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Abstract 9 

This paper proposes a new method for beam-beam connections, which include 10 

plywood as slot-in plates connected by oak pegs. A total of 96 specimens were 11 

fabricated for tests to explore the minimum required end distances and spacing 12 

between pegs parallel to the grain. A new failure mode, termed shear wedge that is 13 

different from those found in previous research, was found. A spring model was also 14 

proposed in this study to investigate the stiffness of the connections, and feasibility of 15 

EC5 to be applied on the new proposed connections was also examined. The effective 16 

number was discussed in this study and modified in accordance to the experimental 17 

results. The result of this study shows the new connections proposed do not lead to 18 

brittle failure unless failure in plywood occurred. 19 

 20 

Keywords: Dowel-type Connections, Timber Structures, timber connections, Oak 21 

pegs 22 

 23 

1. Introduction 24 

This paper deals with connections adopted in “heavy” timber framing. Heavy timber 25 

framing refers to the structural use of timber in large sections in which the members 26 

are relatively stiff compared to the connections. Such framing is most commonly used 27 

in braced post and beam structures and differs from the more common stick timber 28 

framing in which many small timber sections of low grade are joined together 29 

frequently and are most commonly braced by sheathing. The fastener in such a 30 

connection can be referred to as a dowel or peg. 31 

A yield model was proposed by Johansen (1949) and developed by Larsen (1973) to 32 

predict capacity of symmetrical steel dowelled three member timber connections 33 

based on a range of potential failure modes. This model is usually called “European 34 

Yield Mode” (EYM). Extensive research has been carried out investigating the 35 

structural behaviour of connections not only with a single steel dowel (Santos et al. 36 
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2009, Sawata et al. 2006, Smith et al. 2005, Daudeville et al. 1999), but also with 1 

multiple pegs (Xu et al. 2009, Cointe and Rouger 2005, Quenneville and Mohammad 2 

2000). One of the key issues in adapting the EYM in design is that the modelling 3 

approach is only appropriate to multiple fastener connections if they exhibit ductile 4 

failure (Murty et al. 2007). To avoid brittle failure, current practice in Europe tends to 5 

the use of many smaller diameter steel dowels instead of few large diameter ones. 6 

Another key issue of EYM is that the maximum load is linearly proportional to the 7 

number of pegs. However, the current design code, such as Eurocode 5 (EC5), Load 8 

and Resistance Factor Design (LRFD) and design rules proposed by Canadian 9 

Standards Association (CSA) adapt the effect number, nef , to give a conservative 10 

prediction of the load-carrying capacity of connections with multiple pegs. It appears 11 

that no agreement can be found between these design codes when considering the 12 

effective number of connections with multiple pegs (Jorissen 1998). 13 

Steel slot-in plates have long been used as a central member, or ‘flitch’, of 14 

connections with steel dowels. Problems have been found with this type of connection 15 

for example; brittle failure of the connections is often observed in testing, the steel 16 

material is susceptible to corrosion due to environmental exposure and the exposed 17 

steel flitch plates and steel dowels will generally require intumescent treatment or 18 

encasing behind sufficient timber to allow charring protection against fire . Hence, 19 

non-metallic connections have attracted more and more attention. Non-metallic 20 

connections can be found in traditional tenon-mortice joints, which have been widely 21 

investigated. Shanks et al. (2008) tested 168 specimens of all-softwood connections to 22 

determine the minimum end distance and edge distance to prevent brittle failure. 23 

Sandberg et al. (2000) tested 72 specimens with red oak pegs driven through pine and 24 

maple base materials to investigate the influence of tenon fibre orientation and 25 

mortice thickness. They further proposed a model to predict the stiffness of the joints. 26 

MacKay (1997) tested typical US carpentry connections with a stiff oak peg in 27 

softwood connection material and proposed additional yield and failure modes to 28 

Johansen’s yield modes. Whilst past research efforts were mainly put on 29 

tenon-mortice connections, this study aims at proposing a new beam-to-beam 30 

connections system that employs oak pegs and plywood slot-in plate. 31 

 32 

2. Experimental Procedure 33 

2.1 Specimen Material 34 

Throughout this study, spruce (Picea abies) glulam has been used to provide the side 35 

members of the test specimen, whilst 18 mm thick plywood was selected as the 36 

central member. American White Oak (Quercus alba L.) pegs of 16 mm diameter 37 

were used throughout the tests. 38 
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 1 

