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Abstract

Background: National or local laws, norms or regulations (sometimes and in some
countries) require medical providers to report notifiable diseases to public health
authorities. Reporting, however, is almost always incomplete. This is due to a variety
of reasons, ranging from not recognizing the diseased to failures in the technical or
administrative steps leading to the final official register in the disease notification
system. The reported fraction varies from 9 to 99% and is strongly associated with
the disease being reported.

Methods: In this paper we propose a method to approximately estimate the full
prevalence (and any other variable or parameter related to transmission intensity) of
infectious diseases. The model assumes incomplete notification of incidence and
allows the estimation of the non-notified number of infections and it is illustrated by
the case of hepatitis C in Brazil. The method has the advantage that it can be corrected
iteratively by comparing its findings with empirical results.

Results: The application of the model for the case of hepatitis C in Brazil resulted in a
prevalence of notified cases that varied between 163,902 and 169,382 cases; a prevalence
of non-notified cases that varied between 1,433,638 and 1,446,771; and a total prevalence
of infections that varied between 1,597,540 and 1,616,153 cases.

Conclusions: We conclude that the model proposed can be useful for estimation of the
actual magnitude of endemic states of infectious diseases, particularly for those
where the number of notified cases is only the tip of the iceberg. In addition, the
method can be applied to other situations, such as the well-known underreported
incidence of criminality (for example rape), among others.

Keywords: Hepatitis C, Mathematical models, Notifications system incidence, Prevalence

Background
Compulsory notifiable diseases (CNDs) are those diseases that should be compulsorily

reported to Health Authorities as soon as suspected by the attending professional [1].

The notified cases then enter a database from which, among other things, it is possible

to know the incidence (new cases per age, sex, risk factor, geographic location, etc., per

period of time) of the disease. The availability of such information allows health
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authorities, in principle, to monitor and to plan controlling the disease, for example

providing early warning of possible outbreaks [2].

In spite of international, national or local laws, norms or regulations requiring

medical providers to report notifiable diseases to public health authorities, reporting is

almost always incomplete [3–8]. This is due to a variety of reasons. First diseases may

be asymptomatic. For example only around one in five dengue cases are symptomatic

[9]. Second a case may be symptomatic but an individual may not seek healthcare due

to mild or self-limiting symptoms or lack of knowledge about when to seek healthcare

[4] or social stigma due to the nature of the disease, (for example sexually transmitted

diseases). Even if an individual seeks healthcare a disease may not be notifiable, or if

now notifiable may not have been notifiable in the past leading to incomplete notifica-

tion records. A disease may also be misdiagnosed. Finally there may be failures in the

technical or administrative steps leading to registration [10].

Rosenburg et al. [11] estimated that for every 100 persons infected with Shigella, 76

become symptomatic, 28 consulted a physician, nine submitted stool samples, seven

had positive results, six were reported to the local health department and five were re-

ported nationally to the Centers for Disease Control and Prevention. Thus they pro-

posed a multiplication factor of 20 to estimate the number of Shigella infections based

on national Shigellosis case reports.

Konowitz, Petrossian and Rose [10] investigated under-reporting of disease and knowledge

of physicians of reporting requirements at two hospitals in New York City in 1982. They say

that physicians may not know which diseases are reportable or the correct reporting proce-

dures. The percentage of physicians who knew which diseases they had to report ranged

from 37% for trachoma to 96% for syphilis. The results of Konowitz et al. suggest that a

major factor in physician under-reporting is lack of knowledge of the reporting system.

Brabazon et al. [12] highlighted the extent of under-reporting of notifiable infectious

disease hospitalisations in a health-board in Ireland, which was felt to be concerning for

disease surveillance. Under-reporting was definitely demonstrated in 9 out of 22 notifiable

diseases amounting to 572 cases (18% of missed cases). The most missed cases were viral

meningitis, infectious mononucleosis, unspecified hepatitis C and acute encephalitis.

Keramou and Evans [5] performed a systematic review of completeness of infectious

disease notification in the United Kingdom. Reporting completeness varied from 3 to 95%

and was most strongly correlated with the disease being reported. Median reporting com-

pleteness was 73% for tuberculosis, 65% for meningococcus disease and 40% for other dis-

eases. They conclude that reporting completeness remains suboptimal even for diseases

that are under enhanced surveillance or were of significant public health importance.

