How fast can 

such chromosome motors move along DNA extruding loops, and how is motion of motors 

synchronized and regulated? Does this process introduce topological stress that needs to be 

relieved by topoisomerases, as was suggested earlier (Kimura et al., 1999)? Interestingly, 

bacterial DNA-extruding translocase FtsK is able to translocate at an astonishing speed of 

~5Kb/s and to displace DNA-bound roadblocks (Crozat et al., 2010), supporting feasibility 

of translocation along chromatinized DNA and possibility of extruding ~200Kb loops during 

~10-20min turnover time of cohesion (Gerlich et al., 2006).
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Finally, we consider it likely that there are multiple machines that can perform this 

mechanism, besides SMC complexes. For instance, RNAP polymerase II is obviously 

tracking along the chromatin while transcribing genes. In an interesting recent study Blobel 

and co-workers found evidence that the moving polymerase may remain associated also 

with the promoter leading to dynamic loop formation between the promoters and body of 

gene (Lee et al., 2015). Tracking and extruding genes by active polymerases has also been 

reported by the Cook laboratory (Larkin et al., 2013). Could such polymerase-based loop 

extrusion also lead to enhancer-promoter interactions, perhaps related to previously 

proposed linking models (Bulger and Groudine, 1999)?. Further, as mentioned above Alt 

and co-worked have proposed that an RAG-containing complex scans chromatin within 

TADs during V(D)J recombination.

3D genome and noisy and stochastic gene expression

Although compartmentalization and potential cis-tracking canalizes interactions in cis and 

towards pairs of loci located within insulated domains, the spatial separation of such 

domains is by no means absolute. This is apparent from genome-wide chromatin interaction 

maps where one can detect interactions between loci located in different TADs, 

compartment or even on different chromosomes. These interactions are of low frequency. 

Thus chromatin interaction data, e.g. obtained with Hi-C or TCC, reflect the sum of many 

different 3D folding states of the genome in the population (Kalhor et al., 2011). Possibly, 

TAD boundaries are not implemented in all cells in the population and may be stochastic 

due to dynamic dissociation-re-association of CTCF, leading to fusion of adjacent domains 

in a subset of cells. It is tempting to propose that these low-frequency inter-domain, and 

inter-chromosomal interactions may contribute to gene expression noise and cell-to-cell 

variability in expression patterns and levels (Krijger and de Laat, 2013). In one careful study 

it was found that ectopic insertion of a strong enhancer, the beta-globin locus control locus, 

on chromosome 8 could affect expression of the endogenous beta-globin genes located on 

chromosome 7, but this activation only occurred in the very small subpopulation of cells 

where the ectopic locus control regions physically interacted with the globin genes 

(Noordermeer et al., 2011). These authors coined the term “Spatial Effect Variegation” to 

describe this phenomenon.

In cases where cells aim to express a gene in a highly stochastic manner, this may be one 

mechanism to achieve this. Regulation of olfactory receptor genes in neurons represents an 

interesting example of this, as proposed and carefully documented by the Lomvardas 

laboratory (Lomvardas et al., 2006; Markenscoff-Papadimitriou et al., 2014; Monahan and 

Lomvardas, 2015). Olfactory neurons contain several thousand olfactory receptor genes but 

each neuron expresses only one of these, and different neurons express different receptors. 

How can cells stochastically pick and express only one olfactory gene? The full answer to 

that question is not known yet, and many different processes appear to play a role including 

signaling feedback loops to repress expression of any additional receptor genes once a 

receptor is active (Dalton et al., 2013). But a role for stochastic inter-chromosomal 

interactions in initial picking a single receptor gene seems likely. Lomvardas and co-workers 

found that although there are thousands of receptor genes spread all over the genome, they 

are regulated by only a small number of enhancers (Markenscoff-Papadimitriou et al., 2014). 
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To regulate most of the receptor genes, the enhancers will often have to act in trans, and as 

outlined above, such inter-chromosomal interactions occur in a highly stochastic manner. 

Thus, in any neuron the enhancers could interact with and activate only a very small subset 

of all receptor genes. This would be an example where the cell takes advantage of the 

incomplete spatial insulation of sub-chromosomal domains, and the stochastic sub-nuclear 

positioning of chromosomes.