2.2 Material Tests 2 

Material tests conducted in this study include bearing strength tests of the side and 3 

central members parallel to grain and bending and shear tests of the pegs. During the 4 

fabrication of the specimens material samples from the side member of each specimen 5 

were taken out for the bearing tests so that the bearing strength of each specimen 6 

could be determined. The samples taken for the bearing tests measured 80×80×40 mm. 7 

A 16 mm diameter hole was predrilled at the top before testing, as shown in Figure 8 

1(a). The average bearing strength of the side members is 23.74 N/mm2 with a 9 

standard deviation of 2.96 N/mm2. A total of 30 plywood samples were tested each 10 

measuring 80×80×18 mm. The average bearing strength of central member is 60.15 11 

N/mm2 with a standard deviation of 5.30 N/mm2. 12 

A total of 30 pegs of 16 mm in diameter and 224 mm in length were selected for three 13 

point bending tests to determine the equivalent yield moment defined as the bending 14 

moment at which rapid loss of load resistance was observed. Yield moment is a 15 

parameter typically used in modeling the performance of dowel type connections. The 16 

average equivalent yield moment capacity of these pegs is 39.74 kN-mm with a 17 

standard deviation of 7.21 kN-mm. When a timber peg is subjected to bending, the 18 

strength of the peg is found to increase with the decrease of the shear span. This is due 19 

to the influence that shear has on peg failure at small shear spans. This study 20 

conducted fixed-fixed end bending tests on the pegs, the test apparatus is illustrated as 21 

Figure 1 (b). The span ratio, which is defined by the ratio between shear span and peg 22 

diameter in Figure 1 (b), ranged from 1 to 8.75 with six specimens for each span ratio. 23 

 24 

2.3 Connection Tests 25 

This study proposes a new method of beam-to-beam connection as shown in Figure 2 26 

(a). To simulate the connections, a total of 96 connection specimens were tested as 27 

depicted in Figure 2 (b). To determine the minimum end distance, a3t , as shown in 28 

Figure 2 (b), a series of connections with single peg were fabricated. The end 29 

distances include 1.5, 2.5, 3.5 and 4.5d, where d is the diameter of peg. Another two 30 

series of tests were carried out to investigate the minimum spacing between pegs 31 

parallel to the grain, a1. The end distance of the first series of the two was fixed as 32 

2.5d with varying spacing a1 of 2, 3, 4 and 5d; whilst another series fixed the end 33 

distance as 3.5d with the same variations of spacing a1 as used in the previous series. 34 

To discuss the effective number of fasteners parallel to the grain, termed nef in EC 5, 35 

two series of tests were planned. One of these two series has three and another has 36 

four pegs. Both series have 3.5 d end distance with 3 and 4d spacing a1. The 37 

experimental programme for connections tested is provided in Table 1. 38 
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 1 

Table 1: Experimental programme for connection tests 2 

Series Experiment a3t (d) a1 (d) No. of peg in row Replicas 

A 

A-15-1~ A-15-6 1.5 - 1 6 

A-25-1~ A-25-6 2.5 - 1 6 

A-35-1~ A-35-6 3.5 - 1 6 

A-45-1~ A-45-6 4.5 - 1 6 

B 

B-20-1~B-20-6 2.5 2 2 6 

B-30-1~B-30-6 2.5 3 2 6 

B-40-1~B-40-6 2.5 4 2 6 

B-50-1~B-50-6 2.5 5 2 6 

C 

C-20-1~C-20-6 3.5 2 2 6 

C-30-1~C-30-6 3.5 3 2 6 

C-40-1~C-40-6 3.5 4 2 6 

C-50-1~C-50-6 3.5 5 2 6 

D 
D-20-1~C-20-6 3.5 3 3 6 

D-30-1~C-30-6 3.5 4 3 6 

E 
E-20-1~E-20-6 3.5 3 4 6 

E-30-1~E-30-6 3.5 4 4 6 

 3 

A universal test machine was used to apply the monotonic tension load to the 4 

connections at load rate of 0.2mm/min, loading the pegs in double shear. The load 5 

was terminated when the strength of the connection dropped to less than 40% of the 6 

ultimate strength. Figure 2 (b) illustrates the experimental setup. Each specimen 7 

