
This is a repository copy of Bayesian modeling of temperature-related mortality with latent 
functional relationships.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/125321/

Version: Accepted Version

Article:

Aykroyd, RG orcid.org/0000-0003-3700-0816 (2019) Bayesian modeling of 
temperature-related mortality with latent functional relationships. Communications in 
Statistics - Theory and Methods, 48 (1). pp. 3-14. ISSN 0361-0926 

https://doi.org/10.1080/03610926.2017.1421223

© 2017, Taylor & Francis Group, LLC. This is an Accepted Manuscript of an article 
published by Taylor & Francis in Communications in Statistics - Theory and Methods on 16
Jan 2018, available online: https://doi.org/10.1080/03610926.2017.1421223

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/143477893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Bayesian modeling of temperature-related mortality

with latent functional relationships
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(e-mail: r.g.aykroyd@leeds.ac.uk)

December 12, 2017

Abstract

It is common for the mortality rate to increase during periods of extreme tem-

perature and for the minimum mortality rate to depend on factors such as the mean

summer temperature. In this paper, local correlation is explicitly described using a

generalized additive model with a spatial component which allows information from

neighbouring locations to be combined. Random walk and random field models are

proposed to describe temporal and spatial correlation structure. Further, joint spatial-

temporal modelling is proposed by including a temperature-related mortality term.

This will make use of existing data more efficiently and should reduce prediction vari-

ability. The methods are illustrated using simulated data based on real mortality and

temperature data.

Keywords: Bayesian methods, demography, generalised additive models, maxi-

mum likelihood, spatial-temporal.
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1 Introduction

There are several important implications of the observation that death rates increase under

usual extremes of temperature (National Academy of Sciences, 2010; McMichael and Coau-

thors, 2008). Gasparrini et al. (2015) report a large-scale study using data from 384 locations

and have shown that this is a worldwide issue. In particular, this should influence local gov-

ernment policy on current social welfare, but also it has longer term worldwide implications

in the face of global warming. The realisation that this will have a critical influence on

human life cannot be ignored. It has, however, also been noted that the minimum mortality

rate is not equal in different regions, and in particular that this appears to be related to

local average temperature. Hence, a possible conclusion is that mortality rates might not in-

crease if an overall change in mean temperature takes place over an extended period of time,

but will have a significant effect if the annual temperature profile becomes more volatile —

that is the difference between summer highs and winter lows increases. To produce reliable

information on which to base critical decisions is therefore of vital importance.

Although the modelling approach is described in terms of a spatial-temporal mortal-

ity data structure, it can equally be used to described a wide range of other, apparently,

unrelated problems and hence has more general importance.

2 Model definitions

2.1 Data structure

Consider data collected at a set of n known locations, {si : i = 1, . . . , n}, within some

bounded region, F ⊂ R
2 – such as in Figure 1(a)‡. At each location, other variables are

recorded over a long period which might simply be labelled sequentially as j = 1, . . . , N .

The main variables of interest are mortality, mij, and temperature, tij – as in Figure 1(b)‡.

It is assumed that there are also M demographic and socio-economic covariates which will



be denoted xijk, k = 1, . . . ,M . This leads to a full dataset in terms of the following variables:

mortality: m = {mij : i = 1, . . . , n, j = 1, . . . , N},

locations: s = {si : i = 1, . . . , n},

temperature: t = {tij : i = 1, . . . , n, j = 1, . . . , N},

covariates: X = {xijk, i = 1, . . . , n, j = 1, . . . , N, k = 1, . . . ,M}.

(1)

Some of these variables will vary smoothly with location or time while others will be inde-

pendent of space and time. A key aspect of the proposed approach is to model each type

appropriately — this will be discussed in Section 3.

Now considering key relationships between variables. In particular, it is assumed that

mortality depends on temperature, through a temperature-mortality curve – as in the ex-

ample in Figure 1(c)⋆. These will vary between locations, and even over time, but will

have similarly shaped curves across time and space with key aspects dependent on selected

demographic variables – this level of further modelling will not be considered here.

