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Highlights 

● Two possible ochreous objects are investigated with reflected visible light microscopy and 

Raman microspectroscopy. 

● Objects identified unambiguously as containing mineral haematite.  

● Objects identified as anthropogenic artefacts. 

● Results attest to powder production and use of red ochre in Mesolithic Britain. 

Abstract 

Ochre is an important mineral pigment used by prehistoric hunter-gatherers across the globe, and its 

use in the Mesolithic is no exception. Using optical microscopy and Raman spectroscopy with 

micrometre spatial resolution (micro-Raman), we present evidence that confirms unambiguously the 

use of ochre by hunter-gatherers at Mesolithic sites surrounding Palaeo-Lake Flixton, Vale of 

Pickering, North Yorkshire, UK. Our results suggest that people collected ochre and processed it in 

different ways, likely for diverse purposes. The quality and specificity of chemical characterisation 

possible with micro-Raman facilitates new avenues for further research on ochreous materials in 

Britain, including provenancing through chemical ‘fingerprinting’. 

 

Keywords: Mesolithic; hunter-gatherers; haematite; ochre; reflected visible light microscopy; Raman 

microspectroscopy 

1. Introduction 

There are several minerals that have been used as red colourants at prehistoric archaeological sites: 

haematite (iron (III) oxide, α-Fe2O3), maghemite (iron (II) oxide, γ-Fe2O3), cinnabar (mercury (II) 

sulfide, HgS), litharge (lead (II) oxide, PbO), realgar (ruby sulfur, α-As4S4), red lead (lead (II), (IV) 
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oxide, Pb3O4), and bauxite (composed gibbsite (Al(OH)3), boehmite (γ-AlO(OH)), and diaspore (α-

AlO(OH)), mixed with variable amounts of kaolinite, halloysite, goethite, haematite, magnetite, 

anatase, quartz, and some phosphatic and magniferous minerals) (Gomes et al. 2013; Hose 2016; 

Mioč et al. 2004; Ospitali et al. 2006; Pomiés et al. 1999; Pradeau et al. 2016; Zilhão et al. 2010). 

Several analytical techniques have been used to differentiate among these red minerals and rocks, 

including X-ray powder diffraction (XRD), Raman microspectroscopy, infrared spectroscopy (IR), 

and transmission electron microscopy (TEM). Ochre containing haematite is commonly identified 

archaeologically, but its structure and composition is variable depending on the site of collection and 

how it is treated, for instance by heating or grinding. A recent XRD study by Sajó et al. (2015) of 

three samples of ochre from an Upper Palaeolithic mining pit revealed that the ochre samples were 

comprised of only ~5% haematite, with the remainder composed of dolomite, quartz, and kaolinite. 

Although mineral haematite is responsible for imparting the intensive red colour when ochre is rubbed 

on surfaces, only a small quantity is needed to act as an effective source of pigment. There are two 

types of artefacts related to ochre: (1) cohesive objects that are made out of ochre, and (2) objects that 

have ochre traces on them, such as non-cohesive powder (Pradeau et al. 2016, 12). Here we present 

two objects that fit into the first category, a pebble with grooves across its surface and a ‘crayon’ with 

striations and grooves. Both objects were found around Palaeo-Lake Flixton in the Vale of Pickering 

(North Yorkshire, UK), a landscape now blanketed in peat and known for its rich record of Mesolithic 

occupation, including the famous site of Star Carr (Figure 1). We hypothesised that these objects 

contain haematite and were anthropogenically modified, evidencing collection and use of red 

pigments. 

 

 
Figure 1. Location of Palaeo-lake Flixton (left) with areas of Mesolithic occupation marked by black dots (right). Sites from 

which the objects were found are numbered. 

 

Ochre exploitation in the Mesolithic is an important activity to explore because it was likely used in 

diverse cultural activities. However, methods of exploitation and use of ochre have received only 

cursory consideration in the study area (Clark 1954, 167). While it is common to interpret Mesolithic 

ochre powder to be of symbolic or ritual significance based on its frequent occurrence in burials, for 

instance Skateholm I and II in Sweden and Zvejnieki in Latvia (Larsson 1988; Zagorska 2008), 

patterns of ochre working at sites in the vicinity of Palaeo-Lake Flixton could broaden understanding 

of its use as human burial is entirely lacking in the region. 