consists of two connections, to be tested simultaneously, on which two LVDTs are 8 

mounted to measure the displacements from a relatively static reference point. When 9 

one of the two connections failed in tension, the specimen can no longer withstand 10 

loading, and the data obtained from weaker connections will be used to analyse the 11 

performance of the specimen. Data from the other will be disregarded. To obtain the 12 

stiffness and strength of the connections, the data ranges from 20-40% of the peak 13 

load were used to take the regressive line. The slope of the regressive line 14 

aforementioned is regarded as the stiffness of the connections. The regressive line was 15 

then offset 5% of the peg diameter (0.8 mm). The load where load-displacement curve 16 

intersects the shifted regressive line is termed yield strength. 17 

 18 

3. Results: 19 

Five different failure modes were observed during the experiments, as shown in 20 
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Figure 3. Failure Mode I, II and III were observed only in single peg connections 1 

(series A); failure mode III, IV and V occurred in multiple peg connections (series B, 2 

C, D and E). When the end distance of the connection provides sufficient resistance 3 

the three-hinge failure occurred to peg, Mode I shown in Figure 3, resulting ductile 4 

failure of connections. If the connections have insufficient end distance to lead to 5 

three-hinge failure in peg, a shear wedge occurred in the side members and the peg 6 

would fail in a single hinge, as Mode II in Figures 3 and 4. Unlike shear plug failure 7 

found in our previous work (Shanks et al. 2008), this kind of failure did not result in 8 

sudden drop in strength. On the contrary, the strength decreased gradually when the 9 

shear wedge occurred at the end of the connections. For the connections with only 10 

1.5d end distance, Mode II failure occurred. Two of the six connections with 2.5d end 11 

distance failed in Mode II, the remaining failed in Mode I. Plywood failure occurred 12 

only when the plywood used had apparent natural defects. Only four in 96 13 

connections failed in the plywood, one each in Series A and Series C, two in Series B. 14 

Failure mode observed in the plywood does not occur very often but it leads to brittle 15 

failure of connections, i.e. the strengths of the connections drop drastically. Such a 16 

failure mode is unfavourable in the perspective of structural safety as there is little 17 

warning of impending failure. 18 

The Mode IV and V occurred only in the connections with multiple pegs. In the Mode 19 

IV, all the pegs in the connections failed in three-hinge failure. Mode V is where the 20 

peg closest to the end failed in single hinge with shear wedge and the rest of the pegs 21 

failed in three-hinge failure. The test results reveal that Mode II and IV occurred only 22 

when the end distance of base material in the connection is not larger than 3.5d; this 23 

phenomenon can be observed from both single and multiple pegs connections. The 24 

experimental results of connection tests are given in Table 2. 25 

 26 

Table 2: Experimental results and failure mode 27 

Exp 
Yield Strength 

Failure mode1 

Mean (kN) SD (kN) 

A-15-1~ A-15-6 4.386 0.260 II 

A-25-1~ A-25-6 5.641 0.433 I, II 

A-35-1~ A-35-6 5.766 0.549 I, III 

A-45-1~ A-45-6 5.479 0.459 I 

B-20-1~B-20-6 10.910 0.540 III, V 

B-30-1~B-30-6 12.290 0.908 IV, V 

B-40-1~B-40-6 12.537 0.617 III, IV 

B-50-1~B-50-6 12.511 0.485 IV 

C-20-1~C-20-6 10.939 1.341 IV 
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C-30-1~C-30-6 12.028 1.155 IV 

C-40-1~C-40-6 12.740 0.980 IV 

C-50-1~C-50-6 12.636 1.197 III, IV 

D-20-1~C-20-6 14.65 2.851 IV 

D-30-1~C-30-6 14.87 2.179 IV 

E-20-1~E-20-6 18.26 3.734 IV 

E-30-1~E-30-6 18.51 4.554 IV 

1 Failure mode is depicted in Figure 3. 

 1 

4. Discussions 2 

4.1 Minimum End Distance 3 

If the end distance cannot provide sufficient shear area to resist the force which leads 4 

to plastic hinge failure in the peg, shear plug failure will occur in the connections. 5 

This usually results in brittle failure in connections (Shanks et al. 2008). Thus, in the 6 

design of timber joints, a minimum end distance is required to ensure a gradual, 7 

termed ‘ductile’ failure of the connections, a desirable feature in connection design. 8 

