
Learnersourcing Personalized Hints

Elena L. Glassman, Aaron Lin, Carrie J. Cai, Robert C. Miller
MIT CSAIL

Cambridge, MA USA
{elg,aaronlin,cjcai,rcm}@mit.edu

ABSTRACT
Personalized support for students is a costly gold standard in
education, but it scales poorly with the number of students.
Prior work on learnersourcing presented an approach for
learners to engage in human computation tasks while trying
to learn a new skill. Our key insight is that students, through
their own experience struggling with a particular problem,
can become experts on the particular optimizations they im-
plement or bugs they resolve. These students can then gener-
ate hints for fellow students based on their new expertise. We
present workflows that harvest and organize students’ collec-
tive knowledge and advice for helping fellow novices through
design problems in engineering. Systems embodying each
workflow were evaluated in the context of a college-level
computer architecture class with an enrollment of more than
two hundred students each semester. We show that, given
our design choices, students can create helpful hints for their
peers that augment or even replace teachers’ personalized as-
sistance.

Author Keywords
intelligent tutoring systems; crowdsourcing; learning at scale

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
One-on-one human tutoring is a costly gold standard in edu-
cation. Mastery-based instruction with corrective feedback
can offer a substantial improvement in learning outcomes
over conventional classroom teaching [1]. However, person-
alized support does not scale well with the number of stu-
dents enrolled. In large classes, it is often not feasible for stu-
dents to get personalized hints from a teacher in a timely man-
ner. Massive open online courses (MOOCs) have teacher-to-
student ratios that are smaller than large residential classes by
orders of magnitude. Intelligent tutoring systems have strived
to simulate the type of personalized support received in one-
on-one tutoring, but they are expensive and time-consuming
to build.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CSCW ’16, February 27-March 02, 2016, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3592-8/16/02$15.00
DOI: http://dx.doi.org/10.1145/2818048.2820011

Figure 1. In the self-reflection workflow, students generate hints by re-
flecting on an obstacle they themselves have recently overcome. In the
comparison workflow, students compare their own solutions to that of
other students, generating a hint as a byproduct of explaining how one
might get from one solution to the other.

In this paper, we turn to learners for generating personalized
hints. Prior work on learnersourcing presented an approach
for learners to collectively generate educational content for
future learners, such as video outlines and exam questions,
while engaging in a meaningful learning experience them-
selves [14, 22]. The proposed benefit of learnersourcing is
that learners are not only more intrinsically motivated to en-
gage with the learning content to begin with, but may also
benefit pedagogically from the task itself.

Our work builds upon learnersourcing by exploring how it
can be applied to the generation of personalized hints during
more complex problem solving. Whereas prior work deter-
mined which task to present to the learner depending on what
information was still needed [22], many educational topics
like digital circuit design require more domain expertise, rais-
ing the question of which learners should be assigned to gen-
erate which hints. Thus, beyond learnersourcing subgoals
for how-to videos, we tackle the core challenge of generat-
ing content that is tailored to both the hint-receiver’s current
progress and the hint-author’s likely level of understanding.

We present two workflows for learnersourcing hints that as-
sign hint-generating tasks to learners based on what problems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/143478344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the learner has recently solved. In the self-reflection work-
flow, students generate hints by reflecting on an obstacle they
themselves have recently overcome. In the comparison work-
flow, students compare their own solutions to those of other
students, generating a hint as a byproduct of explaining how
one might get from one solution to the other. The second
workflow operates on the output of the first, as shown in Fig-
ure 1. In both workflows, the key insight is that, through
their own experience struggling with a particular problem,
learners can become experts on the particular optimizations
they implement or bugs they resolve. The workflows can take
pressure off teaching staff while giving students the valuable
educational experiences of reflection and generating explana-
tions.

While such workflows could have many applications, this pa-
per presents a specific application within a college-level com-
puter architecture class. In this course, students implement,
debug, and optimize simulated processors by constructing
digital circuits. During both the debugging and optimization
process, hints are one mechanism for teachers to help stu-
dents fix and optimize their circuits. This paper applies our
learnersourcing workflows to two kinds of hints: debugging
hints and optimization hints. A debugging hint is a student’s
attempt to help a future student change their solution so it
generates the expected output for a particular input. An op-
timization hint is a student’s attempt to help a future student
get from one correct solution to another, more optimal solu-
tion. When hint-receivers encounter that particular situation
during their problem-solving process, the hints can be shown
to them as if they are the personalized hints an intelligent tu-
toring system might generate, or that a teacher might provide
during a one-on-one interaction.

This paper makes the following contributions:

• A design space for learnersourcing personalized hints,
drawing from experiences during early prototyping.

• Two learnersourcing processes for generating hints by
matching hint-author tasks to the needs of hint-receivers.

• The results of deployment in a 200-student class, and an
in-depth lab study with 9 participants. Results from these
studies show that personalized hints can be viably learn-
ersourced, and that these hints serve as helpful guides to
fellow students encountering the same obstacle or attempt-
ing to reach the same goal.

RELATED WORK
Our work builds on prior research on delivering personalized
support to students. It is also informed by existing research
on the pedagogical benefits of reflection and explanation.

Personalized Support
Several types of solutions have been deployed to help stu-
dents get the personalized attention they need. These solu-
tions span the spectrum from recruiting more teaching assis-
tants from the ranks of previous students [15] to automating
hints using intelligent tutoring systems.

Intelligent tutoring systems provide personalized hints and
other assistance to each student based on a pre-programmed
student model. For example, previous systems sought to pro-
vide support through the use of adaptive scripts [12], or cues
from the student’s problem-solving actions [6]. Despite the
advantage of automated support, intelligent tutoring systems
often require domain experts to design and build them, mak-
ing them expensive to develop. Furthermore, domain experts
who generate these hints may also suffer from the “curse of
knowledge”: the difficulty experts have when trying to see
something from a novice’s point of view [16].

