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Abstract

This paper examines the interdependence between imperfect competition and
emissions trading. We particularly analyze the long run equilibrium in a two-
sector (�clean�and �dirty�) model with Cournot competition among �rms who
face a �xed cost of production. The clean sector is de�ned as the sector with the
highest long run cost margin on emissions. We compare the welfare implications
of a cap-and-trade scheme with an emissions trading scheme based on relative
intensity standards. It is shown that a �rm�s long run equilibrium output in
the clean or dirty sector does not depend on the emissions trading format, but
only depends on the �xed cost of producing in the respective sector. Intensity
standards can result in clean �rms selling allowances to dirty �rms, or dirty
�rms selling to clean �rms. The former outcome yields higher welfare. It is
demonstrated that cap-and-trade outperforms the intensity-based trading scheme
in terms of long run welfare with free entry and exit. With intensity standards
the size of the clean sector is too large.
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1 Introduction

Governmental authorities increasingly embark upon emissions trading schemes to ef-

�ciently curtail environmental pollution. This paper analyzes and compares the two

main market con�gurations for organizing trade in emission allowances: cap-and-trade

versus intensity standards. Although tradable pollution markets have been studied

extensively in recent years, a comparison of these pollution market designs in an im-

perfectly competitive, multi-sector model is still lacking. The aim of this paper is

to �ll this gap by focusing on the connection between emissions trading and market

structure. Since polluting industries are often concentrated in nature, we allow �rms

to strategically interact in an imperfectly competitive output market and assess the

sectoral implications of emissions trading in the long run equilibrium. Analyzing the

interaction between emissions trading and output market e¤ects is an important di-

mension in policy assessments, since it is often not optimal to completely eliminate

the pollution-intensive sector, even though reducing pollution is the underlying policy

goal.

Cap-and-trade and intensity-based emissions trading represent schemes that are

based on an absolute cap on emissions and on relative emission intensities, respectively.

Whereas under cap-and-trade a control authority �xes the total supply of emissions,

in the case of intensity-based trading a source-speci�c level of emissions abatement

is set, implying a �xed average emissions intensity (e.g., Tietenberg 1999). Prime

examples of cap-and-trade schemes in the U.S. are the acid rain programme and the

RECLAIM programme to reduce sulfur dioxide and nitrogen oxide emissions from

stationary sources in the Los Angeles basin. The European counterpart of large scale

cap-and-trade currently occurs within the European Union Emissions Trading System

(EU ETS) for carbon dioxide emissions (e.g., Ellerman and Buchner 2007). In the

1980s the U.S. established intensity-based trading arrangements between re�neries as

part of the lead phasedown (e.g., Hahn and Hester 1989; Kerr and Newell 2003).

Another more recent intensity-based scheme is California�s Low Carbon Fuel Standard

(Holland et al. 2009). In Canada an intensity-based trading system was launched in
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1996 under the Pilot Emission Reduction Target. This type of scheme is currently

also one of the main design features of Canada�s climate policy (Environment Canada

2007). Also for developing countries intensity targets have been suggested (Philibert

and Pershing 2000), which has entered the post-Kyoto emissions trading design debate

(e.g., Michaelowa et al. 2005; Jotzo and Pezzey 2007).

Our paper illustrates that entry and exit in the output market is a prime factor in

the interplay between sectoral choice, production and emissions trading. We show that

a �rm�s equilibrium level of output in the long run does not depend on the speci�c

design of the pollution market. Under either a no-policy regime, cap-and-trade or

intensity standards, equilibrium output in the clean or dirty sector only depends on

the �xed cost of producing in that sector. Due to the existence of �xed cost, in

our model we illustrate that in the long run equilibrium a �rm�s �price-cost margin�

is therefore positive, even with free entry and exit. For a given level of aggregate

emissions in the long run, and given the zero-pro�t output level per �rm, we �nd that

a cap-and-trade scheme generates higher welfare than emissions trading via intensity

standards. Relative to the �rst-best outcome, the size of the clean (dirty) sector is too

large (small) under the trading regime based on intensity standards.

These results complement and extend the �nding by Helfand (1991), Fischer (2001)

and Holland et al. (2009) that intensity standards are generally ine¢ cient, and the

more recent studies by Boom and Dijkstra (2009) and Holland (2012) showing that in

the absence of market power intensity standards cannot attain the �rst-best outcome

whereas an absolute emissions trading scheme can.1 Boom and Dijkstra (2009) �nd

that the welfare comparison between the two schemes under imperfect competition is

ambiguous in both the short run and the long run. By contrast, we �nd in our speci�c

setting that cap-and-trade yields higher welfare in the long run.

Our welfare result may seem surprising in light of the literature. Boom and Dijkstra

(2009) and Holland (2012) show that cap-and-trade maximizes welfare under perfect

competition (in the short run and the long run), and emission trading based on an

intensity standard does not. Boom and Dijkstra (2009) �nd that the welfare comparison

1Note that Holland (2012) does not consider an absolute emissions trading scheme explicitly as we
do but makes use of an emission tax instead, which is equivalent to an absolute cap on emissions.
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is ambiguous under imperfect competition. On the one hand, if competition is �close to�

perfect, one would expect the perfect-competition result of higher welfare under cap-

and-trade. On the other hand, output is higher under emissions trading via intensity

standards, which counteracts the output-reducing tendency of imperfect competition.