2.2 Generalized additive modelling

This structure is well-suited to a description using a generalized additive model (GAM)

approach (Hastie et al., 2009) which is an extension of the generalized linear model (GLM)

approach – see also Fahrmeir and Lang (2001); Fahrmeir et al. (2004). In the GLM, the

mean of the response variable, E[Y ], depends on a set of explanatory variables, X1, . . . , Xp,

through a link function, η, as

η(E[Y ]) = α + β1X1 + · · ·+ βpXp. (2)

Then the usual linear regression models have the identity link, η(E[Y ]) = E[Y ], and the

random errors are assumed to be independent and identically distributed normal random

variables. In the GAM the linear relationships are simply replaced by non-linear functions,

hence f1(X1), . . . , fp(Xp),

η(E[Y ]) = α + f1(X1) + · · ·+ fp(Xp). (3)

‡Data from Tank and Coauthors (2002) and ⋆based on Todd and Valleron (2015).
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Figure 1: Data: (a) spatial locations, (b) typical daily temperature pattern through a year,

and (c) typical relationship between mortality and temperature.

Note that some of the functions could be linear producing a mixture of non-linear and linear

components. Unknown non-linear functions are usually estimated flexibly, perhaps using

smoothing splines or based on local models such as autoregressive processes. As with GLMs,

the form of the link function is determined by the nature of the random error, for example, an

identity link for Gaussian errors, logit or probit for binomial probabilities and log for Poisson

counts.

2.3 Spatial and temporal models

The specific version of the GAM to be used here, written in terms of mortality, temperature,

space and time, will now be considered. The overall modelling approach is similar to that of

Fahrmeir and Lang (2001); Fahrmeir et al. (2004). The relationship between the variables is

illustrated in Figure 2, where arrows show plausible causal influences. The spatial-temporal



GAM contains a global mean, µ, with separable spatial and temporal components, f1 and

f2,

y(s, t) = logm(s, t) = µ+ f1(s) + f2(t) + ǫ(s, t) (4)

where the errors ǫ are independent and identically distribution normal random variables,

ǫ ∼ N(0, σ2). It is also possible to include a term which depends on a set of other covariates,

as represented in Figure 2.

As a novel extension, an additional component is added which explicitly described changes

in mortality caused by changes in temperature

y(s, t) = logm(s, t) = µ+ f1(s) + f2(t) + f3(temp(s, t)) + ǫ(s, t). (5)

It is this additional, latent component which contains the novel modelling in this paper. This

is a function of both location and time, but instead a hidden mortality-temperature function

is defined which can be estimated using localized data collapsed over time.

Mortality

Temperature

Space Time

Demographic
Socio-

economic

Figure 2: Diagram showing the causal relationship and hence the conditional independence

structure.

Now consider log-mortality data y = {yij : i = 1, . . . , n, j = 1, . . . , N}, where yij =

logmij for i = 1, . . . , n, j = 1, . . . , N . From this description the likelihood and, in turn, the



following log-likelihood can be defined

l(θ) = −
1

2σ2

n,N∑

i=1,j=1

(yij − µ− f1(si)− f2(tj)− f3(temp(si, tj)))
2 (6)

where vector θ includes all parameters involved in the unknown functions. It is important

to note that this is an under-determined model and hence the usual sum to zero constraints

will be included

n∑

i=1

f1(si) = 0,
N∑

j=1

f2(tj) = 0 and

n,N∑

i=1,j=1

f3(temp(si, tj) = 0.

In turn each of the unknown functions will now be considered – following the general approach

of Fahrmeir and Lang (2001); Fahrmeir et al. (2004). The hierarchical relationship between

data, component functions and other model parameters is shown in Figure 3.

