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Abstract—In this paper, we examine the combined impacts of
distance-dependent Rician fading channel model and the absolute
difference between the heights of base station (BS) and user
equipment (UE) antennas on the coverage probability and the
area spectral efficiency in an interference-limited ultra-dense
(UD) small cell network (SCN). Exploiting distance dependent
models for both path loss and multi-path fading, we show that
in interference-limited UD-SCNs, Rician fading with variant
Rician K factor aggravates the performance loss caused by the
difference between the heights of the BS and UE antennas in
comparison to Rayleigh fading. In particular, we demonstrate
that due to presence of the specular LOS component in the
Rician fading, both the coverage probability and the area spectral
efficiency experience a more steep decline towards zero as the
BS density increases. Our performance analysis has a prominent
impact on the deployment of UD-SCNs in the 5th-generation
of mobile networks, as it indicates that the right modelling of
multi-path fading makes a significant difference when assessing
the performance of UD-SCNs with non-identical UE-BS antenna
heights.
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point process (HPPP), Line-of-sight (LOS), Non-line-of-sight
(NLOS), dense small cell networks (SCNs), coverage proba-
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I. INTRODUCTION

According to recent reports [1], the global mobile traffic
is expected to grow eight-fold from 2015 to 2020 with
the data emanating from smart phones, tablets, and other
technologies, reaching 30.6 billion gigabytes per month by
2020. Therefore, new disruptive approaches are essential to
support the anticipated skyrocket in global mobile data traffic.
Based on Prof. Web study [2], the wireless network capacity
has increased around 1 million fold from 1950 to 2000,
in which an astounding 2700× gain was achieved through
network densification using reduced cell sizes. Consequently,
further network densification and in particular ultra-dense
small cell networks is regarded as one of the main approaches
to drive the 5th-generation (5G) of mobile communications,
while continuing to fuel the 4th-generation (4G) Long Term
Evolution (LTE) networks [3], [4], [5]. According to [6], [7],
an ultra-dense small cell network refers to a cellular network
with traffic volume per area greater than 700 Gbps/km2 or

user equipment (UE) density greater than 0.2 UEs/m2 which
implies that base station (BS) density is larger that UE density
[8], [9]. Featuring dense orthogonal deployment of small cell
BSs with the macrocell tier, an ultra-dense small cell network
exploits an extensive spatial reuse of the spectrum to boost
the coverage of cellular networks and provide more capacity
through offloading from macrocells in public places with a
large number of UEs such as airports and shopping malls as
well as indoor environments, where there is a degradation
in link margin and throughput due to absorption loss by
walls[10], [11], [12].

A. Background

Previously, the common understanding on small cell net-
works (SCNs) was that the coverage probability performance
is independent of the small cell BS density in interference-
limited fully-loaded wireless networks, and thus the area
spectral efficiency (ASE) performance in bps/Hz/km2 would
linearly increase with the small cell BS density [13], [14],
[15]. The intuition behind the conclusion that the small cell
BS density does NOT matter, was that the increase in the
interference power caused by the deployment of more small
cell BSs is exactly counterbalanced by the increase in the
signal power due to the closer proximity between transmitters
and receivers [16], [17]. However, it is important to note that
such conclusion was based on considerable simplifications on
the propagation environment, which should be re-examined
when evaluating dense and ultra-dense (UD)-SCNs, as they are
fundamentally different from sparse ones in various aspects.

In our recent works, we presented a distance-based piece-
wise path loss model that benefits from probabilistic LOS and
NLOS transmissions, and thus is able to differentiate LOS and
NLOS transmissions [18], [19]. Assuming Rayleigh fading,
our theoretical analysis and simulation results showed that in
dense SCNs, depending on the SINR threshold the ASE will
suffer from a slow growth or even a small decrease as the
density of small cell BSs exceeds a certain threshold [18].
The intuition behind this slow growth/decrease is that in dense
SCNs many interference signals transit from NLOS to LOS
transmission, which causes the interference power to increase
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faster than the signal power. This indicates that the small cell
BS density has a prominent impact on the signal to interference
relationship [20], [21], [22] and demonstrates that the small
cell BS density actually DOES matter. Moving towards an
UD-SCN, the ASE restarts to grow linearly with the small
cell BS density, as both the signal and interference signals
become LOS dominated.

B. Contributions

The authors in [24] have exploited our piecewise path loss
model with probabilistic LOS and NLOS transmissions, and
have examined how the heights of the small cell BS and UE
antennas impact the performance of UD-SCNs based on the
assumption that multi-path fading for both LOS and NLOS
transmissions is Rayleigh fading.

However, it is well understood that the multi-path fading in
LOS transmissions does not follow Rayleigh distribution and
so their assumption that the multi-path fading for both the LOS
and NLOS transmissions is Rayleigh distributed is not entirely
accurate. Therefore, it is vital to investigate how a more
accurate multi-path fading model for UD-SCNs can impact
the performance of UD-SCNs that consist of BSs that are
deployed at heights different to that of average UE. To answer
this question, we analyse the performance of an interference-
limited UD-SCN with different BS and UE antenna heights
under distance-dependent Rician fading with a variant Rician
K factor - as a more realistic multi-path facing model that is
able to capture the impact of LOS path strength as network
densifies - to understand the combined impacts of LOS/NLOS
transmission, multi-path fading, and antenna height difference
on the performance of the system in terms of both coverage
probability and ASE. Using stochastic geometry, our theoret-
ical analysis as well as simulation results show that Rician
fading exacerbates the performance degradation caused by the
difference in heights of UE and BS antennas in comparison
to Rayleigh fading, thus posing a serious question on the
prevalent conviction of lampposts as candidate locations for
UD-SCNs deployment. To the best of our knowledge, this is
the first paper that offers a simultaneous analysis of the per-
formance of UD-SCNs i) with non-identical UE-BS antenna
heights, ii) incorporating a piecewise distance-based path loss
model that considers both LOS and NLOS transmissions, iii)
assuming a distance-dependent Rician multi-path fading model
that exploits a variant Rician K factor based on the UE-BS
distance.

The contributions of this paper are:

• We present the full derivations for the analytical results on
both the coverage probability and the ASE, considering
the absolute difference between the heights of small cell
BS and UE antennas assuming a Rician fading channel
with a distance dependant Rician K factor. We also derive
numerically tractable integral-form expressions for the
coverage probability and the ASE for a general 3GPP
path loss model with a linear LOS probability function
that incorporates both LOS and NLOS transmissions.

• We present the full proof of our theoretical finding,
which highlights the impact of multi-path fading on the
performance of UD-SCNs. Our finding demonstrates that
when there is a difference between the absolute heights
of the small cell BS and UE antennas, the Rician multi-
path fading with variant Rician K factor causes a more
steep decline towards zero than a Rayleigh one in both
coverage probability and the ASE.