Discussion forums derive their value from the content pro-
duced by the teachers and students who use them. These
systems can harness the benefits of peer learning, where stu-
dents can benefit from generating and receiving help from
each other. However, as the system has no student model,
the information is available to all students whether or not it is
ultimately relevant. Students can receive personalized atten-
tion only if they post a question and receive a response.

Reflection and Explanation
In this work, we aim to design opportunities for students to
help others while simultaneously reflecting on their own so-
lutions. Existing theories indicate that reflection is a critical
method for triggering the transformation from conflict and
doubt into clarity and coherence [5]. Turning that reflection
into a self-explanation further improves understanding [2].
According to Turns et al. [19], the absence of reflection in
traditional engineering education is a significant shortcom-
ing.

One challenge inherent in learnersourcing hints is the possi-
bility that novices could become confused if asked to reflect
on their solution and compare it to a fellow student’s solu-
tion. Piaget theorized that cognitive disequilibrium, experi-
enced as confusion, could trigger learning due to the creation
or restructuring of knowledge schema [10]. D’Mello et al.
maintain that confusion can be productive, as long as it is
both appropriately injected and resolved [7].

Similarly, reflecting on a peer’s conceptual development or
alternative solution may bring about cognitive conflict that
prompts reevaluation of the student’s own beliefs and under-
standing [9]. As such, peer instruction [13] and peer assess-
ment [18] have not only been integrated into many classroom
activities, but have also formed the basis of several online sys-
tems for peer-learning. For example, Talkabout organizes stu-
dents into discussion groups based on characteristics such as
gender or geographic balance [11]. HelpMeOut assists pro-
grammers debugging errors by suggesting solutions that peers
have applied in the past [8]. Recent work on learnersourcing
proposes that learners can collectively generate educational
content for future learners while engaging in a meaningful
learning experience themselves [14, 22]. Beyond existing
work, we investigate alternatives for what support students
should be prompted to provide, based on their own work as
well as the needs of their peers. We also explore several ways
to trigger productive reflection as a byproduct of hint creat-
ing, by prompting students to either self-reflect or compare
their own solutions to those produced by peers.



DESIGN SPACE
We faced a number of decisions when designing interventions
to collect and deliver hints. Here we discuss these decisions
and some alternatives.

When should learners be asked to provide hints? As soon as
a student has resolved a bug, they may have some expertise
about that bug that they can share with other students. If too
much time has passed between resolving the bug and writing
a hint, the student may forget necessary details and context, or
forget the bug altogether. A previous learnersourcing system
also prompted students to contribute content immediately af-
ter having experienced it themselves, for similar reasons [22].

How should learners access hints? A “push” model of hint
distribution might display all student-generated hints as a
constantly updating resource, following the standard model
of a course-wide discussion forum. Alternatively, a “pull”
model would dispense hints to individual students just-in-
time, when a student needs help. The hints could be algorith-
mically selected based on the student’s work so far and the
hints they have already received. We explored both of these
models, using the push model for distributing debugging hints
and the pull model for distributing optimization hints. Gener-
ating optimization hints was a required reflection activity, so
the volume and redundancy of these hints made a push model
potentially overwhelming.

What hints can we ask, or allow, a student to generate? In
cases where the student’s start state (prior to overcoming an
obstacle) and end state (after overcoming an obstacle) are
known, such as when a student fixes a bug, we ask the stu-
dent to create a hint helping other students encountering a
similar bug or start state. For example, in the case of circuit
design, we consider a student who has recently fixed a bug re-
solving a particular verification error to be capable of writing
a debugging hint associated with that verification error.

In many cases, however, a student might not face any explicit
obstacle, or their start state may not be known. For example,
a student might naturally arrive at a highly optimal circuit
design without having first tried a less optimal design. Re-
gardless of the path to their solution, the student could gener-
ate hints by comparing their own solution to a more optimal
solution, or to a less optimal solution. In this paper, we ex-
plored both of these directions by asking each student to do
both comparisons. To keep hint generation relevant to the
learner’s current task and to minimize cognitive load, we did
not ask students to generate hints between pairs of solutions
when they were familiar with neither solution.

How should hints be indexed? Indexing hints by a meaning-
ful feature of student solutions allows students to more easily
find relevant hints in a push model of hint distribution and al-
lows the system to deliver more relevant hints to each student
in a pull model of hint distribution. Optimization hints could
be indexed by the learner’s start state, end state, or start-and-
end states with respect to some metric of optimality. Debug-
ging hints could be indexed by verification errors.

During debugging, students’ solutions are run through se-
quences of teacher-designed test inputs. A verification error

occurs when a student’s solution does not return the expected
values. Because test cases have a specification of actual and
expected outputs for each input, we decided to index debug-
ging hints by the tests for which the solution deviates from
the expected output. In other words, debugging hints are as-
sociated with the verification error that disappears if the bug
is resolved.

During optimization, the goal is not simply to attain a correct
solution, but rather to arrive at a more optimal correct solu-
tion. We decided to index optimization hints by start-and-end
state: the leap from a less optimal solution to a more optimal
solution that the hint is intended to inspire. These states, the
solutions themselves, are complex circuit objects; we use the
number of transistors in a solution as a metric of its optimal-
ity. In this indexing scheme, all hints written with the intent
of helping a student with a 114-transistor solution create a
96-transistor solution are binned together.