The di¤erence in results stems from our assumption that the emission-to-output ratio

in each sector is �xed. In Boom and Dijkstra (2009) this ratio is variable, so that

with intensity standards the industry can expand its output while still implementing

the pollution target by reducing its emission intensity. In the present paper, emissions

trading on the basis of intensity standards leads to an output expansion in the clean

sector and a (drastic) output reduction in the dirty sector. This is contrary to the

optimal policy prescription, which is for both sectors to contract according to their

relative emission intensities. The latter is exactly what cap-and-trade achieves.

Allowing for the presence of market power in the output sector, our study also

adds to the literature that examines the interdependence between market structure

and environmental policy. Seminal contributions in this domain are Buchanan (1969)

and Barnett (1980), which show that the optimal emission tax for a monopoly falls

short of the marginal damage from pollution.2 Other studies that compare emissions

trading on the basis of absolute and relative targets have ignored the multi-sectoral

implications under imperfect competition. Dewees (2001) makes a welfare comparison

between the two emissions trading schemes in a single perfectly competitive industry,

whereas Boom and Dijkstra (2009) make the comparison for a perfectly as well as an

imperfectly competitive sector. Fischer (2003) analyzes emissions trading between two

perfectly competitive sectors, one of them regulated by a cap-and-trade scheme and the

other by a scheme based on intensity standards. Boom and Dijkstra (2009) analyze the

same scenario for two perfectly competitive and two imperfectly competitive sectors.

The paper proceeds as follows. In the next section we introduce the benchmark

model. Section 3 develops and analyzes the emissions trading regimes, followed by a

welfare comparison in Section 4. Conclusions are given in Section 5.

2See Millimet et al. (2009) for a survey on the interaction between environmental policy and market
structure.
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2 Basic model

Consider an imperfectly competitive market consisting of n � 2 �rms that choose

output to maximize pro�t. Firms can choose to produce output in either one of two

sectors i = c; d, with i = c referring to the clean sector and i = d to the dirty sector.

We shall de�ne �clean�and �dirty�at the end of this Section. For simplicity, we treat

the number of �rms in each sector, ni; as a continuous variable.3

Firm-level emissions ei > 0 are assumed to vary proportionally with �rm-level

output qi > 0 for both goods:

ei = �iqi i = c; d (1)

with �i > 0: Aggregate output produced by �rms in the clean and dirty sector is simply

Qi = niqi; with the two sectors facing the following inverse demand functions:

pi = �i �Qi; i = c; d (2)

where pi is the price of good i.4 A higher �i (relative to ��i) implies an absolute

advantage in demand (at equal output levels) enjoyed by the �rm in sector i. Put

di¤erently, �i���i re�ects a price premium for sector i. Production in sector i incurs

�xed cost Fi > 0 and constant marginal cost ci > 0. Following Dixit (1979), the

cost margin for a �rm in sector i is �i � ci > 0; and a �rm in sector i has a margin

advantage if �i � ci > ��i � c�i: Further, let us de�ne a �rm�s full marginal cost, ki;

as its marginal cost of production, ci; plus its cost of emissions from the extra output.

Without environmental policy, ki = ci: We shall see that with emissions trading based

on an absolute cap and a relative intensity standard, ki is given by (16) and (25)

respectively. Both with and without environmental policy, ki is a constant to the

individual �rm.

We can now solve for the pro�t (�i)-maximizing output level of a �rm with full

marginal cost ki and �xed cost Fi. From (2):

max
qi
�i = (�i � bQi � qi � ki)qi � Fi i = c; d (3)

3This is a standard assumption in the literature; Boom and Dijkstra (2009) is an exception.
4Note that the slope of both inverse demand functions is normalized to �1. In appendix A.1 it is

demonstrated that this normalization procedure has no impact on the subsequent analysis.
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with bQi the aggregate output of all other �rms in sector i: The �rst-order condition is:
�i � bQi � 2qi � ki = 0 (4)

By symmetry, bQi = (ni � 1)qi so that the equilibrium quantities are:

qi =
�i � ki
ni + 1

i = c; d (5)

Substituting (5) and bQi = (ni � 1)qi back into (3), pro�ts can be written as:
�i =

�
�i � ki �

ni(�i � ki)
ni + 1

�
qi � Fi = q2i � Fi i = c; d: (6)

In the long run �rms exit from a sector when they incur losses, whereas pro�ts attract

new �rms, until pro�t is driven to zero. Setting �i = 0 in (6), we �nd:

Proposition 1 Absent environmental policy, or with emissions trading either in the

form of an absolute cap or on the basis of relative intensity standards, the long run

equilibrium output per �rm in sector i is:

qi = fi �
p
Fi i = c; d: (7)

Let us now complete the solution for the unconstrained benchmark, i.e., the long

run equilibrium without environmental policy. Substituting ki = ci and (7) into (5)

yields:5

�ni =
�i � ci � fi

fi
i = c; d (8)

An interior equilibrium exists (e.g., �ni > 0) if and only if:

i � �i � ci � fi > 0 i = c; d (9)

where i can be seen as the long run cost margin on production. In the long run, each

unit of output should not only cover its marginal production cost, but also contribute

its share fi to cover the �xed cost, Fi: Equations (7) to (9) then imply:

�ni�qi = �nifi = i i = c; d: (10)

5Overbars represent the value of a variable in the unconstrained benchmark.
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The total amount of emissions generated by the �rms in the clean and dirty sector in

the unconstrained benchmark is:

�E = �c�nc�qc + �d�nc�qc = �cc + �dd: (11)

where the second equality follows from (10).

