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Abstract

While many perceptual and cognitive phenomena are well described in terms of
Bayesian inference, the necessary computations are intractable at the scale of real-
world tasks, and it remains unclear how the human mind approximates Bayesian
computations algorithmically. We explore the proposal that for some tasks, hu-
mans use a form of Markov Chain Monte Carlo to approximate the posterior dis-
tribution over hidden variables. As a case study, we show how several phenomena
of perceptual multistability can be explained as MCMC inference in simple graph-
ical models for low-level vision.

1 Introduction

People appear to make rational statistical inferences from noisy, uncertain input in a wide variety
of perceptual and cognitive domains [1, 9]. However, the computations for such inference, even for
relatively small problems, are often intractable. For larger problems like those people face in the
real world, the space of hypotheses that must be entertained is infinite. So how can people achieve
solutions that seem close to the Bayesian ideal? Recent work has suggested that people may use
approximate inference algorithms similar to those used for solving large-scale problems in Bayesian
AI and machine learning [23, 4, 14]. “Rational models” of human cognition at the level of compu-
tational theories are often inspired by models for analogous inferences in machine learning. In the
same spirit of reverse engineering cognition, we can also look to the general-purpose approximation
methods used in these engineering fields as the inspiration for “rational process models”—principled
algorithmic models for how Bayesian computations are implemented approximately in the human
mind.

Several authors have recently proposed that humans approximate complex probabilistic inferences
by sampling [19, 14, 21, 6, 4, 24, 23], constructing Monte Carlo estimates similar to those used in
Bayesian statistics and AI [16]. A variety of psychological phenomena have natural interpretations
in terms of Monte Carlo methods, such as resource limitations [4], stochastic responding [6, 23] and
order effects [21, 14]. The Monte Carlo methods that have received most attention to date as rational
process models are importance sampling and particle filtering, which are traditionally seen as best
suited to certain classes of inference problems: static low dimensional models and models with
explicit sequential structure, respectively. Many problems in perception and cognition, however,
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require inference in high dimensional models with sparse and noisy observations, where the correct
global interpretation can only be achieved by propagating constraints from the ambiguous local
information across the model. For these problems, Markov Chain Monte Carlo (MCMC) methods
are often the method of choice in AI and machine vision [16]. Our goal in this paper is to explore
the prospects for rational process models of perceptual inference based on MCMC.

MCMC refers to a family of algorithms that sample from the joint posterior distribution in a high-
dimensional model by gradually drifting through the hypothesis space of complete interpretations,
following a Markov chain that asymptotically spends time at each point in the hypothesis space
proportional to its posterior probability. MCMC algorithms are quite flexible, suitable for a wide
range of approximate inference problems that arise in cognition, but with a particularly long history
of application in visual inference problems ([8] and many subsequent papers).

The chains of hypotheses generated by MCMC shows characteristic dynamics distinct from other
sampling algorithms: the hypotheses will be temporally correlated and as the chain drifts through hy-
pothesis space, it will tend to move from regions of low posterior probability to regions of high prob-
ability; hence hypotheses will tend to cluster around the modes. Here we show that the characteristic
dynamics of MCMC inference in high-dimensional, sparsely coupled spatial models correspond to
several well-known phenomena in visual perception, specifically the dynamics of multistable per-
cepts.

Perceptual multistability [13] has long been of interest both phenomenologically and theoretically
for models of perception as Bayesian inference [7, 20, 22, 10]. The classic example of perceptual
multistability is the Necker cube, a 2D line drawing of a cube perceived to alternate between two
different depth configurations (Figure 1A). Another classic phenomenon, extensively studied in psy-
chophysics but less well known outside the field, is binocular rivalry [2]: when incompatible images
are presented to the two eyes, subjects report a percept that alternates between the images presented
to the left eye and that presented to the right (e.g., Figure 1B).

