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Abstract: The Information Geometry of extended exponential families has received much recent
attention in a variety of important applications, notably categorical data analysis, graphical modelling
and, more specifically, log-linear modelling. The essential geometry here comes from the closure
of an exponential family in a high-dimensional simplex. In parallel, there has been a great deal
of interest in the purely Fisher Riemannian structure of (extended) exponential families, most
especially in the Markov chain Monte Carlo literature. These parallel developments raise challenges,
addressed here, at a variety of levels: both theoretical and practical—relatedly, conceptual and
methodological. Centrally to this endeavour, this paper makes explicit the underlying geometry of
these two areas via an analysis of the limiting behaviour of the fundamental geodesics of Information
Geometry, these being Amari’s (+1) and (0)-geodesics, respectively. Overall, a substantially more
complete account of the Information Geometry of extended exponential families is provided than
has hitherto been the case. We illustrate the importance and benefits of this novel formulation
through applications.

Keywords: extended exponential families; information geometry; Riemannian Markov Chain
Monte Carlo

1. Introduction

Information Geometry has developed enormously, both theoretically and in its range of
applications, since the seminal works of [1–3]. Excellent summaries of this approach, which we shall
call classical, can be found in [4], and recently [5]. This approach has the property that the fundamental
geometric objects are smooth manifolds. In particular, they are open sets, of constant dimension. However,
there has been recent interest in studying the Information Geometry of closures of exponential families,
as defined in [6]: these closures typically being unions of manifolds of varying dimension. As discussed
in [7], this development gives a more exact duality between sample and model space, which is the
key to the intrinsic duality of Information Geometry. From an applications’ point of view, studying
closures of statistical manifolds is very natural in categorical data analysis [8,9] and graphical [10],
random graph [11], and log-linear [12] models. A strongly related approach, which gives an excellent
treatment of the closure of statistical models, uses algebraic geometry. See, for example, [13,14].

This paper focuses on extending the manifold-based approach of classical Information Geometry
by looking at the limiting behaviour of key objects: (α)-geodesics, where we follow the standard
notation in information geometry where α = +1 is the exponential representation and α = 0 is
the Fisher/spherical representation of the manifold. To be precise, we note that we use the term
“limiting” here to denote the behaviour of a geodesic as it approaches the boundary of the closure
of an exponential family. This may mean that a natural parameter tends to infinity, in the case of
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a (+1)-geodesic, or a path-length parameter tends to a finite value, in the case of the (0)-geodesics.
We look specifically at the finite, discrete case and study two key types of geodesics α = +1 and 0.
In particular, we show how these two types of geodesics have fundamentally different boundary
behaviours. By studying the first of these, we construct an explicit representation of the limiting
behaviour of finite dimensional exponential families. The behaviour of the second was introduced
in our recent paper [15], which studied applications involving Markov chain Monte Carlo (MCMC)
methods. This paper gives the theoretical foundations to the MCMC applications found in the early
work. It also extends the results on (0)-geodesics found there to show both the asymptotic and limiting
behaviour of (+1)-geodesics. We begin with an insightful example.

Example 1. The extended trinomial model.
Figure 1 shows, in the simple case of the extended trinomial model, the behaviour of key geodesics. The model

is plotted in a mean, or (−1)-affine, parameterisation{
(π0,π1,π2)|

2

∑
i=0

πi = 1,πi ≥ 0

}
,

where boundaries are completely explicit, being the points where at least one πi = 0. In this figure, three
geodesics, passing through the same point and having the same initial tangent vector, have been computed.
The (−1)-geodesic in this parametrisation is, of course, a straight line and this cuts the boundary of the extended
family (see panel (a)). The (0)-geodesic, panel (b), smoothly touches the boundary. We show that this is generic
behaviour. We note here that the closed loop nature of the (0)-geodesic is not generic extended exponential
family behaviour. Instead, as we explain in Section 3, it reflects something quite specific about the multinomial
distribution. The (+1)-geodesic, panel (c), reaches the boundary at a vertex which, as we also show, is generic
behaviour. Furthermore, it approaches the vertex close to one of the edges of the simplex. In fact, it does this
exponentially fast. Again, we show that this behaviour is quite general.

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) (−1)−Geodesic

π1

π 2

●

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) (0)−Geodesic

π1

π 2

●

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) (+1)−Geodesic

π1

π 2

●

Figure 1. Key geodesics in the extended trinomial model.

The rest of the paper is organised as follows. Section 2 looks at the limiting behaviour
of (+1)-geodesics. This allows us to explicitly characterise the—sometimes subtle and
surprising—boundary behaviour of general discrete exponential families. The results clearly illustrate
the differences between the open-set, manifold-based classical information geometry and the geometry
required to take into account the boundaries that naturally occur in categorical data analysis. Section 3
looks at the limiting behaviour of Fisher or (0)-geodesics. We show how the boundary behaviour
of these geodesics allows them to be used as tools that have important applications. These include
designing efficient MCMC algorithms and solving optimisation problems on the closures of exponential
families. Throughout, we illustrate our results visually with simple but representative examples.



Entropy 2017, 19, 524 3 of 19

2. Limits of (+1)-Geodesics

This paper looks at general finite exponential families, as used in categorical data analysis,
graphical modelling, random discrete graph models, and log-linear modelling. Each of these models
can be embedded in a sufficiently high dimensional closed simplex.

The key intuition behind the behaviour of (+1)-geodesics is that they are normalised exponentials
of linear functions (see Definition 1). Hence, in the limit, their behaviour is determined by the
maximisers of these linear functions. The structure of these maximizers is further determined by the
polar duality of the support set of the exponential model. For illustrative examples, see Figures 2 and 3,
and, in Theorem 1, we give explicit asymptotic expressions for this behaviour.
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Figure 2. A set of (+1)-geodesics in the extended trinomial model.
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Figure 3. A set of (+1)-geodesics in Altham’s model.