EC5 prescribes the minimum end distance of 7d up to a maximum of 80 mm. This 9 

end distance is for steel pegs, which requires larger end distance to perform to a safe 10 

percentage of the full strength. The yield load versus the end distance of connections 11 

tested in this study is plotted in Figure 5. As expected, the curves reach a plateau 12 

when the end distances are sufficient to develop full joint strength. From Figure 5 one 13 

can learn that from this study the minimum end distance to ensure peg failure for the 14 

joints with spruce side members with plywood central member driven with oak peg is 15 

2.5d. It should be noted that the desirable minimum end distance may be somewhere 16 

between 1.5 and 2.5d but not captured in this study which looked at 1.5d and 2.5d. 17 

Notice that although shear wedge occurred in some connections with 2.5d end 18 

distance, it did not result in brittle failure for the test specimens presented herein. 19 

Hence 2.5d end distance is sufficient to lead to full performance of the connection 20 

from the perspective of yield load; however, to prevent occurrence of shear wedge, 21 

3.5d is the recommended minimum end distance. Furthermore if it is desirable that a 22 

connection should be easily repairable after failure then 3.5d should be adopted to 23 

ensure peg failure rather than failure of the base material. 24 

 25 

4.2 Minimum Spacing Between Pegs 26 

In addition to minimum end distance, sufficient spacing between pegs parallel to the 27 

grain can help to provide full capacity of adjacent pegs in the connections. EC5 28 

prescribes the minimum spacing between pegs parallel to the grain for 5d. This large 29 

minimum spacing is undoubtedly sufficient but as discussed previously the EC5 30 
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spacing is for connections with steel pegs. When using timber pegs it will result in 1 

inefficient use of the connecting area. Figure 6 (a) and (b) depict the relationship 2 

between yield load and parameter a1 with end distance of 2.5d and 3.5d, respectively. 3 

From this figure one can learn that for connections with end distance of 2.5d and 3.5d, 4 

the minimum spacing between pegs parallel to the grain of 3d is sufficient to lead to 5 

full strength of the connections. As previously discussed and observing from the 6 

failures after the tests, shear wedge did not occur to the connection specimens tested 7 

with 3.5d end distance. Hence to exhibit full performance of connections, 3.5d end 8 

distance and 3d spacing between pegs parallel to the grain are recommended. 9 

 10 

4.3 Stiffness and Strength of Connections 11 

The stiffness and strength of connection are two important characteristics of a 12 

connection. To estimate the stiffness of the connection, the spring model, as shown in 13 

Figure 7, is used in this study to estimate the connection stiffness. Observing from the 14 

specimen after failure, the entire deformation of the connections was attributed from 15 

that of side members due to local bearing and pegs due to bending; as the plywood 16 

central member very often did not deform significantly. Hence for the connections 17 

that exhibit the full performance, if the bearing deformation of plywood can be 18 

neglected, the stiffness of the connection can be estimated as: 19 

                               (1)  20 

where Kpeg and Kbearing are stiffness respectively provided by the peg and that by side 21 

member under bearing. 22 

Observation from the failed connections after the tests indicates that the average shear 23 

span of the peg that failed in Mode I was approximately 18 mm, similar to the 24 

thickness of the plywood as annotated in Figure 3. This implies the behaviour of the 25 

peg when the connection is subjected to tension force is similar to that of the 26 

fixed-fixed end bending test with span ratio of 1.14. Figure 8 demonstrates the span 27 

ratio versus peg stiffness obtained from peg bending tests, from which we can 28 

estimate the averaged peg stiffness contribution to the overall connection is about 29 

7.03 kN/mm, obtained by linear interpolation from span ratios of 1 and 2; i.e. the 30 

average span stiffness of peg with span ratio of 1 is about 7.44 kN/mm, and is 4.54 31 

kN/mm with span ratio of 2. As previously mentioned, the bearing strength and 32 

bearing stiffness of each specimen have been determined, hence we can estimate the 33 

stiffness of a connection by combining the bearing stiffness of the side members and 34 

averaged peg stiffness with span ratio of 1.14, i.e. 7.03 kN/mm, into Eqn (1). Figure 9 35 

shows the comparison between estimated stiffness and that obtained from the test. 36 