Other roles for cis-communications: mitotic chromosome condensation

Chromosome condensation during prophase involves establishment of long-range 

interactions along entire chromosomes, which also involves cis-communication in order to 

prevent such interactions from occurring between different chromosomes. Extensive 

imaging experiments, mostly led by Laemmli and co-workers, and more recent 5C and Hi-C 

analyses combined with polymer simulations have led to a model where mitotic 

chromosomes fold as linearly organized longitudinally compressed arrays of randomly 

positioned consecutive chromatin loops (Dekker, 2014; Earnshaw and Laemmli, 1983; 

Marsden and Laemmli, 1979; Naumova et al., 2013). We had proposed that this structure is 

formed through loop extrusion along the chromosome followed by longitudinal compression 

(Naumova et al., 2013). One important feature of such a model is that looping interactions 

are ensured to occur in cis only. Furthermore, simulations show that loop extrusion mediated 

mitotic condensation leads to segregation and individualization of chromatids (Goloborodko 

et al., 2016). Transition from G2 to mitosis (Figure 3) can then be manifested by 

replacement of one class of loop-extruding enzymes (cohesins) with another (condensins), 

which should be present about 10-fold higher abundance, and loss of boundary elements 

(including CTCF) to provide uniform condensation and segregation of sister chromatids. If 

correct, loop extrusion may be a general mechanism for chromosome folding throughout the 

cell cycle.

Outlook

General principles guiding the spatial conformation of the chromosomes, such as 

compartmentalization, are now becoming increasingly understood and this is leading to a 

better understanding of long-range chromosomal communication. However, important gaps 

in our understanding remain especially regarding the dynamics of loci with respect to each 

other, cell-to-cell variability in chromosome folding and the identity and activity of 

machineries that drive these processes. A deeper understanding into the dynamics of 

chromatin within domains and along chromosomes, the mechanisms by which loci move 

(e.g. through loop extrusion and tracking), and how complexes track along chromatin, will 

lead to more quantitative models for gene regulation through long-range interactions over 

time and to mechanistic insights into cellular variability in transcription. Importantly, though 

loop extrusion is an appealing model that explains many experimental observations, this 

model remains to be tested experimentally. Further characterization of the mechanism of 

action of candidate topological machines such as cohesin and condensin in facilitating and 

preventing long-range interactions, and identification of other such machineries that no 

doubt exist, promise to reveal how the genome communicates.
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Figure 1. Chromosomal communication
Top: communication between genomic loci by 3D looping interactions. For large loops, e.g. 

tens to hundreds of Kb, such interactions are not sensitive to locus orientation. Also, 3D 

interactions do not readily distinguish interactions with loci located on the same 

chromosome (in cis) or on different chromosomes (in trans). Middle: Singles emanating 

from one locus (e.g. RNA transcribed at that locus, a protein complexes recruited at that 

site) can spread in cis along the chromatin fiber till a target locus is reached. This mode of 

communications can be sensitive to relative orientation of the target locus, and is strictly in 
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cis. Bottom: Communication by 3D diffusion of factors such as RNA or proteins released 

from one locus till they reach target loci. This mode of communication is not sensitive to 

target orientation and cannot distinguish cis from trans.
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Figure 2. Physical aspects of chromosomal communication
A. Short-range character of molecular interactions: molecular affinity is limited to 1-10nm 

range, and long-range attraction between chromosomal loci are impossible. B. Polymeric 

nature of chromatin made interactions even between relatively close loci infrequent, leading 

to large cell-to-cell variation. C. Localized dynamics of chromatin leads to mostly local 

exploration limited to 1-2um swept during a cell cycle. D. Chromosomal territories make cis 

interactions are much more likely and showing less cell-to-cell variation, while trans being 

highly variable. E. Individual proteins are much small (~3nm) than sizes of even modest 
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(100-150Kb) chromatin region that has ~300nm in diameter and ~1-3um in length, making it 

difficult to insulate 3D interactions between chromosomal loci.
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Figure 3. Loop extrusion as a moderator of chromosomal communications
A. The mechanism of loop extrusion. B. Blocking of loop extrusion by boundary element 

(e.g. CTCF) that can halt cohesin only if properly oriented, as determined by orientation of 

its binding site. Fudenberg et al. assumed that interactions with CTCF would halt loop-

extruding activity of only one of two cohesin motors, while the unobstructed motor can 

continue extruding a loop. C. In this picture, loop extrusion is a universal mechanism that 

provides both formation of TADs and cis communication during interphase and 

chromosome compaction during mitosis, both by about 100Kb loops but with different 

spacing between the loops. During interphase loop extrusion is performed by cohesin and 

blocking at TAD boundaries can be performed by several factors, including binding by 

CTCF. Blocking of loop extrusion allows small insulating factors to insulate interactions 

between distal elements (Fig 2E). D. We propose that loop extrusion can also facilitate 

close-range contacts between functional elements, by bringing them in direct molecular 
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contact. Such interactions are possibly only within a TAD and are completely insulated by 

extruding-blocking boundary elements. E. During mitosis, loop extrusion is performed by 

condensins that should be more abundant on DNA making each loop reinforced by multiple 

condensins (Goloborodko et al., 2015, 2016).
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