Which hints should a student receive? In the push model of
hint distribution, this question is not relevant, but in the pull
model of hint distribution, it may be critical. Ideally, students
would receive a progression of increasingly specific hints, fol-
lowing patterns of adaptive scaffolding established in intelli-
gent tutoring system (ITS) literature [20].

Each hint should also be selected to help a student reach a
more optimal solution on the spectrum. This can be done
in several ways. Considering the zone of proximal develop-
ment, a student with a 144-transistor solution could be pro-
vided with hints to get to a 132-transistor solution, which is
the next optimal solution found by other students (see Figure
2). Alternatively, if the most common solution—the mode
of the student solution distribution—is more optimal than the
student’s current solution, the student could be given hints to
reach this common solution. As a final alternative, the student
could receive hints to get them from a 144-transistor solution
to the most optimal solution (96 transistors) found by other
students. This may require a more significant restructuring of
their solution.

Should hint-creation be a required task? As discussed in the
Related Work, generating hints can be a valuable part of the
learning process. We required all students to generate opti-
mization hints as part of a reflection activity immediately af-
ter submitting their first correct circuit. We did not require
students to generate debugging hints. This is because the
number of bugs encountered could be large, and unlike opti-
mizations, many bugs also may not lead to significant concep-
tual gain upon reflection. Because debugging hints are imme-
diately pushed out to all students, we keep both hint creation
and upvotes voluntary to minimize the signal-to-noise ratio in
hint quality.

How should the variation in hint quality be handled? In the
push model of hint distribution, we used users’ upvotes to
sort hints by quality. In the pull model of hint distribution,
we took advantage of the redundancy of the hints, and pre-
sented five hints at once. If one or more redundant hints were
of poor quality, their aggregate message might still be helpful
for a student. If most of the hints were about an feature that



Figure 2. Sankey diagram of hints composed between types of correct
solutions, binned by the number of transistors they contain. The optimal
solution has only 21 gates and 96 transistors while the most common
solution generated by students has 24 gates and 114 transistors.

is irrelevant to the student receiving the hints, the remaining
hint(s) might be about something different and more relevant.
We limited each set of hints to a size of five to avoid over-
whelming the learner with too many hints.

How public should the hint-author be? Many systems for
question-answering have a reputation system, where the au-
thor is known and recognized for contributing answers. Pre-
vious work at CSCW has examined whether reputation would
improve class forum participation [3]. For simplicity, we
chose to leave student identities hidden.

USER INTERFACE
We designed two user interfaces, one for each type of hint. To
learnersource debugging hints, we built and deployed Dear
Beta, a Meteor web application that serves as a central repos-
itory of debugging advice for and by students in the class. The
name is an allusion to both the “Dear Abby” advice column
and the Beta processor that students create in the class. To
learnersource optimization hints, we built and deployed Dear
Gamma, a web interface students were required to fill out as
a reflection activity after submitting their final correct circuit
for a class assignment.

Dear Beta
We applied the self-reflection learnersourcing workflow to
Dear Beta. After fixing a bug, a student can post a hint on
Dear Beta about how to resolve the bug, along with the veri-
fication error it caused. Other students encountering that ver-
ification error can look up these hints, upvote helpful hints,
and contributing new hints.

Consider a student working on their Beta within the digital
circuit development environment provided by the computer
architecture class. The student runs the staff-designed test file
x on their circuit. The development environment alerts them
to a verification error: for a particular input (test number n),
y was the expected output and the student’s circuit returned z.

Figure 3. Dear Beta serves as a central repository of debugging advice
for and by students, indexed by verification errors. In this figure, there
are three learnersourced hints, sorted by upvotes, for a verification error
on test no. 33 in the ‘lab5/beta’ checkoff file.

Figure 4. After fixing a bug, students can add a hint for others, ad-
dressing what mistake prevented their own solution from passing this
particular verification test.

After further examining the circuit with no success, they pull
up the Dear Beta website in order to get help (Figure 3).

Dear Beta displays all errors and hints, sorted by test file
name x then test number n, on a single page, based on stu-
dent and teacher feedback on a previously deployed proto-
type. The student can either scroll to find hints for their veri-
fication error or, to quickly navigate to the hints for their ver-
ification error, a student can alternatively enter x and n into
the bar pinned to the top of the page and click “Find or Add
Error.” This will scroll into view the hints for that error and
highlight them. If the error was not yet in the Dear Beta sys-
tem, the error will be added and scrolled into view.

To add a new hint, they can click in the text box labeled “Add
a hint!” so that it expands into a larger textbox sufficient for
typing out a paragraph of hint text (Figure 4). If there are hints
already available for the verification error of interest, these
hints are sorted by the number of upvotes they have already
received. Students can click the “Upvote” button next to any
hint if they find it helpful.

If there are no hints yet, or if the hints are unhelpful, the stu-
dent can click the “Request” button to the left of the error,
which increments a counter. This button helps communicate
the need for hints for a particular verification error to poten-
tial hint writers. This is analogous to the “Want Answers”
button and counter on Quora, a popular question-and-answer
site.

Dear Gamma
In order to learnersource optimization hints, we caught stu-
dents at a different stage in their learning process: right after
they passed all verification tests for a particular digital cir-
cuit, the Full Adder. Because students may have arrived at
their solution without encountering any particular optimiza-
tion obstacles, Dear Gamma uses the comparison workflow
for learnersourcing rather than the self-reflection workflow.



The comparison workflow is modified slightly, to accommo-
date the requirements of the course lecturer, who wanted to
make sure that all students get a chance to consider both the
most common and the most optimal solutions. The collection
of previous student solutions in Figure 1 was also curated by
the lecturer. If a student’s solution is larger than the most
common solution, they are not shown solutions larger than
their own; instead, they are asked to consider both the most
common and the most optimal solutions, so they benefit from
seeing both without doing extra work overall. Students with
the most optimal solution only consider alternative solutions
that are worse than theirs. Figure 5 shows an example of the
page for a student with a 114 transistor solution.