2.1. Notation

We start with some notational issues. Define

∆k :=

{
π|

k

∑
i=0

πi = 1,πi ≥ 0

}
, and Sk

+ :=

{
ξ|

k

∑
i=0

ξ2
i = 1, ξi ≥ 0

}
,

where k ≥ 1 is the dimension of the simplex. Let I := {0, ..., k} be the labels that we associate with
the vertices of ∆k. In a convenient mild abuse of notation, identify any proper—i.e., not the relative
interior (r.i.) of ∆k—face of ∆k with the set ∅ ⊂ F ⊂ I of vertices spanning it—i.e., {i ∈ I : πi > 0},
or, equivalently, with the complementary set ∅ ⊂ FC ⊂ I—i.e., {i ∈ I : πi = 0}.

For any m ≥ 1, let 1m denote the vector of m 1s, Cm := {c ∈ Rm : 1T
mc = 0} the

(m − 1)-dimensional subspace of all centred (i.e., zero sum) vectors, Cm := Im − m−11m1T
m the

(Euclidean) orthogonal projector of Rm onto Cm, and put Q := {the unit Euclidean sphere in Rp}
≡ {q ∈ Rp : qTq = 1}.
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Using this notation, we can define a p-dimensional full exponential family in r.i.(∆k) as follows.

Definition 1. For some π0 = (π0
i ) ∈ r.i.(∆k) and V a (k + 1)× p matrix defined by

V = (v(1)|...|v(p)) = (v0|...|vk)
T

with linearly independent columns, where 1 /∈ Range(V), the (−1)-image of an exponential familyM =

M(π0, V) comprises {π(θ) = (πi(θ)) : θ ∈ Rp} where π(θ) = π(π0,V)(θ) has general element:

πi(θ) = π0
i exp{(Vθ)i − ψ(θ)} ≡ π0

i exp{vT
i θ − ψ(θ)}, (1)

i ∈ I , where
exp(ψ(θ)) ≡ ∑i∈Iπ

0
i exp((Vθ)i) = ∑i∈Iπ

0
i exp(vT

i θ).

Without loss of generality, we take each column of V to be centred and take the columns of V to be
(Euclidean) orthonormal—i.e., VTV = Ip.

Since these exponential families are (+1)-affine sets, the geometry of all one dimensional affine
subsets—i.e., (+1)-geodesics—determines the underlying geometry. Thus, for each q ∈ Q, define

v(q) = (vi(q)) := Vq,

a centred unit vector in Rk+1. The setMq, comprising all π(θq) = (πi(θq)), θq ∈ R, with

πi(θq) = π0
i exp{vi(q)θq − ψ(θq)}, (2)

i ∈ I , is a one-dimensional exponential sub-family ofM. Indeed,Mq is a (+1)-geodesic in bothM
and r.i.(∆k). As q varies over Q, we get all such (+1)-geodesics inM, and the strategy of this section
is to carefully analyse the boundary behaviour of eachMq.

2.2. Limits at the Boundary

In [15], we gave an explicit representation of how the p-dimensional model (1) is attached to the
boundary of ∆k. The key idea was to analyse the polar dual of the convex hull of the columns of V.
This convex hull defines the extremal points of the mean parameters, and its polar dual determines the
directions of recession [12]. These are the directions in the natural parameter space that attain these
extreme points. Here, we look much more explicitly at the way that these limits are attained.

Dropping the q notationally from (2), consider now the (+1)-geodesic M+1 = M+1(π
0, v)

defined, for given π0 = (π0
i ) ∈ r.i.(∆k) and centred unit vector v = (vi) ∈ Rk+1, by:

πi(θ) = π0
i exp{viθ − ψ(θ)}, (3)

i ∈ I , θ ∈ R. We seek the limit points ofM+1—and other related quantities—as θ → ±∞. Since −v is
also a centred unit vector, while θv = (−θ)(−v), it is enough to consider the case θ → +∞.

Definition 2. Let {vi}i∈I take distinct values v(0) > · · · > v(g), with v(j) having multiplicity mj ≥ 1, so that

∑
g
j=0mj = k + 1. Without loss, relabel the bins so that: the elements of v are in non-increasing order and,

for each j, the mj corresponding values of π0
i are also in non-increasing order. Then, we may replace the single

index “i” by a double index “(j, r)”, thus:

v = (vi) =


...

v(j)1mj
...

 and, correspondingly,π0 = (π0
i ) =


...

π0
(j)
...

 ,
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where π0
(j) = (π0

(j,r)), j = 0, ..., g, r = 1, ..., mj.

Definition 3. Using this double index, we can define some key notation, the requirement j > 0 being implicit
in all terms but the first:

π0
j· := ∑

mj
r=1π

0
(j,r), κj := π0

j·/π
0
0· > 0, ρj := v(j)/v(0) 6= 1,

δj := v(j−1) − v(j) > 0, δj· := δ1 + ... + δj = v(0) − v(j) > 0,

ε(θ) := exp(−θδ1), εj(θ) := exp(−θδj), εj·(θ) := exp(−θδj·) = ∏
j
h=1εh(θ).

Before giving the main results of this section, we make some comments on these terms. Since all
terms δj > 0, each εj(θ)—in particular, ε(θ)—tends to zero exponentially fast as θ → ∞, and we
will compute first order expansions in these terms. While these are “first order”, we emphasise the
exponentially fast convergence noted in Example 1.

We look at the limiting behaviour of key geometric terms: probabilities, tangent vectors, and the
Fisher information as θ → ∞. We comment that since we are working in the closure of an exponential
family, we cannot assume that the usual, open set based, geometric intuition holds. Thus, for example,
even the existence of tangent vectors, and their transformation rules, need careful checking.

Theorem 1. With 1 ≤ r0 ≤ m0 defining a bin (0, r0) and for 1 ≤ rj ≤ mj, we have the following asymptotic
expansions as θ → +∞.