We shall de�ne the clean sector as the sector with the greater long run cost margin

on emissions i=�i:
6

c
�c
>
d
�d
; (12)

with i given by (9) and �i by (1). This de�nition implies that when total emissions

are below the unconstrained level (11) and the number of clean and dirty �rms is

equal, clean production contributes more to welfare than dirty production. Hence, it

is optimal to have more clean �rms than dirty �rms.7

3 Emissions trading

This section applies the model developed in the previous section to emissions trading

on the basis of an absolute cap on emissions in the form of a cap-and-trade scheme

(section 3.1) and emissions trading on the basis of a relative intensity standard (section

3.2). We denote these two emissions trading schemes by A and R, respectively.

We shall analyze and compare the trading schemes for a given level L of total

emissions:

L = �cncqc + �dndqd = �cncfc + �dndfd: (13)

The second equality follows from Proposition 1. Throughout the analysis we assume

that total emissions L exceed a threshold Lmin:

L > Lmin � c�c = �E � d�d; (14)

where the second equality follows from (11). Condition (14) is necessary and su¢ cient

for interior equilibria (with nc; nd > 0) to exist with emissions trading under the two

design con�gurations.
6Since i is measured in money per unit of output i and �i is measured in emissions per unit of

output i; the long run cost margin on emissions, i=�i; is measured in money per unit of emissions.
7This follows formally from equation (A5) given in Appendix A.3.
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In order to ensure that pi > 0 (i = c; d) we shall assume:

�c �
c +

p
2c + 

2
d

2
> 0: (15)

Note that while we consider imperfect competition in the output market, it is assumed

that �rms act as price takers in the tradeable pollution market. Although this may

seem restrictive, it is a credible assumption and not in con�ict with the imperfectly

competitive nature of the output market. For instance, the EU ETS for carbon emis-

sions allows trade between �rms from di¤erent industries such as electric power plants,

glass manufacturers, steel producers, the cement industry as well as �rms from the

paper industry. The pollution market can therefore be competitive while competition

in the respective output markets is imperfect.

3.1 Cap-and-trade

The regulator auctions allowances, each valid for one unit of emissions. The allowances

in total sum up to the absolute cap, L, and the allowance price, v; is established on

the pollution market. The pro�t-maximization problem of �rm i; taking the allowance

price as given, can then be written as (3) with:

kAi = ci + v�i: (16)

Equation (16) shows that the full marginal production costs under cap-and-trade, kAi ;

equal marginal production costs, ci; plus the cost of buying the allowances for the �i

emissions from the extra output. We see that a cap-and-trade policy increases the

marginal cost of both the dirty and the clean �rm.

The cap is non-binding if it is greater or equal to the unconstrained level of emissions

given by equation (11), i.e., if L � �E: A non-binding cap on pollution will result in

an allowance price v = 0; a cap L < �E is binding, implying that the allowance price

v > 0: This ensures that the demand for allowances is equal to its supply shown in

(13). Using (5), (7), (13) and (16), we can now solve for nAc ; n
A
d and v for a given level

of total emissions L. The long run equilibrium allowance price under a cap-and-trade

regime is:

v =
�E � L
�2c + �

2
d

; (17)

8



where �E is the unconstrained emission level given by (11).

The long run equilibrium number of �rms is:

nAi =
��i(��ii � �i�i) + �iL

fi (�2c + �
2
d)

i = c; d: (18)

Since nAi is increasing in L < �E; we have:

nAi < �ni i = c; d: (19)

By (12), nAc in (18) is always positive. However, n
A
d > 0 if and only if:

L > LAmin �
�c (�dc � �cd)

�d
= �E � d (�

2
c + �

2
d)

�d
: (20)

The second equality follows from (11). Comparing LAmin in (20) to threshold Lmin in

(14), one directly obtains Lmin�LAmin =
d�

2
c

�d
> 0: Condition (14) is therefore a su¢ cient

condition for (20) to hold, meaning that the cap is su¢ ciently lax such that both the

clean and dirty sector coexist.

Let us illustrate our �ndings with a speci�c numerical example where:

�c = 1; �d = 2; �c = �d = � = 300; cc = cd = c = 92; fc = fd = f = 8; (21)

so that c = d =  = 200 by (9) and qc = qd = f = 8 by (7). To simplify the graphical

exposition, we assume that the two sectors are identical except for their emissions-to-

output ratios. Figure 1 shows the inverse demand curve for sector i = c; d as pi(Qi)

and the long run average production costs as c + f: The unconstrained benchmark is

at point B with Qi = 200; pi = 100; ni = 25 and �E = 600:

Figure 1 illustrates the long run cap-and-trade equilibrium for our numerical exam-

ple (21).8 We take as our starting point a certain value of Qd as the equilibrium value

of total dirty good production for a certain exogenous emission cap L (with the value

of L yet to be inferred). We wish to know what would be the equilibrium value of Qc

that goes with this value of Qd: Once we have established the equilibrium combination

of Qd and Qc; we can infer the associated exogenous level of L from (13) and (21):

L = �cQc + �dQd = Qc + 2Qd (22)