Bayesian modelers [7, 20, 22, 10] have interpreted these multistability phenomena as reflections
of the shape of the posterior distribution arising from ambiguous observations, images that could
have plausibly been generated by two or more distinct scenes. For the Necker cube, two plausible
depth configurations have indistinguishable 2D projections; with binocular rivalry, two mutually
exclusive visual inputs have equal perceptual fidelity. Under these conditions, the posterior over
scene interpretations is bimodal, and rivalry is thought to reflect periodic switching between the
modes. Exactly how this “mode-switching” relates to the mechanisms by which the brain imple-
ments Bayesian perceptual inference is less clear, however. Here we explore the hypothesis that
the dynamics of multistability can be understood in terms of the output of an MCMC algorithm,
drawing posterior samples in spatially structured probabilistic models for image interpretation.

Traditionally, bistability has been explained in non-rational mechanistic terms, for example, in terms
of physiological mechanisms for adaptation or reciprocal inhibition between populations of neurons.
Dayan [7] studied network models for Bayesian perceptual inference that estimate the maximum a
posteriori scene interpretation, and proposed that multistability might occur in the presence of a
multimodal posterior due to an additional neural oscillatory process whose function is specifically
to induce mode-switching. He speculated that this mechanism might implement a form of MCMC
inference but he did not pursue the connection formally. Our proposal is most closely related to the
work of Sundareswara and Schrater [20, 22], who suggested that mode-switching in Necker cube-
type images reflects a rational sampling-based algorithm for approximate Bayesian inference and
decision making. They presented an elegant sampling scheme that could account for Necker cube
bistability, with several key assumptions: (1) that the visual system draws a sequence of samples
from the posterior over scene interpretations; (2) that the posterior probability of each sample is
known; (3) that samples are weighted based on the product of their posterior probabilities and a
memory decay process favoring more recently drawn samples; and (4) that perceptual decisions are
made deterministically based on the sample with highest weight.

Our goal here is a simpler analysis that comes closer to the standard MCMC approaches used for
approximate inference in Bayesian AI and machine vision, and establishing a clearer link between
the mechanisms of perception in the brain and rational approximate inference algorithms on the
engineering side. As in most applications of Bayesian inference in machine vision [8, 16], we do not
assume that the visual system has access to the full posterior distribution over scene interpretations,

2



Figure 1: (A) Necker cube. (B) Binocular rivalry stimuli. (C) Markov random field image model with lattice
and ring (D) topologies. Shaded nodes correspond to observed variables; unshaded nodes correspond to hidden
variables.

which is expected to be extremely high-dimensional and complex. The visual system might be
able to evaluate only relative probabilities of two similar hypotheses (as in Metropolis-Hastings),
or to compute local conditional posteriors of one scene variable conditioned on its neighbors (as
in Gibbs sampling). We also do not make extra assumptions about weighting samples based on
memory decay, or require that conscious perceptual decisions be based on a memory for samples;
consciousness has access to only the current state of the Markov chain, reflecting the observer’s
current brain state.

Here we show that several characteristic phenomena of multistability derive naturally from applying
standard MCMC inference to Markov random fields (MRFs) – high dimensional, loosely coupled
graphical models with spatial structure characteristic of many low-level and mid-level vision prob-
lems. Specifically, we capture the classic findings of Gamma-distributed mode-switching times in
bistable perception; the biasing effects of contextual stimuli; the situations in which fused (rather
than bistable) percepts occur, and the propagation of perceptual switches in traveling waves across
the visual field. Although it is unlikely that this MCMC scheme corresponds exactly to any process
in the visual system, and it is almost surely too simplified or limited as a general account of percep-
tual multistability, our results suggest that MCMC could provide a promising foundation on which
to build rational process-level accounts of human perception and perhaps cognition more generally.

2 Markov random field image model

Our starting point is a simple and schematic model of vision problems embodying the idea that
images are generated by a set of hidden variables with local dependencies. Specifically, we assume
that each observed image element xi is connected to a hidden variable zi by a directed edge, and each
hidden variable is connected to its neighbors (in set ci) by an undirected edge (thus implying that
each hidden variable is conditionally independent of all others given its neighbors). This Markov
property is often exploited in computer vision [8] because elements of an image tend to depend on
their adjacent neighbors, but are less influenced by more distant elements. Formally, this assumption
corresponds to a Markov random field (MRF). Different topologies of the MRF (e.g., lattice or ring)
can be used to capture the structure of different visual objects (Figure 1C,D). The joint distribution
over configurations of hidden and observed variables is given by:

P (z,x) = Z−1 exp

[
−
∑
i

R(xi|zi)− V (zi|zci)

]
, (1)

where Z is a normalizing constant, and R and V are potential functions. In a Gaussian MRF, the
conditional potential function over hidden node i is given by

V (zi|zci) = µi − λ
∑
j∈ci

(zi − zj)2, (2)

where λ is a precision (inverse variance) parameter specifying the coupling between neighboring
hidden nodes; when λ is large, a node will be strongly influenced by its neighbors. The µi term
represents the prior mean of zi, which can be used to encode contextual biases, as we discuss below.

We construct the likelihood potential R(xi|zi) to express the ambiguity of the image by making it
multimodal: several different hidden causes are equally likely to have generated the image. Since
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for our purposes only the likelihood of xi matters, we can arbitrarily set xi = 0 and formalize the
multimodal likelihood as a mixture of Gaussians evaluated at points a and b:

R(xi|zi) = N (zi; a, σ
2) +N (zi; b, σ

2). (3)

The computational problem for vision (as we are framing it) is to infer the hidden causes of an
observed image. Given an observed image x, the posterior distribution over hidden causes z is

P (z|x) = P (x|z)P (z)∫
z
P (x|z)P (z)dz

. (4)

There are a number of reasons why Equation 4 may be computationally intractable. One is that the
integration in the denominator may be high dimensional and lacking an analytical solution. Another
is that there may not exist a simple functional form for the posterior. Assuming it is intractable to
perform exact inference, we now turn to approximate solutions based on sampling.

3 Markov chain monte carlo

The basic idea behind Monte Carlo methods is to approximate a distribution with a set of samples
drawn from that distribution. In order to use Monte Carlo approximations, one must be able to draw
samples from the posterior, but it is often impossible to do so directly. MCMC methods address
this problem by drawing samples from a Markov chain that converges to the posterior distribution
[16]. There are many variations of MCMC methods but here we will focus on the simplest: the
Metropolis algorithm [18]. Each step of the algorithm consists of two stages: a proposal stage and
an acceptance stage. An accepted proposal is a sample from a Markov chain that provably converges
to the posterior. We will refer to z(l) as the “state” at step l. In the proposal stage, a new state z′ is
proposed by generating a random sample from a proposal density Q

(
z′; z(l)

)
that depends on the

current state. In the acceptance stage, this proposal is accepted with probability

P
(
z(l+1) = z′|z(l)

)
= min

[
1,

P (z′|x)
P
(
z(l)|x

)] , (5)

where we have assumed for simplicity that the proposal is symmetric: Q(z′; z) = Q(z; z′). If the
proposal is rejected, the current state is repeated in the chain.

4 Results

We now show how the Metropolis algorithm applied to the MRF image model gives rise to a number
of phenomena in binocular rivalry experiments. Unless mentioned otherwise, we use the following
parameters in our simulations: µ = 0, λ = 0.25, σ = 0.1, a = 1, b = −1. For the ring topology, we
used λ = 0.2 to compensate for the fewer neighbors around each node as compared to the lattice
topology. The sampler was run for 200, 000 iterations. For some simulations, we systematically ma-
nipulated certain parameters to demonstrate their role in the model. We have found that the precise
values of these parameters have relatively little effect on the model’s behavior. For all simulations
we used a Gaussian proposal (with standard deviation 1.5) that alters the state of one hidden node
(selected at random) on each iteration.

4.1 Distribution of dominance durations

One of the most robust findings in the literature on perceptual multistability is that switching times
in binocular rivalry between different stable percepts tend to follow a Gamma-like distribution. In
other words, the “dominance” durations of stability in one mode tend to be neither overwhelmingly
short nor long. This effect is so characteristic of binocular rivalry that there have been countless
psychophysical experiments measuring the differences in Gamma switching time parameters across
manipulations, and testing whether Gamma, or log-normal distributions are best [2]. To account for
this characteristic behavior, many papers have described neural circuits that could produce switching
oscillations with the right stochastic dynamics (e.g., [25]). Existing rational process models of
multistability [7, 20, 22] likewise appeal to specific implementational-level constraints to produce
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Figure 2: (A) Simulated timecourse of bistability in the lattice MRF. Plotted on the y-axis is the number of nodes
with value greater than 0. The horizontal lines show the thresholds for a perceptual switch. (B) Distribution
of simulated dominance durations (mean-normalized) for MRF with lattice topology. Curves show gamma
distributions fitted to simulated (with parameter values shown on the right) and empirical data, replotted from
[17]

this effect. In contrast, here we show how Gamma-distributed dominance durations fall naturally
out of MCMC operating on an MRF.