A review by Doyle et al. [3], limited to published studies conducted in the United States

between 1970 and 1999, quantitatively assessed infectious disease reporting completeness

and found that reporting completeness varied from 9 to 99% and was strongly associated

with the disease being reported. In another study [13] the mean reporting completeness

for acquired immunodeficiency syndrome, sexually transmitted diseases, and tuberculosis

as a group was significantly higher (79%) than for all other diseases combined (49%).

Schiffman et al. [14] investigated under-reporting of lyme and other tick-borne

diseases in residents of a high incidence county, Minnesota, USA, in 2009. Of 444

illness events 352 (79%) were not reported. Of these 102 (29%) meet confirmed or

probable surveillance case criteria including 91 (26%) confirmed lyme disease cases.
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Serra et al. [8] developed a universal method to correct under-reporting of

communicable diseases and applied it to incidence of hydatidosis in Chile, 1985-1994.

According to this method the real rate of human hydatidosis in the period 1985-1994

was four times higher than the official notification in the given period.

Rowe and Cowie [6] used data linkage to improve the completeness of Aboriginal

and Torres Strait Islander status in communicable disease notifications in Victoria,

Australia. The burden of notifiable diseases in Torres Strait Islander Victorians could

not be accurately estimated due to under-reporting of indigenous status. There were

12,488 cases of hepatitis B, hepatitis C (HCV) and gonococcal infection in Victoria in

2009-2010 with indigenous status missing in 61.6, 67.8 and 33.1% of those conditions,

respectively. They used data linkage to improve completeness of indigenous status in

people notified with viral hepatitis and gonococcal infection.

Of particular concern are those chronic, mainly asymptomatic, infectious diseases

that allow infected individuals to live for years or even decades without being recog-

nised as such. These diseases can represent a heavy burden to the affected populations

and pose significant risk to the international community. Perhaps the most dramatic

examples of the latter include human immunodeficiency (HIV) and HCV viruses pan-

demics. In fact, these two infections have been labeled by WHO as the epidemics of

the XXth and XXIth centuries, respectively [7, 15].

One critical consequence of under-notification of such diseases is the fact that their

prevalence estimates are frequently way under-estimated, leading to miscalculation of

their actual burden and making control efforts suboptimal [4].

HCV is a disease with a long period between infection and symptoms developing.

Because infected people are mainly asymptomatic and risk behaviour may have occurred a

long time ago individuals often do not consult health professionals to discuss potential dis-

ease infection. As in general a large high risk group is people who share injection equip-

ment and other injection paraphernalia, for example cookers, filters and spoons, and drug

injection is an illegal activity, which often does not meet with social approval, light to mod-

erate injectors, or past injectors who do not currently inject, may not disclose their risky

behaviour to their health provider. Being unaware of the risk behaviour the health provider

is unable to recommend HCV screening. Also HCV is extremely easy to catch via injecting.

Past injectors who no longer inject may not perceive themselves to be at risk.

In a previous paper [16] we assumed that the infection (HCV) was in steady-state.

Then we proposed two methods to give a first rough estimate of the actual number of

HCV infected individuals (prevalence) taking into account the yearly notification rate

of newly reported infections (incidence of notification) and the size of the Liver

Transplantation Waiting List (LTWL) of patients with liver failure due to chronic HCV

infection [17]. Both approaches, when applied to the Brazilian HCV situation converged

to the same results, that is, the methods proposed reproduce both the prevalence of re-

ported cases and the LTWL with reasonable accuracy. In that paper we show how to cal-

culate the prevalence of people living with HCV in Brazil, which resulted in a value up to

8 times higher than the official reported number of cases [16].

In both [16] and this paper the under-reporting mechanism is included in the model by

dividing the infected individuals into two categories: notified and non-notified. Newly in-

fected individuals enter the non-notified class and leave it either through death, recovery

or notification. If they are notified they immediately enter the notified infected class.
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The present paper is an improvement of those techniques because, unlike in the pre-

vious paper mentioned above, now we do not assume steady state. Unfortunately, given

the short period of time with data available (hepatitis notification became compulsory

in Brazil only in 1999 [18], it cannot give more precise information on HCV prevalence

than the one already provided by our previous study, but it illustrates the techniques

that allow the prevalence estimation based on age and time of previous notifications,

and that can be applied to any notifiable disease.

