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Abstract 

The effect of visible LED power (λmax = 402 nm, 451 nm) on kinetics and control of direct 

photoactivation RAFT polymerisations of acrylamide and dimethylacrylamide are 

investigated. By increasing power supplied to the LEDs from 6 to 208 W, the polymerisation 

time required to reach > 85% conversion is reduced from 12 hours to 11 minutes for 

acrylamide.  Similar conversions are shown to be obtainable in 5 minutes for 

dimethylacrylamide, all without any exogenous photoinitiator or catalyst. This increase in 

polymerisation rate is attributed to an increase in both photon flux and a coincident 

increase in polymerisation temperature at higher light intensities. With both 402 nm and 

451 nm LEDs exciting the same n → π* electronic transition, little difference in rate of 

polymerisation is seen between the two light sources. Minimal reduction in polymerisation 

control is observed at high irradiation intensity for acrylamide, while an increased 

production of low molecular weight dead chains is observed for dimethylacrylamide. This is 

shown to be mitigated by controlling the polymerisation temperature to 17°C which caused 

both a reduction in low molecular weight tailing and an increased polymerisation time. 

Visible light direct photoactivation RAFT is also shown to have application in the synthesis of 

ultra-high molecular weight acrylamide polymers (Mn > 1,000,000 g mol-1).       
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Introduction 

Various external stimuli have been used to elicit spatial and temporal control during 

reversible deactivation radical polymerisations (RDRPs).1, 2 The use of applied voltage, 

mechanical force, light and chemical redox triggers have all been investigated.3 Of these 

triggers, light is one of the most ideal stimuli to afford this control; it is ubiquitous, easily 

modulated, non-invasive and allows for polymerisations to be conducted at room 

temperature. Common RDRP techniques such as nitroxide-mediated polymerisation (NMP)4, 

5, atom transfer radical polymerisation (ATRP)6, 7 and reversible addition-fragmentation 

chain transfer (RAFT) polymerisation8-10 have all seen the development of respective photo-

mediated polymerisation approaches.3, 11 Photo-mediated RAFT polymerisation is 

particularly attractive due to the versatile nature of RAFT polymerisation, with tolerance to 

a range of reaction conditions and functionalities.12 For example, McKenzie et al. utilised 

visible light irradiation to generate core cross-linked star polymer nanoparticles in a high 

yielding, one-pot system. Light was then used to reinitiate polymerisation from the 

trithiocarbonate moiety located in the core, which then formed larger pseudo-miktoarm 

stars.13 

 

In general, there are three different methods to initiate RAFT polymerisations using light. 

The simplest involves the use of a photo-initiator (PI) to generate radicals independently of 

the chain transfer agent (CTA). Cai and co-workers extensively used (2,4,6-

trimethylbenzoyl)diphenylphosphine oxide (TPO) to successfully initiate RAFT 

polymerisations under both UV and visible light. Various acrylate, methacrylate,14-16 

acrylamide17 and styrenic18 monomers were polymerised with mainly trithiocarbonate CTAs 

in both organic and aqueous media. This system was particularly effective for poly(ethylene 
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glycol) acrylate monomers, where under mild visible light irradiation in an aqueous solvent 

well-controlled polymers (Ɖ < 1.2) were synthesised to above 80% conversion in 10 

minutes.19  

 

A second innovative approach using photoinduced electron transfer (PET) was first applied 

to RAFT by Xu et al.20 This technique (PET-RAFT) involves the addition of a photoredox 

catalyst (PC), which under targeted irradiation can enter an excited state (PC*) and then 

reduce thiocarbonylthio compounds (RAFT agents) to a radical anion. This anion can 

fragment giving an initiating radical which can then propagate and participate in the RAFT 

process or be deactivated by back electron transfer, producing a dormant polymer chain 

and returning the PC to its ground state. Both metal complex20, 21 and organic PCs22, 23 have 

been found to initiate polymerisation from blue to near infrared (435 – 850 nm) radiation.24  

Since there is no external initiating species, PET-RAFT does not suffer from the production of 

polymer chains with an initiator-derived moiety at the α-end (which is produced under PI 

and other conventional initiation systems).25 Another advantage of PET-RAFT is the 

possibility to conduct polymerisations without prior degassing, since (during an extended 

induction period) the PC is able to reduce dissolved oxygen into an inactive species.20 
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Figure 1. Direct photoactivation RAFT (DP-RAFT) polymerisation mechanism.  

