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Abstract

We report that trajectories of a one-dimensional model for inertial particles in

a random velocity field can remain stable for a surprisingly long time, despite

the fact that the system is chaotic. We provide a detailed quantitative descrip-

tion of this effect by developing the large-deviation theory for fluctuations of

the finite-time Lyapunov exponent of this system. Specifically, the determina-

tion of the entropy function for the distribution reduces to the analysis of a

Schrödinger equation, which is tackled by semi-classical methods. The system

has ‘generic’ instability properties, and we consider the broader implications of

our observation of long-term stability in chaotic systems.

Keywords: Stochastic analysis methods. nonlinear dynamics and chaos,

fluctuation phenomena, random processes, noise, Brownian motion, butterfly

effect.

1. Introduction

This Letter concerns a phenomenon illustrated by the peculiar nature of the

trajectories x(t) of inertial particles (Fig. 1) in a one-dimensional model, which

is described in detail later (Eq. (2)). The plot shows a very large number of

trajectories, which start with a uniform initial density. The trajectories clearly5

show a strong tendency to cluster, and the plot is color-coded (online version)

using a logarithmic density scale to illustrate the very intense accumulation of
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probability density in distinct regions. Clustering of trajectories of a dynamical

system is usually characterised by showing that the highest Lyapunov exponent

of the dynamics is negative [1], and conversely a positive Lyapunov exponent is10

the essential characteristic of chaotic dynamics. The flow illustrated in Fig. 1,

however, is known to have a positive Lyapunov exponent, so the very marked

clustering is only transient, as trajectories must eventually separate exponen-

tially.

Earlier work has shown that one-dimensional chaotic systems may exhibit15

a temporary convergence preceding their eventual separation (see, e.g. [2, 3]),

and it has been argued that the predictability of dynamical systems can be

very strongly dependent on initial conditions [4, 5]. Figure 1, however, reveals

that: (a) the convergence can lead to clusters of trajectories over times which

are much longer than the expected divergence time, and (b) the simulated tra-20

jectories tend to form surprisingly dense clusters. It is the principal objective

of this Letter to describe and quantify the extent to which the phase space of

this chaotic system is permeated by islands of transient stability, and to argue

that the reasoning extends to typical chaotic systems. It complements another

work [6] which quantifies the intensity of the clustering effect, and which also25

shows examples of similar clustering effects in other dynamical systems. In the

concluding remarks, we argue that this phenomenon may be applicable, in some

circumstances, to pricing futures and insurance contracts.

2. Distribution of sensitivity to initial conditions

The tendency of the trajectories to exhibit converging behavior is illustrated30

in Fig. 2, which shows the cumulative probability, Π, for the finite-time Lya-

punov exponent (FTLE) at long times. The FTLE at time t for a trajectory

starting at x0 is defined by

z(t) =
1

t
ln

∣∣∣∣
∂xt
∂x0

∣∣∣∣
x(0)=x0

, (1)

where xt denotes position at time t. The expectation value of z(t) in the limit as

t → ∞ is termed the Lyapunov exponent: Λ = limt→∞〈z(t)〉 (angular brackets35
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Figure 1: Trajectories, x(t), for the dynamical system described by Eq. (2) with ξ = 0.08,

L = 2π, and the dimensionless parameter [cf. Eq. (9)] is ǫ = 1.7678.

denote ensemble averages throughout). When Λ > 0, there is an almost certain

exponential growth of infinitesimal separations of trajectories. For the example

in Fig. 1, we have Λ = 0.075 γ, where γ is a positive parameter of the model

[cf. Eq. (2)]. Figure 2 shows that the cumulative probability distribution for z

is very broad: even at time t = 41/γ, which is comparable to the duration of40

the trajectories shown in Fig. 1, the probability of z being negative is as high

as 0.25. We shall see how this very broad distribution can be quantified.