This paper is organised as follows: First we describe a continuous model, that is a

model where the variables are continuous functions of age and time. Next we describe

a discrete model, in which the variables are discrete functions of age and time. In the

following section we discuss application to HCV. Then we turn to our estimation

method applied to the size of the Liver Transplantation Waiting List in Brazil. The next

section gives our numerical results. Discussion and conclusions close the paper.

Methods
Continuous time and age model

Assume we have an SIR (Susceptible-Infected-Removed) type infection and let S(a, t)da,

I(a, t)da and R(a, t)da be the number of individuals with age between a and a + da at time

t that are susceptible, infected and removed (or recovered), respectively. In addition, as

mentioned in the Background section, public health authorities demand that some dis-

eases be compulsorily notifiable, that is they publish the number of diagnosed individuals

per time unit for each age interval (incidence) in public databases. Therefore, we can div-

ide the prevalence of infected individuals into two classes: notified individuals, denoted

IN(a, t)da, and non-notified individuals, denoted INN(a, t)da.

Let λ(a, t)be the so-called age and time-dependent force-of-infection (incidence density).

Then:

λ a; tð ÞS a; tð Þdadt ð1Þ

is the number of susceptible individuals who get the infection when aged between a

and a + da during the time interval dt. Standard arguments allow us to write the fol-

lowing system of partial differential equations, known as Trucco-Von Foester equations

in the literature [19]:

∂S a; tð Þ
∂t

þ ∂S a; tð Þ
∂a

¼ −λ a; tð ÞS a; tð Þ−μ a; tð ÞS a; tð Þ;

∂INN a; tð Þ
∂t

þ ∂INN a; tð Þ
∂a

¼ λ a; tð ÞS a; tð Þ

− μ a; tð Þ þ αNN a; tð Þ þ γNN a; tð Þ� �
INN a; tð Þ−κ a; tð ÞINN a; tð Þ;

∂IN a; tð Þ
∂t

þ ∂IN a; tð Þ
∂a

¼ κ a; tð ÞINN a; tð Þ− μ a; tð Þ þ αN a; tð Þ þ γN a; tð Þ� �
IN a; tð Þ;

∂R a; tð Þ
∂t

þ ∂R a; tð Þ
∂a

¼ γNN a; tð ÞINN a; tð Þ þ γN a; tð ÞIN a; tð Þ−μ a; tð ÞR a; tð Þ;

ð2Þ

where the meaning of the parameters is described in Table 1.
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In Table 1, we neglected the value of the recovery rates in the numerical simulations

because we assumed that HCV infection is very long-lasting. These parameters, how-

ever, were included in the model for the sake of completeness.

The notification rate κ(a, t) is one of the most important parameters in the

model. This represents the rate at which those non-notified individuals of age a

are reported to health authorities and notified. This has two components, first the

rate of an infected person being recognised and secondly the rate of being re-

ported. So if κ(a, t) is small then there will be a large number of non-notified in-

fected individuals hidden from the system, whereas if κ(a, t) is large then most

infected individuals will be notified and the records will accurately reflect the num-

ber infected in the population.

The solution of system (2) can be obtained with the method of characteristics [19].

However, for our purposes, it is better to solve the equation by following a cohort, as

described in [20].

The solution of the equation for susceptible individuals is:

S a; t0 þ að Þ ¼ S 0; t0ð Þ exp −
Z a

0
λ s; t0 þ sð Þ þ μ s; t0 þ sð Þ½ �ds

� �
: ð3Þ

There are a small number of maternal-infant HCV infections [21]. It would be pos-

sible to include these in the theoretical model. However data for age zero is not used in

the calculations because it is unreliable. So to include maternal-infant HCV infections

would make the model more complicated but not change the numerical results. So we

ignore these maternal-infant HCV infections.