 

Lastly, the initiating species may be generated by photolysis of the weak C-S bond in the 

thiocarbonylthio group of the CTA, producing an active carbon-centred radical and a more 

stable thiyl radical (Figure 1). In this way, the thiocarbonylthio compound acts as a 

photoiniferter26 (both initiator and CTA). Similar to PET-RAFT, direct photoactivation RAFT 

(DP-RAFT) avoids the production of initiator-derived moieties at the α-end of the chain, with 

the advantage that no external PC is required. 

 

Initially, DP-RAFT was investigated using UV (<400 nm) radiation and polymerisations were 

often characterised by loss of control at moderate to high conversions.27, 28 This was likely 

due to CTA degradation from the high energy UV light, to which the thiocarbonylthio species 

is highly sensitive.14, 29 Recently, there has been a number of publications utilising visible 

light for DP-RAFT. In this case, the visible light radiation targets the n → π* transition of the 

thiocarbonyl group (whereas UV radiation targets the stronger π → π * transition).30 Visible 

light has many advantages over UV radiation; it is safer, more widely available, has a greater 

depth of penetration and has been reported to result in less CTA degradation.31 In addition, 

tertiary amine catalysts have been added to DP-RAFT which can accelerate the 

polymerisation and facilitate removal of dissolved oxygen.32-34 Although utilising an external 
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catalyst, this differs from PET-RAFT in that the CTA is still the photoactive compound, with 

the tertiary amine interacting after photoexcitation of the CTA. The use of visible light (blue 

and green LEDs) for catalyst-free DP-RAFT has resulted in the controlled polymerisation of 

acrylates, methacrylates,35-37 acrylamides,30 styrene,38 acrylonitrile,39 vinyl acetate40 and 2-

vinylpyridine.41 Trithiocarbonates, dithioesters, xanthates and dithiocarbamates have all 

been utilised as both photoinitiator and CTA during these works. 

 

For each of these visible light DP-RAFT polymerisations - which have included monomers 

with high (acrylamides) and low (methacrylates) inherent rates of polymerisation - achieving 

conversions greater than 80% has required 5 to 10 hours. These relatively long 

polymerisation times may be reduced by switching from batch to flow processing, as has 

recently been demonstrated by Rubens et al.37 Methacrylate monomers were polymerised 

to quantitative conversion in a microflow reactor in 60 minutes under mild visible light 

irradiation (LED power of 14.4 W). Polymerisation times could possibly be further reduced 

by increasing the power output of the visible light source, however, investigations into the 

effect of irradiation intensity on polymerisation rate and control are limited. Increasing UV 

irradiation intensity from 3 to 48 mWcm-2 has been shown to reduce the polymerisation 

time to 10% conversion of methyl acrylate monomer from approximately 200 to 35 minutes. 

In addition, very little reduction in polymerisation control was observed.42 Other works 

investigating a smaller range of intensities have also reported increased polymerisation rate 

at higher UV intensity, with little43 to moderate,44 reduction in polymerisation control. 

Matyjaszewski et al. looked at increasing green light (530nm) intensity (by increasing LED 

power from 1 to 5 W) for the polymerisation of methyl methacrylate with a trithiocarboante 
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CTA. This resulted in an approximate doubling of polymerisation rate with minimal increase 

in dispersity or alteration of the molecular weight distribution (MWD).35 Kinetic modelling 

on the effect of irradiation intensity has also been conducted, which highlighted the 

importance of quantum yield and intensity for the formation of dissociated species.38 The 

impact of this on polymerisation control was, however, not investigated. Despite the lack of 

evidence for loss of polymerisation control under increased visible light intensity, the use of 

high powered LEDs for DP-RAFT has until now not been reported. 