We constructed a 4 × 4 grid to model a typical binocular rivalry grating. In the typical experiment
reporting a Gamma distribution of dominance durations, subjects are asked to say which of two
images corresponds to their “global” percept. To make the same query of the current state of our
simulated MCMC chain, we defined a perceptual switch to occur when at least 2/3 of the hidden
nodes turn positive or negative. Figure 2A shows a sample of the timecourse1 and the distribution of
dominance durations and maximum-likelihood estimates for the Gamma parameters α (shape) and
β (scale), demonstrating that the durations produced by MCMC are well-described by a Gamma
distribution (Figure 2B).

It is interesting to note that the MRF structure of the problem (representing the multivariate structure
of low-level vision) is an important pre-condition to obtaining a Gamma-like distribution of domi-
nance durations: When considering MCMC on only a single node, the measured dominance dura-
tions tend to be exponentially-distributed. The Gamma distribution may arise in MCMC on an MRF
because each hidden node takes an exponentially-distributed amount of time to switch (and these
switches follow roughly one after another). In these settings, the total amount of time until enough
nodes switch to one mode will be Gamma-distributed (i.e., the sum of exponentially-distributed ran-
dom variables is Gamma-distributed). [20, 22] also used this idea to explain mode-switching. In
their model, each sample is paired with a weight initialized to the sample’s posterior probability, and
the sample with the largest weight designated as the dominant percept. Since multiple samples may
correspond to the same percept, a particular percept will lose dominance only when the weights on
all such samples decrease below the weights on samples of the non-dominant percept. By assuming
an exponential decay on the weights, the time it takes for a single sample to lose dominance will
be approximately exponentially distributed, leading to a Gamma distribution on the time it takes for
multiple samples of the same percept to lose dominance. Here we have attempted to capture this
effect within a rational inference procedure by attributing the exponential dynamics to the opera-
tion of MCMC on individual nodes in the MRF, rather than a memory decay process on individual
samples.

4.2 Contextual biases

Much discussion in research on multistability revolves around the extent to which it is influenced by
top-down processes like prior knowledge and attention [2]. In support of the existence of top-down

1It may seem surprising that the model spends relatively little time near the extremes, and that switches are
fairly gradual. This is not the phenomenology of bistability in a Necker cube, but it is the phenomenology
of binocular rivlary with grating-like stimuli where experiments have shown that substantial time is spent in
transition periods [3]. It seems that this is the case in scenarios where a simple planar MRF with nearest
neighbor smoothness like the one we’re considering is a good model. To capture the perception of depth in
the Necker cube, or rivalry with more complex higher-level stimuli (like natural scenes), a more complex and
densely interconnected graphical model would be required — in such cases the perceptual switching dynamics
will be different.
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Figure 3: (A) Stimuli used by [5] in their experiment. On the top are the standard tilted grating patches presented
dichoptically. On the bottom are the tilted grating patches superimposed on a background of rightward-tilting
gratings, a contextual cue that biases dominance towards the rightward-tilting grating patch. (B) Simulated
timecourse of transient preference for a lattice-topology MRF with and without a contextual cue (averaged
over 100 runs of the sampler). (C) Empirical timecourse of transient preference fitted with a scaled cumulative
Gaussian function, reprinted with permission from [17].

influences, several studies have shown that contextual cues can bias the relative dominance of rival
stimuli. For example, [5] superimposed rivalrous tilted grating patches on a background of either
rightward or leftward tilting gratings (Figure 3A) and showed that the direction of background tilt
shifted dominance towards the monocular stimulus with context-compatible tilt. Following [20, 22],
we modeled this result by assuming that the effect of context is to shift the prior mean towards the
contextually-biased interpretation. We simulated this contextual bias by setting the prior mean µ =
1. Figure 3B shows the timecourse of transient preference (probability of a particular interpretation
at each timepoint) for the “context” and “no-context” simulations, illustrating this persistent bias.