 

2. Samples and sites  
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2.1. Flixton School House Farm: FSH09 2870 

A red pebble that is possibly ochreous, FSH09 2870 (Figure 2) was recorded at Flixton School House 

Farm on the southern shore of Palaeo-Lake Flixton (Fig. 1, location 1). The pebble was recorded from 

an occupation horizon containing diagnostically Early and Late Mesolithic material culture, adjacent 

to a sequence of pits and associated stake and postholes (Taylor and Gray Jones 2009). The pit 

sequence is sealed by a layer dated to the mid-7
th

 Millennium cal BC (7867±40 BP; OxA-22211), 

proving a potential terminus post quem for activity at the site. 

 

 
Figure 2. Pebble FSH09 2870 with anthropogenic grooves from Flixton School House Farm. 

 

Similar grooved pebbles are rare within the Mesolithic of Britain, though examples have been found 

recently at Stainton West and Mussleburgh (Clarke 2014). The pebble measures 45mm long, 43mm 

wide and 16mm deep at maximum extent and has a smooth, well-rounded shape, with a fine grain 

size. The material is hard, in marked contrast to published descriptions of ochre pieces from the 

nearby site of Star Carr (Clark 1954, 167). The colour of the pebble is deep red to brown, suggesting 

it contains iron and thus it could consist of haematite within ochre (Elias et al. 2006; Wadley et al. 

2009). It is likely that the piece was collected from a secondary context, based on its rounded shape 

and weathered, pitted surface. These features are consistent with a beach pebble or a rolled pebble 

derived from glacial till. The object is marked by deep grooves running roughly parallel to one 

another, in groups with differing orientations. The deep striations are concentrated to a single surface 
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and in a localised area, indicating they are of probable anthropogenic origin (Figure 3). The surface of 

the pebble is concave in the area of the grooving, suggesting extensive working. The grooves are 

unlikely to reflect artistic expression, differing appreciably from known British Mesolithic 

engravings, which typically feature geometric patterns (Berridge and Roberts 1994; Clarke et al. 

2012; Milner et al. 2016; Smith 1934; Smith and Harris 1982).  

 

 
Figure 3. Microphotograph showing the morphology of one of the grooves.  

2.2. Seamer Carr Site C: Crayon SC83 9366 

Crayon SC83 9366 was found during excavations at Seamer Carr Site C, on the northwest shore of 

Palaeo-Lake Flixton (Figure 1, location 2). Activity at the site consists of diagnostically Terminal 

Upper Palaeolithic and Early Mesolithic lithic scatters, and small quantities of animal bone (Conneller 

and Schadla-Hall 2003). Though lithic scatters of different date tend to be spatially discrete, the 

relationship between these and the object cannot be established. The artefact may belong to either 

phase of occupation, though a Mesolithic association is perhaps more likely given its prevalence at the 

site. The elongate object measures 22mm long, 7mm wide and 6mm deep at maximum extent and has 

a sub-rounded cross section with four long, relatively flat surfaces and a pointed end. There are long, 

parallel grooves evident on each surface, and polished areas associated with grooves on two surfaces. 

The object is rounded to one end and faceted to the other, likely reflecting use (Figure 4). 
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Figure 4. Crayon SC83 9366 (2018) CXX1 from Seamer Carr showing a surface with parallel grooves and associated 

polished areas (darker red), and faceted end (left). 

3. Methods 

The two objects were analysed first with a low-power reflected visible light stereomicroscope at 

magnifications from x6.3-x50 (Leica MZ75) with Schott KL1500 LCD swan neck lights. In order to 

explore how the grooves were made on the pebble, observations of groove shape and relative order 

were made using a VHX-100 Keyence microscope with S5 transmitted light stage working between 

x25 and x175 magnification with visible light. This technique had the advantage of allowing 

manipulation of the microscope to explore the morphology of grooves by changing its position and 

angle relative to the object. It can also create 3D models of grooves and capture microphotographs, 

supported via dedicated software. 

 

Confocal micro-Raman was used to determine the specific composition of each object and if they 

represented different minerals. Raman spectroscopy measures the interactions between photons and 

lattice or molecular vibration modes. It can be used to identify inorganic and organic molecular 

species of solid, liquid, or gas samples (Larkin 2011, 55). A unique ‘fingerprint’ of a specific 

molecule is provided by IR and Raman spectra, based on the mass of the atoms, their geometric 

arrangement, and the types of chemical bonds present in the molecule (Larkin 2011, 2). The sample is 

irradiated with a visible or near-IR monochromatic laser, and the resulting scattered radiation is 

measured with a spectrometer (Skoog et al. 2007). An unknown molecule can be identified because it 

exhibits a unique spectroscopic pattern of frequencies, or ‘fingerprint’, (Koenig 2000, 16) that can be 

recognised by comparison with spectral libraries and published literature or based on direct 

calculations of the Raman bands using polarisability theory.  