In this activity, students are given a pair of solutions and asked
to give a hint to future students about how to improve from
the less optimal solution to the more optimal solution. Stu-
dents write hints for two such pairs of solutions. In each pair,
one of the solutions is always their own. When the student’s
own solution is the better solution in the pair, then the student
can hint at what the peer might have missed. For example,
Remember DeMorgan’s Law: you could replace the ‘OR’ of
‘ANDs’ with a ‘NAND’ of ‘NANDs.’ When the students’ own
solution is the poorer solution in the pair, they are challenged
to first understand how the better solution uses fewer transis-
tors, and then write a hint about the insight for a peer. To aid
the student in comparing solutions, the Dear Gamma inter-
face displays the student’s own solution as a reminder of their
design, as well as an alternative picked from among other stu-
dents’ solutions.

Specifically, if a student’s solution S is just as or more optimal
than the most common solution, they are asked to (1) write a
hint to help a future student with a less optimal solution reach
solution S and (2) write a hint to help a student with solu-
tion S reach the most optimal solution. If a student’s solution
S is less optimal than the most common solution, they are
asked to write a hint to help a student with solution S reach
(1) the most common solution and (2) the most optimal solu-
tion. This scheme ensures that all students are familiar with
the most common solution and the most optimal solution and
have written two hints to help future students improve the op-
timality of their solutions.

EVALUATION
To evaluate the extent to which learnersourced hints can
support problem solving, we deployed Dear Beta and Dear
Gamma to the computer architecture class, which had an en-
rollment of more than two hundred students. Dear Beta was
deployed for 6 weeks, during which we collected student-
generated debugging hints and observed the simultaneous us-
age of those hints in a real-world setting. Dear Gamma’s opti-
mization hint collection interface was released to students as
part of a particular lab. We then conducted a lab study with
nine students to understand how they solve a typical engineer-
ing problem using these learnersourced optimization hints.

The questions our evaluation sought to answer are: (1) What
are the characteristics of student-generated hints? and (2)
Can learners solve problems using those hints?

Figure 5. This is the Dear Gamma interface for a student with a solu-
tion containing 114 transistors. In the first comparison, they are asked
to write a hint for a future student with a larger (less optimal) correct
solution. In the second comparison, they are asked to write a hint for
a future student with a solution similar to their own so that they may
reach the smallest (most optimal) correct solution.

DEAR BETA
The Dear Beta website was released as a stand-alone addi-
tional resource for students one week prior to the due date for
the final circuit design lab. Students were made aware of its
existence through a class forum announcement and signs on
chalkboards in the course’s computer lab. It was left up for
the remainder of the semester for students to refer to, if com-
pleting work late. We tracked student logins and engagement
with the site’s features. An initial prototype of Dear Beta was
deployed for two consecutive semesters prior to this final sys-
tem design and study, as well. Teachers’ feedback on those
initial deployments is summarized in the Results section.

DEAR GAMMA
Hint Succession and Categorization
While Dear Beta makes all hints available at all times, Dear
Gamma is modeled on the hint-giving mechanism of an ITS.
In prior work, sequences of hints have been posited to facili-
tate learning due to their similarity with sequences used in ex-
pert human tutoring, as well as their support of human mem-
ory processes [17]. Therefore, we further decomposed the
hints collected with Dear Gamma into the three kinds of hints
that typically comprise a hint sequence: 1) pointing hints di-
rect the student’s attention to the location of error in case the
student understood the general principle but did not know to
apply it; 2) teaching hints explain why a better solution ex-
ists by stating the relevant principle or concept; 3) bottom-out
hints indicate concretely what the student should do [20].



Two researchers independently categorized the 435 collected
Dear Gamma hints into six different categories: pure point-
ing hints (p), pointing and teaching hints (pt), pure teaching
hints (t), teaching and bottom-out hints (tb), pure bottom-out
hints (b), and hints that are irrelevant or clearly not helpful.
They first independently labeled the first 30 hints. After dis-
cussing disagreements and iterating on their understanding of
the hint categories, the coders then categorized the remaining
405 hints.

If one coder labeled a hint as a hybrid between two categories
(i.e. teaching and pointing) while the other coder labeled it
with only one category (i.e. pointing), we assigned the hint to
the pure category (i.e. pointing) that was in common between
the two coders’ labels. If there was no shared category across
the two coders, the hint was discarded. We also excluded
the minority of hints (3.2%) that were labeled as irrelevant or
unhelpful.

Lab Study
Nine out of the 226 current students in the computer architec-
ture course participated in the study. These students were re-
cruited through a course forum post. Participants were given
$30 for the study, which lasted one hour.

Students were informed that we were studying the effective-
ness of hints for optimizing circuits so that they use fewer
transistors. Students were not told who generated these hints,
nor that the hints were generated by students. During the
study, three batches of hints were shown in the order of point-
ing, teaching, and bottom-out, but randomly selected within
each category. Students began by opening up their previously
completed lab and reviewing their solution. The experimenter
noted down the number of transistors in their solution, and
randomly selected five pointing-type hints for a solution of
that size from the Dear Gamma collection. For example, if
the student had 114 transistors in their solution, they received
five hints previously generated by students who had written a
hint to help improve a 114-transistor solution. Because hints
may be of variable quality, the researcher presented hints in
batches of five to increase the chances that one of them may
be helpful.

The experimenter then asked the student to reduce the num-
ber of transistors in their solution. The experimenter ex-
plained that there were two more batches of five hints ready
for them if they became stuck. These two batches were teach-
ing hints and bottom-out hints. Students could consult outside
resources like the course website and Google as well.