It is usually assumed that when the highest Lyapunov exponent is posi-

tive, the long-term behavior of a system is inherently unpredictable because

of exponential sensitivity to the initial conditions. However, the phenomenon45

illustrated in Figs. 1 and 2 indicates that there may be basins in the space of

initial conditions which attract a significant fraction of the phase space, giving

a final position which is highly insensitive to the initial conditions. If the ini-

tial conditions which are of physical interest lie within one of these basins, the

behavior of the system can be computed accurately for a time which is many50

multiples of the inverse of the Lyapunov coefficient.
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Figure 2: Cumulative probability, Π, for the value of the FTLE, z(t), at different times (in

dimensionless units). The distribution of z(t) is very broad, even for large values of t. The

parameters are the same as for Fig. 1.

Next we describe the equations of motion which were used to generate Fig. 1.

They correspond to

ẋ = v,

v̇ = γ[u(x, t)− v], (2)

where x and v are the position and velocity, respectively, of a small particle in a

viscous fluid [7, 8]; γ is a constant describing the rate of damping of the motion of55

a small particle relative to the fluid and u(x, t) is a randomly fluctuating velocity

field of the fluid in which the particles are suspended. In Fig. 1 we simulated

a velocity field where the correlation function is white noise in time, satisfying

〈u(x, t)〉 = 0 and 〈u(x, t)u(x′, t′)〉 = δ(t− t′)C(x− x′). The correlation function

is C(∆x) = Dξ2 exp
(
−∆x2/2ξ2

)
, where D and ξ are constants. Trajectories60

which leave the interval [0, L] are returned there by adding a multiple of L to x.

Equation (2) and related models have been studied intensively as descriptions

of particles suspended in turbulent flows: see [9] and [10] for reviews.
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3. Large-deviation analysis

In the large-time limit the probability density of z is expected to be described65

by a large deviation approximation [11, 12]:

P (z) ∼ exp[−tJ(z)], (3)

where J(z) is termed the entropy function or the rate function. Large deviation

methods have previously been applied to analyse the distribution of finite-time

Lyapunov exponents in a variety of contexts: [13] and [14] are representative

examples. In this Letter we are able to explain the broad distribution illustrated70

in Fig. 2 by determining the entropy function J(z): if the second derivative,

J ′′(Λ), is small, the FTLE has a very broad distribution, giving a quantitative

explanation for Fig. 2. In Fig. 3 we transform the empirical distributions of z

for different values of the time t to determine the entropy function J(z): the

fact that the curves for different values of t are quite accurately superimposed75

implies that the values of t displayed in Fig. 2 are already sufficiently large for

large deviation theory to be applicable. In Fig. 3 we also compare the entropy

function obtained from our empirical distributions of z with a theoretical curve

(described below). There is very satisfactory agreement as t → ∞, indicating

that the effect illustrated in Figs. 1 and 2 has been understood quantitatively.80

Our theoretical approach involves the analysis of a cumulant, λ(k), which is

defined by

〈exp(kzt)〉 = exp [tλ(k)] . (4)

The large deviation principle, as represented by equation (3), implies that

〈exp(kzt)〉 =
∫ ∞

−∞
dz exp[t(kz − J(z))]. (5)

A Laplace estimate shows that λ and J are a Legendre transform pair:

λ(k) = kz − J(z), J ′(z) = k. (6)

For the model described by Eq. (2), the cumulant can be determined as an85

eigenvalue of a differential equation. Following the approach discussed in [15],
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Figure 3: The transformed probability density function − ln P (z)/t approaches a limit, termed

the large deviation entropy function J(z). When t → ∞, we find excellent agreement with a

theoretical prediction for J(z) (dashed line).

we can obtain a Fokker-Planck equation for the variables Y and Z defined by

Z = δẋ
δx and Z = Ẏ :

∂ρ

∂t
= −∂Y (Zρ) + F̂ρ, (7)

where we have defined F̂ρ ≡ ∂Z(v(Z)ρ)+Dγ2∂2Zρ with v(Z) = −γZ−Z2. Note

that Y = zt, and we introduce the Lyapunov exponent, Λ = 〈Z〉. The cumulant90

λ(k) is the largest eigenvalue of the operator F̂ + kZ [16]:

F̂ρ(Z) + kZρ(Z) = λ(k)ρ(Z) . (8)

It is convenient to make a transformation of coordinates:

x = (γD)
−1/2

Z , ǫ =

√
D
γ
, E = −λ

γ
. (9)

The parameter ǫ is a dimensionless measure of the strength of inertial effects in

the model (2). It is known that the Lyapunov exponent Λ is negative, indicating

almost certain coalescence of paths, when ǫ < ǫc = 1.3309 . . . [17]. For ǫ > ǫc,95

the Lyapunov exponent is positive so that the motion is chaotic. All of the
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illustrations in this paper are at ǫ = 1.7678 ≈ 1.33 . . .× ǫc, where Λ ≈ 0.075 γ.