(i) For the probabilities, we have:

π(0,r0)
(θ) =

π0
(0,r0)

π0
0·
× {1− κ1ε(θ) + o(ε(θ))}, (4)

π(1,r1)
(θ) =

[
π0
(1,r1)

π0
1·
× κ1ε(θ)

]
+ o(ε(θ)), (5)

π(j,rj)
(θ) = o(ε(θ)), j > 1. (6)

(ii) The mean parameter has the expansion:

µ(θ) := ψ′(θ) = v(0) − κ1[v(0) − v(1)]ε(θ) + o(ε(θ)).

(iii) The Fisher information has the expansion:

ψ′′(θ) = κ1[v(0) − v(1)]
2ε(θ) + o(ε(θ)). (7)

(iv) Finally, for tangent vectors, with respect to µ, we have the expansions:

∂π(0,r0)

∂µ
(θ) =

π0
(0,r0)

π0
0·
× 1

[v(0) − v(1)]
+ o(ε(θ)), (8)

∂π(1,r1)

∂µ
(θ) = −

π0
(1,r1)

π0
1·
× 1

[v(0) − v(1)]
+ o(ε(θ)), (9)

∂π(j,rj)

∂µ
(θ) = o(ε(θ)) j > 1. (10)

Proof. See Appendix A.

Corollary 1. The set of limit points of a p-dimensional exponential family in r.i.(∆k) is a finite union of
exponential families, each lying in its own specific proper face of ∆k.
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Proof. The limit points in Theorem 1 are functions of an initial point π(0) and an initial direction v.
However, the support set—denoted by I(v)—of the limit points is purely a function of v. Furthermore,
since the initial point can be anywhere in the p-dimensional exponential family, it can be written as
having general element

π0
i exp{vT

i φ− ψ(φ)}.

The corresponding limit points have general elements positively proportional to{
π0

i exp{vT
i φ}, i ∈ I(v),

0, i /∈ I(v),

which is an exponential family with support I(v). It is not, of course, necessarily in the minimal form
since the columns defining V, once restricted to the subset I(v), need not be linearly independent.

It is important to note that for a fixed {π0
i } the set of limit points of (+1)-geodesics of the form

given by Equation (3) does not form the complete closure of a statistical model (see Example 3 for an
illustration of this fact).

Corollary 2. We have that

k

∑
i=0

∂πi
∂µ

(θ) ≡
mj

∑
rj=1

∂π(j,rj)

∂µ
(θ) = 0 + o(ε(θ)), (11)

which is consistent with the fact that ∂π(θ)/∂µ is a tangent vector in (−1)-coordinates and, hence, is centred.

Proof. By direct calculation.

Example 2. Extended Trinomial Model.
We return to the extended trinomial model in order to visualise and interpret the results of Theorem 1

and its corollaries. In Figure 2a, we select a fixed π0 and a number of different unit vectors, q, to define a set
of (+1)-exponential families. For each value of q, we compute the corresponding double index. The “generic”
case has g = 2 and m0 = m1 = m2 = 1. That is, the vector has no ties, and thus has a unique maximum and
minimum value. These cases are plotted with a solid line in the figure. We see that these all converge to a vertex,
exponentially approaching one of the edges, as predicted. The process of convergence is emphasised in panel (b),
showing the convergence in detail.

There are two non-generic cases, where there is a tie for the maximum, or the minimum value. Note that,
since the vector is centred and non-zero, all three values cannot be the same. In this case, we have g = 1 and
either m0 = 2, m1 = 1 or m0 = 1, m1 = 2. As the theorem shows, the limit, in any such case, lies on the face
spanned by the two largest (smallest) values, with the other limit point being a vertex. The position of the point

on the edge is determined by the expression
π0
(0,r0)

π0
0·

. These geodesics are plotted with a dashed line in the figure.

We note that, in this special case, these (+1)-geodesics are also (−1)-geodesics.
When we look at the set of tangent vectors, we see behaviour considerably at variance with what would

be expected in a manifold-based setting. As mentioned above, since we are not working in open sets, care is
needed in checking even standard properties of tangent vectors. First, we note that the set of tangent vectors
to (+1)-geodesic, which meet at a vertex, has a conal, rather than a vector space structure. In addition, if we
consider the “generic” case where g = 2, then, from Theorem 1 (iv), we have all limiting tangent vectors that are
parallel to (a permutation of)

(1,−1, 0) ,

for all such corresponding (+1)-geodesics. These are plotted with solid lines in the figure, and a close-up of
the local behaviour; panel (b) shows clearly that all tangent vectors have the same limit. Note that this means
that the exponential map, which maps tangent vectors to points in a manifold, cannot be uniquely defined at a
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boundary point. The fact that the set of limiting directions at a vertex is a (closed) cone comes not, principally,
from the “generic” case, but, rather, from the case where g = 1. In the figure, one such geodesic converging to
(0, 0) is shown with a dashed line. However, for this case, the limiting tangent direction depends on π0, so all
values in the relative interior of the cone can be attained, while it is the boundary directions of the cone that come
from the generic case.

Example 3. Altham’s Model.
A two-dimensional extension of the binomial family, as described by Altham in [16], is given by(

k
y

)
exp(yη + T(y)φ− ψ(η, φ)) ∈ ∆k, (12)

where we take T(y) = (y− ȳ)2, y = 0, · · · , k. This allows both over and under-dispersion relative to the
binomial model and for large k can be thought of as a finite, discrete approximation to the normal model (see [15]
for more details).

Figure 3 shows, for k = 12, some of the details of the boundary convergence of (+1)-geodesics that define
this family. Panel (a) is shown in the mean, or (−1)-affine, parameterisation. The solid lines are “generic”
(+1)-geodesics that converge to a vertex, as predicted by Theorem 1. As can be seen by close inspection, all of
these geodesics have a tangent vector that is parallel to the corresponding edge. The dashed lines correspond to
the case where there is a tie in the largest component of the initial direction of the geodesic.