After receiving each batch of hints, participants answered
the following 7-scale Likert scale questions about each hint
(1:strongly disagree, 7:strongly agree): (1) “This hint taught
me something.” (2) “This hint helped me get to a more opti-
mal circuit.” and (3) “I feel more confident that I could solve
a similar problem in the future.” We placed these questions
immediately after each batch of hints to capture user percep-
tion of hints at the time they occurred. However, to avoid
slowing down the problem-solving process, participants were
asked to explain their answers in writing only after the study,
in the post-study questionnaire. This rating process was re-

peated for the teaching hints and bottom-out hints, even if
students were able to solve the problem without asking for
these hints.

After the study, users completed a post-study questionnaire
regarding their overall impressions. Because users were
shown a batch of hints at a time, all of which were student-
generated, in the post-study questionnaire we added addi-
tional Likert-scale items, “I was able to find the most help-
ful hints and ignore the rest” and “Many hints felt repetitive,”
to understand whether users felt they could adequately ignore
irrelevant hints.

LIMITATIONS
Because these studies do not have control groups, we cannot
conclude on the magnitude of the effect on student learning.
We can only report qualitative and quantitative measures of
teachers’ and students’ engagement with the system. Some of
those observed behaviors and opinions may be derived from
the participants’ sense of novelty, rather than the underlying
value of the system. However, we deployed Dear Beta in a
real classroom setting, and in the context of a real assign-
ment, for the purpose of observing natural interaction with
the system.

RESULTS

Teacher Feedback From Early Prototypes
After deploying initial prototypes of Dear Beta for two
semesters, we invited Teaching Assistants to share their com-
plaints, requests, and experiences with us. Four TAs were
interviewed, in person or by email, and their feedback and
experiences informed Dear Beta’s final design.

T AA adapted to Dear Beta’s deployment by first asking each
help-seeking student if they had already consulted Dear Beta.
If they had not, he came back to them after visiting every-
one else in the lab help queue. When he came back to the
original help-seeking student, they had often already resolved
their problem with Dear Beta’s hints, and had a new bug they
wanted help debugging. This TA also strongly supported its
existing design as a single scannable sorted list for quickly
finding hints, rather than a purely search-based hint retrieval
mechanism or the more general class forum.

T AB described Dear Beta as a “starting point” for students,
many of whom used it diligently during debugging. T AB ap-
preciated that students who did ask for her help no longer
said, “My Beta isn’t working. Tell me why.” Instead, they
used Dear Beta as a starting point, to help them identify po-
tential locations of a bug in many pages of code.

T AB wondered if the extra hints were making it too easy to
complete the lab, possibly letting students pass without un-
derstanding. T AC echoed this concern, but he made sure each
student actually understood the Dear Beta hints whenever he
personally guided them through the debugging process. T AC
was able to describe with specific examples how Dear Beta
helped him help students quickly resolve common bugs.

Like T AA, T AC asked every help-seeking student if they had
already consulted Dear Beta. T AD was absent during most



Figure 6. Between Dear Beta’s release (4/2) and the lab’s due date (4/10),
verification errors were consistently being entered into the system. The
addition of hints followed close behind.

of Dear Beta’s deployment but still regularly recommended
Dear Beta to students who asked for her help over email. A
fifth TA declined to be interviewed on account that she did
feel she had interacted with Dear Beta enough.

T AB was concerned that the level of student involvement in
producing hints might be too low. The affordances for con-
tributing new hints in this initial prototype were not obvi-
ous and rarely visible on small screens. The final Dear Beta
design is more externally consistent with other participatory
Q&A systems, has more salient buttons for contributing new
hints, and a responsive design that accommodates screens as
small as a cell phone.

Dear Beta Study
For the week prior to the lab assignment due date, the num-
ber of registered unique users in the Dear Beta system rose
linearly from 20 to 166. It plateaued at 180 by one week after
the lab was due. For comparison, the total number of students
in the class was 226. 119 students logged in more than once
and many students logged in repeatedly.

In the 9 days between Dear Beta’s release and the lab’s due
date, users added 76 verification errors and 57 hints as a re-
sponse to those errors. Half of the errors received at least one
hint. Seven errors received as many as three hints. Figure 6
shows users’ engagement with the system over time. As soon
as the initial stock of hints were available, students began up-
voting them.

Users contributed 61 upvotes and 10 downvotes on the hints
during the same period. The highest number of upvotes (10)
was given to the hint “When entering constants, 1#4 is 1111
and 1’4 is the 4-bit representation of 1.” Remember that,
while this is a teaching-type hint, it is provided as a targeted
troubleshooting hint for students whose solution fails to pass
a specific test case. The second most upvoted hint (5 upvotes)
was “Make sure your ASEL logic is correct - don’t allow the
supervisor bit to be illegally set.”

None of the hints appear to be incorrect, though this is diffi-
cult to verify, since the teachers do not have copies of the so-
lutions from which these hints were generated. Even within a
collection of hints for the same error, not all will be relevant
to any particular solution.

Dear Gamma Study
With the Dear Gamma hints, six of the nine laboratory sub-
jects were able to improve the optimality of their circuits

within the hour that the study took place. Figure 7 illustrates
the subjects’ revisions. One student only needed one set of
pointing hints. Five students successfully revised their cir-
cuits after one set of pointing and one set of teaching hints.
Four students received a set of final bottom-out hints as well.
Three of those four students (S 2, S 5, and S 9) were still unable
to successfully revise their circuits.