The remainder of this paper is structured as follows. In
Section II, the system model is presented. In Section III, the
main analytical results on the coverage probability and the
ASE taking into account the distance-dependent Rician fading
channel are discussed. In Section IV, the numerical results are
presented. Finally, in Section V, the conclusions are drawn.

II. SYSTEM MODEL

Stochastic geometry is a useful tool to study the perfor-
mance of cellular systems [25], [26]. In this paper, our focus
is on the downlink (DL) of cellular networks.

BS Distribution: We assume that small cell BSs form a
Homogeneous Poisson point process (HPPP) Φ of intensity λ
BSs/km2.

User Distribution: We assume that UEs form another
stationary HPPP with an intensity of λUE UEs/km2, which
is independent from the small cell BSs distribution. Note that
λUE is considered to be sufficiently larger than λ, so that each
BS has at least one associated UE in its coverage. We also
assume that a typical UE is located at the origin based on
Slivnyak’s theorem, which is a common assumption in the
analysis using stochastic geometry.

Antenna Radiation Pattern: Each BS and the typical UE are
equipped with an isotropic antenna, and the difference between
the heights of UE and BS antennas is denoted by L.

Path Loss: We denote the two dimensional (2D) distance
between an arbitrary BS and the typical UE located at the
origin by r in km. Then, we present a three dimensional (3D)
distance between the BS and the typical UE located at the
origin by w, which is expressed as

w =
√
r2 + L2 (1)

and considering the practical LOS/NLOS transmissions, we
propose a piecewise path loss model with respect to distance
w in the following.

The path loss function ζ (w) is divided into N pieces where
each piece is represented by ζn (w) as shown in (2). Moreover,
ζL
n (w) and ζNL

n (w) represent the n-th piece of path loss
function for the LOS transmission and the n-th piece of path
loss function for the NLOS transmission, respectively, and are
modelled as

ζn (w) =

{
ζL
n (w) = AL

nw
−αL

n , for LOS
ζNL
n (w) = ANL

n w−α
NL
n , for NLOS

(2)

where n ∈ {1, 2, . . . , N} and AL
n and ANL

n refer to the path
losses at a reference distance of w = 1 km for the LOS and
the NLOS cases in ζn (w), respectively, and αL

n and αNL
n are
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the path loss exponents for the LOS and the NLOS cases in
ζn (r), respectively. Typical values of reference path losses and
path loss exponents, which are obtained from field tests, can
be found in [27], [28].

Similar to the path loss, the LOS probability function
PrL(w) can also be expressed as a piecewise function where
PrL
n (w) , n ∈ {1, 2, . . . , N} denotes the n-th piece of LOS

probability function corresponding to a BS and a UE that are
separated by distance w from each other.

User Association Strategy (UAS): The UE is associated
with the BS with the smallest path loss, regardless whether
it is LOS or NLOS. Note that when the link between UE
and BS is NLOS, we say that it is blocked. Otherwise, the
communication is regarded as LOS.

Multi-path Fading: The multi-path fading between an ar-
bitrary BS and the typical UE is modelled as a practical
distance dependant Rician fading channel [30] which considers
a smooth transition from Rician fading to Rayleigh fading as
the UE-to-BS distance increases. More specifically, the variant
Rician K factor is defined as the ratio of the power in the
specular LOS component to the power in all scattered NLOS
components and varies according to the distance between UE
and BS and hence it is able to capture the impact of the
strength of the LOS path on multi-path fading. For the LOS
case, we use a variant distance dependant Rician K factor
where K(w) = 13−0.03w (dB), with w being the 3D distance
between the BS and UE in meter [31]. For the NLOS case,
the Rician K factor is set to −∞ dB. Note that we denote
K(w) by K hereafter, but it is critical not to interpret K as a
constant value.

III. ANALYSIS BASED ON THE PROPOSED PATH LOSS
MODEL

In this section, we present our main results on the coverage
probability and the ASE.

A. The Coverage Probability

One metric that is used to evaluate the system’s performance
is the signal-to-interference-plus-noise-ratio (SINR) coverage
probability. If the UE’s received SINR is larger than a pre-
defined threshold γ, the UE is considered in coverage or
receiving its required service, which is defined as

Pcov(λ, γ) = Pr [SINR > γ] , (3)

and the SINR is computed as

SINR =
Ptζ (w)h

Ir +N0
, (4)

where Pt is the transmission power of each BS, h is the Rician
distributed channel gain between the typical UE and its serving
BS denoted by bo and N0 is the additive white Gaussian noise
(AWGN) power at the typical UE. The aggregated interference
from all non-serving BSs is denoted by Ir, and is defined as

Ir =
∑

i: bi∈Φ\bo

Ptβigi, (5)

where bi, βi and gi refer to the i-th interfering BS, the cor-
responding path loss and Rician fading channel gain between
the UE and the i-th interfering BS, respectively.

To compute the area spectral efficiency (ASE), we need to
derive the probability density function (PDF) of the SINR at
the UE, which for a specific value of λ is defined as

fΓ (λ, γ) =
∂ (1− Pcov(λ, γ))

∂γ
, (6)

and thus the ASE can be expressed as

AASE (λ, γ0) = λ

ˆ ∞
γ0

log2 (1 + γ) fΓ (λ, γ) dγ, (7)

where γ0 denotes the minimum working SINR for the consid-
ered SCN.

To obtain Pcov(λ, γ), we present Theorem 1 in the follow-
ing. Note that for the tractability of analysis in this paper,
we consider an interference-limited scenario and hence in
coverage probability derivations, we concentrate on signal-to-
interference-ratio (SIR) rather than SINR.

Theorem 1. Considering the path loss model in (2),
Pcov(λ, γ) can be computed as

Pcov(λ, γ) =
N∑
n=1

(
T L
n + TNL

n

)
, (8)

where T L
n =
´√d2n−L2

√
d2n−1−L2

Pr

[
Ptζ

L
n(
√
r2+L2)h
Ir

> γ

]
fL
R,n (r) dr,

TNL
n =

´√d2n−L2

√
d2n−1−L2

Pr

[
Ptζ

NL
n (
√
r2+L2)h
Ir

> γ

]
fNL
R,n (r) dr,

d0 = 0, dN = ∞, and f path
R,n (r) with path ∈ {L,NL} refers

to the piecewise PDF of the distance to the serving BS.
Proof: See Appendix A.

B. Rician Crash Theorem

In the following, we present Theorem 2 to theoretically
discuss how Rician fading affects the performance loss due
to the difference between the absolute heights of the BS and
UE antennas.

Theorem 2. In an UD-SCN, if L > 0 and γ, γ0 < ∞, for
λmax < λ, AASE

Rician(λ, γ0) < AASE
Rayleigh(λ, γ0) where λmax

refers to the BS density that achieves maximum coverage
probability.