Panel (b) of Figure 3 shows the same geodesics in the natural, or (+1), parameters. Here, the dual polytope
is shown as the convex hull of a set of vertices, each of which corresponds to a “direction of recession” (for details,
see [12] or [15]). The polar duality can be clearly seen, with all (+1)-geodesics cutting an edge in (b) intersecting
the corresponding vertex in panel (a), while the dashed lines hit vertices in (b), intersecting edges in (a).

3. Fisher Geodesics

We turn now to the Fisher, or (0), geodesic in an exponential family embedded in a finite
simplex. For completeness, we recall that the 0-representation maps the simplex to the sphere,
and the Fisher metric is the pullback of the standard metric on the sphere. Here, we shall define a
new class of geometric object—the extended Fisher geodesic—which lies naturally in the extended
exponential family.

In an exponential family, Fisher geodesics are the geodesics of the Levi–Civita connection and
have the property of being (local) minimisers of path length and energy [17]. They were one of the first
differential geometric objects studied in statistics [1]. In general, they cannot be computed in closed
form, except in a few special cases, but can be computed numerically using their defining differential
equations. Since these equations need to be defined on open sets, the analysis here is required to
understand their limiting behaviour in the closure.

In Figure 1b, we see a Fisher geodesic in the extended trinomial model. This is a case where there
is a closed form (see [1], p. 32). It can be directly calculated in the (0)-representation of the simplex,
given by ξi =

√
πi, i = 0, 1, . . . , k. The image of Fisher geodesic connecting ξ and ξ̃ is the set of points

of the form
ξi(t) = c(t)

(
ξi + t(ξ̃i − ξi)

)
, (13)

where i = 0, · · · , k, and c(t) is the positive normalising constant, which ensures ∑k
i=0 ξi(t)2 = 1.

Since we are working in the extended multinomial model, there is no constraint on the positivity of
ξi(t) and the figure shows the image of the full great circle in the sphere, which is the Fisher geodesic
in the (0)-representation. We can alternatively think of it as the union of Fisher geodesics in the relative
interior, which is smoothly connected at the boundary. It is this smooth touching of the boundary
that motivated the results in this section. In fact, the curve in Figure 1b was computed by solving
the underlying differential equation numerically using the methods of Section 3.2 below. The local
solution is guaranteed to exist in open neighbourhoods, but the numerical solution was extended
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smoothly into, and out of, the boundary. The main result of this section shows, both theoretically and
numerically, that this a general property of extended Fisher geodesics in extended exponential families
in the simplex.

We note that the way that the (0)-geodesic smoothly intersects with the boundary in Figure 1b
is generic in all exponential families, as shown in Theorem 6. However, for clarity, we also note that
the closed nature of the (0)-geodesic, seen in the figure, is a special property of multinomial models.
This follows since they are equivalent to standard spheres under their Fisher Reimannian structure.
Hence, in this special case, the extended geodesics are the images of great circles and hence closed.
In general, as illustrated in Example 3, the geodesics do not form closed loops.

3.1. The Fisher Geodesic and the Boundary

In order to define extended Fisher geodesics, we need to consider how to measure the energy
of a curve in an extended model. In particular, we need to understand the energy of a path whose
limit lies in the boundary, as seen in Figure 1b. The following result on how the Fisher information
behaves near the boundary follows from results in [18] and was stated in [15]. It shows the singularity
of the metric, in both the mean and natural parameters at the boundary. The importance of this result
is to emphasise that standard Riemannian geometry does not extend directly to the boundary of the
extended exponential family.

Theorem 2. (a) Let {µi} be a sequence of points in the mean parameter space of an exponential family, lying
in r.i.(∆k), which converge to µ, which lies on a face of the boundary polytope, defined by the half space,
characterised by an equation of the form 〈a, µ〉 ≤ 1, for a unit normal vector a.

Let I(µ) be the Fisher information, λmin(µ) its minimum eigenvalue, assumed simple, and emin(µ) a
corresponding unit eigenvector, and unique up to overall sign. Then,

lim
i→∞

λmin(µi) = 0

and limi→∞ emin(µi) = a.
(b) Let {θi} be the corresponding sequence to µi in the natural parameters, I(θ) := I(µ(θ))−1 the Fisher

information, with λmax(θ) its maximum eigenvalue, assumed simple, emax(µ) a corresponding unit eigenvector,
unique up to overall sign. Then,

lim
i→∞

λmax(θi) = 0

and limi→∞ emax(θ) = a, which is the vertex in the polar which corresponds to the face in (a).

From the proof of Corollary 1, we have that the closure,M, of an exponential familyM⊂ r.i.(∆k)

can be written explicitly as a finite union of exponential families each lying in its own, proper, face.
We first define what it means for a curve to be smooth in the closure.

Definition 4. A (−1)-representation of a curve in the closure,M, of an exponential family inM⊂ r.i.(∆k) is

γ : [0, 1)→M ⊂ ∆k.

It is defined to be S-smooth in the closure when it can be partitioned into the union of smooth subpaths each
in an exponential family,

γj : [aj, aj+1)→Mj ⊂M ⊂ ∆k,

for j = 1, ..., J − 1, where:

(i) 0 = a1 < a2 < · · · < aJ = 1.
(ii) For each j = 2, . . . , J,

lim
t→a−j

γ(t) = γ(aj) ∈ ∆k.
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(iii) For each j = 2, . . . , J, and s = 1, . . . , S,

lim
t→a−j

dsγ

dts (t) =
dsγ

dts (aj).

We denote the set of S-smooth curves as CS.

A curve in C1 has a finite arc length if

lim
L→1

∫ L

0

√
〈γ′(s), γ′(s)〉γ(s)ds < ∞,

where 〈·, ·〉π is the Fisher information in ∆k. Furthermore, the curve has finite energy if

lim
L→1

∫ L

0
〈γ′(s), γ′(s)〉γ(s)ds < ∞.