The solution for the equation for infected individuals is:

INN a; t0 þ að Þ ¼ R a
0 λ s; t0 þ sð ÞS s; t0 þ sð Þ

exp −
R a
s μ x; t0 þ xð Þ þ γNN x; t0 þ xð Þ þ αNN x; t0 þ xð Þ þ κ x; t0 þ xð Þ½ �dx� �

ds;
ð4Þ

IN a; t0 þ að Þ ¼ R a
0 κ s; t0 þ sð ÞINN s; t0 þ sð Þ

exp −
R a
s μ x; t0 þ xð Þ þ γN x; t0 þ xð Þ þ αN x; t0 þ xð Þ½ �dx� �

ds:
ð5Þ

Finally, the equation for the removed individuals is given by:

Table 1 Parameters used in model (2)

Parameter Meaning Values used in the
numerical simulation

λ(a, t) Force of Infection Calculated

μ(a, t) Natural Mortality Rate 0.0133 year-1a

αNN(a, t) Disease-induced Mortality Rate
for non-notified individuals

b

αN(a, t) Disease-induced Mortality Rate
for notified individuals

b

γNN(a, t) Recovery Rate for non-notified
individuals

Assumed negligible

γN(a, t) Recovery Rate for notified individuals Assumed negligible

κ(a, t) Notification Rate 0.0125 year-1 [16]
aFrom demographic data of Brazil
bConstructed as equal to 0.15/{1 + exp.(−0.1(a − 57.31))} year−1 as in [16]
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R a; t0 þ að Þ ¼ R a
0 γNN s; t0 þ sð ÞINN s; t0 þ sð Þ þ γN s; t0 þ sð ÞIN s; t0 þ sð Þ� �
exp −

R a
s μ x; t0 þ xð Þ½ �dx� �

ds:
ð6Þ

Assuming steady state, the system (1) was solved by Amaku et al. [16] to calculate

the prevalence of HCV in Brazil. The work that follows is an extension of the methods

described there and its results are in accordance with the previous results for the cases

where real data are available.

Discrete time and age model

In real life epidemics notification is discrete with the time and age units expressed in

weeks, months or years. Hence, in order to apply the model to a real public health

problem we discretised model (2), with time and age unit expressed in years. This dis-

cretisation has to be done carefully to use the maximum advantage of the data

available.

Calculating the prevalence INN*{A,i} and IN*{A,i}

To avoid potential confusion between similar variables in the discrete and continuous

models we adopt the convention that discrete variables have a ‘*’ superscript after the

variable and their arguments are in curly parentheses, {}, whereas continuous variables

do not have a ‘*’ superscript after the variable and their arguments are in round paren-

theses ().

From the SINAN database we can calculate SINAN*{A,i} where A is an integer num-

ber and i represents a calendar year, which represents the number of infected individ-

uals notified to SINAN in the calendar year i, who at the end of calendar year i have

age A years (in other words at the end of calendar year i their exact age a is in the time

interval [A,A + 1)).

Because we want the variables in the discrete model to relate to the SINAN data we

similarly define INN
�
A; if g and IN

�
A; if g to denote respectively the number of non-

notified infected and notified infected individuals at time the end of calendar year i,

whose age at that time is A years (so their exact age lies in [A,A + 1)). Given parametric

functions such as κ(a, t) and ϕNN(a, t) in the continuous model, in the correspond-

ing discrete model these are assumed to be discrete functions κd(a, t) = κA, i and

ϕNN
d a; tð Þ ¼ ϕNN

A;i for (a, t) ∈ R = {a ∈ [A, A + 1) and t ∈ (ti − 1, ti]}. Here ti denotes the

end of calendar year i, and κA, i and ϕNN
A;i are respectively the average values of

κ(a, t) and ϕNN(a, t) over the region R.

The discretised versions of Eqs. (4) and (5) are given by Eqs. (7) and (8) below, which

are approximations as explained in the Appendix.

INN� A; if g ¼ INN� A−1; i−1f g exp −
1
2

κA−1;i þ κA;i þ ϕNN
A−1;i þ ϕNN

A;i

� �2
4

3
5

þ INC A; if g; ð7Þ

where for A = 0, INN∗{A − 1, i − 1} = 0. INC{A, i} is the new HCV cases occurring between

times ti-1 and ti that are still alive, infectious and non-notified at time ti in the year co-

hort born between times ti-A-1 and ti-A. Here (using the continuous model notation)
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ϕNN a; tð Þ ¼ μ a; tð Þ þ γNN a; tð Þ þ αNN a; tð Þ:

In Eq. (7), the term

exp −
1
2

κA−1;i þ κA;i þ ϕNN
A−1;i þ ϕNN

A;i

� �� 	

means the probability of not being removed from the non-notified class of individuals,

either by natural death, disease-induced death, recovery or notification in the interval

(ti-1,ti]. Equation (7) is very important because, as shown later in the paper, it allows

the calculation of the true incidence from empirical data (see Eq. (12) below).