Proof:
As the density of small cell BSs λ increases, the 2D distance

between the typical user and its serving BS diminishes.
Moreover, in practical SCNs L < d1 - where d1 determines
the decreasing slope of the linear LOS probability function
PrL(r) - and thus the first piece of either the LOS path loss
function or the NLOS path loss function will be sufficient to
characterise the 2D distance. This is backed up by the fact
that the small cell radius rc is related to small cell BS density
through rc = 1√

πλ
. Therefore, based on the limits Theory, we

can show that limλ→∞ Pcov(λ, γ) = limλ→∞
{
TL

1 + TNL
1

}
,

where the terms TL
1 and TNL

1 deliver the coverage probability
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Fig. 1. Illustration of antenna height impact in a small cell network with two
small cell BSs.

components based on the signal coming from either the first
piece LOS path or the first piece NLOS path, respectively.

In the computation of limλ→∞ Pcov(λ, γ), it is realized
that limλ→∞ fNL

R,1 = 0, and thus limλ→∞ TNL
1 = 0. To

elaborate this, we note that PrL(w) is a monotonically
decreasing function of w, and assuming a non-zero
difference between the heights of the BS and UE antennas
(L 6= 0), then limr→0 r2 = arg{ζL

(√
r2
2 + L2

)
ζNL
1 (L)}

∆
= rmin

2 , and thus it can be stated that exp
(
−
´ r2

0
PrL(√

u2 + L2
)

2πλudu
)

in (23) is upper bounded by

exp

(
−PrL

(√(
rmin
2

)2
+ L2

)
πλ
(
rmin
2

)2)
. This affirms

that as λ → ∞, the first piece LOS path loss function, i.e.,

ζL
1 (w) = AL

1

(√
r2 + L2

)−αL
1 , is sufficient to characterise

both the signal and interference links, and so is the
main contributor to the coverage probability. As a result,
limλ→∞ Pcov(λ, γ) = limλ→∞ TL

1 .
In order to compute limλ→∞ TL

1 , we use Fig. 1, which
illustrates a SCN consisting of two small cell BSs and can be
expanded to an UD-SCN where λ→∞. As can be seen in the
figure, the distance between UE and its serving and interfering
BSs are represented by r and τr, respectively, where (1 <
τ < ∞). Considering the first piece LOS path loss function,

we can show that as r → 0, Pr

[
PζL1 (

√
r2+L2)h
Ir

> γ

]
<

exp
(
−PrL(L)(τ2−1)

1+ 1
γ

)
, z, and since τ can take a large value,

then z will be very small. Thus, based on TL
1 definition,

limλ→∞ Pcov(λ, γ) = limλ→∞ TL
1 = 0. Moreover, we show

that when λ→∞, the limit of the signal-to-interference ratio

(SIR), defined by ζ =
(
√
τ2r2+L2)

αL
1

(
√
r2+L2)

αL
1

is

ζ̄ = lim
λ→∞

ζ = lim
r→0

ζ =

{
1, (L > 0)

τα
L
1 , (L = 0) .

(9)

It is realized from (9) that as r → 0, the signal-link distance√
r2 + L2 in the denominator of SIR formula is lower bounded

by L, and thus when L 6= 0, there will be a substantial decline
in ζ̄ which cannot be overcome by densification. This occurs
because the non-zero difference between the heights of the BS
and the UE antennas (L 6= 0) poses a cap on the signal-link
distance, which restrains the signal power while the power
of the aggregated interference signal grows as the network
densifies. Under these circumstances, network densification

-15 -10 -5 0 5 10 15

AveragelSINRl[dB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
yl

of
lo

pp
ot

un
is

tic
al

ly
lb

ea
tin

gl
0

RicianlKlfactorl=l13ldB
RicianlKlfactorl=l10ldB
RicianlKlfactorl=l7ldB
RicianlKlfactorl=l5ldB
RayleighlFading

Fig. 2. Probability of beating the SINR threshold of γ = 0 dB for different
Rician K factor.

enhances the aggregated interference while the signal power
remains constant. This leads to the Rician Crash, which ac-
celerates the UE’s service outage experience in comparison to
Rayleigh-based one.

To better understand the reasoning of the Rician Crash
theorem, we present Lemma 1 to investigate the probability
that the coverage probability opportunistically beats the SINR
threshold.

Lemma 1. In an UD-SCN, for a given SINR threshold γ0,
when the BS density λ is large enough, the Rayleigh fading
offers a better coverage probability than the Rician one.

Proof: We denote the average SINR by µ. Therefore, we
can express the coverage probability in (3) as

Pr [hµ > γ] = Pr

[
h >

γ

µ

]
= FH(h) = FH(

γ

µ
), (10)

where FH(h) represents the CCDF of h. Based on (27), and
depending on the distribution of h being Rayleigh or Rician,
(10) can be reformulated as

Pr [hµ > γ] =exp
(
− γµ
) ∞∑
k=0

k∑
m=0

exp(−K)Kkm!(km)
(k!)2

(
γ
µ

)k−m
Rician fading

exp
(
− γµ
)

Rayleigh fading

Moreover, we use ζ and δ to represent the ratio and the
difference between the coverage probability under Rayleigh
and Rician fading as

ζ = exp(−K)

∞∑
k=0

k∑
m=0

Kk

k!(k −m)!

(
γ

µ

)k−m
(11)
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δ = exp

(
−γ
µ

)(
1− exp(−K)

∞∑
k=0

k∑
m=0

Kk

k!(k −m)!(
γ

µ

)k−m)
(12)

For a given SINR threshold γ0, it can be seen from (11) that
as the BS density increases and the network moves towards
an UD-SCN, the specular LOS fading dominates and in turn
the Rician K factor increases. Therefore, in an UD-SCN, the
term exp(−K) in (11) exponentially decays and converges
to zero under Rician fading, so that the network performance
is drastically degraded in comparison to that with Rayleigh
fading. From another perspective, we can also observe that,
based on the Stirling’s approximation and as k → ∞, k!

grows faster than Kk, and thus Kk

k!(k−m)! < 1. Therefore, when
the SINRs are low, i.e., when the BS density is high and the
coverage probability is low (δ > 0), the Rician fading offers
a worse network performance than the Rayleigh one.

To corroborate the above result, Fig. 2 compares the proba-
bility that the coverage probability opportunistically beats the
SINR threshold of γ0 = 0dB for both Rician fading with
different Rician K factors as well as Rayleigh fading. Note
that the Rician K factors of 13, 10, 7, and 5 dB correspond
to 3D distances of 0 m, 100 m, 200 m, and 266.6 m between
UE and BS, respectively. This has to be emphasized that as
discussed in Section II, the distance-dependent Rician fading
model with a variant Rician K factor adjusts the dominance of
the LOS path based on distance between UE and BS. It can be
seen that when the BS density is low, which corresponds to
the high SINR regime (3 dB ∼ 10 dB), Rician fading has
a better chance to satisfy the SINR threshold requirement
in comparison to Rayleigh fading, which leads to a better
coverage probability performance. However, in the low SINR
regime (-10 dB ∼ -3 dB), which corresponds to a high BS
density, and thus UD-SCN, the Rician K factor is larger (LOS
fading dominates) and hence the Rician fading has a lower
chance to reach the SINR threshold requirement in comparison
to Rayleigh fading. As a result, it can be expected that Rician
fading more sharply drags down both the coverage probability
and ASE performance to zero than Rayleigh fading.