8In Figures 1 and 2, parameters and variables are shown in italics, while points (ordered pairs) are
shown in roman type.
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Returning to the question of what is the equilibrium value of Qc for a given equi-

librium value of Qd; this follows from (18) and (21) with Qi = nifi; i = c; d:

Qc =
1

�d
(Qd�c + c�d � d�c) =

Qd
2
+ 100 (23)

When Qd = 120; for instance; Qc = 160: In order to illustrate this relation between the

equilibrium values of Qc and Qd in Figure 1, it is useful to de�ne pAc (Qd) as the long run

equilibrium price of the clean good, given that Qd is the long run equilibrium quantity

of the dirty good with emission trading based on cap-and-trade where the exogenous

level of total emissions is given by (22). From (2), (21) and (23), the expression for

pAc (Qd) in general and for our numerical example is, respectively:

pAc (Qd) = �c �
1

�d
(Qd�c + c�d � d�c) = 200�

Qd
2
: (24)

Figure 1 shows the pAc (Qd) curve for our numerical example. We see that when

Qd = 120; then pc = 140 so that Qc = 160: Applying (22), we see that the combination

Qd = 120; Qc = 160 is the equilibrium outcome for the exogenous emission cap of

L = 400: The complete characterization of the cap-and-trade equilibrium is then:

When L = 400; then Qd = 120; pd = 180; nd = 15; Qc = 160; pc = 140; nc = 20; and

by (17) v = 40: For any given Qd; the pAc (Qd) curve given by (24) is halfway between

pi(Qi) and c + f: This is because by (3) with � = 0 and (16), the vertical distance

between pd and c+f equals v�d; while the vertical distance between pc and c+f equals

v�c: The ratio between the two distances is thus �d=�c; which equals 2 in our numerical

example (21).

3.2 Intensity standards

In contrast to a cap-and-trade system, consider now the case where the government

sets a pollution intensity standard �i for sector i = c; d: Under such an intensity-based

trading system, if a �rm wants to emit more per unit than the standard allows, it

can buy allowances from �rms that emit less per unit than the standard allows. The

result is that, on average, the economy as a whole complies with the emission standard

but the individual �rm has the �exibility to deviate from it. With our speci�cation
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Figure 1: Long run equilibrium with cap-and-trade and welfare optimum

of the demand function as shown in (2) we have implicitly de�ned one unit of good i

such that when the price pi increases by one unit, demand Qi decreases by one unit.

However, there is no reason why the regulator should adopt this de�nition of a unit

and set �i = �: We therefore allow �c to di¤er from �d.9

The pro�t-maximization problem of �rm i; taking the allowance price under inten-

sity standards, w; as given, can then be written as (3) with:

kRi = ci + w(�i � �i): (25)

The full marginal production costs under intensity standards, kRi ; are equal to marginal

production costs, ci; plus the cost of buying the allowances for the extra emissions

exceeding the standard. Each extra unit of output comes with �i extra emissions as

well as with permission for �i extra emissions. If �i > �i, �rm i has to buy allowances

from other �rms; if �i < �i; the �rm can sell allowances.
9Note that the de�nition of a unit of production does not a¤ect our de�nition of the clean and

dirty sector as given by (12), because the latter de�nition is in terms of the long run cost margin on
emissions (see also footnote 6).
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Substituting (25) and (7) into (5), we �nd:

fi =
�i � ci + w(�i � �i)

ni + 1
i = c; d: (26)

Using (7), the pollution market clears via the constraint:

nRd fd(�d � �d) = nRc fc(�c � �c): (27)

This constraint reveals the key di¤erence in the functioning of the two di¤erent al-

lowance market con�gurations. Whereas the supply of allowances, L; is �xed under a

cap-and-trade regime, the supply of allowances under intensity standards � re�ected

by the RHS of (27) � varies with aggregate clean output QRc = n
R
c fc:

We now have four conditions for the long run equilibrium: (13) for the total level

L of emissions, (26) for each sector i; and (27): However, we have �ve variables:

�c; �d; nc; nd and w: This implies that the solution is not uniquely determined in

the long run equilibrium. In order to reduce the number of variables to four, let us

de�ne:

hi � w(�i � �i) (28)

as the revenue per unit of output that a �rm in sector i receives from selling allowances.

In equilibrium, if hc is positive, hd must be negative and vice versa, as is clear from

(27). Substituting (28) into (26) and (27) respectively yields:

nifi = i + hi i = c; d; (29)

ncfchc = �ndfdhd: (30)

We now have a system of four equations: (29) for each sector i = c; d; (30) and (13).

This system can then be solved for the four unknown variables: nc; nd; hc and hd:

Thus, while the allowance price w as well as the sector-speci�c standards �c and �d

are not uniquely determined in equilibrium, the amount that each �rm receives from

selling (or spends on buying) allowances per unit of output is determined.

We shall see that this system of four equations has two solutions, which can be

compared on welfare. Since both solutions have the same level of emissions (L) in

the long run equilibrium, they feature the same level of environmental damage. This

12



implies that we can abstract from the environmental damage component in the welfare

function explicitly.