Recurrence Eq. (7) can be solved by well-known methods and the prevalence of noti-

fied and non-notified individuals can be estimated (see Eqs. (13) and (14) below).

Similarly, we can write:

IN� A; if g ¼ IN� A−1; i−1f g exp −
1
2

ϕN
A−1;i þ ϕN

A;i

� �2
4

3
5

þ
Z Aþ1

A
NOTIFICATION a; ti−1; tið �ð Þda; ð8Þ

where (again using the continuous model notation) ϕN(a, t) = μ(a, t) + γN(a, t) + αN(a, t).

The last term represents the notifications of HCV between times ti-1 and ti of individuals

in the year cohort born in ti-A-1 to ti-A who are still in the notified class at time ti, i.e.

R Aþ1
A

R 1
0 κd a−1þ x; ti−1þ xð ÞINN a−1þ x; ti−1þ xð Þ

exp −
R 1
x ϕ

N
d a−1þ z; t1−1þ zð Þ

h i
dx da;

≈κd Aþ 1
2
; ti

0
@

1
AINN Aþ 1

2
; ti

0
@

1
A:

ð9Þ

This is because both integration intervals are of length one, hence to first order we

can approximate the integrand by its value at any specific point in the integrated area.

So we choose a ¼ Aþ 1
2, x = 1. Now note that

(i) κd Aþ 1
2 ; ti

� � ¼ κA, i, as in the discrete model κd(a, t) = κA, i over the region

R = {a ∈ [A, A + 1) and t ∈ (ti − 1, ti]},

and

(ii) INN
�
A; if g ≈ INN Aþ 1

2 ; ti
� �

;

as explained in the Appendix (Eq. (A5)). Hence the last term in (8) isZ Aþ1

A
NOTIFICATION a; ti−1; tið �ð Þda≈κA;i INN�

A; if g: ð10Þ

In the next section, we are going to show how to solve Eqs. (7) and (8) using the noti-

fied cases in a particular setting, namely HCV in Brazil. Using the notified incidences

and good guesses for the mortality rates we can calculate any desired properties of the

infected population. In the next section we calculate the prevalence of the disease. The

calculation presented applies to any notifiable infectious disease.
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Example of application: Hepatitis C

In this section we exemplify the above theory by calculating the prevalence of HCV, a

flaviviral infection that afflicts close to 3% of the world population [22], in Brazil. As

mentioned in the Introduction, the great majority of infections with HCV, however, are

not easily identified and, therefore, frequently non-notified. Our data were taken from

the National Reportable Disease Information System "Sistema de Informação de

Agravos de Notificação" (SINAN) of the Brazilian Health Ministry [23]. SINAN is pub-

licly available through the internet and used by the World Health Organisation [24]. It

is used throughout Brazil, in all health institutions whether public or private. All

Brazilians diagnosed with HCV are reported to SINAN. The database includes symp-

tomatic patients who report to a doctor, also symptomatic individuals picked up

through screening for blood banks or other means. The individuals are diagnosed and

then the diagnosis is confirmed via an HCV antibody test. Figure 1 shows the time and

age variation in the reported number of HCV cases in Brazil.

In fact, the actual number of reported HCV infections is available only from 2000 on-

ward. As we know from previous studies [25], HCV was introduced in Brazil in the

later 1950s. We therefore constructed the number of reported with a sigmoidal decay

backwards until 1932, as argued below. We used this artifice only to illustrate the

model and these figures have little epidemiological significance, as argued below. We

shall return to this point in the results section, where we explain this procedure in

more detail.