Hint Distribution Figure 2 is a Sankey diagram of the op-
timization hints collected by Dear Gamma. The number
of hints between certain key transitions, such as between
the most common and the most optimal solutions, had far
more hints because of the lecturer’s requests for pedagogi-
cally valuable hint prompts that introduced hint-writers to the
common and optimal solutions.

The most common solution size was 114 transistors. Stu-
dents with that common solution were randomly assigned to
generate hints from one of the many different larger solutions
down to theirs. These hints are pooled together with the hints
written by students with solutions larger than 114 transistors
who are seeing the common 114 transistor solution for the
first time. Less than five percent of students’ solutions were
the most optimal (96 transistors), but, at the request of the
lecturer, every student was asked to consider that most opti-
mal solution and write a hint for a fellow student on how to
optimize their solution into that most optimal solution.

The number of hints produced by students appear to correlate
with subjects’ degree of optimization success, but this may be
just coincidental. Students in the study were drawn from the
same population as the hint generating students, and all study
subjects were offered the same number of hints (5 pointing, 5
teaching, and 5 bottom-out) over the course of the hour long
session, regardless of the solution they started with.

Hint Types Table 1 shows the breakdown of hints by type,
along with representative examples. The Cohen’s  [4] inter-
rater reliability was 0.54, which indicated that the two coders
had moderate agreement across the six hint categories [21].

Hint Prompt Hint-authors interpreted the prompt to create
a hint in different ways. Some addressed the hint-receiver
directly (“Keep in mind that...”), while others addressed the
teaching staff (“I would mention [to the student]...”). Some
hint-authors did not directly write a hint, but instead wrote
about how they’d approach the situation of being a lab assis-
tant for the hint-receiver: “I think first I’d ask to make sure
they knew what a NAND3 was, because I think a solution
like this might come from not totally understanding how it
works.” Still others took a conversational approach, as if they
were having an unfolding conversation with the hint-receiver.
Interestingly, a number of hint-authors referred to “here” or
“my circuit” in their hints, as if the hint-receiver would be
looking at the Dear Gamma interface, with all its examples,
rather than just the text generated by the hint-author. This
particular assumption on the part of the hint-author was con-
fusing for hint-receivers.

Optimization Issues S 5 was the only student who had a stan-
dard, optimizable solution, received hints, and had no insights
about how to optimize the circuit within the allotted hour.



Hint type Count (%) Representative examples
Pointing (p) 62 14% “You don’t have to keep S and Cout as two separate/independent CMOS gates.”
Pointing and teaching (pt) 81 19% “Instead of making the S and Cout components individual,

combine them together to save computation power.”
Teaching (t) 111 26% “Instead of recalculating values, save computation results to save time!”
Teaching and 19 4% “Via application of demorgan’s theorem,
bottom-out (tb) NAND2 (XOR A B) Cin is equivalent to NAND3(NAND2 A B) Cin.”
Bottom-out (b) 78 18% “Use the output of a xor b for one of the nand2 gates.”
Unhelpful/irrelevant 14 3% “Use the hints provided by the lab, but try to improve on them.”
No coder agreement 70 16%

Table 1. Breakdown of Dear Gamma hints by type. Students in the Dear Gamma lab study initially received 5 pointing hints (p), followed by 5 pure
teaching hints (t), and finally 5 pure bottom-out hints (b), delivered whenever the student was stuck and asked for more help.

S 1, S 2, and S 9’s forward progress was confounded by hav-
ing near-optimal top-level architecture and very large (sub-
optimal) implementations of the underlying modules. Dear
Gamma only shows hint-authors the top level architecture,
not the underlying gate implementations, for the alternative
solutions they compare their own solutions to. They there-
fore found the hints, which were often about fixing high-level
architecture, irrelevant and unhelpful. Even so, S 1 was still
able to revisit the hints and correctly extract the lesson that
only inverting gates should be used. As a result, S 1 success-
fully optimized their circuit.

While working through their optimizations and hints, S 6 was
the one student who significantly deviated from the correct
line of thought by removing all inverting gates.1 As soon as
S 6 saw that their transistor count had increased rather than
decreased, they revisited the hints, realized their mistake, and
correctly optimized their circuit. None of the hints them-
selves were incorrect, though some were deemed irrelevant
or unhelpful.

Hint Progression One student successfully optimized their
solution from 150 transistors to the most common solution,
114 transistors, using only pointing and teaching hints. With
some time left in the hour-long session, the student opted to
optimizing their circuit further. The experimenter gave the
student one last set of hints, for the transition from 114 to the
optimal 96 transistor solution. However, the experimenter did
not restart the progression for this next transition; the student
was given a set of bottom-out hints. Based on these hints, the
student got the final optimization step without understanding,
and appeared to feel cheated from the satisfaction of figuring
it out himself.

Student Reactions The six subjects without suboptimal gates
agreed with the statement “Overall, these hints helped me get
to a more optimal circuit” (µ=6, �=1.1 on a 7-point Likert
scale). The remaining three subjects with suboptimal gates
disagreed with the same statement (µ=2.6, �=2.1 on a 7-point
Likert scale). Regardless of whether a subject’s solution in-
cluded suboptimal gates, subjects on average agreed with the
statement, “Hints helped me think differently about the prob-
lem, even if they didn’t directly help me solve the problem”
(µ=5.4, �=1.6).

1Optimal solutions have only inverting gates.

Figure 7. Six of the nine lab study subjects were able to improve the
optimality of their circuits with the help of the Dear Gamma hints. Sub-
ject S7 was able to make two leaps–one to a common solution with 114
transistors and another from the common solution to the most optimal
solution at 96 transistors.