In the coordinates defined by (9), the cumulant obeys an equation of the form

∂x(∂x + x+ ǫx2)ρ(x) + kǫxρ(x) + Eρ(x) = 0 . (10)

4. WKB method for cumulants

We now transform (10) so that it takes the form of a Schrödinger equation.100

Write F̂ = ∂x[∂x+x+ǫx
2] and consider a transformation Ĥ = exp[−Φ(x)]F̂ exp[Φ(x)]

with Φ(x) = −x2/4 − ǫx3/6. The cumulant λ(k) is then obtained from the

ground-state eigenvalue E0 of a Hermitean operator

ψ′′ − V (x)ψ = Eψ (11)

where λ = −E0/γ and the potential is

V (x) =
1

4
(x+ ǫx2)2 − 1

2
− ǫ(k + 1)x . (12)

Note that Eq. (11) corresponds to a Schrödinger equation with m = 1
2 and105

h̄ = 1. We remark that, when ǫ is small, the potential V (x) has two minima,

close to x = 0 and to x = −1/ǫ.

The WKB method [18, 19] provides a powerful tool for understanding the

structure of solutions of the Schrödinger equation. It works best when the

potential energy is slowly varying. In the case of equation (11), ǫ is the small110

parameter of WKB theory, because the minima of the potential move apart as

ǫ → 0. In fact, a change of variable x = ǫX formally reduces Eq. (11) to an

expression where the ψ′′ term has a small coefficient. We will find, however,

that WKB methods yield surprisingly accurate results even when ǫ is not small.

Define the momentum115

p(x) = +
√
V (x) − E, (13)

with p(x) = 0 where V (x) < E. The action integral is

S(x) =

∫ x

0

dx′ p(x′), (14)
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and define a pair of WKB functions

φ±(x) =
1√
p(x)

exp[±S(x)] . (15)

Then, as we get further away from turning points where p(x) = 0, the solu-

tions of (11) are asymptotic to a linear combination of WKB solutions f(x) =

a+φ+(x)+a−φ−(x), where a± are approximately constant, except in the vicinity120

of turning points where E = V (x).

The Schrödinger equation (11) has unusual boundary conditions. The gauge

transformation implies that the solutions of (10) and (11) are related by

ψ(x) = exp[−Φ(x)]ρ(x) = exp

[
x2

4
+ ǫ

x3

6

]
ρ(x) . (16)

Integration of equation (10) gives

∫ ∞

−∞
dx (kǫx+ E)ρ(x) = 0, (17)

so that 〈x〉 must be finite. Then equation (16) implies that the coefficient of125

a− must be zero as x → −∞ (so that ρ(x) does not diverge). Furthermore,

ρ(x) has an algebraic decay as x → ±∞ and the coefficients of these algebraic

tails must be equal in order for 〈x〉 to be finite. In terms of the coefficients

a±, the appropriate boundary conditions are therefore limx→−∞ a+ = 1 and

limx→−∞ a− = 0. At large positive values of x, we have130

lim
x→+∞





a+ = exp(Σ)

a− = c
(18)

where c is indeterminate, and where Σ is defined by the finite limit of the

following expression:

Σ = lim
x→∞

[S(x) − S(−x)− Φ(x) + Φ(−x)] . (19)

We can determine the smallest eigenvalue E(k) by using a shooting method

to find a solution which satisfies (18). Solving numerically (11) amounts to

propagating a two-dimensional vector a(x) = (ψ(x), ψ′(x)). We can take an135

initial condition for xi large and negative in the form ai = (1, p(xi)) exp(Φ(xi)),
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corresponding to the asymptotic form of the solution which decays as x →
−∞. We numerically propagate this solution for increasing x, and find that

the solution increases exponentially. If the first element of the solution vector

at xf ≫ 1 is a1(xf) = ψ(xf), we can express the eigenvalue condition in the140

following form:

f(k, ǫ, E) ≡ ψ(xf) exp[Φ(xf)]