Suppose that f1 is a smooth function of space, but that it will only be considered at

points corresponding to the recorded locations. That is the values of f1 = {f1,i : i = 1, . . . , n}

corresponding to s = {si : i = 1, . . . , n}. To impose smoothness, it will be assumed that these

form a Gaussian random field such that (f1,i − f1,i′) ∼ N(0, 1/β2

1
), where i′ corresponds to a

neighbour of i and for i = 1, . . . , N . In general, two locations will be considered neighbours

if they are close – this will be discuss in more detail in Section 4.3. Although Gaussian

models are used to describe a wide variety of spatial processes they would not be suitable

for situations where large deviations are more likely where a heavy-tailed distributions, such

as a Student-t, might be more appropriate. In other situations a non-symmetric distribution

might provide a better description (see for example, Garcia-Papani et al., 2017). Such

generalisations can be accommodated in the proposed framework.

In a similar way, suppose that f2 is a smooth function of time, but that it will only be

considered at points corresponding to the recorded times, that is the values of f2 = {f,j : j =

1, . . . , nT}. To impose smoothness, it will be assumed that these form a Gaussian random

walk process such that (f2,j − f2,j−1) ∼ N(0, 1/β2

2
) for j = 2, . . . , N . Again, the proposed

modelling approach can easily be generalized to take into account heavy-tailed or symmetric

distribution should that be needed.



Finally, for the choice of f3. At a given location and time, then there is a corresponding

temperature and f3 is a smooth function of temperature. Suppose that values f3 = {f3,l :

l = 1, . . . , nT} corresponding to a set of temperatures T = {Tl : l = 1, . . . , nT} — these

are chosen to cover the range of the measured temperatures, but are not the measured

temperatures. To impose smoothness, it will be assumed that these form a Gaussian random

walk process such that (f3,l − f3,l−1) ∼ N(0, 1/β2

3
), for l = 2, . . . , nT . Should it be necessary,

then non-Gaussian and non-symmetric models can be used within the general framework.

Taking all parameters together, including the three parameters in the prior distributions,

gives θ = {µ,f1,f2,f3, β1, β2, β3} = {θf ,θβ} = {θ1, . . . , θp} which is of length p = n+N +

nT + 4. The model fitting process is then one of estimating θ from all available data – this

is the theme of the next section.

Data: y

f2f1 f3

β2β1 β3

λ

Figure 3: Diagram showing the hierarchical parameter structure.



3 A Bayesian spatial-temporal approach

3.1 Bayesian framework

In the following the data will be denoted y = {yi : i = 1, . . . , n} and the unknown model

parameters as θ = {µ,f1,f2,f3, β1, β2, β3} = {θf ,θβ} = {θ1, . . . , θp}. The key ingredients

in the Bayesian approach are the likelihood function, denoted as f(y|θ) ≡ l(θ), and the

prior distribution, denoted p(θ), which combine to give the posterior distribution

p(θ|y) = f(y|θ)p(θ)
/
f(y). (7)

The hierarchical structure described in Figure 2 in terms of the measured variables can

be converted into one in terms of the model parameters as in Figure 3. The conditional

independence structure can then be exploited to re-write the likelihood and prior distribution

in Equation (7) as

p(θ|y) = f(y|θf )p(θf |θβ)p(θβ)
/
f(y). (8)

This recognises that the likelihood depends on θf only, and that the prior distribution can

be re-written p(θ) = p(θf |θβ)p(θβ). The hyper-prior distribution p(θβ) may also depend on

parameters, but these will not be treated as random variables and hence are not included in

these expressions, but will be discussed in Section 3.3,

An estimate of θ can be found as the value using the maximum a posteriori (MAP)

estimate or the posterior expectation, also know as the posterior mean (PM), which are

defined as

θ̂MAP = argmax
θ

p(θ|y) and θ̂PM =

∫

θ

θ p(θ|y)dθ. (9)

For more robust estimation the posterior median can be used, which is the Bayes’ estimator

under a linear loss function. It is also important to examine other summaries of the pos-

terior distribution, such as posterior credible intervals, or to perform hypothesis tests. The

estimation of all the unknown parameters, and other posterior inference, will be through

Markov chain Monte Carlo methods which will be briefly discussed in Section 3.3.