To support the above discussion, Fig. 3 compares the CDF
and PDF of Rician fading with different Rician K factors to
that of Rayleigh fading. It is seen that while Rayleigh fading
has a larger variance around the mean, Rician fading has a
more deterministic behaviour due to dominant LOS component
with a smaller variance around its mean. The higher the density
of BSs in the network, the larger the Rician K factor, the
stronger the LOS component, and the smaller the variance.

C. Study of a 3GPP Special Case

We consider the following 3GPP path loss function used in
[27]

ζ (w) =

{
ALw−α

L

,

ANLw−α
NL

,

with probability PrL (w)

with probability
(
1− PrL (w)

) ,

(13)
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Fig. 3. Comparison of CDF and PDF of Rician and Rayleigh fadings.

which for sake of simplicity and without any loss of generality
uses a linear LOS probability [28] function, PrL (w), defined
as

PrL (w) =

{
1− w

d1
,

0,

0 < w ≤ d1

w > d1

, (14)

where the steepness of PrL (r) is defined by the parameter d1.

According to Theorem 1 and considering the mentioned
3GPP case, Pcov (λ, γ) can be computed as Pcov (λ, γ) =

2∑
n=1

(
T L
n + TNL

n

)
, where ζL

1 (w) = ζL
2 (w) = ALw−α

L

,

ζNL
1 (w) = ζNL

2 (w) = ANLw−α
NL

, PrL
1 (w) = 1 − w

d1
, and

PrL
2 (w) = 0. In the following, we compute TL

1 , which can then
be easily extended to {TPathn } in order to obtain Pcov(λ, γ).

In order to help with the tractability of our analysis, we try
to approximate the 3D distance w =

√
r2 + L2. In this regard,



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2763613, IEEE Access

we derive the lower bound of w as

wLB =


w ≥ L tight when r is very small, i.e., 0 ≤ r ≤ v1

w ≥ r+L√
2

tight when r is relatively small, i.e.,

v1 ≤ r ≤ v2

w ≥ r tight when r is relatively large, i.e., r > v2.
(15)

where v1 =
(√

(2)− 1
)
L and v2 =

(√
(2) + 1

)
L. Having

computed the lower bound, we approximate w as L, r+L√
2

and
r for the ranges of r discussed in (15), respectively.

According to Theorem 1 and based on the above approx-
imation, TL

1 for the range of 0 < r ≤
√
d2

1 − L2 can be
computed as

TL
1 =

ˆ √d21−L2

0

∞∑
k=0

k∑
m=0

J(m, k) γk−m(−1)k−m

∂k−mL L
Ir

( γ

PtζLn(
√
r2+L2)

)

∂γk−m
fL
R,1(r)dr (16)

where ζL
1 (w) = ALw−α

L

and L L
Ir

refers to the Laplace
transform of Ir at s for the LOS transmission. Moreover, from
Theorem 1, fL

R,1(r) can be obtained as

fL
R,1(r) = exp

(
−
ˆ r1

0

λ

√
u2 + L2

d1
2πudu

)

× exp

(
−
ˆ r

0

λ

(
1−
√
u2 + L2

d1

)
2πudu

)

×

(
1−
√
r2 + L2

d1

)
2πrλ,

(
0 < r ≤

√
d2

1 − L2

)
= exp

(
−2πλ

3d1

((
r2
1 + L2

) 3
2 − L3

))
× exp

(
−πλr2 +

2πλ

3d1

((
r2
1 + L2

) 3
2 − L3

))
×

(
1−
√
r2 + L2

d1

)
2πrλ,

(
0 < r ≤

√
d2

1 − L2

)
(17)

where r1 =

√(
ANL

AL

) 2

αNL

(r2 + L2)
αL

αNL − L2.
Breaking the integration interval into different segments,

we calculate the definite integrals Q1 =
´ b
a

(1 − ∆1)udu

and Q2 =
´ b
a

(1 − ∆2)u
√
u2 + L2du where ∆1 =

(eKsPtA
path)−1(

√
u2+L2)

αpath

1+(sPtApath)−1(
√
u2+L2)

αpath−K(sPtApath)−1(
√
u2+L2)

αpath
and

∆2 =
(eKsPtA

path)−1(
√
u2+L2)

αpath

1+(sPtApath)−1(
√
u2+L2)

αpath−K(sPtApath)−1(
√
u2+L2)

αpath

for different segments of [0 ≤ a; b ≤ v1], [v1 ≤ a; b ≤ v2],
[v2 ≤ a; b < ∞], and [v2 ≤ a; b = +∞] which are presented
in Appendix B.

IV. SIMULATION AND DISCUSSION

In this section, we use numerical results to study the
performance of dense SCNs with non-identical antenna heights
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Fig. 4. The coverage probability versus BS density with antenna height
difference of L = 10m.

under Rician fading channel and validate the accuracy of our
analysis. To analyse in detail the impact of the Rician Crash
theorem in UD-SCNs, we consider four different cases:
• Case 1: Both serving and interfering BSs are subject to

Rician fading,
• Case 2: Serving BS is subject to Rician fading, while

interfering BSs are subject to Rayleigh fading,
• Case 3: Serving BS is subject to Rayleigh fading, while

interfering BSs are subject to Rician fading,
• Case 4: Both serving and interfering BSs are subject to

Rayleigh fading.
Note that case 1 is more realistic and that the other cases
are presented here in order to aid the discussion. Also note
that in the legend of Figs. 4 and 5, the first and second terms
refer to the channel model between the UE and its serving and
interfering BSs, respectively.

We adopt the following parameters in our numerical analysis
based on [27], [29]. We assume the LOS and NLOS path loss
exponents of αL = 2.09 and αNL = 3.75. Moreover, AL,
ANL, and d1 are assumed to be 10−10.38, 10−14.54, and 0.3
km, respectively. The transmit and noise power are also equal
to Pt = 24 dBm and N0 = −95 dBm. Unless mentioned
otherwise, we also assume antenna height differences of L = 0
(identical UE and BS antenna heights) and L = 8.5m.

A. The Coverage Probability Performance

Fig. 4 shows the coverage probability versus the BS density
for the four cases discussed above, where the UE and BS
antennas are not at the same height (L = 8.5m). First of all
and before proceeding with the analysis of numerical results, it
is important to note that the theoretical analysis results match
the simulation results, and thus we only discuss theoretical
results hereafter.

With regard to the general coverage probability trends,
Fig. 4 also shows that for all four discussed cases, the coverage
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probability initially increases with the BS density, as the
network is light up with coverage. However, once the BS
density exceeds a certain threshold, in this case

(
λ0 = 20 Bss

km2

)
,

the difference between the heights of UE and BS antennas
causes a cap on the signal power, which prompts the coverage
probability to decline and eventually converge to zero, as was
explained in Rician Crash Theorem. Comparing the coverage
probability of the four different cases presented above, it can
be seen that the multi-path fading model (as discussed in
Lemma 1) does have an impact on the coverage probability,
when there is a difference in the heights of the UE and the
BS antennas.