Estimating the total number of HCV infected individuals in Brazil

Recall that SINAN*{A,i} is the number of individuals aged A to A + 1 at time ti who

were notified to SINAN in the current year i, (ti-1,ti]. Now

SINAN� A; if g≈κA;iINN� A; ið Þ: ð11Þ

This approximation is obtained by using Eq. (10) as

Fig. 1 Time and Age variation of the reported number of HCV infections in Brazil, artificially constructed by
extrapolating backwards until 1932
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SINAN� A; if g ¼
Z Aþ1

A
NOTIFICATION a; ti−1; tið �ð Þda:

As HCV infection is determined by taking an antibody test it is not possible to

distinguish between individuals protected by maternal antibodies from HCV infected

individuals. Hence we do not use the data for A = 0 as it is unreliable, instead we take

SINAN*{0,i} = 0, for all i. Because only a very small number of individuals of age 0 are

infected this does not cause significant error in the estimation.

From (7) and (11) we can write down the fundamental equation for estimating the in-

cidence, for A ≥ 0:

INC A; if g ¼ SINAN� A; if g
κA;i

−
SINAN� A−1; i−1f g

κA−1;i−1
exp −

1
2

κA−1;i þ κA;i þ ϕNN
A−1;i þ ϕNN

A;i

� �8<
:

9=
;;

ð12Þ

where SINAN*{0,i} and SINAN*{−1,i} are interpreted as zero for all i.

Note that, as observed in Eq. (12), the method consists of subtracting consecutive

values of a diagonal of a matrix containing age in lines and time in columns. In some

instances, however, it may happen that for certain ages and years the calculated inci-

dence is negative. Our interpretation is that, for that particular age and time, the noti-

fied incidence was zero. When this happened in the actual calculation we assigned the

value zero to the notification incidence.

Therefore, INN*{A,i} can be calculated for each age and time reported as

INN� A; if g ¼
XA
j¼0

INC A−j; i−jf g exp −
1
2

Xj−1
p¼0

κA−1−p;i−p þ κA−p;i−p þ ϕNN
A−1−p;i−p þ ϕNN

A−p;i−p

� �8<
:

9=
;:

ð13Þ

Similarly, for IN*{A,i}, we have:

IN� A; if g ¼
XA
j¼0

SINAN� A−j; i−jf g exp −
1
2

Xj−1
p¼0

ϕN
A−1−p;i−p þ ϕN

A−p;i−p

� �( )
: ð14Þ

Figure 2 shows the calculation of INC{A, i} using Eq. (12) with the SINAN data as

shown in Fig. 1.

The size of the liver transplantation waiting list in Brazil

It is known that a fraction of those individuals infected with HCV evolve to liver failure

after many years of infection [26]. Let us denote those individuals diagnosed with liver

failure of whose age in whole years is A at the end of calendar year i, time ti as LF{A, i}.

These individuals have been necessarily diagnosed with HCV and, therefore, are a frac-

tion of the notified infected individuals IN*{A,i}. It is assumed that individuals develop

liver failure after a minimum time interval τmin, say 10 years. From Eq. (8) for IN*{A,i}

we obtain the equation for LF{A, i}:

LF A; if g ¼
XA
τ¼τmin

ηA−τI
N� A−τ; i−τf g exp −

1
2

Xτ−1
p¼0

φN
A−1−p;i−p þ φN

A−p;i−p

� �" #( )
; ð15Þ

where ηA − τ is a discretised function that decreases from τ = τmin up until τ =A,
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representing the rate at which infected (and notified) individuals of age A-τ develop

liver failure.

We know that liver damage (whether due to HCV or some other cause) is a progres-

sive disease [27, 28] so the longer that an individual has been infected the more liver

damage they will have sustained and the greater the chance of liver failure. Given a

group of individuals currently all of age A those that have been in the database longer

are also more likely to have been infected for longer. Hence, ηA − τ, the liver failure rate

of those of current age A who were notified to the database τ years ago should increase

with τ. Since early symptoms of liver disease precede complete failure it is reasonable

to assume that there is a minimum gap between notification and liver failure.

Summing up over all ages we obtain the size of LF{i}, which is the total number of in-

dividuals with liver failure at time ti:

LF if g ¼
XAmax

Amin

XA
τ¼τmin

ηA−τI
N� A−τ; i−τf g exp −

1
2

Xτ−1
p¼0

φN
A−1−p;i−p þ φN

A−p;i−p

� �" #( )
; ð16Þ

where Amin and Amax are minimum and maximum ages. Apart from those individuals

who are transplanted (see below) LF{i} corresponds to the Liver Transplantation

Waiting List (LTWL).