Under both emissions trading schemes, output per �rm is given by (7). From (2),

(7) and (13), welfare for a given level L of total emissions, with qi = fi in both sectors

is given by:

W =
X
i=c;d

�
�inifi �

1

2
(nifi)

2 � cinifi � niFi
�
� �

 X
i=c;d

�inifi � L
!
: (31)

The �rst two terms between square brackets on the RHS denote the consumption utility

from the good (the area below the inverse demand curve); the third term denotes

aggregate variable cost, and the fourth term aggregate �xed cost. The second term

on the RHS of (31) is the emissions constraint (13) with qi = fi (i = c; d). The only

di¤erence between the two solutions consists of the number ni of �rms in either sector,

since output per �rm is �xed.

We can now state:

Proposition 2 The long run equilibrium with emissions trading based on a pollution

intensity standard is given by equations (13), (29) for each sector i = c; d; and (30).

This system can be solved for nc; nd; hc and hd; with ni denoting the number of �rms

in sector i and hi the revenue per unit of output that a �rm in sector i receives from

selling allowances.

1. There are two solutions: r and �. Solution r features nrc > �nc; n
r
d < �nd (with the

number �ni of �rms in sector i in the unconstrained equilibrium given by (8)), and

clean �rms selling allowances to dirty �rms. Solution � features n�c < �nc; n
�
d > �nd;

and dirty �rms selling allowances to clean �rms.

2. Solution r leads to higher welfare than solution �.

3. Solution r exists if and only if both inequalities (14) and (15) hold.

Proof. See Appendix A.2.
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Figure 2: Long run equilibrium with intensity standards

Figure 2 illustrates Proposition 2 for our numerical example (21). Analogous to

pAc (Qd) in Figure 1, p
r
c(Qd) gives the equilibrium clean output price for a given equi-

librium level of Qd in solution r and p
�
d(Qd) does the same for solution �; with the

exogenous level L of emissions given by (22):10

In solution r; clean �rms sell allowances to dirty �rms. For instance, when Qd =

120; Figure 2 shows that prc = 60 so that Q
r
c = 240; implying that this is solution r for

the exogenous emission level L = 480: Figure 2 illustrates equation (30) for solution r:

The amount Qchc that clean �rms receive from selling allowances equals the amount

�Qdhd that dirty �rms pay for allowances. In Figure 2, Qrchrc is given by the area

Zmrrrjr = 240 � 40 = 9600; while �Qrdhrd is given by ZJrT rM r = 120 � 80 = 9600:

The full solution r for L = 480 is thus: Qrd = 120; p
r
d = 180; n

r
d = 15; h

r
d = �80 and

Qrc = 240; p
r
c = 60; n

r
c = 30; h

r
c = 40:

In solution �; dirty �rms sell allowances to clean �rms. For instance, when Qd =

10The expressions for prc(Qd) and p
�
c(Qd) are derived in Appendix A.4.
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224; Figure 2 shows that p�c = 268 so that Q
�
c = 32 which implies that this is solution �

for the exogenous emission level L = 480: Figure 2 illustrates equation (30) for solution

�: The amount Qdhd that dirty �rms receive from selling allowances equals the amount

�Qchc that clean �rms pay for allowances. In Figure 2, Q�dh
�
d is given by the area

ZM�T �J� = 224 � 24 = 5376; while �Q�ch�c is given by Zj�t�m� = 32 � 168 = 5376:

The full solution � for L = 480 is thus: Q�d = 224; p�d = 76; n�d = 28; h�d = 24 and

Q�c = 32; p
�
c = 268; n

�
c = 4; h

�
c = 168:

Next, let us compare welfare in both solutions r and � for the numerical example

(21) with L = 480: In Figure 2, welfare in sector i with output Qi is given by the area

between the demand curve pi(Qi) and the long run average cost curve c+f . In solution

r; welfare in the clean and dirty sector together is, respectively:

W r = (ZGB �Bmrtr) + (ZGB �BM rT r)

=
(2002 � 402) + (2002 � 802)

2
= 36000:

This exceeds welfare in solution �; which can be calculated in the same way as:

W � = (ZGB �Bm�t�) + (ZGB �BM�T �)

=
(2002 � 1682) + (2002 � 242)

2
= 25600:

The intuition is as follows. Emissions trading via intensity standards inevitably leads

to the subsidization and expansion of one sector (relative to the unconstrained bench-

mark), and the taxation and contraction of the other sector. It is better for the clean

sector to expand, because this leads to a relatively small increase in emissions so that

the dirty sector does not have to contract a lot in order to reach the desired emission

level. By contrast, expansion of the dirty sector leads to a large emission increase, so

that the clean sector has to contract signi�cantly.

Since solution r yields higher welfare than solution �; we shall assume from now

on that the regulator will implement solution r where clean �rms sell allowances to

dirty �rms. Thus, nRi = n
r
i and h

R
i = h

r
i ; with n

r
i and h

r
i (i = c; d) given by equations

(A1a) through (A1d) in Appendix A.1. Solution r can be implemented with a range
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of sector-speci�c intensity standard combinations (�c; �d). It follows from (28) that:

hrc
�hrd

=
�c � �c
�d � �d

:

In the above example with �c = 1 and �� = 2, where L = 480 implies hrc = 40 and

hrd = �80; this becomes:
1

2
=
�c � 1
2� �d

:

Thus we have �c 2 (1; 2] and �d 2 [0; 2): Note that the range of solutions includes the

uniform standard �c = �d =
4
3
: By (28), the allowance price w decreases as �c and

�d move further away from �c and �d respectively, ultimately dropping to w = 40 for

(�c; �d) = (2; 0):

4 Welfare comparison

In this section we compare welfare under the two emission trading policies. Since we

are comparing cap-and-trade and intensity-based emissions trading for a given equal

level of emissions, we can abstract from the environmental damage component in the

welfare function explicitly. Welfare for a given level L of total emissions, with long

run output per �rm qi = fi in both sectors, is given by (31) as explained in subsection

3.2.11 We �nd that:

Proposition 3 Emissions trading via an absolute cap-and-trade scheme maximizes

welfare for a given level of total emissions under the constraint that qi = fi (i = c; d):

Emissions trading via intensity standards results in too many clean �rms and too few

dirty �rms.

