
Open Research Online
The Open University’s repository of research publications
and other research outputs

Designing a Highly Expressive Algorithmic Music
Composition System for Non-Programmers
Conference or Workshop Item
How to cite:

Bellingham, Matt; Holland, Simon and Mulholland, Paul (2016). Designing a Highly Expressive Algorithmic
Music Composition System for Non-Programmers. In: DMRN+11: Digital Music Research Network One-Day
Workshop 2016.

For guidance on citations see FAQs.

c© 2016 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

DMRN+11: DIGITAL MUSIC RESEARCH NETWORK
ONE-DAY WORKSHOP 2016

QUEEN MARY UNIVERSITY OF LONDON
TUE 20 DECEMBER 2016

DMRN+11: DIGITAL MUSIC RESEARCH NETWORK ONE-DAY WORKSHOP 2016, QUEEN MARY UNIVERSITY OF LONDON, TUE 20 DECEMBER 2016

�

Abstract—Algorithmic composition systems allow for the partial
or total automation of music composition by formal,
computational means. Typical algorithmic composition systems
generate nondeterministic music, meaning that multiple musical
outcomes can result from the same algorithm - consequently the
output is generally different each time the algorithm runs.

Here we present an algorithmic composition system
designed to meet the needs of a particular user group:
undergraduate Music Technology students. Unexpectedly,
the specific needs of this user group led us to radical design
decisions, which ended up reshaping the fundamentals of the
underlying programming language design. Our users are
typically not programmers, and they are often not traditional
musicians. While they may be conversant with some elements
of music theory, their background is often as self-taught
music producers with experience of making music
electronically using music sequencers/DAWs.

There are many existing tools which can be used for

algorithmic music composition, but from the perspective of
our target user group, they all exhibit various limitations [1,
2]. For example, Ableton Live offers a simple and efficient UI
which provides a number of tools to assist loop-based
composition, but the software lacks the expressivity and
generality required for algorithmic work. Graphical
programming languages such as Max and Pure Data are
highly expressive but require the user to have sufficient
pre-existing musical knowledge to build their own musical
structure into patches. Text-oriented languages such as
SuperCollider and Sonic Pi offer high expressivity and are
well adapted to musical structures, but require the user to
manipulate musical materials through structures and syntax
shaped primarily by the concerns of conventional
programming languages.

Our system is designed to meet several needs: to enable our
target users to create algorithmic music of arbitrary
complexity; to facilitate graphical programming with
minimal syntactical concerns; and to make common musical
tasks simple. As a by-product, these properties promote
learning the concepts of algorithmic composition via
hands-on experience.

In the new algorithmic composition system, the principal
programming primitive is called a chooser. Every instance of
this primitive affords such musically useful actions as: loop X
until Y finishes; hierarchical organization; random selection;
and choice points. Due to this and related design decisions,
the system has relatively low viscosity and low verbosity: i.e.
musically desirable changes are relatively easy to make, and
musically complex constructs can be expressed concisely.
These properties derive from what is technically known as the
‘closeness of mapping’ of the notation, i.e. how closely the
notation corresponds to the problem world [3]. In part, this is
achieved because the programming language gives the
affordances of the graphical track/mixer view of a
sequencer/DAW while providing the full power of a recursive
programming language.

At present the design is being iteratively refined using the
programming walkthrough method [4] and implemented
using SuperCollider as the back end.

REFERENCES
[1] Bellingham, M., Holland, S. and Mulholland, P. (2014a) A Cognitive

Dimensions analysis of interaction design for algorithmic composition
software, In Proceedings of Psychology of Programming Interest
Group Annual Conference 2014, du Boulay, B. and Good, J. (eds.),
University of Sussex, pp. 135–140, [online] Available from:
http://www.sussex.ac.uk/Users/bend/ppig2014/15ppig2014_submissio
n_10.pdf.

[2] Bellingham, M., Holland, S. and Mulholland, P. (2014b) An analysis of
algorithmic composition interaction design with reference to cognitive
dimensions, The Open University, [online] Available from:
http://computing-reports.open.ac.uk/2014/TR2014-04.pdf.

[3] Green, T. R. and Petre, M. (1996) Usability Analysis of Visual
Programming Environments: a `cognitive dimensions’ framework,
Journal of Visual Languages and Computing, 7, pp. 131–174.

[4] Bell, B., Citrin, W. V., Lewis, C. and Rieman, J. (1992) The
Programming Walkthrough: A Structured Method for Assessing the
Writability of Programming Languages; CU-CS-577-92, Computer
Science Technical Reports, Paper 554, [online] Available from:
http://scholar.colorado.edu/csci_techreports/554.

Designing a Highly Expressive Algorithmic Music Composition
System for Non-Programmers

Matt Bellingham1*, Simon Holland2 and Paul Mulholland3

1*Department of Music, University of Wolverhampton, UK, matt.bellingham@wlv.ac.uk
2Music Computing Lab, Centre for Research in Computing, The Open University, UK

3Knowledge Media Institute, Centre for Research in Computing, The Open University, UK