It is common, and convenient, in Riemannian geometry [17] (Theorem 13, p. 128), to characterise
Levi–Civita geodesics as being local minimisers of the energy functional, since these are the same
paths that are local minimisers of the length functional. We follow this approach here when extending
the definition of a (0)-geodesic to the extended exponential family.

We can now define an extended geodesic on an extended exponential family.

Definition 5. LetM ⊆ ∆k be an extended exponential family, and let π, π̃ ∈ M. Define the set of finite
energy paths by

D(π, π̃) =
{

γ | γ : [0, 1]→M, γ(0) = π, γ(1) = π̃,
∫ 1

0
< γ′(s), γ′(s) >γ(s)ds < ∞

}
. (14)

Definition 6. If γ ∈ D(π, π̃), we call γ an extended Fisher geodesic if it (locally) minimises the energy functional.

Theorem 3. (a) Consider a curve γ ∈ C1, where γ(t) ∈ r.i.(∆k) for t ∈ [0, 1) and limt→1 γ(t) lies in the
proper face defined by a support set I∗ ⊂ I , i.e., if γ(1) = 0, then γ′(1) = 0.

Then, the curve has finite energy implies that limt→1
dγ
dt lies in the tangent space to the proper face defined

by the support set I∗.
(b) LetM ⊂ r.i.(∆k) be a p-dimensional exponential family, whose closure isM. Let π ∈ M and let

π̃ ∈ M lie in a proper face of ∆k defined by the index set F1. If γ ∈ D(π, π̃) has the property that γ(t) ∈ M
for t ∈ [0, 1) and is an extended Fisher geodesic, then we have: in the relative interior, after writing γ|M in
terms of the mean parameters ofM as (µ1(t), · · · , µp(t))

d2µi
dt2 (t) +

p

∑
l,m=1

Γi
lm(µ(t))

dµl
dt

(t)
dµm

dt
(t) = 0, (15)

where Γk
ij(µ) are the Christoffel symbols for the Levi–Civita connection of the Fisher metric.

On the boundary, we have that the curve γ has the property that limt→1
dπ
dt (t) is tangent to the face

containing π̃.

Proof. See Appendix B.

3.2. Computing the Extended Fisher Geodesic

Figure 1b shows an example of a Fisher geodesic’s limiting behaviour. In particular, it is smooth
on the boundary. However, it shows more, as we see a smooth curve in the extended multinomial
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model that has three points lying on the edges and three disconnected, Fisher geodesics in the relative
interior. These geodesics are smoothly connected in the extended family. This example motivated
our investigation of the properties of extended Fisher geodesics. In this section, we investigate if
it is possible to numerically find extended Fisher geodesics for arbitrary exponential families and
numerically investigate their limiting properties. We have, from the consideration of the limiting
properties of (+1)-geodesics, that, near the boundary, the exponential family lies almost parallel to a
low-dimensional face of the simplex. Thus, locally (0)-geodesics in general exponential families will
behave rather like (0)-geodesics in multinomial families, shown in Figure 1b, and reflect back into the
the interior. At least locally, the geodesic behaves like the projection of the continuation of geodesics
on the sphere. Example 4 below shows an explicit example of such a solution, where we have added
the so-called reflection principle, Definition 7, in order to ensure both uniqueness and numerical stability
in the solution.

The characterisation of the exponential family via Equation (1) is the familiar explicit
representation in terms of the natural parameters, but is problematic numerically in representing the
limiting distributions since the natural parameter needs to be unbounded to attain the boundaries.
Thus, we replace this with a (−1)-representation, and then, invoking the reflection principle, we will
work numerically in a (0)-representation.

From above, a p-dimensional exponential familiy is defined by v(1), . . . v(p), an orthonormal set of
centred vectors. This set can be extended to form a k-dimensional orthonormal set of centred vectors,
by selecting u(p+1), . . . , u(k). Within r.i.(∆k), a (0)-geodesic within this exponential family can be
characterised by a set of differential equations of the form: for j = 1, · · · , p and m = p + 1, · · · , k,

k

∑
i=0

1
d2πi(s)

ds2 = 0, (16)

k

∑
i=0

u(m)
i
πi

d2πi(s)
ds2 =

k

∑
i=0

dπi(s)
ds

dπi(s)
ds

u(m)
i

1
π2

i (s)
, (17)

k

∑
i=0

v(j)
i

d2πi(s)
ds2 =

1
2

k

∑
i=0

dπi(s)
ds

dπi(s)
ds

(v(j)
i − Eπ(V(k)))

1
πi(s)

, (18)

where Equation (16) constrains the curve to lie in the space of unit measures, Equation (17) forces
the solution to lie in the p-dimensional exponential family, and finally Equation (18) constrains the
solution to be a Fisher geodesic inside that family.

In order to solve these equations numerically, we discretise in the standard way, but, near the
boundary, we recognise that there is numerical instability in Equations (16)–(18) for small values of πi.
From the analysis of Section 2, we know that the small values are a fundamental part of the limit
process. To illustrate such a solution, consider the following example.

Example 4. Altham’s Model.
We return to Altham’s two-dimensional extension of the binomial family. We take the Equations (16)–(18)

and solve them numerically, in order to get an extended Fisher geodesic. This numerical solution is shown in
Figure 4, with panel (a) showing the complete extended exponential family and panel (b) showing detail of the
boundary behaviour.

As can be seen, in this example, the extended Fisher geodesic smoothly touches the boundary in two places.
In fact, we can think of the path as the smooth union of a set of extended geodesics.
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Figure 4. Extended Fisher geodesic in Altham’s model.

As the previous example shows, we can think about the smooth union of extended geodesics.
To ensure smoothness, we employ the following idea, which ensures the paths ‘reflect’ at a boundary
and join in a smooth way.

Definition 7. The reflection principle.
To the conditions of Theorem 3, we add the condition that the limit of the second derivative, d2π

dt2 , is finite
and continuous on the path and use this to smoothly connect extended Fisher geodesics at the boundary.