When the coverage probability achieves its maximum at
λ1, meaning that the UE SINRs are large, the case with
Rician fading for the serving links and Rayleigh fading for
the interference links achieves the best performance. This is
in line with Lemma 1, which showed that Rician fading has
a better chance to satisfy the SINR threshold requirement
in comparison to Rayleigh fading in the high SINR regime
between 3 dB and 10 dB. To further support this claim note
that, as it was shown in Fig. 3, Rician fading results in a more
deterministic multi-path fading due to its specular dominant
LOS component with a lower variance around the mean, while
Rayleigh fading has a larger variance around the mean with a
large tail towards the negative values, resulting in fadings of
up to -20dB, The first phenomena helps to maintain a good
carrier signal for most UEs, while the second one helps to
opportunistically mitigate the interference.

When the coverage probability is low, which refers to low
SINR regime, it is important to note that there is a cross over
at around

(
λ1 = 700 Bss

km2

)
between the coverage probabilities

of the cases that have Rician and Rayleigh fading to model the
serving links. This is also in line with Lemma 1, which showed
that Rician fading has a lower chance to reach the SINR
threshold requirement in comparison to Rayleigh fading in
the low SINR regime between −3 dB and −10 dB. The cases
with Rayleigh fading offer a better performance here because
Rayleigh fading benefits from more channel fluctuations than
Rician fading, and thus achieves an opportunistic carrier signal
power gain, which is only visible at low UE SINRs. In such
regime, the case with Rayleigh fading for both the serving
and the interference links achieves the best performance, since
as explained before the Rayleigh interference is in average
smaller than the Rician one.

B. The ASE Performance

Fig. 5 shows the ASE performance for the above four differ-
ent cases. It is important to mention that we only focus on the
theoretical results and so the ASE results are obtained from the
coverage probability presented in (7). The ASE performance
also follows a similar trend as the coverage probability. For
all the four cases, we can see that as far as the BS density
is lower than λ1, the ASE linearly increases with the BS
density because the coverage holes are mitigated. Densifying
the network beyond λ1 causes the ASE to experience a slower
growth pace or even a decrease. This occurs due to coverage
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Fig. 5. The area spectral efficiency versus BS density with antenna height
difference of L = 10m.

probability degradation triggered by the transition of a large
number of interfering signals from NLOS to LOS [18], [23].
Then, when the BS density is large, as in an UD-SCN, we
observe a severe degradation in ASE performance due the UE
and BS antenna height difference, and that such degradation
greatly depends on the multi-path fading model.

Comparing the ASE results that correspond to the discussed
four cases, we can also realise the same behaviour as for
the coverage probability. When the BS density is λ1 and the
coverage probability achieves its maximum, the cases with
Rician fading at the serving links provide the best performance
because Rician fading has a better chance to meet the SINR
threshold. However, when the UE SINR starts to degrade
due to the difference between UE and BS antenna heights,
the cases with Rayleigh fading are more robust and provide
a better performance since Rayleigh fading benefits from a
higher chance to meet the SINR threshold, as was derived
in Lemma 1 and shown in Fig. 2. Accordingly, when the
multi-path channel between the UE and its associated BS is
Rician fading, the ASE declines more rapidly towards zero.
As network becomes denser and the LOS component becomes
more dominant, the Rician K factor is reinforced causing the
Rician fading to face a more severe exponential decay. To
further explain this, we must note that due to the large Rician
K factor in UD-SCN (where the channel is even prone to
single LOS tap), Rician fading causes less fluctuations in the
channel in comparison to Rayleigh fading, which prevents to
benefit from the opportunistic channel gains. Rayleigh fading
instead provides such opportunistic SINR gains at the cell-
edge, which leads to an enhanced ASE. As a result, the
Rician fading causes a more severe performance degradation
as discussed by Rician Crash theorem.

Finally, Fig. 6 compares the impact of identical and non-
identical UE-BS antenna heights on the ASE performance
under Rician fading. Note that in non-identical case, the height
difference is 8.5m. It can be perceived that when both UE
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Fig. 6. Comparison of the area spectral efficiency with different antenna
heights under Rician fading.

and BS have same antenna heights (L = 0), the ASE linearly
increases as the network moves towards an UD-SCN [23]. In
contrary, based on the Rician Crash theorem, when (L 6= 0),
Rician fading causes the ASE to severely drop to zero. This
suggests that operators should lower the small cell BS height
close to the average UE antenna height when deploying UD-
SCNs.

C. Discussion on the Value of Theoretical Analysis

While theoretical derivations do not have straightforward
and compact expressions, this has to be pointed out that
computer based simulations are nearly infeasible when looking
at a practical ultra-dense network with a tremendous number
of BSs, millions of them. The complexity of computer based
simulations quickly become prohibitive, with running times
of around a month for the discussed scenario in this paper. In
more details, the required time to perform the computer based
simulations for BS densities of λ ≥ 103 BSs/km2 is very long,
and it becomes almost infeasible for BS densities of λ ≥ 105

BSs/km2. For instance, for BS density of λ = 106 BSs/km2, it
takes a minimum of twenty seven days to plot smooth curves
using computer based simulations in comparison to five days
using the theoretical derivations. In contrast, the complexity of
the theoretical analysis remains independent of the BS density,
thanks to the numerical integration derived in this paper, i.e.,
the complexity is not a function of the BS density and so the
results can be obtained much faster.

V. CONCLUSION

In this paper, we analysed the impact of Rician fading
on the coverage probability and ASE performance in UD-
SCNs where the BS and UE antennas are not of the same
height. Using a piecewise path loss model, we showed through
analytical expressions as well as simulation results that due to
less channel fluctuations of Rician fading, it causes the ASE
to more rapidly slope down to zero in comparison to Rayleigh
fading. This indicates that multi-path fading plays a key role

in UD-SCNs with non-identical UE-BS antenna heights and
to avert its ruinous effect, the operators should deploy small
cell BSs close to the height of the average UE antenna.
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[24] M. Ding, D. López-Pérez, “Performance Impact of Antenna Heights
in Dense Cellular Networks,” submitted to IEEE Trans. on Wireless
Commun., 2016.

[25] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge
University Press, 2012.

[26] C. Galiotto, N. K. Pratas, N. Marchetti, L. Doyle, “A stochastic geometry
framework for LOS/NLOS propagation in dense small cell networks”,
[Online]. Available: http://arxiv.org/abs/1412.5065

[27] 3GPP, “TR 36.828 (V11.0.0): Further enhancements to LTE Time
Division Duplex (TDD) for Downlink-Uplink (DL-UL) interference
management and traffic adaptation,” Jun. 2012.