 

A HORIBA Jobin Yvon Xplora confocal Raman microscope with LabSpec (version 6) and IGOR Pro 

software for peak analysis was used to collect and evaluate eight spectra from the pebble and three 

spectra from the crayon. The instrument was calibrated using pure silica prior to collecting these 
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spectra. Long working distance microscope objectives were used to prevent crushing the sample. A 

green Nd:YAG diode laser was operated at a wavelength of 532 nm, and a laser size of nominally 1 

µm was used for spot micro-analysis with 10x and 50x large working distance objectives. The 

maximum laser power used was 20 mW and in none of the investigated samples laser induced 

modifications of the material was detected. The acquisition time was in the range of 20-30 seconds 

with 10-20 accumulations per scan using a 2400T grating, which provides the highest spectral 

resolution of 1 cm
-1

. Polynomial baseline corrections were applied to all Raman spectra using 

LabSpec6 software. This correction was applied to subtract background noise and illustrate a better 

signal-to-noise ratio. This corrected data was plotted using Origin 2016 software and then labelled. 

The Raman spectra band positions of the collected spectra were compared to spectral database 

reference libraries, as well as published literature, to identify the material.  

4. Results 

4.1. Pebble FSH09 2870 

Microscopic observations indicate that pebble FSH09 2870 has been subject to multiple phases of 

anthropogenic modification and can be described as a palimpsest of working traces enacted over an 

unknown duration. In this context, a ‘phase’ can variously refer to a shifting of the orientation of the 

tool, reflecting a momentary pause before continuing work, through to a protracted hiatus in activity 

before recommencing at a later time. The capacity to discern temporality and distinct working phases 

can be assessed to an extent through observing changes in the nature and orientation of working.  

The grooves evident on the pebble have a flat base and wide edges at a shallow angle, with multiple 

smaller striations evident within grooves along the bottom and edges. This profile shape is consistent 

with a scraping action using a stone tool, probably a scraper (d’Errico et al. 2012; Rifkin 2012; figure 

1), and possibly using a back and forth motion. Alternately, it has also been suggested by Isbister 

(2009) that Mesolithic ochre pieces from Sand, Scotland, could have been scraped with bevel-ended 

tools. While such tools have not bee recovered from the site, this method of working remains a 

possibility. To reflect the nature of working, grooves were loosely grouped based on their orientation, 

with multiple grooves sharing an orientation taken to represent a phase of working. Based on groove 

orientation, three main groups (A, B and C) were identified (Figure 5). The intersection of grooves 

from different groups was used to ascertain the chronology of working. On this basis, group A is the 

oldest phase, followed by group B, with group C being the youngest, and with the latter phases largely 

obliterating group A. The nature of working does not significantly vary between groups, with each 

produced by scraping, and possibly some incising in the very deep grooves associated with group B. 

Given the concave shape of the surface and partial obliteration of group A, it is likely that additional 

phases of working were once present but have been completely obliterated by more recent working 

phases. 
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Figure 5. Pebble FSH09 2870 with working phases identified in the text highlighted. 

 

A location on the back of the pebble with no striations was chosen for investigation with micro-

Raman. The spectra collected from the pebble are consistent with iron oxide α-Fe2O3 (haematite); the 

wavenumbers (cm
-1

) and number and intensity of peaks match published examples (Beattie and 

Gilson 1970; Ohtsuka et al. 1986; de Faria et al. 1997; de Faria and Lopes 2007; Oh et al. 1998; 

Burgio and Clark 2001; Mortimore et al. 2004; Legodi and de Waal 2007; Froment et al. 2008; 

Courtin-Nomade et al. 2009; Das and Hendry 2011). Major features include peaks at 219 cm
-1

 

(assigned to A1g Fe–O symmetric stretching), 282 cm
-1

 (assigned to Eg Fe–O symmetric bending), and 

a band at 394 cm
-1

 (assigned to Eg Fe–O symmetric bending) (Figure 6). Additionally, the large 

feature at 1315 cm
-1

 seen in the pebble spectra is consistent with the two-magnon scattering reported 

in haematite at 1320 cm
-1

 discussed by de Faria et al. (1997, 875). Table 1 presents the relationship 

between Raman band features seen in the spectra collected from the pebble and crayon with published 

reference values for iron oxide and their assignments. 
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Figure 6. Raman spectrum (with polynomial baseline correction) collected from the back corner surface of pebble FSH09 

2870.  