In Appendix C, we discuss how we implement code that computes smooth unions of extended
Fisher geodesics numerically using this principle by working in the ξ =

√
π parameters.

3.3. Applications

While Fisher geodesics were studied very early in the Information Geometry literature,
the importance of their applied utility is still an open question. The geodesic and the corresponding
geodesic distance seem to be a natural thing to study and has, for example, found applications in
image analysis (see [19,20], for example).

The seminal paper [21] illustrates a very important way that Fisher Riemannian geometry can
have an impact on statistical practice. It considers, under regularity, parameter spaces of statistical
models as smooth manifolds, and designs highly efficient Markov chain Monte Carlo algorithms by
using Langevin methods on Riemannian geometric structures. In our recent paper [18], we showed
the way that Fisher geodesics can smoothly attach to the boundaries of exponential families, and how
this is one of the ways that the MCMC method achieves its efficiency. The results of this paper give the
details of the results announced there.

In the paper [18], it was also shown how the boundary effects in extended exponential families
mean that the log-likelihood can be very far from approximately quadratic in the mean and natural
parameters.

Example 5. Altham’s model.
Returning to Altham’s model, Figure 5 shows an example of the shape of the log-likelihood function, in the

mean parameters, when the maximum likelihood estimate is near the boundary. We see that the log-likelihood is
very far from being approximately quadratic.
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Figure 5. Contours of the log-likelihood in Altham’s model.

Example 5 illustrates, in a simple visual way, how the log-likelihood can be far from approximately
quadratic when near the boundary. The condition that the maximum likielihood estimate is on, or
close to, the boundary is very common in categorical data analysis [9] and other discrete models [11].
This means that that standard iterative gradient based method, such as Newton’s method, can fail in the
mean or natural parameters. This was explored in [22] where it was shown that the boundary effects
mean that commonly used first order asymptotic analyses, in, say logistic regression, can also fail.

We propose here that the smooth way that the Fisher Riemannian geometry deals with the
boundary can be a useful tool to help deal with these problems. If we explore the model space using
its Riemannian geodesics structure, we can smoothly reach the boundary. We see that this is in sharp
contrast to working in the mean parameters, which, using Newton’s method, would jump outside
the boundary, or the natural parameters, which can never reach the boundary in finite time using a
gradient approach. We note in fact Amari’s highly efficient natural gradient method [23], while often
motivated by divergence ideas, exactly uses the Fisher Riemannian geometry.
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helpful comments.
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Appendix A. Proof of Theorem 1

We begin with the following preliminaries. Recall: f (θ) = o(ε(θ)) means that f (θ)/ε(θ) ≡
exp(θδ1) f (θ)→ 0 as θ → ∞. It follows that, for h, j ∈ {1, ..., g}:

(a) ∀j ≥ 2 : εj·(θ) = o(ε(θ))
(b) ∀h < j : f (θ) = o(εj·(θ))⇒ f (θ) = o(εh·(θ)).

(A1)

In particular, for all j ≥ 2,

f (θ) = o(εj·(θ))⇒ f (θ) = o(ε(θ)). (A2)

Again, x → xn being continuous at 0 for all n ≥ 1,

f (θ) = o(ε(θ))⇒ [ f (θ)]n = o(ε(θ)). (A3)

Note that we work throughout to first order (only) in ε(θ).
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Now, (3) gives:
π(j,r)(θ) = π0

(j,r) exp{θv(j) − ψ(θ), } (A4)

where

exp ψ(θ) = ∑
g
j=0π

0
j· exp(θv(j))

= π0
0· exp(θv(0))× {1 + ∑

g
j=1κjεj·(θ)} (A5)

= π0
0· exp(θv(0))× {1 + κ1ε(θ) + o(ε(θ))}.

Differentiating:

ψ′(θ) exp ψ(θ) = ∑
g
j=0π

0
j·v(j) exp(θv(j))

= π0
0·v(0) exp(θv(0))× {1 + ∑

g
j=1κjρjεj·(θ)} (A6)

= π0
0·v(0) exp(θv(0))× {1 + κ1ρ1ε(θ) + o(ε(θ))}.

In addition, again:

{ψ′′(θ) + (ψ′(θ))2} exp ψ(θ) = ∑
g
j=0π

0
j·v

2
(j) exp(θv(j))

= π0
0·v

2
(0) exp(θv(0))× {1 + ∑

g
j=1κjρ

2
j εj·(θ)} (A7)

= π0
0·v(0) exp(θv(0))× {1 + κ1ρ2

1ε(θ) + o(ε(θ))}.

In addition, for a third time:

{ψ′′′(θ) + 3ψ′(θ)ψ′′(θ) + (ψ′(θ))3} exp ψ(θ) = ∑
g
j=0π

0
j·v

3
(j) exp(θv(j))

= π0
0·v

3
(0) exp(θv(0))× {1 + ∑

g
j=1κjρ

3
j εj·(θ)}

= π0
0·v(0) exp(θv(0))× {1 + κ1ρ3

1ε(θ) + o(ε(θ))}.

Using these preliminary results, we can look at limits of the relevant quantities. Throughout
1 ≤ r0 ≤ m0 defines a reference bin (0, r0), for which the maximum value v(0) is observed.

(i) First look at the bin probabilities.