[28] Spatial Channel Model AHG, “Subsection 3.5.3, Spatial
Channel Model Text Description V6.0,” Apr. 2003. ([Online]:
ftp://www.3gpp.org/tsg ran/WG1 RL1/3GPP 3GPP2 SCM/ConfCall-
16-20030417)

[29] 3GPP, “TR 36.872, Small cell enhancements for E-UTRA and E-
UTRAN - Physical layer aspects,” Dec. 2013.
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APPENDIX A

To compute Pcov (λ, γ), we need to calculate two parame-
ters: i) the joint distance PDFs for the corresponding events of
the typical UE being associated with a BS with either a LOS or
NLOS path represented by Events BL

n and BNL
n , respectively,

and ii) the coverage probability that is conditioned on
(
r,BL

n

)
and

(
r,BNL

n

)
. Note that the joint distance PDF of r and Event

Bpathn with string variable path taking the values of {L,NL}
to represent LOS and NLOS paths is denoted by fpathR,n (r),
where fpathR,n (r) is subject to the following condition:

N∑
n=1

ˆ √d2n−L2

√
d2n−1−L2

fL
R,n(r)dr +

N∑
n=1

ˆ √d2n−L2

√
d2n−1−L2

fNL
R,n(r)dr = 1.

(18)
Also note that the coverage probability is the sum of the

probabilities associated with the Events BL
n and BNL

n , owing
to the fact that these two events are disjoint.

To compute fL
R,n (r), we refer to its definition as fL

R,n (r) =

fR,n|BL
n

(
r|BL

n

)
Pr[BL

n ], where Pr[BL
n ] = PrL

n(
√
r2 + L2)

and fR,n|BL
n

(
r|BL

n

)
represents the joint event that corresponds

to the following independent sub-events.
• The serving BS b0 should be located at a 2D distance r

from the typical UE with the corresponding unconditional
distance PDF of 2πrλ.

• There should not be any other LOS BS than the serving
BS b0 in event BL

n that offers a better link to the UE. Its
probability is given as

pL
n(r) = exp

(
−
ˆ r

0

PrL
(√

u2 + L2
)

2πuλdu

)
.

(19)
• There should not be any other NLOS BS than the serving

BS b0 in event BL
n that offers a better link to the UE. Its

probability is given as

pNL
n (r) = exp

(
−
ˆ r1

0

(
1− PrL

(√
u2 + L2

))
2πuλdu

)
,

(20)

where r1 = arg
r1

{
ζNL

(√
r2
1 + L2

)
= ζL

n

(√
r2 + L2

)}
to derive the 2D distance at which the NLOS BS and b0
offer the same signal level.

Assuming a 3D distance, we can show that

fR,n|BL
n

(
r|BL

n

)
= pNL

n (r)pL
n(r)2πrλ. (21)

Therefore, the piecewise PDF of the distance to the LOS
and NLOS serving BS can be derived as

fL
R,n (r) = exp

(
−
ˆ r1

0

(
1− PrL

(√
u2 + L2

))
2πuλdu

)
× exp

(
−
ˆ r

0

PrL
(√

u2 + L2
)

2πuλdu

)
PrL

n

(√
r2 + L2

)
×2πuλ,

(√
d2
n−1 − L2 < r ≤

√
d2
n − L2

)
, (22)

and

fNL
R,n (r) = exp

(
−
ˆ r2

0

PrL
(√

u2 + L2
)

2πuλdu

)
× exp

(
−
ˆ r

0

(
1− PrL

(√
u2 + L2

))
2πuλdu

)
×
(

1− PrL
n

(√
r2 + L2

))
× 2πuλ,(√

d2
n−1 − L2 < r ≤

√
d2
n − L2

)
, (23)

where r1 = arg
r1

{
ζNL

(√
r2
1 + L2

)
= ζL

n

(√
r2 + L2

)}
and

r2 = arg
r2

{
ζL
(√

r2
2 + L2

)
= ζNL

n

(√
r2 + L2

)}
.

We can now move on to evaluate Pr
[
SINR > γ|

(
r,BL

n

)]
and Pr

[
SINR > γ|

(
r,BNL

n

)]
, which can be presented as

Pr
[
Ptζ

L
n(
√
r2+L2)h
Ir

> γ

]
and Pr

[
Ptζ

NL
n (
√
r2+L2)h
Ir

> γ

]
,

respectively. In the following, we only consider

Pr[
Ptζ

L
n(
√
r2+L2)h
Ir

> γ], as Pr[
Ptζ

NL
n (
√
r2+L2)h
Ir

< γ]
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can be computed in the same manner.

Pr[
Ptζ

L
n

(√
r2 + L2

)
h

Ir
> γ]

= E[Ir]

{
Pr

[
h >

γIr

PtζL
n

(√
r2 + L2

)]}

= E[Ir]

{
F̄H

(
γIr

PtζL
n

(√
r2 + L2

))} (24)

where E[Ir]{.} is the expectation operation over the random
variable Ir and F̄H(h) refers to the complementary cumulative
distribution function (CCDF) of random variable h. Note
that for the tractability of analysis, we have considered an
interference-limited scenario in our derivations. Moreover, the
interference is normalized with respect to Ptζ

L
n

(√
r2 + L2

)
,

where the normalized interference is defined as Irn =
Ir

PtζLn(
√
r2+L2)

. Therefore, (24) can be expressed as Pr[ h
Irn

>

γ] = 1 − Pr[ h
Irn

< γ] where Pr[ h
Irn

< γ] denotes the
cumulative distribution function (CDF) of the normalized
SINR, and thus Pr[ h

Irn
< γ] can be written as

Pr[
h

Irn
> γ] = 1−

ˆ ˆ
h
y<γ

fH(h)fIrn(y) dh dy

= 1−
ˆ ∞

0

FH(γy)fIrn(y) dy (25)

where fH(h) and FH(h) are the PDF and CDF of random
variable h, respectively [32], [33]. Since the random variable
h is Rician distributed, its PDF is given by

fH(h) =
(K + 1)

h̄
exp

(
−
(
K +

(K + 1)h

h̄

))
× I0(

√
4K(K + 1)h

h̄
) (26)

where K is the Rician K factor, I0 is the zero-th order
first kind modified Bessel function and h̄ is expectation of
h. Applying the series expansion from [34], [35], fH(h) can

be expressed as fH(h) = exp(−K − h)
∞∑
k=0

(Kh)k

(k!)2 and using

the PDF of h, its CDF can be derived as

Fh(h) = exp(−K)
∞∑
k=0

Kk

(k!)2

(
exp(−h)

k∑
m=0

(−1)2m+1 m!

(
k

m

)
hk−m + k!