 

In this work, we demonstrate that by increasing LED power output (up to 208 W), 

polymerisation times to >85% conversion for dimethylacrylamide (DMA) and acrylamide 

(AM) can be reduced to 5 and 11 minutes respectively. This reduction in polymerisation 

time is accompanied with a moderate reduction in polymerisation control for DMA 

polymers (Ɖ = 1.20 at 208 W), which is shown to be largely due to associated thermal 

effects. 
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Experimental 

Materials 

N,N-dimethylacrylamide (DMA, 99%) was obtained from Sigma Aldrich and passed through 

basic alumina prior to use to remove inhibitor. Acrylamide (AM, 98% Sigma) and 1,4 dioxane 

(99.9%, Merck) were used as received. The chain transfer agent S,S’-bis(α,α’-dimethyl-α’’-

acetic acid)trithiocarbonate (DMAT) was synthesised according to literature procedures.45 

Analytical data were in agreement with published values. Deuterium oxide (D2O, 99.99% D 

atom) was obtained from Cambridge Isotope Laboratories and was used for 1H NMR analysis 

and as a solvent for experiments conducted in NMR tubes. 

 

Methods 

NMR spectroscopy 

1H NMR spectra were recorded on Bruker AV-400 and AV-500 spectrometers (400 and 500 

MHz respectively) using D2O. 

 

Gel permeation chromatography (GPC) 

The average molecular weight and dispersity (Ɖ) of the resultant polymers was measured 

through gel permeation chromatography (GPC). Samples were analysed on a Shimadzu 

DMAc system (DMA polymers) and a Waters Alliance aqueous system (AM polymers). The 

Shimadzu system is equipped with a CMB-20A controller system, an SIL-20A HT 

autosampler, an LC-20AT tandem pump system, a DGU-20A degasser unit, a CTO-20AC 

column oven, an RDI-10A refractive index detector, and 4× Waters Styragel columns (HT2, 

HT3, HT4, and HT5, each 300 mm × 7.8 mm2, providing an effective molar mass range of 100 

to 4 × 106 g mol-1). N,N-Dimethylacetamide (DMAc) (containing 4.34 g L-1 lithium bromide 
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(LiBr)) was used as an eluent with a flow rate of 1 mL min-1 at 80 °C. Number (Mn) and 

weight average (Mw) molar masses were evaluated using Shimadzu LC Solution software. 

The GPC columns were calibrated with low dispersity polystyrene (1.32 x 103 to 3.24 x 106  g 

mol-1; peak retention = 19.7 min, with peak onset at 18.2 min) and poly(methyl 

methacrylate) (PMMA) (1.01 x 103 to 2.13 x 106 g mol-1; peak retention = 19.2 min, with 

peak onset at 19.1min) standards (Polymer Laboratories). Molar masses are reported as 

PMMA equivalents. The Waters Alliance system is equipped with an Alliance 

2695 Separations Module (integrated quaternary solvent delivery, solvent degasser and 

autosampler system), a Waters column heater module, a Waters 2414 RDI refractive index 

detector, a Waters PDA 2998 photodiode array detector (210 to 400nm at 1.2nm) and 2× 

Agilent PL-AquaGel-OH columns (Mixed H, 8μm), each 300 mm × 7.8 mm2, providing an 

effective molar mass range of 100 to 107 g mol-1. Aqueous buffer was prepared containing 