 

4.2. Crayon SC83 9366 

Examination of the sides and ends of the elongate piece (SC83 9366) from Seamer Carr with reflected 

visible light microscopy allowed the depth of the striations and extent of polish to be assessed. The 

object is fragile and powdery, and excavation damage was noted in the form of three nick marks on 

the ends of the piece, which revealed fresh bright red colouration distinct from the surrounding 

surface. This damage allowed the internal structure to be examined. The crayon did not display a 

laminar sheet crystal structure as might be expected in naturally formed haematite, but appeared 

powdery and contained small hard mineral inclusions. The shape of the elongate piece is an 

improbable natural formation habit of haematite. Each long surface contains deep elongate striations, 

occurring at locations roughly parallel to the long axis of the piece and an associated area of polish 

(Figure 7). One end of the piece exhibits fine striations in one direction on one surface, and striations 

on another face. The grooves and striations on the crayon could possibly be traces of use of the piece 

against granular surfaces.  
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Figure 7. Crayon SC83 9366 showing pointed end, grooves and polished area following the long axis. 

 

A location on the flat surface of the crayon was chosen for investigation. The major features present 

in Raman spectra collected were also consistent with iron oxide α-Fe2O3 (haematite) (Table 1). As can 

be seen in Figure 8, peaks at 218 cm
-1

 (assigned to A1g Fe–O symmetric stretching), 285 cm
-1

 

(assigned to Eg Fe–O symmetric bending), and a band at 394 cm
-1

 (assigned to Eg Fe–O symmetric 

bending) are prominent. Like the pebble, a large feature at 1315 cm
-1

 was also seen in the crayon 

spectra, and is consistent with two-magnon scattering in haematite (de Faria et al. 1997, 875). 
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Figure 8. Raman spectrum (with polynomial baseline correction) collected from crayon SC83 9366. 

 

 

Table 1. Raman wavenumbers (cm
-1

) and assignment of pebble FSH09 2870 and crayon SC83 9366 results compared to 

haematite reference values.  

Pebble 

(FSH09 

2870) 

Crayon 

(SC83 

9366) 

α-

Fe2O3 

haemati

te 

Beattie 

and 

Gilson 

1970 

α-

Fe2O3 

haemati

te de 

Faria et 

al. 1997 

α-

Fe2O3 

haemati

te Oh et 

al. 1998 

haemati

te 

Mortim

ore et al. 

2004 

α-

Fe2O3 

haemati

te de 

Faria 

and 

Lopes 

2007 

α-

Fe2O3 

haemati

te 

Legodi 

and de 

Waal 

2007 

haemati

te 

Courtin

-

Normad

e et al. 

2009 

α-

Fe2O3 

haemati

te de 

Tercero 

et al. 

2014 

Assign

ment 

(de 

Faria 

1997; 

Legodi 

and de 

Waal 

2007) 

219 218 226 220 226 226 227 226 221 224 

A1g (Fe–

O sym. 

str) 

246 246 245 237 245  246   243 

Eg (Fe–

O sym. 

bend) 

282 285  283       

Eg (Fe–

O sym. 

bend) 
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 294 293 295 292 292 293 292 290 291 

Eg (Fe–

O sym. 

bend) 

298 299 298       298  

394 394  396        

413 413 413  411 407 412 406 404 408 

Eg (Fe–

O sym. 

bend) 

500  500 492 497 498 498 495 490 500 

A1g (Fe–

O sym. 

str) 

607 603 612 596 612 609 610 600  610 

Eg (Fe–

O sym. 

bend) 

     659   655   

701       700   

A1g (Fe–

O sym. 

str) 

        1072   

1315 1315  1320  1312 1322  1306 1317 

2-

magnon 

scatterin

g 

 

 

4.3. Comparison of Pebble FSH09 2870 and Crayon SC83 9366 Raman Spectra Results 

Both the pebble and the crayon spectra do not match with expected clay minerals that typically 

compose ochre, such as kaolinite and vermiculite, but further work may illuminate these constituents. 