For j = 0:
Using (A4), (A5) and, twice, (A2) gives:

π(0,r0)
(θ) =

π0
(0,r0)

π0
0·
× {1 + ∑

g
j=1κjεj·(θ)}−1

=
π0
(0,r0)

π0
0·
× {1−∑

g
j=1κjεj·(θ) + o(ε(θ))} (A8)

=
π0
(0,r0)

π0
0·
× {1− κ1ε(θ) + o(ε(θ))},

where, recall, κ1 := π0
1·/π

0
0· > 0, so that

π0·(θ) := ∑m0
r0=1π(0,r0)

(θ) = {1− κ1ε(θ) + o(ε(θ))}. (A9)

For j > 0:
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For each j > 0 and 1 ≤ r ≤ mj, (A4) gives

π(j,r)(θ)

π(0,r0)
(θ)

=
π0
(j,r)

π0
(0,r0)

× εj·(θ) =
π0
(j,r)

π0
(0,r0)

×∏
j
h=1εh(θ). (A10)

Thus, (A8) and (A10) give, for j = 1:

π(1,r1)
(θ) =

[
π0
(1,r1)

π0
(0,r0)

× ε(θ)

]
×
[
π0
(0,r0)

π0
0·
× {1− κ1ε(θ) + o(ε(θ))}

]

=

[
π0
(1,r1)

π0
1·
× κ1 × ε(θ)

]
+ o(ε(θ)), (A11)

so that
π1·(θ) := ∑m1

r1=1π(1,r1)
(θ) = κ1ε(θ) + o(ε(θ)) (A12)

and, for j ≥ 2:

π(j,rj)
(θ) =

 π0
(j,rj)

π0
(0,r0)

×∏
j
h=1εh(θ)

× [π0
(0,r0)

π0
0·
× {1− κ1ε(θ) + o(ε(θ))}

]

=

π0
(j,rj)

π0
j·
× κj × ε(θ)

× [∏j
h=2εh(θ)

]
+ o(ε(θ)) (A13)

= o(ε(θ)),

so that
πj·(θ) := ∑

mj
rj=1π(j,rj)

(θ) = o(ε(θ)). (A14)

(ii) We can now look at the mean parameter for the geodesic µ(θ) = ψ′(θ).

Dividing (A6) by (A5), and repeatedly using (A2), gives:

µ(θ) = ψ′(θ) =
π0

0·v(0) exp(θv(0))× {1 + κ1ρ1ε(θ) + o(ε(θ))}
π0

0· exp(θv(0))× {1 + κ1ε(θ) + o(ε(θ))}

= v(0){1 + κ1ρ1ε(θ) + o(ε(θ))}{1− κ1ε(θ) + o(ε(θ))} (A15)

= v(0){1− κ1(1− ρ1)ε(θ) + o(ε(θ))}

= v(0) − κ1[v(0) − v(1)]ε(θ) + o(ε(θ)).

It follows at once from (A15) that:

[v(0) − µ(θ)] = κ1[v(0) − v(1)]ε(θ) + o(ε(θ)), (A16)

while, for each j > 0,

− [v(j) − µ(θ)] = [v(0) − v(j)]− κ1[v(0) − v(1)]ε(θ) + o(ε(θ)). (A17)

Furthermore, using (A3), we have:

[v(0) − µ(θ)]2 = o(ε(θ)), (A18)
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while, for each j > 0,

[v(j) − µ(θ)]2 = [v(0) − v(j)]
2 − 2κ1[v(0) − v(1)][v(0) − v(j)]ε(θ) + o(ε(θ)). (A19)

(iii) Next, we look at the Fisher information Var(θ) = ψ′′(θ).

Using (A9), (A12) and (A14), together with (A18) and (A19):

Var(θ) = ψ′′(θ) = ∑
g
j=0πj·(θ)[v(j) − µ(θ)]2

= π0·(θ)[v(0) − µ(θ)]2 + π1·(θ)[v(1) − µ(θ)]2 + ∑
g
j=2πj·(θ)[v(j) − µ(θ)]2

= {1− κ1ε(θ) + o(ε(θ))} × o(ε(θ)) (A20)

+ {κ1ε(θ) + o(ε(θ))} × {[v(0) − v(1)]
2 − 2κ1[v(0) − v(1)]

2ε(θ) + o(ε(θ))}

+ ∑
g
j=2{o(ε(θ))} × {[v(0) − v(j)]

2 − 2κ1[v(0) − v(1)][v(0) − v(j)]ε(θ) + o(ε(θ))}

= κ1[v(0) − v(1)]
2ε(θ) + o(ε(θ)).

(iv) Finally, we look at limiting tangent vectors in (-1)-coordinates.

For j = 0:
Now, using (A8), (A16) and (A20):

∂π(0,r0)
(θ)

∂µ
=

∂π(0,r0)
(θ)/∂θ

∂µ/∂θ
=

[v(0) − ψ′(θ)]π(0,r0)
(θ)

ψ′′(θ)

=
[κ1[v(0) − v(1)]ε(θ) + o(ε(θ))]×

π0
(0,r0)

π0
0·
× {1− κ1ε(θ) + o(ε(θ))}

κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))

=
π0
(0,r0)

π0
0·
× 1

[v(0) − v(1)]
×
{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))}
{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))} (A21)

=
π0
(0,r0)

π0
0·
× 1

[v(0) − v(1)]
+ o(ε(θ)),

so that

∑m0
r0=1

∂π(0,r0)
(θ)

∂µ
= [v(0) − v(1)]

−1 + o(ε(θ)). (A22)

For j = 1:
Note first that, from (A5) and (A20):

ψ′′(θ)× exp(ψ(θ)) = {κ1[v(0) − v(1)]
2ε(θ) + o(ε(θ))}

× π0
0· exp(θv(0))× {1 + κ1ε(θ) + o(ε(θ))} (A23)

= π0
0· exp(θv(0))× {κ1[v(0) − v(1)]

2ε(θ) + o(ε(θ))}.
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Using (A23), together with (A4) and the j = 1 version of (A17), we have:

∂π(1,r1)
(θ)

∂µ
=

∂π(1,r1)
(θ)/∂θ

∂µ/∂θ
=

[v(1) − ψ′(θ)]π0
(1,r1)

× {exp(θv(0))× ε(θ)}
ψ′′(θ)× exp(ψ(θ))

= −
{[v(0) − v(1)] + κ1[v(0) − v(1)]ε(θ) + o(ε(θ))} × π0

(1,r1)
× ε(θ)

π0
0· × {κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))}

= −
π0
(1,r1)

π0
0·
×
{[v(0) − v(1)] + κ1[v(0) − v(1)]ε(θ) + o(ε(θ))} × ε(θ)