0.2 M NaNO3, 0.01M Na3PO4 in Milli-Q water with 200 ppm NaN3 and adjusted to pH 8 and 

filtered through 0.45μm filter. The filtered aqueous buffer was used as an eluent with a flow 

rate of 1 mL min-1 at 30°C. Samples were prepared in an identical buffer without sodium 

azide so as to minimise RAFT agent removal by nucleophilic attack of sodium azide on the 

polymer samples during preparation.46 The GPC columns were calibrated with 10 x low 

dispersity PEO/PEG standards (Polymer Laboratories) ranging from 615 to 1.38 x 106 g mol-1 

with R2=0.9995 (peak retention = 13.0 min, peak onset = 12.0 min). Molar masses are 

reported as PEO equivalents. A 3rd-order polynomial was used to fit the log Mp vs. time 

calibration curve for both systems, which was near linear across the molar mass ranges. 
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UV-vis spectroscopy  

UV-vis absorbance spectra were obtained using an Agilent Technologies Cary 60 UV-vis 

spectrophotometer. For each measurement a 1 cm path length quartz cuvette was used at a 

medium scan speed over 300 - 500 nm. 

 

Visible light source 

Two different photo-reactors were constructed in our laboratory and their respective 

emission spectra were measured using a Solar Simulator Spectroradiometer from PV 

Measurements with wavelength range from 350 to 1100 nm (Figure S1). The first reactor 

(402 nm) was constructed using ACULED® VHLTM (Very High Lumen) LEDs procured from 

Excelitas Technologies with λmax measured as 402 nm. These LEDs were housed in a 

rectangular aluminium box with 4 banks of 9 LEDs surrounding a central cavity in which a 

small glass tube with the desired reaction mixture can be loaded. The second reactor was 

constructed from a 4 meter strip of 246 5050 SMD LEDs procured from Springsnow007 

(ebay) with λmax measured to be 452 nm. These LEDs were wound around a plastic container 

of diameter 9 cm. 

 

DP-RAFT polymerisation to DP 140 

In a typical AM polymerisation, 1.186 mL of 0.05 M DMAT solution (0.059 mmol DMAT in 

50/50 vol% water/dioxane), 1.038 mL of 8 M AM solution (8.3 mmol in DI water), 240 µL 

dioxane and 1.690 mL DI water were combined in a glass tube with rubber septum such that 

[AM]:[DMAT] = 140:1. The reaction mixture was then degassed by bubbling with argon for 

15 minutes and then placed into the desired LED reactor. The reaction was started by 
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turning on the LEDs at the desired power which was set by adjusting the current with a 

potentiometer. The current was measured with a multimeter connected in series. During 

the polymerisation, aliquots for 1H NMR and GPC analysis were taken with a degassed 

syringe. The reaction was quenched by removing the glass tube from the light source and 

opening to air. The polymer was then purified by precipitation into acetone, followed by 

freeze drying. 

 

DP-RAFT polymerisation to DP 140 with temperature control 

In a typical AM polymerisation, a stock of reaction mixture was first prepared by combining 

AM (569 mg, 8.0 mmol), DMAT (16 mg, 0.057 mmol), 800 µL dioxane and 3.200 mL D2O such 

that [AM]:[DMAT] = 140:1. This stock was then stored in the dark under refrigeration, with 1 

mL samples taken into an NMR tube with septum for each induvial experiment. These were 

then degassed with argon bubbling for 15 minutes, before placing inside a glass jacket 

connected to a water reservoir and circulating system. Depending on the experiment the 

temperature in the reservoir was then maintained at either 30°C by heating or 17°C by 

periodic addition of ice. Polymerisation was started by turning on the LEDs at the desired 

power, with conversion monitored during polymerisation by transferring the NMR tube to 

an appropriate spectrometer. Purification was as described above. 

 

DP-RAFT polymerisation to high molecular weights.  

In a typical 7,000 DP AM polymerisation, 148 µL of 8 mM DMAT solution (0.0012 mmol 

DMAT in 60/40 vol% water/dioxane), 1.038 mL of 8M AM solution (8.3 mmol in DI water) 

and 2.960 mL DI water were combined in a glass tube with rubber septum such that 

[AM]:[DMAT] = 7,000:1. The reaction mixture was then degassed by bubbling with argon for 
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15 minutes and then placed into the desired LED reactor. The reaction was started by 

turning on the LEDs at the desired power. The reaction was quenched by removing the glass 

tube from the light source and opening to air before taking a sample for 1H NMR analysis. 