Figure 1 illustrates the optimality of cap-and-trade given that qi = fi: We know

from section 3.1 that the long run cap-and-trade equilibrium for our numerical example

(21) with L = 400 is Qd = 120 and Qc = 160: In Figure 1, welfare in sector i with

output Qi is given by the area between the demand curve pi(Qi) and the long run

11Without the zero-pro�t result that qi = fi (or any other constraints on qi), the welfare optimum
would feature nc and nd arbitrarily small (ignoring the integer constraint) or nc = nd = 1 (taking the
integer constraint into account) in order to minimize aggregate �xed costs.
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average cost curve c+ f . The sum of welfare in the dirty and clean sector respectively

is then:

WA = (ZGB �MdTdB) + (ZGB �McTcB)

=
(2002 � 802) + (2002 � 402)

2
= 36000:

How would welfare change if we slightly decreased production of the dirty good and

increased production of the clean good, so that total emissions remain at 400. Since

�d = 2�c; we can increase clean output by twice the dirty output reduction. A marginal

reduction in dirty output reduces welfare in Figure 1 byMdTd = 80: A double marginal

increase in the production of the clean good raises welfare by 2McTc = 80: Total welfare

thus remains unchanged, which means that the long run cap-and-trade equilibrium

must be the welfare optimum.

Emissions trading on the basis of intensity standards cannot implement the welfare

optimum. As we know from subsection 3.2, the clean sector is subsidized and the

dirty sector is taxed under such a system. Thus clean output is higher than in the

unconstrained benchmark, and dirty output is lower. It is easily seen with the aid of

Figure 1 that the optimal response to emission reduction is output reduction in both

sectors.12 This leads to higher welfare than output reduction in one sector only, which

in turn is better than output reduction in one sector and output expansion in the other

sector. Under a regime of intensity standards the dirty sector is ine¢ ciently small to

compensate for the growth in the clean sector.

5 Conclusions

The design of markets for tradeable emission allowances can generally take two forms:

organizing trade on the basis of an absolute cap or on the basis of relative pollution

intensity standards. The design has implications for the functioning of these markets,

particularly in relation to their interaction with output markets and the impact on

entry and exit. This paper analyzes these interactions and assesses the corresponding

long run welfare performance of these emissions trading schemes in a two-sector (�clean�

12See Holland et al. (2009) for a similar assessment of Low Carbon Fuel Standards.
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and �dirty�) model with imperfectly competitive output markets, where we de�ne the

clean sector as the sector with the highest �value�per unit of emissions.

With intensity standards we allow the maximum allowed level of emissions per unit

of output to di¤er between the two sectors. This means that the standard does not

depend on the de�nition of a unit of output. We �nd that intensity standards could

result in clean �rms selling allowances to dirty �rms, or in dirty �rms selling to clean

�rms. Since the former outcome always yields higher welfare, we assumed that the

regulator will set the standards so as to implement this outcome.

With free entry and exit driving pro�ts to zero, output per �rm in either of the two

sectors does not depend on how emissions trading is organized but only depends on the

�xed cost of producing in a sector. This is because a �rm faces constant full marginal

cost, comprising both the production and pollution cost. It is shown that an absolute

cap-and-trade regime always generates the �rst-best outcome in the long run, given

the zero-pro�t output level per �rm with free entry and exit in the output market.

Emissions trading on the basis of relative intensity standards leads to too many clean

�rms in the long run equilibrium, i.e., the size of the clean sector is too large compared

to the size of the clean sector under cap-and-trade.

A Appendix

A.1 Normalization of the Slope of a Demand Function

The slope of the demand function for a good, when using conventional units for mea-

suring the good as well as for money, is usually di¤erent from �1. In this appendix we

show how to normalize the slopes of the demand functions for two goods (gasoline and

coal) to �1 by changing the unit of measurement of the respective goods. We leave

the money measurement intact, so that consumer surplus from the two goods can still

be added together after normalization.

Suppose the inverse demand function for gasoline (gas) is:

Pgas = A�BYgas

with the quantity of gasoline Ygas measured in gallons and its price Pgas in dollars
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per gallon. Thus the units on A and B are �$/gallon�and �$/(gallon)2�respectively.