Another property of this timeseries is the initial bias exhibited by both the context and no-context
conditions, a phenomenon observed experimentally [17, 22] (Figure 3C). In fact, this is a distinctive
property of Markov chains (as pointed out by [22]): MCMC algorithms generally take multiple
iterations before they converge to the stationary distribution [16]. This initial period is known as the
“burn-in.” Thus, human perceptual inference may similarly require an initial burn-in period to reach
the stationary distribution.

4.3 Deviations from stable rivalry: fusion

Most models have focused on the “stable” portions of the bistable dynamics of rivalry; however, in
addition to the mode-hopping behavior that characterizes this phenomenon, bistable percepts often
produce other states. In some conditions the two percepts are known to fuse, rather than rival: the
percept then becomes a composite or superposition of the two stimuli (and hence no alternation is
perceived). This fused perceptual state can be induced most reliably by decreasing the distance in
feature space between the two stimuli [11] (Figure 4B) or decreasing the contrast of both stimuli
[15]. These relations are shown schematically in Figure 4A. Neither neural, nor algorithmic, nor
computational models of rivalry have thus far attempted to explain these findings.

In experiments on “fusion”, subjects are given three options to report their percept: one of two global
precepts or something in between. We define such a fused percept as a perceptual state lying between
the two “bistable” modes — that is, an interpretation between the two rivalrous, high-probability
interpretations. We can interpret manipulation of feature space distance in terms of the distance
between the modes, and reductions of contrast as increases in the variance around the modes. When
such manipulations are introduced to the MRF model, the posterior distribution changes as in Figure
4A (inset). By making the modes closer together or increasing the variance around the modes,
greater probability mass is assigned to an intermediate zone between the modes—a fused percept.
Thus, manipulating stimulus separation (feature distance) or stimulus fidelity (contrast) changes
the parameterizations of the likelihood function, and these manipulations produce systematically
increasing odds of fused percepts, matching the phenomenology of these stimuli (Figure 4B).
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Figure 4: (A) Schematic illustration of manipulating orientation (feature space distance) and contrast in binocu-
lar rivalry stimuli. The inset shows effects of different likelihood parameterizations on the posterior distribution,
designed to mimic these experimental manipulations. (B) Experimental effects of increasing feature space dis-
tance (depth and color difference) between rivalrous gratings on exclusivity of monocular percepts, reprinted
with permission from [11]. Increasing the distance in feature space between rivalrous stimuli (C) or the con-
trast of both stimuli (D), modeled as increasing the variance around the modes, increases the probability of
observing an exclusive percept in simulations.

4.4 Traveling waves

Fused percepts are not the only deviations from bistability. In other circumstances, particularly
in binocular rivalry, stability is often incomplete across the visual field, producing “piecemeal”
rivalry, in which one portion of the visual field looks like the image in one eye, while another
portion looks like the image in the other eye. One tantalizing feature of these piecemeal percepts
is the phenomenon known as traveling waves: subjects tend to perceive a perceptual switch as a
“wave” propagating over the visual field [26, 12]: the suppressed stimulus becomes dominant in
an isolated location of the visual field and then gradually spreads. These traveling waves reveal an
interesting local dynamics during an individual switch itself, rather than just the Gamma-distributed
dynamics of the time between complete switches of dominance. Like fused percepts, these intra-
switch dynamics have been generally ignored by models of multistability.