2

2
peg bearing

connection
bearing peg

K K
K

K K

·
?
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Notice in Figure 9 only connections with pegs failed in three hinges were used for the 1 

comparison, which include connections with end distance of 3.5d and 4.5d and part of 2 

2.5d. From Figure 9, linear relationship can be seen between estimated and 3 

experimental results. The errors might be attributed to the variation in peg material, as 4 

the stiffness of the pegs is assumed uniformly at 7.03 kN/mm. Also the friction 5 

between pegs and side members is neglected and the bearing deformation of the 6 

plywood is not considered. Generally, however, the prediction is good. 7 

EC5 proposes two formulas to calculate the characteristic load-carrying capacity of 8 

dowel-type connections with three hinge peg failure, one for timber-to-timber 9 

connections and another for steel-to-timber connections as shown in Figure 10. Eqn (2) 10 

is proposed by EC5 for timber-to-timber connections aforementioned: 11 

                     (2)  12 

where Fv,Rk represents characteristic load-carrying capacity per shear plane per 13 

fastener; My,Rk and fh,1,k stand for characteristic yield moment capacity of peg and 14 

characteristic embedment strength of side members, respectively. The diameter of peg 15 

is termed d in the equation. く is the ratio between the embedment strengths of the 16 

members and can be calculated as: 17 

                                           (3)  18 

fh,2,k stands for characteristic embedment strength of central members. 19 

For the formula proposed by EC5 to estimate the characteristic load-carrying capacity 20 

of steel-to-timber dowel connections with three hinge peg failure as shown in Figure 21 

10 (b) is given as: 22 

                               (4)  23 

Notice that the connections investigated in this study have two shear planes, thus Eqns 24 

(2) and (4) should be multipled by 2 when estimating the capacity of the connections. 25 

Based on the material test the characteristic yield moment capacity of pegs (My,Rk) is 26 

22.09 kN-mm, the characteristic embedment strength of side members (fh,2,k) and 27 

central members (fh,1,k) is 16.45 N/mm2 and 50.24 N/mm2, respectively. In this study, 28 

British Standard EN 14358 was used to determine the characteristic value. 29 

Substituting above values into Eqns (2) to (4) yields connection capacity of 2.41 kN 30 

by Eqn (2) and 5.50 kN by Eqn (4). If we multiple the above value by 2 as discussed, 31 

the capacity for timber-to-timber connection is 4.81 kN whilst it is 11.09 kN for 32 

steel-to-timber connection. The result calculated from Eqn (4) is higher than the test 33 
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2
1.15 2
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values, and Figure 11 shows the comparison between estimated capacity calculated 1 

from Eqn (2) and the test results. One can see that except for connections with 2 

plywood failure (Mode III) and shear wedge (Mode II), the estimated capacity 3 

timber-to-timber connection capacity calculated by Eqn (2) proposed by EC5 tends to 4 

underestimate the capacity at reasonable range with only one exception (4.74 kN-mm) 5 

in 16 specimens. 6 

 7 

4.4 The Effective Number of Fasteners Parallel to the Grain 8 

When analysing the load carrying capacity of a connection with multiple pegs parallel 9 

to the grain predicting the performance by multiplying the performance on a single 10 

peg by the number of pegs does not represent the true behaviour in many cases. Hence 11 

it is widespread practice to consider the effective number of fasteners, termed nef, in 12 

design code, such as EC5. The effective number proposed by EC5 can be expressed 13 

as: 14 

                                 (5)  15 

where a1 is the spacing between dowels along the grain direction; d is the dowel 16 

diameter, and n is the number of dowels in the grain direction. Hence for one row of 17 

fasteners parallel to the grain direction, the characteristic load carrying capacity 18 

should be taken as: 19 

                                    (6)  20 

If the spacing between pegs parallel to the grain, a1, is assumed as 5d, according to 21 

EC5 the relation between number of pegs (n) and effective number (nef) proposed by 22 

EC5 can be expressed in Figure 12, in which the relation appears to be nearly linear. 23 

The comparison between experimental load-carrying capacities of connections 24 

included in our experimental programme and estimated value calculated from Eqn (6) 25 

is given in Figure 13. As expected, the estimated value proposed by EC5 tends to 26 

underestimate the experimental value. However, note that the estimated value is 27 

44-84% of the experimental results, which appears to significantly underestimate the 28 

connection capacity and will result in inefficiency of the connections. This study 29 

proposes a modified effective number which can be expressed as: 30 

                                          (7)  31 

where n is the number of pegs in the grain direction. Then comparison between 32 

experimental results with load carrying capacity calculated using modified effective 33 