Total revenue is PgasYgas and units for total revenue are dollars. Now to normalize the

demand function, we �rst divide both sides by b �
p
B �1=b-gallons�per gallon (or

equivalently, we multiply by 1=b gallons per �1=b-gallon�). The demand function then

becomes:

pgas = �gas � bYgas

with pgas � Pgas=b and �gas � A=b: Now pgas and �gas are measured in �$ per 1=b-

gallon�and b = B=b in �$=(gallon � 1=b-gallon)�. Finally, we introduce the quantity

measure Qgas which is expressed in �1=b-gallon�so that Qgas = bYgas: This turns the

demand function into:

pgas = �gas � �gasQgas;

with �gas = $1=(1=b-gallon)
2. The slope of the demand function is now �1:

As a speci�c example, let us set A = $500=gallon and B = $100=(gallon)2 in

Pgas = A�BYgas. This means the vertical intercept is $500 per gallon and the horizontal

intercept is 5 gallons. Writing the unit of measurement below each parameter and

variable, we have:

Pgas = 500 � (100 � Ygas)
$

gallon
$

gallon
$

(gallon)2
gallon

Multiplying the left-hand side and the right-hand side by 0.1 gallon/decigallon yields:

(Pgas � 0:1) = (500 � 0:1) � (100 � 0:1 � Ygas)
$

gallon
gallon

decigallon
$

gallon
gallon

decigallon
$

(gallon)2
gallon

decigallon
gallon

Simplifying and noting that Ygas = 0:1Qgas yields:

pgas = 50 � (100 � 0:1 � 0:1 � Qgas)
$

decigallon
$

decigallon
$

(gallon)2
gallon

decigallon
gallon

decigallon
decigallon

Simplifying this gives:

pgas = 50 � (1 � Qgas)
$

decigallon
$

decigallon
$

(decigallon)2
decigallon

After normalization, the vertical intercept is $50 per decigallon and the horizontal

intercept is 50 decigallons.
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In the same way, let the inverse demand function for coal be Pcoal = C�DYcoal with

the quantity of coal measured in tons and its price in dollars per ton. We normalize this

demand function to pcoal = �coal �Qcoal with pcoal � Pcoal=d; �coal � C=d and Qcoal �

dYk where d �
p
D: Now the quantity of coal is measured in �1=d-tons� and its

price in dollars per 1=d-ton. As a speci�c example, let us set C = $100 per ton and

D = $4=(ton)2. This means the vertical intercept is $100 per ton and the horizontal

intercept is 25 tons. We normalize this demand function by expressing the quantity

of coal Qcoal in �half tons,�with its price pcoal expressed in dollar per half ton. After

normalization the demand curve is pcoal = 50�Qcoal. The vertical intercept is $50 per

half ton and the horizontal intercept is 50 half tons.

A.2 Proof of Proposition 2

Proposition 2.1 There are two solutions to equations (29) for each sector i = c; d; (13)

and (30) which we shall denote by r and �: Solution r is:

hrc =
��d (c�d � d�c)� 2�c( �E � L) + �d

q
(c�d � d�c)

2 + 4L
�
�E � L

�
2 (�2c + �

2
d)

(A1a)

hrd =
�c (c�d � d�c)� 2�d( �E � L)� �c

q
(c�d � d�c)

2 + 4L
�
�E � L

�
2 (�2c + �

2
d)

(A1b)

nrc =

2L�c + �d

�
c�d � d�c +

q
(c�d � d�c)

2 + 4L
�
�E � L

��
2fc (�2c + �

2
d)

(A1c)

nrd =

2L�d + �c

�
d�c � c�d �

q
(c�d � d�c)

2 + 4L
�
�E � L

��
2fd (�2c + �

2
d)

; (A1d)

with �E > L being the unconstrained emissions given by (11) and i by (9). We see

that hrd in (A1b) is negative, i.e., dirty �rms are buying allowances so that n
r
d < �nd by

(10) and (29). Market clearing with nrc; n
r
d > 0 then requires by (30) that h

r
c > 0: clean

�rms are selling allowances, and nrc > �nc by (10) and (29).
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Solution � is:

h�c =
��d (c�d � d�c)� 2�c

�
�E � L

�
� �d

q
(c�d � d�c)

2 + 4L( �E � L)
2 (�2c + �

2
d)

(A2a)

h�d =
�c (c�d � d�c)� 2�d

�
�E � L

�
+ �c

q
(c�d � d�c)

2 + 4L( �E � L)
2 (�2c + �

2
d)

(A2b)

n�c =

2L�c + �d

�
c�d � d�c �

q
(c�d � d�c)

2 + 4L
�
�E � L

��
2fc (�2c + �

2
d)

(A2c)

n�d =

2L�d + �c

�
d�c � c�d +

q
(c�d � d�c)

2 + 4L
�
�E � L

��
2fd (�2c + �

2
d)

: (A2d)

We see that h�c in (A2a) is negative, i.e., clean �rms are buying allowances so that

n�c < �nc by (10) and (29). Market clearing with nc; nd > 0 then requires by (30) that

h�d > 0: dirty �rms are selling allowances so that n
�
d > �nd by (10) and (29). �

Proposition 2.2 Substituting (29) and (30) into (31) gives welfare WR under intensity

standards:

WR =

P
i (nifi)

2

2
: (A3)

Substituting (A1c) and (A1d) into (A3) yields:

W r =
(c�d � d�c)

2 + 2L
�
2L� �E

�
+ (c�d � d�c)

q
(c�d � d�c)

2 + 4L
�
�E � L

�
2 (�2c + �

2
d)

:

Substituting (A2c) and (A2d) into (A3) yields:

W � =
(c�d � d�c)

2 + 2L
�
2L� �E

�
� (c�d � d�c)

q
(c�d � d�c)