The polymer sample was then freeze dried and analysed by GPC. 

 

DP-RAFT macro-CTA chain extensions 

In a typical chain extension experiment, each macro-CTA was purified by precipitation and 

freeze drying before use. Macro-CTA (Mn = 9,540 g mol-1) (180 mg, 0.019 mmol), 8 M 

acrylamide solution (375 µL, 3.0 mmol), 1.130 mL DI water were combined such that 

[AM]:[MacroCTA] = 160:1. The reaction mixture was then degassed by bubbling with argon 

for 15 minutes and then placed into the 402 nm reactor at 108 W. The reaction was 

quenched by removing the glass tube from the light source and opening to air. The polymer 

was then purified by precipitation into acetone, followed by freeze drying.  

 

All conversions were calculated by comparing the 1H-NMR integrals of the monomer 

unsaturated protons to the polymer backbone. 

 

A similar protocol was followed for all DMA polymerisations, except DMA was added in 

neat. Purification was by performed by first freeze drying (to remove water), followed by 

precipitation from acetone into diethyl ether.  
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Results and Discussion 

Investigation into effect of LED power (without temperature control) 

Two different LED reactors were constructed with peak emissions (λmax) at 402 nm and 451 

nm in order to investigate the effect of LED power and wavelength on DP-RAFT 

polymerisations (Figure S1). Each reactor was designed such that the same glass tube could 

be used in all polymerisations, minimising variance due to geometrical differences. By 

modulating the current, total electrical power through the system could be varied from 26 

to 208 W (402 nm) and 6 to 26 W (451 nm). In the first set of experiments, AM ([M]0 = 2 M) 

was polymerised to a targeted degree of polymerisation (DP) 140 in H2O/dioxane (80:20) 

under various wavelengths and intensities (reported as total electrical power through the 

LED) of light. DMAT was chosen as the CTA for this investigation (Figure 2) since 

trithiocarbonates have been widely and successfully used in DP-RAFT, with DMAT shown to 

be effective in polymerisations of acrylamide.47, 48 Figure 3 displays the overlap between the 

spectral output of both LEDs and the n → π* transition of DMAT. It can be seen that DMAT 

undergoes a blue shift from its initial (non-monomer inserted) state to the monomer 

adduct, in agreement with literature reports for DMAT and other trithiocarbonate CTAs.31 

This monomer adduct forms almost immediately and so will dictate the spectral absorbance 

for the majority of polymerisation. In this case the overlap is found to be similar for both 

LEDs. 

 

The DP-RAFT polymerisations of AM proceeded with linear pseudo-first order kinetics after 

a short induction period which was inversely proportional to the irradiation power. A linear 

increase in number average molecular weight (Mn(GPC)) with conversion was found for all 

polymerisations, along with narrow MWDs throughout (Ɖ ≤ 1.20) (Figure 4). The MWDs for 
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the final sample point of all experiments (85 – 90% conversion) were found to be 

symmetrical and precisely overlap with each other (Figure S2). Combined, these data 

indicate that all polymerisations were well controlled. Neither wavelength (402 and 451 nm) 

nor LED power (6 to 208 W) had an observed detrimental effect on polymerisation control. 

Polymerising AM at the lowest power (6 W, 451 nm) required 12 hours to reach 85% 

conversion. Increasing irradiation power was found to directly increase the rate of 

polymerisation, with the highest irradiation power (208 W, 402 nm) reaching the same 

conversion in 11 minutes. Wavelength (402 and 451 nm) did not have a noticeable effect on 

polymerisation rate, perhaps due to the similar overlap in spectral emission of the two LEDs 

with the absorption of the DMAT monomer adduct (Figure 3).  

 

Figure 2. Chemical structure of CTA DMAT used in this study and resulting polyacrylamides. 
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Figure 3. Spectral output of 402 and 451 nm LEDs overlayed with absorption of DMAT (2.14 

mM) in both initial and monomer adduct state. 