0.9 14
min
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number is illustrated in Figure 14. It appears that the modified evaluation method still 1 

tends to underestimate the experimental result, which is conservative in practice; but 2 

the estimated value is around 60-98% of experimental results. 3 

 4 

5. Conclusions 5 

In this study, a total of 96 double-shear connection specimens connected with 6 

plywood and Oak pegs were tested in tension, loading the pegs in double shear, to 7 

explore the minimum end distance and spacing between pegs parallel to the grain. A 8 

new failure mode, named shear wedge, was found in this study, which occurs when 9 

the connection did not provide sufficient end distance. Connections do not exhibit 10 

brittle failure when shear wedges occur; instead, the strength decrease gradually when 11 

it occurs. The test results show that this type of connection requires minimum end 12 

distance of 2.5d to exhibit full performance, but that 3.5d minimum end distance is 13 

required to prevent shear wedge failure. A minimum spacing between pegs parallel to 14 

the grain of 3d is required to exhibit full performance in connection and leads to three 15 

hinge failure in pegs. 16 

A spring model is proposed in this study to estimate the stiffness of the connection 17 

with satisfactory agreement. Using the formula proposed by EC5 to calculate the 18 

characteristic load-carrying capacity of connections provides reasonable results. A 19 

new method to evaluate the effective number was proposed in this study to consider 20 

the load-carrying capacity of connections with multiple pegs in a row. The 21 

comparison between experimental results with values calculated using modified 22 

effective number appears to be acceptably conservative. More tests should be carried 23 

out to investigate the minimum edge distance and spacing between rows 24 

perpendicular to the grain so that all the geometrical requirements for plywood 25 

flitched connections with non-metallic fasteners can be determined. 26 
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 1 

 2 

Figure 1 (a) Test apparatus for bearing strength test. (b) Test apparatus for fixed-fixed 3 

ends bending test. 4 

 5 

 6 

 7 

Figure 2 (a) The beam-to-beam connections. (b) The connection specimens tested. 8 
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 1 

 2 

Figure 3. Failure modes observed from the tests. 3 

 4 

 5 

 6 
Figure 4. Shear wedge during the test.  7 
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 1 

Figure 5. End distance versus yield strength of single peg connections 2 

 3 

 4 

Figure 6. (a) Spacing between pegs versus yield strength of connections with a3t of 2d 5 

(b) Spacing between pegs versus yield strength of connections with a3t of 3d 6 
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 1 
Figure 7. Spring model for estimating the stiffness of connections 2 

 3 

 4 
Figure 8. Shear span ratio versus stiffness of pegs. 5 

 6 

 7 
Figure 9. Comparison of estimated and experimental stiffness 8 

 9 

K peg

K bearing

K bearing

F

F

y = 6.8804x -0.944

R² = 0.9145

0

3

6

9

0 2 4 6 8 10

S
tif

fn
es

s 
(k

N
/m

m
)

Span Ratio (a/d)

y = 1.6302x - 2.4327
R² = 0.8866

0

2

4

6

8

2 3 4 5 6

E
xe

rim
en

ta
l s

tif
fn

es
s 

(k
N

/m
m

)

Estimated stiffness (kN/mm)



16 
 

 1 

Figure 10. Connections with peg fail in three hinges. (a) timber-to-timber. (b) 2 

steel-to-timber 3 

 4 

 5 

Figure 11. Comparison of experimental results with result estimated by EC 5. 6 
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 1 

Figure 12. Effective number proposed by EC5 with a1 equals to 5d. 2 

 3 

 4 

Figure 13. Comparison between experimental results with estimated results 5 

calculated by EC5. 6 
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 1 
Figure 14. Comparison of experimental results with estimated results calculated 2 

considering the modified effective number. 3 

0

5

10

15

20

0 1 2 3 4 5

E
xp

er
im

en
ta

l R
es

ul
ts

 (
kN

-m
m

)

Estimated Results (kN-mm)

݁,ݒܨ ݂ ,ܴ ݇ = 2 × 1.15 × ݊0.8 × ඨ ߚ2
1 + ߚ × ට2 × ݕܯ ,ܴ ݇ × ฀݂,1,݇ × ݀ 