The spectra also do not contain dolomite, which was heavily dominant (~80%) in ochre samples 

reported by Sajó et al. (2015). There are some minor differences between the Raman spectra collected 

from the pebble and crayon, possibly reflecting the use of different haematite sources by Mesolithic 

hunter-gatherers. As can be seen in Table 1, some of the differences noted were: 1) the crayon 

spectrum contained a peak at 294 cm
-1

 (assigned to Eg Fe–O symmetric bending), that was not found 

within the pebble spectrum; 2) the pebble contained a small peak at 500 cm
-1 

(assigned to A1g Fe–O 

symmetric stretching), not present in the crayon; 3) the pebble contained a peak at 701 cm
-1

 (assigned 

to A1g Fe–O symmetric stretching), not present in the crayon. Additionally, the spectra collected from 

the crayon were ‘noisier’ and showed more peaks between 0-200 cm
-1

 and ~220-285 cm
-1

. In the 

pebble, the major peak at 219 cm
-1 

is a more intense peak relative to the next major peak at 282 cm
-1

, 

whereas in the crayon 218 cm
-1

 is less intense than the next major neighbouring peak at ~274-285 cm
-

1
. We hypothesise that the microscopic crystalline structure of iron oxide minerals slightly differs 

depending on the location of haematite formation. Thus, micro-Raman could potentially be an 

important analytical technique when attempting to source ochre because it is sensitive to small 

structural differences in materials and offers the potential of site-specific analysis at the micrometre 

level. 
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5. Discussion 

5.1. Working ochre at Palaeo-Lake Flixton 

The pebble and crayon are anthropogenically modified, evidencing diverse ochre working strategies 

during the Mesolithic at Palaeo-Lake Flixton. Deep groove marks are present on only a single surface 

of the pebble, which is inconsistent with taphonomic modification. Furthermore, the pebble has been 

used so intensively that the working surface has become concave. The characteristics of the shape and 

pattern of grooving exhibit striking similarities to published ochre artefacts (d’Errico et al. 2012; 

Henshilwood et al. 2001, 432) and experimental material (Rifkin 2012, 187), with the concave shape 

of the pebble resembling objects produced by scraping (Henshilwood et al. 2001, 432; Rifkin 2012, 

187). The pebble is comparable to a deeply grooved ochre piece (KRM10) from Klasies River Cave 1 

(d’Errico et al. (2012, 949), in which the lines were attributed to scraping with a flint tool to extract 

powder.  

 

The elongate shape and four rough sides of the crayon does not conform to natural crystal formation 

habits of haematite. The most common crystal habit of haematite is flat tabular hexagonal plates, 

while fibrous, massive, oolitic, and botryoidal forms are also known (Gribble and Hall 1985, 161; 

Nesse 1986, 125; Bishop et al. 1999, 45; Rafferty 2012, 267), all of which differ significantly from 

the crayon. The piece is a faceted elongate rod with a pointed end, a morphology that might suggest 

that humans deliberately moulded it and used it as a pigment stick. Alternatively, and perhaps more 

likely, the ochre crayon could have been collected in a rough natural shape such as a lump, with 

extensive subsequent use shaping the piece, resulting in the formation of four facets and a pointed 

working end.  The object also has elongate grooves and associated polish roughly parallel to the long 

edges of the facets, likely the product of anthropogenic working. The method of working haematite 

can impact upon the properties of the powder produced, such as chroma or grain size (Rifkin et al. 

2015) and this may be a factor in the diverse working strategies evident in ochre working and use at 

sites surrounding Palaeo-Lake Flixton.  

 

The consideration of the chaîne opératoire of ochre working in the region is ongoing. Recently, iron 

(III) oxide deposits were identified in situ on stone tools from Star Carr using micro-Raman (Croft 

2017). However, these red-orange concretions formed due to natural pedogenic processes in the soil. 

The case of the iron oxide deposits on tools is clearly different than the objects presented here, since 

the deposits are microscopically amorphous and lack granularity. It is therefore important not to 

assume that the presence of red-orange deposits is evidence for the preparation or application of 

powdered ochre. Recent consideration of beads (Needham et al. in press) and a pendant (Milner et al. 

2016) at Star Carr found these objects to be free of ochre. The specific uses of these two ochre objects 

are different, but some suggestions can be made. The deep grooves lacking any apparent artistic 

design on the pebble suggests it was used to harvest red pigment powder. The sharp edges with 

striations in multiple directions might indicate the elongate shaped piece was used as a drawing and 

colouring tool, perhaps in a similar way to a contemporary pencil or crayon.  