3.2 Prior and hyper-prior models

A key aspect of the Bayesian approach to statistical modelling is the explicit inclusion of

prior information. In some cases, this will be subjective information elicited from experts,

or it could be explicit information derived from related experiments leading to an empirical

Bayes approach. Here prior belief about the smoothness of the unknown functions and

parameters will be quantified – see also Fahrmeir and Lang (2001); Fahrmeir et al. (2004).

Further discussion of prior distribution choice can be found in Berger (2010)

The definitions given in Section 2 already define prior distributions with

p(fi|βi) =
βm
i

(2π)m/2
exp

{
−
β2

i

2

m∑

j=1

(fi,j − fi,j′)
2

}
, i = 1, 2, 3. (10)

Note that for f1 the subscript j′ denotes the spatial neighbours of j, whereas for f2 and

f3 it can, more simply, be replaced by j − 1. Note that the earlier mentioned sum-to-zero

constraints make these proper distributions with finite integrals.

This modelling has introduced additional hyper-parameters, βi : i = 1, 2, 3, which will be

taken as unknown and estimated after the inclusion of the hyper-prior distributions

p(βi) = λ exp{−λ/βi}, βi > 0; λ > 0, i = 1, 2, 3. (11)

It is plausible that individual λ parameters might be needed, but in this preliminary work a

single value, chosen after initial experiments, has been used.

3.3 Model fitting using the MCMC algortihm

A standard random–walk Metropolis–Hastings algorithm is used to produce approximate

samples from the posterior distribution by simulating a Markov chain. The use of such

methods for parameter estimation, and more general density exploration is widespread – a

review can be found in Robert and Casella (2011), then for theoretical details see Gamerman

and Lopes (2006); Brooks et al. (2011), for general practical examples see the collection by

Gilks et al. (1995) and for an early example applied to spatial modelling see Besag et al.

(1991).



Min. 1st Qu. Median 3rd Qu. Max

µ - - 0.5 - -

f1 -0.1778 -0.1317 -0.0051 0.0639 0.2704

f2 -0.0045 -0.0007 0.0000 0.0007 0.0045

f3 -0.1163 -0.0913 -0.0260 0.0668 0.2037

Table 1: Summary of the true components of log-mortality.

As in Section 3.1, the parameter vector will simply be referred to as θ = (θ1, . . . , θp).

The Markov chain can start at any feasible point in the parameter space, then a discrete

time Markov chain is created with values θ1,θ2, . . . ,θK . At each step a subset of the

parameter vector is considered, for example a single value: µ, β1, β2 or β3, or a com-

plete function: f1, f2 or f3. Suppose that a new value for θi is being proposed, then

θki = θk−1

i + ǫi and an obvious choice is ǫi ∼ N(0, τ 2i ). This proposal is accepted with prob-

ability min
{
1, p(θk|y)/p(θk−1|y)

}
, otherwise the value is reset with θki = θk−1

i . After each

parameter is considered the chain moves from state θk−1 at time k− 1 to state θk at time k.

Reasonable proposal variances can be chosen adaptively during the burn-in period to achieve

a reasonable acceptance rate. After a suitable burn-in period, to allow transient behaviour

to dissipate, a sample can be collected with parameters estimated based on properties of

the sample, for example the sample median can used as a point estimate and sample order

statistics to estimate credible intervals.