2 + 4L
�
�E � L

�
2 (�2c + �

2
d)

:

By de�nition (12), W r > W �: �

Proposition 2.3 Since nrd < �nd and nrc > �nc; we have to ensure that nrd > 0 and

Pc(Q
r
c) > 0: From (A1d), n

r
d > 0 if and only if (14) holds. Maximizing n

r
c in (A1c) with

respect to L yields:

L =
�E + �c

p
2c + 

2
d

2
: (A4)

Substituting (A4) into (A1c) yields, using Proposition 1:

Qmaxc = nmaxc fc =
c +

p
2c + 

2
d

2
:

Then Pc(Qmaxc ) > 0 if and only if (15) holds. �
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A.3 Proof of Proposition 3

Maximizing welfare (31) with respect to ni (i = c; d) yields:

(�i � ci � fi)fi � nif 2i � ��ifi = 0: (A5)

This is the same condition as the �rst-order condition under the cap-and-trade regime,

substituting (7) and (16) into (4). The shadow price � of emissions in (A5) therefore

equals the allowance price v in (17), and ni in (A5) equals nAi in (18). This means

that a cap-and-trade scheme implements the welfare optimum for a given level of total

emissions with qi = fi: Combining (19) and Proposition 2.1, we �nd nAc < �nc < n
r
c =

nRc : Combining n
A
c < n

R
c with (13) yields n

A
d > n

R
d : �

A.4 Derivation of prc(Qd) and p
�
c(Qd) curves

Solving (29) and (30) for Qc yields two solutions:

Qc = Q+c (Qd) �
c +

p
2c + 4Qd(d �Qd)

2
; (A6)

Qc = Q�c (Qd) �
c �

p
2c + 4Qd(d �Qd)

2
: (A7)

The highest possible value of Qd in (A6) and (A7) is where the term under the square

root is zero:13

Qmaxd =
d +

p
2c + 

2
d

2
> d: (A8)

The Q+c solution (A6) includes the unconstrained benchmark, since Q+c (d) = c:

Substituting (A6) into (13), we �nd that total emissions are:

L+(Qd) = �d + �c

�c
2
+
p
2c + 4Qd(d �Qd)

�
: (A9)

The �rst and second derivatives are:

L+0(Qd) = �d �
�c (2Qd � d)p
2c + 4Qd(d �Qd)

; L+00(Qd) =
�2�c (2c + 2d)

(2c + 4Qd(d �Qd))
3
2

< 0:

(A10)

13The other solution Qmind =
d�

p
2c+

2
d

2 < 0 is irrelevant.

22



From (A8) and (A10) we �nd:

L+0(d) =
�dc � �cd

c
> 0; lim

Qd!Qmaxd

L+0(Qd) = �1: (A11)

The inequality follows from (12). Equation (A11) together with L+00(Qd) < 0 from

(A10) implies that L+(Qd) has a unique stationary point, which is a maximum, between

d and Q
max
d : Thus L+0(Qd) > 0 for Qd 2 [0; d]: From (A6) it follows that Q+c (Qd) �

c = �ncfc for Qd < d = �ndfd: Thus, Q+c (Qd) implements solution r for Qd < d:

Substituting (A6) into (2), the expression for prc(Qd) is then:

prc(Qd) = �c �
c +

p
2c + 4Qd(d �Qd)

2
for Qd 2 [0; d]:

In our numerical example (21), this becomes:

prc(Qd) = 200�
p
10 000 +Qd(200�Qd) for Qd 2 [0; 200]:

By (A11), L+(Qd) > L+(d) = �E for Qd just above d: The other solution to L
+(Qd) =

�E is:

Qd = ~Qd �
�d (�dd + �cc)

�2c + �
2
d

: (A12)

Since L+(Qd) has a unique stationary point, which is a maximum, between d and

Qmaxd ; L+0(Qd) < 0 for Qd 2 [ ~Qd; Qmaxd ] and L+(Qd) < �E for Qd 2 ( ~Qd; Qmaxd ]: With

Qd 2 ( ~Qd; Qmaxd ]; Qd exceeds d and L
+(Qd) < �E; so that Qc must be below c; which

means this is part of solution �:

The other part of solution � is found on Q�c (Qd) in (A7) with Q
�
c (Q

max
d ) = c=2 by

(A8); and Qd = 0 and Qd = d the only solutions to Q
�
c (Qd) = 0: Thus Qd 2 [d; Qmaxd ]:

Substituting (A7) into (13), total emissions are:

L�(Qd) = �d + �c

�c
2
�
p
2c + 4Qd(d �Qd)

�
with

L�0(Qd) =
2�c(2Qd � d) + �d

p
2c � 4Q2d + 4dQdp

2c � 4Q2d + 4dQd
> 0:

The inequality follows from Qd � d: The correspondence p�c(Qd) is therefore given by:

p�c(Qd) =

8>><>>:
�c �

c+
p
2c+4Qd(d�Qd)

2
for Qd 2 [ ~Qd; Qmaxd ]

�c �
c�
p
2c+4Qd(d�Qd)

2
for Qd 2 [c2 ; Q

max
d ]

23



In our numerical example (21), this becomes:

p�c(Qd) =

8<:
200�

p
10 000 + 200Qd �Q2d for Qd 2 [240; 241:42]

200 +
p
10 000 + 200Qd �Q2d for Qd 2 [200; 241:42]
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