 

The polymers were then purified and chain extended with a further 160 units of AM in order 

to demonstrate the livingness of each polymerisation. The chain extensions were all done by 

irradiation with 402 nm light at 104 W for 20 minutes. At this point, conversions were >70% 

and the polymers were again purified by precipitation into acetone and freeze-dried. All 

macro-CTAs were successfully chain extended (Figure S2, ESI) and - with the exception of 

the highest irradiation power (208 W) - gave polymers with similar dispersities (1.28 - 1.29) 

and Mn(GPC) (10,600 – 11,600 g mol-1) (Table 1). The 208 W macro CTA produced a polymer 

with dispersity 1.33, suggesting that use of such high irradiation power comes with some 

loss of control.   
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Figure 4. a) Kinetic plot of DP-RAFT polymerisations ([AM]0 = 2 M, [AM]:[DMAT] = 140:1, 

H2O/dioxane 80:20) at different wavelengths and intensities. b) Evolution in number 

average molecular weight (Mn(GPC)
  x 10-3) and dispersity (Ɖ) with increasing conversion for 

DP-RAFT polymerisation of AM. 

 

Continuing our investigations into the use of high power visible light for DP-RAFT we 

decided to see if these results could be extended to DMA - another water soluble 

acrylamide monomer. Utilizing the same polymerisation conditions as was applied to AM 

(2M monomer concentration, H2O/dioxane 80:20, [DMA]:[DMAT] = 1:140) a preliminary 

experiment was conducted at 104 W (402 nm). After 20 minutes of irradiation, near 

quantitative conversion was reached producing a polymer with dispersity 1.14 and Mn(GPC) 

11,800 g mol-1. These data indicated that DMA can be polymerised at a faster rate than AM 
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through DP-RAFT and with similar control. Repeating this experiment at the highest 

irradiation power (208 W), polymerisation time to > 85% conversion was reduced to 

approximately 5 minutes. While kinetic data again demonstrated linear pseudo-first order 

kinetics, broadening of the MWD had occurred (Figure 5a - b) with dispersity increasing to 

1.20 and clear evidence low molecular weight dead chains – likely formed from bimolecular 

termination events. 

 

Table 1. Chain extension data for macro-CTAs synthesised under different irradiation 

conditions.a  

Sample Monomer Macro CTA 
Mn,gpc (g 
mol-1) 

Macro 
CTA Ɖ 

Extension 
Mn,gpc (g 
mol-1) 

Extension 
Ɖ 

208 W (402 nm) AM 6,250 1.20 11,300 1.33 

104 W (402 nm)  AM 6,440 1.19 11,100 1.29 

26W  (402 nm) AM 6,700 1.18 11,600 1.29 

26 W (451 nm) AM 6,290 1.18 10,900 1.28 

6 W (451 nm) AM 5,290 1.19 10,600 1.28 

208 W (402 nm) DMA 11,800 1.20 25,900 1.23 

aAll chain extensions were conducted by adding a further 160 units of the starting monomer 

under 104 W (402 nm) irradiation for 20 minutes in H2O. 

 

The isolated DMA polymer was then successfully chain extended with a further 160 units of 

DMA under 104 W (402 nm) in H2O for 20 minutes (conversion > 99%). The macro CTA is 

shown as containing a significant proportion of living chains, with a clear shift of MWD to 

higher molecular weights. Still, it is clear that some of the distribution has not shifted, 
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confirming the presence of low molecular weight dead chains (which were largely non-

existent at 104 W) (Figure 5c). This result again demonstrates the slight trade off in 

polymerisation control with higher irradiation power.  

 

Figure 5. a) Kinetic plot of DP-RAFT polymerisations of DMA ([DMA]0 = 2M, [DMA]:[DMAT] = 

140:1, H2O/dioxane 80:20)) under 402 nm irradiation at different intensities with matching 

AM polymerisations shown for reference, b) GPC traces of DP-RAFT DMA polymerisations 

under 402 nm irradiation at different intensities, c) GPC traces showing successful chain 

extension of a DMA polymer synthesised under 208 W (402 nm) irradiation. 