{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))} (A24)

= −
π0
(1,r1)

π0
0·
×
{[v(0) − v(1)]ε(θ) + o(ε(θ))}
κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))

= −
π0
(1,r1)

π0
0·
× 1

κ1[v(0) − v(1)]
×
{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))}
{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))}

= −
π0
(1,r1)

π0
1·
× 1

[v(0) − v(1)]
+ o(ε(θ))},

so that

∑m1
r1=1

∂π(1,r1)
(θ)

∂µ
= −[v(0) − v(1)]

−1 + o(ε(θ)). (A25)

For j ≥ 2:
Finally, consider any j ≥ 2. Then, using (A17) and (A23), we have:

∂π(j,rj)
(θ)

∂µ

=
[v(j) − ψ′(θ)]π(j,rj)

(θ)

ψ′′(θ)
=

[v(j) − ψ′(θ)]π0
(j,rj)
× {exp(θv(0))× εj·(θ)}

ψ′′(θ)× exp(ψ(θ))

= −
π0
(j,rj)

π0
0·
×
{[v(0) − v(j)] + κ1[v(0) − v(1)]ε(θ) + o(ε(θ))} × {ε(θ)∏j

h=2εh(θ)}
{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))} (A26)

= −
π0
(j,rj)

π0
0·
×
{[v(0) − v(j)]ε(θ) + o(ε(θ))} ×∏

j
h=2εh(θ)

{κ1[v(0) − v(1)]2ε(θ) + o(ε(θ))}

= o(ε(θ)),

so that
∑

mj
rj=1∂π(j,rj)

(θ)/∂µ = o(ε(θ)). (A27)

Appendix B. Proof of Theorem 3

(a) It is convenient to work in the (0)-representation of the simplex i.e., Sk
+ =

{
ξ|∑k

i=0 ξ2
i = 1, ξi ≥ 0

}
.

In Sk
+, the Fisher metric on all tangent spaces is induced by the identity matrix in Rk+1 and this agrees

with the Fisher metric for all tangent spaces of ∆k.
We write

γ(t) = (π0(t), · · · ,πk(t)) .

The image of γ(t) in the r.i.(Sk
+) is(√

π0(t),
√

π1(t), . . . ,
√

πk(t)
)

,
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and its tangent vector is
1
2

(
π′0(t)√
π0(t)

,
π′1(t)√
π1(t)

, . . . ,
π′k(t)√
πk(t)

)
.

Thus, for t ∈ [0, 1), the squared length of the tangent vector is

1
4

k

∑
i=0

(
π′i(t)√
πi(t)

)2

=
1
4

k

∑
i=0

(π′i(t))
2

πi(t)
.

For any index i such that πi(1) = 0, suppose π′i(1) 6= 0. There are two cases. First, π′i(t) < C < 0
for t ∈ (1− ε, 1], so that

∫ L

1−ε

(π′i(t))
2

πi(t)
dt =

∣∣∣∣∣
∫ L

1−ε

(π′i(t))
2

πi(t)
dt

∣∣∣∣∣ > |C|
∣∣∣∣∫ L

1−ε

(π′i(t))
πi(t)

dt
∣∣∣∣ = C |(log(πi(1− ε))− log(πi(L))| ,

which is unbounded above as L → 1. The second case, π′i(t) > C > 0, can not happen due to the
non-negativity of probabilities. Thus, we have

lim
L→1

∫ L

0
< γ′(s), γ′(s) >γ(s)ds < ∞⇒

{
γi(1) = 0⇒ γ′i(1) = 0

}
. (A28)

Appendix C. Numerically Solving for Extended Fisher Geodesic

To numerically solve Equations (16)–(18), we have found that it is convenient to work in the
(0)-representation of the simplex, that is, ξi :=

√
πi. In these parameters, the defining equations, in the

relative interior, are

k

∑
i=0

ξi
d2ξi(s)

ds2 = −
k

∑
i=0

(
dξi(s)

ds

)2

, (A29)

k

∑
i=0

u(m)
i
ξi

d2ξi(s)
ds2 =

k

∑
i=0

(
dξi(s)

ds

)2 u(m)
i
ξ2

i
, (A30)

k

∑
i=0

(v(j)
i − Eξ(s)(V

(j)))
d2ξi(s)

ds2 = 0. (A31)

We use the package deSolve in R [24], to numerically solve the Equations (A29)–(A31).
This method discretises the equations and solves them iteratively. At iteration s, we have state
variables ξ(s) and v(s) := dξi

dt . From the standard theory of ODE, in the relative interior, such state
variables are enough to determine what happens at the next state by solving the linear equations,
which are the discrete version of Equations (A29)–(A31).

At the boundary, where at least one ξi = 0, the corresponding linear equations are singular
and do not define a unique next state. We therefore apply the reflection principle to extend the path
through this singularity. To apply the principle numerically, we add to the algorithm the condition
that whenever the value of

ξ(s) + v(s) < 0,

we reflect in this boundary by changing this component of the tangent vector to −v(s). This means
that the path in ξ-space is locally of the form

ξ(t) = a|t− t0|

in a neighbourhood of ξ(t0) = 0. In terms of the π-parameters, this gives
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π(t) = a2(t− t0)
2,

dπ
dt

(t) = 2a2(t− t0),
d2π

dt2 (t) = 2a2,

which means at t = t0, where the path touches the boundary, we have that the tangent is zero,
as required by Theorem 3(b) but also that the second derivative is finite and continuous as required by
the reflection principle.

(b) We use the characterisation of a Fisher geodesic as being a local minimiser of the energy
functional among smooth curves. We follow the standard argument using the calculus of variations,
which give the geodesic Equations (15) within the relative interior. A path that is smooth in the extended
exponential family will have finite energy if the tangent vector is parallel to the boundary. Since the
geodesic is a local minimiser, it must have finite energy. This gives the final boundary condition.
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