ψ(xi) exp[Φ(xi)]
= 1 . (20)

This shooting method does provide very accurate values for the cumulant λ =

−γE0. We used this method to obtain the cumulant. Performing a Legendre

transform gives the theoretical curve in Figure 3. We remark that while the

entropy function is well approximated by a quadratic, corresponding to the145

FTLE having an approximately Gaussian distribution for the parameter values

reported here, our calculation can be used to accurately determine the non-

Gaussian tails of the distribution of the FTLE.

5. Bohr-Sommerfeld quantisation for cumulant

It is also desirable to be able to make analytical estimates of the eigenvalues.150

The coefficients a± can be approximated as changing discontinuously when x

passes a turning point, where E − V (x) is zero (or close to zero). Depending

on the value of E there may be one or two double turning points. We must

take account of the fact that the amplitudes a± can change ‘discontinuously’ in

the vicinity of turning points. Close to a double turning point, the equation is155

approximated by a parabolic cylinder equation

d2ψ

dx2
− 1

4
x2ψ + Eψ = 0. (21)

We are interested in constructing a solution which is exponentially increasing as

x increases, both when x→ −∞ and for x→ +∞. We can use this solution in

the form φ(x) = A(x) exp[S(x)]/
√
p(x) where A(x) is asymptotically constant

as x → ±∞, and we take A(−∞) = 1. By adapting a calculation due to160

Miller and Good [20], we find that as x → +∞, the solution is approximated

9



by A(x) = F (E), where he function F (E) is

F (E) =

√
2π

Γ(12 − E)
exp[E(1− ln |E|)], (22)

and has zeros at E = n+ 1
2 , n = 0, 1, 2, . . .. It approaches unity as E → −∞ and

it oscillates approximately sinusoidally with amplitude equal to 2 as E → +∞.

Equation (22) can be used to determine the amplitude of the exponentially165

increasing solution after passing through a double turning point.

The eigenvalue condition (20) can also be expressed using the WKB ap-

proximation, leading to a generalisation of the Bohr-Sommerfeld quantisation

condition. We consider cases where the potential has a closely spaced pair of

real turning points, which will be treated as a double turning point, close to170

x = 0. The effect of the double turning point is to cause the WKB amplitude of

the exponentially increasing solution φ+(x) to change by a factor F (E), which

we assume to be given correctly by the expression for a parabolic potential,

Eq. (22). Because the potential is not precisely parabolic at the double turning

point, the energy argument of F (E) should be replaced by F (σ/π), where σ is175

a phase integral:

σ =

∫ x2

x1

dx
√
E − V (x), (23)

with x1 and x2 being the turning points where E = V (x). This is the most nat-

ural choice of replacement variable, because it reproduces the standard Bohr-

Sommerfeld condition in the case where the solution of the Schrödinger equation

is square-integrable. In the more general case that we consider, the WKB eigen-180

values are the solutions of

F (σ/π) exp(Σ) = f (24)

where f = 1 corresponds to the correct boundary condition for our eigenvalue

equation. Equation (24) is a generalisation of the usual Bohr-Sommerfeld con-

dition, and it corresponds with the standard form of the Bohr-Sommerfeld cri-

terion, which applies to bound-state problems, when f = 0. We find that it185

does produce remarkably accurate eigenvalues, as illustrated in Fig. 4, despite

10
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the criterion f = 1 which applies to our cumulant eigenvalues. These data are for the case

ǫ = 1.7678, and the dashed line in Fig. 3 is the Legendre transform of the numerically exact

eigenvalue for f = 1.

that fact that ǫ is not small. In order to emphasise the fact that the modified

Bohr-Sommerfeld condition does give very different eigenvalues, in Fig. 4 we

display results for the conventional Bohr-Sommerfeld condition, f = 0, as well

as for f = 1, which approximates the cumulant. We see that the modified Bohr-190

Sommerfeld condition provides accurate information about the cumulant λ(k)

in terms of two integrals of the momentum
√
V (x)− E, namely Σ and σ.