4 Empirical results

4.1 General and data simulation

In this section a simple simulated data problem will be considered whose structure follows

that previously defined. It is important to note, however, that there is only a limited

attempt to make the modelling realistic, instead it is chosen to allow the general approach

to be illustrated. Figures 4 shows the true functions used in the simulation.
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Figure 4: True log-mortality components: (a) spatial, f1(s), (b) temporal, f2(t), and (c) re-

lationship between mortality and temperature f3(Temp), then temperature-related mortality,

f3(s, t), at (d) t = 6, (e) t = 15 and t = 24.

Suppose that n = 20 locations are monitored daily for thirty days giving N = 30, includ-

ing weekends and without missing data. These locations have been generated at random

within a unit square, and the times are simply labelled j = 1, . . . , N = 30. Then the log-

mortality has a global mean of µ = 0.5 which corresponds to about 1.6 deaths per day. It is

assumed that the mortality rate is greatest near the centre of the region and this is modelled

as a quadratic surface giving a relative risk between about 0.8 to 1.3 — see Figure 4(a). Over

the study period it is assumed that there is a reduction in the relative risk of about 4% — this

has been exaggerated otherwise the effect would be lost in the noise — see 4(b). The localised

temperature follows a simple sinusoidal pattern with variability dependent on the west-east

coordinate and around a mean which depends on the north-south coordinate. The mortality



then depends on temperature in a quadratic fashion which is common across all locations

and times — see 4(c) – which gives a relative risk between 0.9 and 1.6. Figure 4(d)-(f) show

the temperate-related mortality components corresponding to three time points. Finally,

independent Gaussian errors with standard deviation σ = 0.01 are added to the summation

of these various deterministic components to give the log-mortality data values. This has

been repeated M = 100 times to be able to assess reproducibility of the estimation process.

Table 1 shows some summary statistics of the generated model components.

4.2 Algorithm implementation

The unknowns in the spatio-temporal GAM, defined in (5), with likelihood in (6) and prior

distributions in (10), are estimated using the MCMC algorithm with a burn-in of 5000

iterations and a main run of 500 iterations after applying 1-in-100 thinning to remove the

effects of autocorrelation. In the spatial prior, locations are considered neighbours if they

are closer than 0.2 units apart, whereas in the temporal prior, adjacent times are considered

neighbours. For the mortality-temperature relationship, the log relative risk at 22 equally-

spaced intervals is considered with adjacent values considered neighbours. Proposal variances

were automatically selected to achieve reasonable acceptance rates, and the hyper-prior

parameter was fixed after a few pilot runs at λ = 104. It is worth noting that the algorithm

was made more efficient, by balancing autocorrelation, by considering each parameter in f2

10 times compared to only once for the other parameters. During the burn-in period, the

proposal variances were updated every 100 iterations with the final values shown in Table 2.

The algorithm performed well without excessively long initial transient behaviour and

autocorrelation. To illustrate typical monitoring output, consider Figure 5. The Markov

path for the global mean is shown in (a) and a single element of one of the functions in

τµ τf1 τf2 τf3 τβ1
τβ2

τβ3

Value 0.002 0.001 0.0001 0.001 9.70 6634 22.3

Table 2: Final values of proposal standard deviations.
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Figure 5: Typical convergence monitoring output: Markov paths of (a) µ̂ and (b) f2(15),

and corresponding autocorrelation functions in (c) and (d).

(b) – these take into account the 1-in-100 thinning. There is clear transient behaviour in

the first few iterations. After this point there is no obvious systematic change suggesting

equilibrium behaviour and hence equilibrium was declared at 50 iterations. Finally, (c) and

(d) show corresponding autocorrelation functions of the thinned process after throwing away

the first 50 iterations and they clearly indicate near independent observations. Sample size

calculations were performed for each parameter (see for example, Aykroyd and Green, 1991)

taking into account any remaining correlation with values from less than 100 to about 300

being obtained. These indicated that the main run of size 500 is more than adequate.