)

= −
∞∑
k=0

k∑
m=0

exp(−h) J(m, k) hk−m +
∞∑
k=0

Kk

k!
exp(−K)

= −
∞∑
k=0

k∑
m=0

exp(−h) J(m, k) hk−m + 1 (27)

where J(m, k) =
exp(−K)Kkm!(km)

(k!)2 and
∞∑
k=0

Kk

k! = exp(K)

based on the Taylor series combination. By replacing (27) in

(25), we derive

Pr[
h

Irn
> γ]=

∞∑
k=0

k∑
m=0

J(m, k)

ˆ ∞
0

(yγ)k−me−yγfIrn(y) dy

=
∞∑
k=0

k∑
m=0

J(m, k) γk−mQ(γ, k −m) (28)

where Q(τ, n) =
´∞

0
yne−yτfIrn(y)dy = (−1)n

∂nLIrn (τ)
∂τn

for n = 0, 1, ..,∞ [32], [33]. Therefore,

Pr[
h

Irn
> γ] =

∞∑
k=0

k∑
m=0

J(m, k) γk−m(−1)k−m

∂k−mL L
Irn

(γ)

∂γk−m
(29)

Plugging Ir = Irn Ptζ
L
n

(√
r2 + L2

)
into (29), we can derive

Pr[
Ptζ

L
n

(√
r2 + L2

)
h

Ir
> γ] =

∞∑
k=0

k∑
m=0

J(m, k) γk−m

(−1)k−m
∂k−mL L

Ir
( γ

PtζLn(
√
r2+L2)

)

∂γk−m
(30)

where L L
Ir

(s) is the Laplace transform of RV Ir evaluated at
s subject to the condition corresponding to Event BL which
states that the UE is associated with a BS with LOS trans-
mission. Similarly, for the NLOS transmission, it is derived
as

Pr

[
Ptζ

NL
n

(√
r2 + L2

)
h

Ir
> γ

]
=

∞∑
k=0

k∑
m=0

J(m, k) γk−m

(−1)k−m
∂k−mL NL

Ir
( γ

PtζNL
n (
√
r2+L2)

)

∂γk−m
(31)

where L NL
Ir

(s) is the Laplace transform of RV Ir evaluated
at s subject to the condition corresponding to Event BNL that
the UE is associated with a BS with NLOS transmission. In
the following, we derive L L

Ir
(s) as

L L
Ir (s)=E[Ir]

{
exp (−sIr)|BL

}
= E[Φ,{βi},{gi}]

exp

−s ∑
i∈Φ/bo

Ptβi(w)gi

∣∣∣∣∣∣BL

(32)

and based on the path loss model, the user is subject to
interference from both LOS and NLOS paths. Therefore,
E[g]{exp(−sPtβ(w)g)|BL} in (32) must take into account the
interference from both the LOS and NLOS interfering BSs.
Note that the random variable g follows a Rician distribution.
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Therefore, L L
Ir

(s) can be expressed as

L L
Ir (s) = exp

(
−2πλ

ˆ ∞
r

(
1−
√
u2 + L2

d1

)
[
1− E[g]exp

(
−sPtAL

(√
u2 + L2

)−αL

g

)]
udu

)

× exp

(
−2πλ

ˆ ∞
r1

√
u2 + L2

d1

[
1− E[g]exp

(
−sPtANL

(√
u2 + L2

)−αNL

g

)]
udu

)
(33)

For sake of presentation, the term sPtA
L
(√
u2 + L2

)−αL

is
denoted by Λ, and thus E[g]{exp(−Λg)} can be computed as

E[g]exp(−Λg) =

ˆ ∞
0

exp(−Λg) exp(−K − g)

∞∑
k=0

(Kg)k

(k!)2
dg (34)

where exp(−K − g)
∞∑
k=0

(Kg)k

(k!)2 is the PDF of the random

variable g. According to Taylor series, it is realized that
∞∑
k=0

Kk

k! = exp(K), and thus (34) can be written as

E[g]{exp(−Λg)}=
ˆ ∞

0

exp(−Λg)exp(−K − g)exp(Kg) dg

= exp(−K)

ˆ ∞
0

exp(−g(1 + Λ−K)) dg =
exp(−K)

1 + Λ−K
(35)

Plugging Λ = sPtA
L
(√
u2 + L2

)−αL

into (35), 1 −
E[g]exp(−sPtAL

(√
u2 + L2

)−αL

g) can be written as

1− E[g]exp(−sPtAL
(√

u2 + L2
)−αL

g) =

1−
(eKsPtA

L)−1
(√
u2 + L2

)αL

1 + Γ1
(36)

where Γ1 = (sPtA
L)−1

(√
u2 + L2

)αL

− K(sPtA
L)−1(√

u2 + L2
)αL

. Similarly, 1 − E[g]{exp(−sPtANLu−α
NL

g)}

can be computed, and thus (33) is written as

L L
Ir (s) = exp

(
−2πλ

ˆ ∞
r

(
1−

(√
u2 + L2

)
d1

)
1−

(eKsPtA
L)−1

(√
u2 + L2

)αL

1 + Γ1

udu

)

× exp

(
−2πλ

ˆ ∞
r1

(√
u2 + L2

)
d11−

(eKsPtA
NL)−1

(√
u2 + L2

)αNL

1 + Γ2

udu

)
(37)

where Γ2 = (sPtA
NL)−1

(√
u2 + L2

)αNL

− K(sPtA
NL)−1(√

u2 + L2
)αNL

and s =
γ(
√
r2+L2)

αL

PtAL . By plugging (37) in

(30), we compute Pr[
Ptζ

L
n(
√
r2+L2)h
Ir

> γ]. In a similar man-

ner, we can derive L NL
Ir

(s), and obtain Pr[
Ptζ

NL
n (
√
r2+L2)h
Ir

>
γ] and, therefore,

Pr[
Ptζ

L
n

(√
r2 + L2

)
h

Ir
> γ] =

∞∑
k=0

k∑
m=0

J(m, k) γk−m

(−1)k−m
∂k−mL L

Ir

(
γ

PtζLn(
√
r2+L2)

)
∂γk−m

(38)

and

Pr[
Ptζ

NL
n

(√
r2 + L2

)
h

Ir
> γ] =

∞∑
k=0

k∑
m=0

J(m, k) γk−m

(−1)k−m
∂k−mL NL

Ir

(
γ

PtζNL
n (
√
r2+L2)

)
∂γk−m

(39)

where L L
Ir

(s) and L NL
Ir

(s) refer to the Laplace transform
of RV Ir evaluated at s for LOS and NLOS transmissions,
respectively, and are derived as

L L
Ir (s) = exp

(
−2πλ

ˆ ∞
r

(
1−

(√
u2 + L2

)
d1

)
(

1−
(eKsPtA

L)−1
(√
u2 + L2

)αL

1 + Γ1

)
udu

)

× exp

(
−2πλ

ˆ ∞
r1

(√
u2 + L2

)
d1(

1−
(eKsPtA

NL)−1
(√
u2 + L2

)αNL

1 + Γ2

)
udu

)
, (40)
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and

L NL
Ir (s) = exp

(
−2πλ

ˆ ∞
r2

(
1−

(√
u2 + L2

)
d1

)
(

1−
(eKsPtA

L)−1
(√
u2 + L2

)αL

1 + Γ1

)
udu

)

× exp

(
−2πλ

ˆ ∞
r

(√
u2 + L2

)
d1(

1−
(eKsPtA

NL)−1
(√
u2 + L2

)αNL

1 + Γ2

)
udu

)
. (41)

APPENDIX B

In the following, we calculate the the definite integrals Q1

and Q2 for the different segments.