Demonstrating the dynamics of traveling waves within patches of the percept requires a different
method of probing perception. Wilson et al. [26] used annular stimuli (Figure 5A), and probed
a particular patch along the annulus; they showed that the time at which the suppressed stimulus
in the test patch becomes dominant is a function of the distance (around the circumference of the
annulus) between the test patch and the patch where a dominance switch was induced by transiently
increasing the contrast of the suppressed stimulus. This dependence of switch-time on distance
(Figure 5B) suggested to Wilson et al. that stimulus dominance was propagating around the annulus.
Using fMRI, Lee et al. [12] showed that the propagation of this “traveling wave” can be measured
in primary visual cortex (V1; Figure 5): they used the retinotopic structure of V1 to identify brain
regions corresponding to different portions of the the visual field, then measured the timing of the
response in these regions to the induced dominance switch as a function of the cortical distance from
the location of the initial switch. They found that the temporal delay in the response increased as a
function of cortical distance from the V1 representation of the top of the annulus (Figure 5C).

To simulate such traveling waves within the percept of a stimulus, we constructed an MRF with ring
topology and measured the propagation time (the time at which a mode-switch occurs) at different
hidden nodes along the ring. To simulate the transient increase in contrast at one location to induce
a switch, we initialized one node’s state to be +1 and the rest to be −1. Consistent with the idea
of wave propagation, Figure 5D shows the average time for a simulated node to switch modes as
a function of distance around the ring. Intuitively, nodes will tend to switch in a kind of “domino
effect” around the ring; the local dependencies in the MRF ensure that nodes will be more likely
to switch modes once their neighbors have switched. Thus, once a switch at one node has been
accepted by the Metropolis algorithm, a switch at its neighbor is likely to follow.

5 Conclusion

We have proposed a “rational process” model of perceptual multistability based on the idea that
humans approximate the posterior distribution over the hidden causes of their visual input with a
set of samples. In particular, the dynamics of the sample-generating process gives rise to much of
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Figure 5: Traveling waves in binocular rivalry. (A) Annular stimuli used by Lee et al. (left and center panels) and
the subject percept reported by observers (right panel), in which the low contrast stimulus was seen to spread
around the annulus, starting at the top. Figure reprinted with permission from [12]. (B) Propagation time as
a function of distance around the annulus, replotted from [26]. Filled circles represent radial gratings, open
circles represent concentric gratings. (C) Anatomical image (left panel) showing the retinotopically-mapped
coordinates of the initial and probe locations in V1. Right panel shows the measured fMRI responses for the
two outlined subregions. (D) A transient increase in contrast of the suppressed stimulus induces a perceptual
switch at the location of contrast change. The propagation time for a switch at a probe location increases with
distance (around the annulus) from the switch origin.

the rich dynamics in multistable perception observed experimentally. These dynamics may be an
approximation to the MCMC algorithms standardly used to solve difficult inference problems in
machine learning and statistics [16].

The idea that perceptual multistability can be construed in terms of sampling in a Bayesian model
was first proposed by [20, 22], and our work follows theirs closely in several respects. However, we
depart from that work in the theoretical underpinnings of our model: It is not transparent how well
the sampling scheme in [22, 24] approximates Bayesian inferences, or how it corresponds to stan-
dard algorithms where the full posterior is not assumed to be available when drawing samples. Our
goal here is to show how some of the basic phenomena of multistable perception can be understood
straightforwardly as the output of familiar, simple and effective methods for approximate inference
in Bayesian machine vision.

A related point of divergence between our model and that of [20, 22], as well as other Bayesian mod-
els of multistable perception [7, 10], is that we are able to explain multistable perception in terms of
a well-defined inference procedure that doesn’t require ad-hoc appeals to neurophysiological pro-
cesses like noise, adaptation, inhibition, etc. Thus, our contribution is to show how an inference
algorithm widely used in statistics and computer science can give rise naturally to perceptual mul-
tistability phenomena. Of course, we do not wish to argue that neurophysiological processes are
irrelevant. Our goal here was to abstract away from implementational details and make claims about
the algorithmic level. Clearly an important avenue for future work is relating algorithms like MCMC
to neural processes (indeed this connection was suggested previously by [7]).

Another important direction in which to extend this work is from rivalry with low-level stimuli to
more complex vision problems that involve global coherence over the image (such as in natural
scenes). Although similar perceptual dynamics have been observed with a wide range of ambiguous
stimuli, the absence of obvious transition periods with the Necker cube suggests that these dynamics
may differ in important ways from perception of rivalry stimuli.
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