Some subjects commented on the redundancy within each set
of five hints of a particular type. This was sometimes ex-
pressed as a negative, as in “These are all hinting at the same
thing but I want new information,” and sometimes expressed
as a positive, as in “Several hints are mentioning X.... I should
look into it.” One student told the experimenter that, while
the individual hints were hard to understand, together they
formed a clearer picture in her mind about what to do.

DISCUSSION
In this section, we first address the research questions the
evaluation was intended to answer. We then explain that, of
the design decisions made during the design of Dear Beta and
Dear Gamma, the critical factors for success included prompt
clarity, the index chosen for hints, how alternative solutions
are represented, and the use of hint progressions.

Answers to Research Questions
Our study sought to evaluate the characteristics of student
generated hints. We can see from Table 1 that students, with-
out coaching, can naturally produced hints that point, teach,
give a bottom-out direction, or provide some combination of
those elements. However, the number of pointing hints la-
beled by both coders as purely pointing-type (22) was much
smaller than the number of such hints in the teaching (75)
and bottom-out (64) categories. Because students were not
informed that their hint would be slotted into a progression, it
is possible they may have felt that if they were going to give
a future student one hint, it would need to be more substan-
tial than just pointing to a particular location in the solution
and hoping the hint-receiver would see the possibility of op-
timization.



Secondly, the studies sought to evaluate whether learners can
solve problems using these hints. Both studies suggest that
these student-written hints are helpful. The aggregate activity
of students and teachers on Dear Beta indicate that the re-
source was populated with helpful hints. The Dear Gamma
lab study was set up based on the observed sub-optimality
of students’ circuits at the level of choosing and arranging
gates. Students whose solutions were suboptimal in that an-
ticipated way rated the hints as helpful. Students whose solu-
tions were suboptimal in unanticipated ways, i.e., at the level
of the gates themselves, were not well-served by the hints.
Future optimization hint workflows will need both (1) an op-
timality metric that accounts for multiple common types of
suboptimality and (2) a representation of solutions with an
appropriate level of detail about the difference between any
two solutions. Regardless, the Dear Gamma study suggests
that students are helped by the hints when the optimality met-
ric and representation are appropriate.

Lessons for Self-Reflection and Comparison Workflows
Prompt clarity appears to be critical for soliciting the high-
est possible quality of hints from students. In Dear Gamma,
hint collection and delivery were separate processes. Some
students misunderstood the prompt and wrote hints as if their
audience was still the teacher, not a fellow student. Others did
not understand that the hint-receiver would only see the text
of their hint, not the diagrams it was based on. In Dear Beta,
hint collection and delivery were all mediated through the
same, constantly updated interface. The appropriate audience
for a hint was clear. Future instantiations of the self-reflection
and comparison workflows should clarify who the audience is
for hint-authors, perhaps by displaying what learners will see.

The selection of an index for hints in the self-reflection work-
flow matters. In Dear Beta, the choice of test file name and
test number as an index for hints worked well for a class of
hundreds of students. In a MOOC-sized course, the index
may need to include an indicator that specifies how the test
failed as well. int indices in future systems should have suf-
ficient information to group related hints into clusters of a
manageable size.

The success of the comparison workflow depends not only
the index for solutions, but also on how these solutions are
represented in the workflow’s prompt for hints. In the com-
parison workflow, we found that transistor counts sometimes
did not account for lower-level reasons for a suboptimal cir-
cuit, resulting in hints that were unhelpful for solutions with
lower-level suboptimality. Students will not generate hints
that account for what has been abstracted away in the rep-
resentation of solutions in the hint prompt. Likewise, if the
definition of optimality used to index solutions does not ac-
count for a certain kind of suboptimality, the hints generated
will be unlikely to help future students with that kind of sub-
optimality.

Lastly, when students request hints as they did in the Dear
Gamma lab study, conforming to the ITS model of providing
progressively specific hints is recommended. To automati-
cally create hint progressions in the future, we could apply

machine learning methods to estimate a given hint’s type. Al-
ternatively, we could learnersource hint classification.

Generalization
Although we applied these workflows to computer architec-
ture problems, the self-reflection and comparison workflows
could be extended to other domains. The workflows can be
most readily applied to solutions that can be objectively tested
for satisfying a set of requirements, e.g. passing unit tests, or
whose optimality can be objectively measured. In domains
without objective test cases or definitions for optimality, it
may be more difficult to establish indices for clustering hints.
In these cases, students could be asked to write what chal-
lenge they overcame or select from a growing list, enabling
others to search for those terms. The comparison workflow
could be modified to simply pair students with solutions dif-
ferent than their own, letting them judge for themselves which
they think is better, the alternative solution or their own, and
write hints based on that judgement.

CONCLUSIONS AND FUTURE WORK
This paper enriches learnersourcing by shaping the design
space for learnersourcing personalized hints, and presenting
two workflows that engage learners in hint creation while re-
flecting on their own work as well as that of peers. We built
Dear Beta and Dear Gamma, which apply these workflows
to the creation of debugging and optimization hints, match-
ing students to the appropriate hint-creation task given their
current progress. Results from our deployment study and sub-
sequent lab study demonstrate the feasibility of these work-
flows, and indicate that learner-generated hints are helpful to
learners. They also shed light on critical factors that may
impact the quality of learnersourced hints, laying the ground-
work for future systems in this area.

Next academic year, we plan to expand our deployment of
Dear Beta to two new classes: a MOOC version of the com-
puter architecture class in this paper and a residential college-
level software engineering course taken by several hundred
students each term. Solutions in the software engineering
course are written in Java and tested against teacher-designed
test suites. Each error could be specified by the problem set
number, test name, and line number. The implementation of
Dear Beta has been written generally so that it can simulta-
neously support both classes, each with their own schema for
describing an error.