 

Until this point, all polymerisations have been conducted without temperature control and 

at the end of polymerisation under high irradiation powers (104 and 208 W) the product 
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solution was often found to be at a temperature of 65 to 80°C. These high temperatures are 

likely the result of both the exothermic nature of polymerisation and the intense irradiation. 

Thus, increasing irradiation power not only increases the rate of polymerisation through 

increased photolysis, but also by increasing reaction temperature (since propagation is 

thermally activated).37 Controlling for this increase in temperature is desirable to develop a 

mechanistic understanding and is discussed in the next section. However, depending on the 

degree of polymerisation control required, no temperature control may be advantageous 

from a materials synthesis point of view due to the experimental simplicity and much 

reduced polymerisation time. 

 

Investigation into effect of LED power (with temperature control) 

In order to control the temperature during polymerisation, an alteration to the 

experimental set-up was required. Polymerisations were conducted in an NMR tube within a 

glass jacket with water flowing through at the desired temperature. Selected 

polymerisations of AM were then repeated at 30°C using D2O/dioxane 80:20 as the solvent 

(Figure 6a). As before, linear pseudo-first order kinetics were observed for all 

polymerisations, with faster kinetics for experiments run at higher intensities. However, by 

eliminating the exotherm and controlling the temperature to 30°C, all polymerisations were 

significantly slower than without temperature control. For example, at 104 W (402 nm) the 

polymerisation time to >85% conversion increased from 20 to 150 minutes. Alterations in 

the geometry (from a glass tube to a smaller NMR tube within a glass jacket) also appear to 

have an effect on kinetics. This was demonstrated by an experiment run without water in 

the jacket (NMR tube no temp), which therefore did not afford any direct temperature 
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control. At 104 W (402 nm) slower polymerisation kinetics (45 minutes to > 85% conversion) 

were observed compared to polymerisations conducted in the glass tube as used for 

previous experiments (20 minutes to > 85% conversion). 

 

The resultant MWD from each of the polymerisations conducted at 30°C was found to 

match very closely with those initially conducted without temperature control. Mn(GPC) was 

between 6,090 and 7,870 g mol-1 and dispersities between 1.21 and 1.23 (Table S1).  

 

Figure 6. a) Kinetic plot of DP-RAFT polymerisations of AM in an NMR tube under 

temperature controlled (30°C) and non-temperature controlled conditions ([AM]0 = 2M, 

[AM]:[DMAT] = 140:1, D2O/dioxane 80:20). Effect of temperature control in DP-RAFT of 

DMA under 208 W (402 nm) irradiation on b) kinetics and c) MWD. 
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Using this jacketed set-up we decided to investigate if the production of low molecular 

weight dead chains during the polymerisation of DMA at 208 W (402 nm) could be reduced 

if the polymerisation was cooled to 17°C. 95% conversion was obtained in 20 minutes, 

which (like the data obtained for AM polymerisations) followed linear pseudo-first order 

kinetics but was significantly slower than without temperature control (Figure 6b). 

Importantly, the resultant polymer was found to have significantly reduced low molecular 

weight tailing (Figure 6c), with a dispersity of 1.12 (compared to 1.20 without temperature 

control). This suggests that the moderate loss of control observed at higher irradiation 

power for DMA can be partly attributed to the coincident increase in temperature and not 

necessarily due to the increased photon flux. The detrimental effect of higher temperatures 

may be due to hydrolysis of the CTA, which has been demonstrated to occur for DMAT at 

temperatures above 50°C in aqueous acrylamido polymerisations.49  

 

If we (as an approximation) relate electrical power through the LED system to irradiation 

power (IP) we can plot the natural log of IP against the natural log of the first order rate 

constant for each polymerisation (Figure 7). This plot can give an indication of the 

experimental power law relationship between IP and the rate constant. Looking at the data 

for AM polymerisations at 30°C under 402 nm irradiation, a power law relationship of 0.73 

can be found. This is somewhat larger than the expected dependence on initiator 

concentration for a RAFT polymerisation of 0.5,50 possibly due to limitations of our set-up to 

provide exact temperature control at all points within the NMR tube during polymerisation.  