 

5.2. Micro-Raman and the study of ochre 

Micro-Raman has seen increasing use in recent years across a diverse range of archaeological 

investigation, from the analysis of bitumen residues on stone tools (Monnier et al. 2013), to 

anthropogenic pyrite traces on flint fire-strikers (Lombardo et al. 2016). In the Palaeo-Lake Flixton 

region, micro-Raman was recently used to identify naturally formed authigenic pyrite microcrystals 

on the surfaces of an engraved Mesolithic shale pendant from Star Carr (Milner et al. 2016). There are 
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three major benefits to micro-Raman: 1) it allows a chemical characterisation of materials with a high 

degree of molecular specificity; 2) it is minimally invasive and is considered a non-destructive 

technique, with a comparably small laser spot size of approx. 1µm illuminated by the incident laser 

beam during analysis; 3) residues can be analysed in situ on the non-uniform surfaces of the object 

with no sample preparation required.  

 

Haematite has been identified with micro-Raman in various rock art pigments (Bonneau et al. 2017; 

Gomes et al. 2013; Prinsloo et al. 2013; Stuart and Thomas 2017; Ospitali et al. 2006), and on human 

skeletal remains (Edwards et al. 2001), but this is the first time micro-Raman has been used to 

identify and confirm that haematite was used to create artefacts in the Mesolithic of Britain. Elemental 

microanalysis of objects by energy dispersive X-ray spectroscopy conducted within the chamber of 

scanning electron microscopes (SEM-EDS, also known as SEM-EDX and SEM-EDAX) has been 

used previously to identify haematite on Mesolithic artefacts (Cristiani et al. 2009; Cristiani et al. 

2014). However, new analytical techniques can improve the specificity, and thus confidence, of 

identification achievable with archaeological materials. EDS is perhaps best used as a preliminary test 

suitable to provide basic information to guide further chemical analyses. EDS analysis of emitted X-

rays identifies the main element ratios present in the sample, but does not identify how elements are 

combined into specific molecules. Thus, EDS does not provide a chemical ‘fingerprint’. This 

‘fingerprint’ would be necessary in, for example, attempts to source ochre. In the current study, the 

chemical information provided by micro-Raman suggests that subtly different types of ochre were 

used in distinct ochre working strategies, and likely with the intent to provide diverse outputs at 

different sites around Palaeo-Lake Flixton. Future work could examine the haematite/clay ratio in 

various ochres and their mineral crystal sizes, which may be distinctive. Use of XRD on ochre sources 

may be helpful to answer these questions, but its application to archaeological artefacts is more 

problematic since the technique requires destructive sampling. 

6. Conclusion 

The analytical technique chosen to investigate the artefacts – micro-Raman – specifically and 

unambiguously identified pebble FSH09 2870 and crayon SC83 9366 as containing haematite (α-

Fe2O3). Both objects show wear inconsistent with taphonomic action, but rather have striations on 

their surfaces occurring in roughly parallel groups. FSH09 2870 represents an utilised piece 

implicated in red pigment harvesting and SC83 9366 is consistent with use as a possible crayon, 

evidencing multiple working strategies across different sites around Palaeo-Lake Flixton. The specific 

usage of ochre in the region remains elusive, though recorded applications of ochre powder include 

the production of art (Prinsloo et al. 2013), body paint (Rifkin et al. 2015), decoration (Cristiani et al. 

2014), hafting (Wadley 2005), sunscreen (Rifkin et al. 2015), medicine (Velo 1984), and to seal joints 

in water craft when combined with a mastic (Clarke and Waddington 2007, 119). More research on 

the site-specific gathering and processing sequence of ochre is needed to explore these possibilities 

further within the vicinity of Palaeo-Lake Flixton. 

 

As the preliminary micro-Raman data revealed, the pebble and crayon are broadly similar, though 

with slight differences evident in the haematite contained within the ochre artefacts. Due to these 

differing chemical compositions, slight variances in the properties of the ochreous material might be 

expected. Mesolithic hunter-gatherers may have been sensitive to these properties and harnessed them 

for different tasks. Using micro-Raman and its capacity to chemically ‘fingerprint’ samples, it may be 
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viable in future studies to identify and locate the different ochre sources used by hunter-gatherers 

during the early Mesolithic. 
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