Case 1: Assuming 0 ≤ a and b ≤ v1, we approximate√
u2 + L2 ≈ L. Therefore, Q1 and Q2 can be expressed

as

Q1 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1Lα

path

1 + (sPtApath)−1Lαpath −K(sPtApath)−1Lαpath

)
Ludu =

1

2

(
b2 − a2

)
+
a2 − b2

2

(eKsPtA
path)−1Lα

path

1 + (sPtApath)−1Lαpath −K(sPtApath)−1Lαpath
(42)

and

Q2 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1Lα

path

1 + (sPtApath)−1Lαpath −K(sPtApath)−1Lαpath

)
udu =

L

2

(
b2 − a2

)
+
L
(
a2 − b2

)
2

(eKsPtA
path)−1Lα

path

1 + (sPtApath)−1Lαpath −K(sPtApath)−1Lαpath
(43)

Case 2: Assuming v1 ≤ a and b ≤ v2, we approxi-
mate

√
u2 + L2 ≈ u+L√

2
. Therefore, Q1 and Q2 can be

expressed as

Q1 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1

(
u+L√

2

)αpath
1 + (sPtApath)−1

(
u+L√

2

)αpath
−K(sPtApath)−1

(
u+L√

2

)αpath)

udu

ˆ b+L

a+L

(
1−

(eKsPtA
path)−1

(
ū√
2

)αpath
1 + (sPtApath)−1

(
ū√
2

)αpath
−K(sPtApath)−1

(
ū√
2

)αpath)
(ū− L)dū

= ρ1

(
αpath, 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)
−ρ1

(
αpath, 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)
−L

[
ρ1

(
αpath, 0,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)

−ρ1

(
αpath, 0,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]

+(sPtA
path)−1

(
(1−K − exp(−K))

(
1√
2

)αpath)

×

[
ρ1

(
αpath, αpath + 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)

−ρ1

(
αpath, αpath + 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]
+L(sPtA

path)−1 (1−K − exp(−K))

×

[
ρ1

(
αpath, αpath,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)

−ρ1

(
αpath, αpath,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]
(44)

and

Q2 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1

(
u+L√

2

)αpath
1 + (sPtApath)−1

(
u+L√

2

)αpath
−K(sPtApath)−1

(
u+L√

2

)αpath)

u
u+ L√

2
du
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=

ˆ b+L

a+L

(
1−

(eKsPtA
path)−1

(
ū√
2

)αpath
1 + (sPtApath)−1

(
ū√
2

)αpath
−K(sPtApath)−1

(
ū√
2

)αpath)
(ū− L)ū√

2
dū

=
1√
2

[
ρ1

(
αpath, 2,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)
− ρ1

(
αpath, 2,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]
− L√

2

[
ρ1

(
αpath, 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)

− ρ1

(
αpath, 1,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]

+ (sPtA
path)−1

(
(1−K − exp(−K))√

2

(
1√
2

)αpath)
×

[
ρ1

(
αpath, αpath + 2,

(
(sPtA

path)−1

√
2

(1−K)

)
, b+ L

)

− ρ1

(
αpath, αpath + 2,

(
(sPtA

path)−1

√
2

(1−K)

)
, a+ L

)]

+
L(sPtA

path)−1 (1−K − exp(−K))√
2

×

[
ρ1

(
αpath, αpath + 1,

(
(sPtA

path)−1

√
2

(1−K)

)
,

b+ L

)
− ρ1

(
αpath, αpath + 1,

(
(sPtA

path)−1

√
2

(1−K)

)
,

a+ L

)]
(45)

where the variable change of u+ L = ū is used to ease
the integrations. Note that ρ2(α, β, t, d) is defined as

ρ1(α, β, t, d) =

ˆ d

0

uβ

1 + tuα
du

=

[
dβ+1

β + 1

]
2F1

[
1,
β + 1

α
; 1 +

β + 1

α
;−tdα

]
(46)

where 2F1 [., .; .; .] refers to the hyper-geometric function.

Case 3: Assuming v2 ≤ a and b < ∞, we approximate√
u2 + L2 ≈ u. Therefore, Q1 and Q2 can be expressed

as

Q1 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1uα

path

1 + (sPtApath)−1uαpath −K(sPtApath)−1uαpath

)
udu

= ρ1

(
αpath, 1, (sPtA

path)−1(1−K), b
)

−ρ1

(
αpath, 1, (sPtA

path)−1(1−K), a
)

+ (1−K − exp(−K))

[
ρ1

(
αpath, 1, (sPtA

path)−1

(1−K), b
)
− ρ1

(
αpath, αpath + 1, (sPtA

path)−1

(1−K), a
)]

(47)

and

Q2 ≈
ˆ b

a

(
1−

(eKsPtA
path)−1uα

path

1 + (sPtApath)−1uαpath −K(sPtApath)−1uαpath

)
u2du

= ρ1

(
αpath, 2, (sPtA

path)−1(1−K), b
)

−ρ1

(
αpath, 2, (sPtA

path)−1(1−K), a
)

+ (1−K − exp(−K))

[
ρ1

(
αpath, αpath + 2,

(sPtA
path)−1(1−K), b

)
− ρ1

(
αpath, αpath + 2,

(sPtA
path)−1(1−K), a

)]
(48)

Case 4: Assuming v2 ≤ a and b = +∞, we approximate
Q1 and Q2 as

Q1 ≈
ˆ +∞

a

(
1−

(eKsPtA
path)−1uα

path

1 + (sPtApath)−1uαpath −K(sPtApath)−1uαpath

)
udu

= ρ2

(
αpath, 1, (sPtA

path)−1(1−K), a
)

+
(
(sPtA

path)−1(1−K − exp(−K))
)

× ρ2

(
αpath, αpath + 1, (sPtA

path)−1(1−K), a
)

(49)

and

Q2 ≈
ˆ +∞

a

(
1−

(eKsPtA
path)−1uα

path

1 + (sPtApath)−1uαpath −K(sPtApath)−1uαpath

)
u2du

= ρ2

(
αpath, 2, (sPtA

path)−1(1−K), a
)

+
(
(sPtA

path)−1(1−K − exp(−K))
)

× ρ2

(
αpath, αpath + 2, (sPtA

path)−1(1−K), a
)

(50)

where ρ2(α, β, t, d) is defined as

ρ2(α, β, t, d) =

ˆ ∞
d

uβ

1 + tuα
du

=

[
d−(α−β−1)

t(α− β − 1)

]
2F1

[
1, 1− β + 1

α
; 2− β + 1

α
;− 1

tdα

]
.

(51)

subject to (α > β + 1).