Overall, this plot demonstrates that the observed increase in rate of polymerisation at 
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higher intensities is not just attributable to higher reaction temperatures, but also increased 

photon flux. Additionally, experiments performed at 70oC in the dark confirmed that 

irradiation is required for initiation. Other control experiments have been conducted 

confirming the dual role of the CTA in both initiation and control of polymerisation (Table 

S2).   

 

Figure 7. Log-log plot of the pseudo-first order polymerisation rate constant (kpol) and 

irradiation power (IP, approximated from power through LEDs) for AM DP-RAFT 

polymerisations under 402 nm irradiation controlled to 30°C. 

 

Ultra-high molecular weight polymers by visible light direct activation RAFT 

Inspired by the recent work of Carmean et al.51 which demonstrated the applicability of DP-

RAFT polymerisations to generate ultra-high molecular polymers under UV irradiation, we 

decided to investigate if similar results could be obtained under visible light. Polyacrylamide 

Mn values of 500,000 and 2,000,000 g mol-1 were targeted by increasing [Monomer]:[DMAT] 

from 140:1 to 7,000:1 and 28,000:1 respectively. A range of LED powers and wavelengths 

were investigated with polymerisation times in the order of hours required to reach 
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conversions of >70% conversion (Table S3). Selected GPC traces are presented in Figure 8, 

demonstrating the formation of monomodal peaks shifting to earlier retention times when 

higher molecular weights are targeted. Molecular weights were found to be in close 

agreement with theoretical predictions with moderate dispersities (1.32 ≤ Ɖ ≤ 1.44). 

Additionally the retention of the trithiocarbonate moity (λmax = 305 nm) in these high 

molecular weight chains was also supported by close agreement in RI and UV detector (λ = 

305 nm) data for AM polymerisations (Figure S4). 

 

Figure 8. GPC traces for ultra-high molecular weight DP-RAFT polymerisations of a) DMA (as 

characterised by Shimadzu DMAc GPC) and b) AM (as characterised by Waters Alliance 

aqueous GPC) under visible light irradiation. 

 

Conclusions 

By increasing the power supplied to LEDs during direct photoactivation RAFT (DP-RAFT), 

significant reductions in polymerisation time to high conversion is possible. At 208 W (402 

nm) conversions of greater than 85% are obtainable in 11 minutes for acrylamide (AM) and 

5 minutes for dimethylacrylamide (DMA). This represents a significant reduction from the 12 



24 
 

hours required to achieve similar conversions for AM under 6 W (451 nm) irradiation. 

Choice of wavelength (between 402 nm and 451 nm LEDs) did not appear to have a direct 

effect on polymerisation control or kinetics for the studied CTA – monomer system. The 

increase in polymerisation rate was attributed to both an increase in photon flux and the 

coincident increase in reaction temperature from the intense irradiation and polymerisation 

exotherm. By chain extending each AM homopolymer produced by DP-RAFT, it was found 

that only at the highest irradiation power (208 W) some loss in polymerisation control was 

observed. Similar results were found for DMA polymerisations, where increased formation 

of low molecular weight dead chains was observed in the MWD after polymerisation at 208 

W. This loss of control at high irradiation powers can be partly attributed to the 

simultaneous increase in reaction temperature, as was demonstrated by the synthesis of 

narrow dispersity (Ɖ = 1.12) DMA polymers at 17°C under 208 W (402 nm) irradiation. 

Lastly, we have demonstrated the applicability of DP-RAFT under visible light irradiation for 

rapid synthesis (< 3 h) of ultra-high molecular weight acrylamide polymers (Mn > 1,000,000 g 

mol-1). 
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