4.3 Fitted models

Selected results are shown in Figure 6 for the fitted global mean, the spatial and temporal

components, along with the mortality-temperature relationship. A histogram of the global

mean is shown in Figure 6(a) with the posterior median shown as a black vertical line and

the true value as the red vertical line. The shaded area corresponds to 95% of the total area

and hence the corresponding lower and upper values of µ form a 95% credible interval. Here

the median is close to the true value and credible interval includes the true value.
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Figure 6: Posterior estimates with 95% credible intervals and true values (in red): (a) global

mean, µ̂, (b) spatial component, f̂1(s), (c) temporal component, f̂2(t), and (d) relationship

between mortality and temperature f̂3(s, t).

In Figure 6(b) the shade of the circle indicate the posterior median values of the spatial

component, f1, from grey for low values, to black for high values. The diameter of the circle

indicates the posterior inter-quartile range, with small radii for low variability and large for



higher variability. This display is reminiscent of those in Besag et al. (1991). In (c) and

(d) the posterior median estimates for the temporal function, f2, and temperature related

mortality function, f3, are shown as a black curves within a grey area indicating the 95%

posterior credible interval, with a red curve indicating the true function.

Figure 6(a) shows that the global mean can be well estimated. From (b) it is clear that

the true function is well recovered with higher values in the centre, also that the estimates

have small variability near the centre compared to the edges. In (c) the dependence on time

is also well recovered, but with moderate uncertainty. The latent mortality-temperature

relationship in (d) is also estimated well, but this time surprisingly precisely. The credible

intervals will be assessed for correct coverage later.

Table 3 shows some summary results with accuracy measures averaged over the 100

replicates. In particular the mean error show that all are approximately unbiased, and

the mean absolute error and root-mean-square error (RMSE) indicate very good estimation.

Finally, the maximum absolute error has also been calculated and shows that even the largest

errors are relatively small.

µ̂ f1 f2 f3

Mean error -0.0004 0.0000 0.0000 -0.0000

Mean absolute error 0.0006 0.0015 0.0009 0.0021

Max. absolute error 0.0017 0.0041 0.0022 0.0075

RMSE 0.0007 0.0018 0.0010 0.0028

Table 3: Summary of estimation accuracy averaged over 100 replicates.

Now moving on to the credible intervals, Table 4 shows the average coverage rates for the

nominal 95% credible intervals. The figures for the three functions are very close to nominal

value and for the global mean, recalling that the figure is calculated from only 100 cases, is

also acceptable.

Before completing the analysis of the results, consider Table 5 which shows a summary

of the estimated prior smoothing parameters in the function estimation. These indicate



µ f1 f2 f3

Coverage 0.85 0.93 0.99 0.94

Table 4: Empirical coverage rates of nominal 95% credible intervals based on 100 replicates.

very narrow bands for the estimated values which also indicates that estimation of these

parameters is reliable making the overall procedures automatic and robust.

Min. 1st Qu. Median 3rd Qu. Max

β̂1 48.50 49.01 49.22 49.44 49.79

β̂2 3203 3448 3546 3613 3717

β̂3 85.69 87.18 87.56 88.02 89.94

Table 5: Summary of estimated hyper-parameter values based on 100 replicates.

5 Discussion and further work

This work has presented a preliminary analysis to illustrate a novel modelling approach.

It has successfully estimated separate spatial and temporal components, and importantly a

latent mortality-temperature relationship. In addition, all prior parameters have also been

estimated with the inclusion of hyper-prior distributions making estimation automatic. To

fully demonstrate the potential for the approach it needs to me applied to a wider region

containing a realistic number of spatial locations and time points. Further it is important to

perform further sensitivity analysis to determine the reliability of results, and in particular

to check for robustness to details in the modelling and particularly the choices of prior

distributions. Once the approach has been verified in a realist situation, then possible

extensions can be considered. For example, allowing local temperature-related mortality

functions but constraining them to vary smoothly through space. The very promising results

indicate that the methods and the general framework can become a useful tool for those

modelling complex spatial-temporal problems, such as temperature-related mortality.
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