We remark that Fyodorov et al have studied very closely related equations

which occur in modelling pinning of polymers, including a related WKB analysis

[21].195
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6. Discussion and generalisation

We have demonstrated, for the system described by Equations (2), that the

usual definition of chaos, based on the instability of trajectories in the long

time limit, does not preclude the existence of large islands of long term stability

illustrated by the clustering of trajectories in Fig. 1. We argued that this clus-200

tering is related to the broad distribution of finite-time Lyapunov exponents,

with a large probability of having negative values. In our analysis of Equations

(2) we determined the cumulant, and performed a Legendre transform to ob-

tain the large-deviation entropy function of the FTLE. We further showed how

Bohr-Sommerfeld quantisation gives an accurate approximation to the cumu-205

lant. This analytical approach allows considerable scope for generalisation, for

example to determine analytical approximations to the correlation dimension

which describes the clustering of trajectories [22, 15]. We expect to explore this

in a subsequent publication. We also anticipate that the methods will find quite

direct application to clustering of particles advected on fluid surfaces, such as210

is seen in experiments reported in [23] and [24].

We should consider the extent to which the behaviour illustrated in Figure 1

is expected to be a general feature of chaotic dynamical systems. The differential

structure of the equations of motion (2) has no properties which distinguish it

from a generic dynamical system, and our argument was based upon considering215

the distribution of the FTLE, which has generic properties. In fact we can

propose a simple criterion for observing the effect illustrated in Figures 1 and

2. We showed that the clustering is a consequence of there being a substantial

probability to observe a negative FTLE at time t. Using Equation (3), and

making a quadratic approximation for J , we have P (z) ∼ exp[−tJ ′′(z−Λ)2/2],220

which indicates that P (0) is of order unity up to a dimensionless timescale given

by:

t∗Λ =
2

J ′′(Λ)Λ
. (25)

The natural expectation is that transient clustering may occur on a timescale

such that Λt is of order unity. However, equation (25) indicates that the

12



timescale over which transient clustering is observed may be much larger, and225

that J ′′(Λ)/Λ is the relevant dimensionless measure of the clustering effect illus-

trated in Figure 1. This quantity diverges at the transition to chaos, and it may

remain large even when the system is not close to a transition. For example,

in Equations (2) we have 2/J ′′Λ ≈ 13 when ǫ/ǫc = 1.33. We remark that the

dimensionless parameter in Eq. (25) can be expressed in terms of an integral of230

a correlation function:

t∗Λ =
2

Λ

∫ ∞

−∞
dt

[
〈Z(t)Z(0)〉 − Λ2

]
(26)

where Z(t) = d
dt [tz(t)]. This expression can be useful in cases, such as Eq. (2),

where it is practicable to write an equation of motion for Z(t) [22]. It is readily

derived by estimating the variance of tz(t).

Smith and co-workers (see [5, 4], and references cited therein) have empha-235

sised the wide variability of the local instability of chaotic dynamical systems,

indicating that the Lyapunov exponent is not sufficient to characterise chaos.

Our work indicates that the transient stability can be very long-lived, and we

propose that 1/J ′′Λ should be adopted as a parameter characterising the tran-

sient stability lifetime of chaotic systems. Our observation that trajectories of240

a generic chaotic system may be stable for surprisingly long times over a sub-

stantial domain of phase space implies in practice that small perturbations may

not be amplified, making the system “predictable” longer than naturally ex-

pected. One potential application of this observation is to insurance or futures

transactions, where someone takes a fee in exchange for writing a contract which245

requires a payment to be made if there is a loss or an unfavourable change in the

price. The predictability of the behavior of the system over very long times for

certain initial conditions, implied by our work, may be used to gain advantage.

In some areas, such as weather-dependent risks, it may be possible to under-

stand the conditions leading to a much smaller uncertainty than expected, so250

that the risk in a contract would be reduced. Finally, we remark that there are

relations between our results and studies of the possibility of negative entropy

production in systems out of equilibrium [25, 26]. The two processes are differ-

13



ent because entropy is a property of phase-space volume, whereas the Lyapunov

exponent describes distances between phase points. Whether the theoretical re-255

sults developed in this context can lead to a better understanding of our system

remains to be explored.
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