Future work for Dear Gamma will be focused on improving
the metric for optimality. We will also explore what Dear
Gamma in the context of the software engineering course
could look like, e.g., prompting students to write hints based
on fellow students’ code that are either concise and clear or
excessively verbose. We plan to continue deploying iterations
of these workflows in classes for students’ immediate benefit,
and to demonstrate that it can enrich the learning experience
across multiple engineering domains.

REFERENCES
1. Benjamin S Bloom. 1984. The 2 sigma problem: The

search for methods of group instruction as effective as



one-to-one tutoring. Educational Researcher (1984),
4–16.

2. Michelene T.H. Chi, Nicholas De Leeuw, Mei-Hung
Chiu, and Christian Lavancher. 1994. Eliciting
Self-Explanations Improves Understanding. Cognitive
Science 18, 3 (1994), pp. 439–477.

3. Derrick Coetzee, Armando Fox, Marti A. Hearst, and
Björn Hartmann. 2014. Should Your MOOC Forum Use
a Reputation System?. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work
and Social Computing (CSCW ’14). ACM, New York,
NY, USA, 1176–1187.

4. JA Cohen. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement 20,
1 (1960), 37–46.

5. John Dewey. 1933. How we think: A restatement of the
relation of reflective thinking to the educational process.
D.C. Heath and Company.

6. Dejana Diziol, Erin Walker, Nikol Rummel, and
Kenneth R Koedinger. 2010. Using intelligent tutor
technology to implement adaptive support for student
collaboration. Educational Psychology Review 22, 1
(2010), 89–102.

7. Sidney D’Mello, Blair Lehman, Reinhard Pekrun, and
Art Graesser. 2014. Confusion can be beneficial for
learning. Learning and Instruction 29 (2014), pp.
153–170.

8. Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R Klemmer. 2010. What would other programmers
do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, pp. 1019–1028.

9. Lydia Kavanagh and Liza O’Moore. 2008. Reflecting on
Reflection - 10 Years, Engineering, and UQ. In
Proceedings of the Conf. of the Australasian Assoc. for
Engineering Education: To Industry and Beyond.
Institution of Engineers, Australia.

10. Jackie Kibler. 2011. Cognitive Disequilibrium. In
Encyclopedia of Child Behavior and Development, Sam
Goldstein and Jack A. Naglieri (Eds.). Springer US, p.
380.

11. Chinmay Kulkarni, Julia Cambre, Yasmine Kotturi,
Michael S. Bernstein, and Scott R. Klemmer. 2015.
Talkabout: Making Distance Matter with Small Groups
in Massive Classes. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work
and Social Computing (CSCW ’15). ACM, New York,
NY, USA, 1116–1128.

12. Rohit Kumar, Carolyn Penstein Rosé, Yi-Chia Wang,
Mahesh Joshi, and Allen Robinson. 2007. Tutorial
dialogue as adaptive collaborative learning support.
Frontiers in Artificial Intelligence and Applications 158
(2007), 383.

13. E. Mazur. 1997. Peer Instruction: A User’s Manual.
Prentice Hall.

14. Piotr Mitros. 2015. Learnersourcing of Complex
Assessments. In Proceedings of the Second (2015) ACM
Conference on Learning @ Scale (L@S ’15). ACM,
New York, NY, USA, 317–320.

15. Kathryn Papadopoulos, Lalida Sritanyaratana, and
Scott R. Klemmer. 2014. Community TAs Scale
High-touch Learning, Provide Student-staff Brokering,
and Build Esprit De Corps. In Proceedings of the First
ACM Conference on Learning @ Scale (L@S ’14).
ACM, New York, NY, USA, 163–164.

16. N.J. Salkind. 2008. Encyclopedia of Educational
Psychology. Number v. 1. SAGE Publications. 327–328
pages.

17. Robert A Sottilare, Arthur Graesser, Xiangen Hu, and
Benjamin Goldberg. 2014. Design Recommendations for
Intelligent Tutoring Systems: Volume 2-Instructional
Management. Vol. 2. US Army Research Laboratory.

18. Keith Topping. 1998. Peer assessment between students
in colleges and universities. Review of Educational
Research 68, 3 (1998), pp. 249–276.

19. J. Turns, B. Sattler, K. Yasuhara, J. Borgford-Parnell,
and C.J. Atman. 2014. Integrating Reflection into
Engineering Education.. In Proceedings of the ASEE
Annual Conference and Exposition. ACM.

20. Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A
Shapiro, Robert Shelby, Linwood Taylor, Don Treacy,
Anders Weinstein, and Mary Wintersgill. 2005. The
Andes physics tutoring system: Lessons learned.
International Journal of Artificial Intelligence in
Education 15, 3 (2005), 147–204.

21. Anthony J Viera and Joanne M Garrett. 2005.
Understanding interobserver agreement: the kappa
statistic. Fam Med 37, 5 (2005), 360–363.

22. Sarah Weir, Juho Kim, Krzysztof Z. Gajos, and
Robert C. Miller. 2015. Learnersourcing Subgoal Labels
for How-to Videos. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work
and Social Computing (CSCW ’15). ACM, New York,
NY, USA, 405–416.


	Introduction
	Related Work
	Personalized Support
	Reflection and Explanation

	Design Space
	User Interface
	Dear Beta
	Dear Gamma

	Evaluation
	Dear Beta
	Dear Gamma
	Hint Succession and Categorization
	Lab Study


	Limitations
	Results
	Teacher Feedback From Early Prototypes
	Dear Beta Study
	Dear Gamma Study

	Discussion
	Answers to Research Questions
	Lessons for Self-Reflection and Comparison Workflows
	Generalization

	Conclusions and Future Work
	REFERENCES 