Let us now rewrite Eq. (16) considering transplantation. Let ψ(a, t) be the transplantation

rate of individuals of aged a ∈ [A, A+ 1) in calendar year t ∈ (ti− 1, ti]. Then, Eq. (16) becomes

LWTL if g ¼
XAmax

Amin

XA
τ¼τmin

ηA−τ I
N� A−τ; i−τf g

exp −
1
2

Xτ−1
p¼0

φN
A−1−p;i−p þ φN

A−p;i−p þ ψN
A−1−p;i−p þ ψN

A−p;i−p

� �" #8<
:

9=
;:

ð17Þ

The number of transplants in calendar year i is then given by TR{i} where

Fig. 2 Calculation of INC{A, i} from the SINAN data as shown in Fig. 1
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TR if g ¼
XAmax

Amin

XA
τ¼τmin

ψA;i ηA−τI
N� A−τ; i−τf g

exp −
1
2

Xτ−1
p¼0

φN
A−1−p;i−p þ φN

A−p;i−p þ ψN
A−1−p;i−p þ ψN

A−p;i−p

� �" #8<
:

9=
;:

ð18Þ

We take for ψA, i a suitably truncated bell-shaped discrete function [26] with a

maximum at 45 years of age for all i.

Results
One of our objectives is to calculate Eqs. (13) and (14) in order to obtain the estimated

prevalence of notified and non-notified HCV infections which sum up to total preva-

lence. Unfortunately, the data available are restricted to the period between 2000 and

2012. In order to simulate a longer history of HCV infection in Brazil, we artificially

constructed such a previous history by extrapolating backwards. First, we averaged the

notified cases in the period between 2000 and 2012. Then, we fitted a sigmoidal-shaped

curve representing the notified cases back for the period between 1932 and 2000. We

did that for all ages such that the age distribution of notified cases was assumed fixed

for all the extrapolated periods. We are well aware that HCV was probably introduced

in Brazil in the 1950’s and, therefore, this calculation is only an exercise to illustrate the

method.

In a previous paper [16], this extrapolation was done differently. We assumed the

disease to be in steady state until 1932. The results of this previous calculation are

therefore different from the ones presented in this paper. We shall elaborate on this

later. To begin with, Fig. 3 shows a preliminary result on this direction. The continuous

line is the total prevalence extrapolating the data as if in steady state [16]. The sigmoid

dotted line is the total prevalence calculated assuming the artificially constructed notifi-

cation as explained above.

Results of the numerical calculations are summarised in Table 2. In it we compare

the prevalence in 2012 of HCV infected individuals who have been reported to SINAN

until 2012 with the outcomes of the model. In Fig. 4 we also compare the size of the

Liver Transplantation Waiting List according to the official figures with the outcomes

of the model.

Amaku et al. [16] assumed a stationary situation so time dependence was removed

from the equations. A system of differential equations was used to describe the dens-

ities with respect to age of susceptibles, reported individuals, non-reported individuals

and recovered individuals. One parameter was the disease reporting rate κ. They used

two methods.

In the first method it was assumed that the age-dependent force of infection λ(a) has

a Gaussian shape with three scaling parameters. For a given value of κ the force of in-

fection was used in the differential equations and was parametrically fitted to the age-

dependent SINAN incidence data. The value of κ was then fitted heuristically to both

the full age and time dependent SINAN data and the length of the LTWL. The fitted

values of both λ(a) and κ were then used to find the total notified and non-notified

HCV incidence data.
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In the second method a different parametric function was fitted to the age-dependent

SINAN incidence data. Given a value of κ they next used the differential equations to

model the incidence. Again the value of κ was then fitted heuristically to both the full

age and time dependent data and the length of the LTWL. The final fitted values of κ

and the SINAN age-dependent incidence data were used to find the total notified and

non-notified HCV incidence data.

The corresponding results, called the first method and second method in Table 2,

were obtained using the following procedure. First, we assumed that the infection was

in steady state from 2004 to 2012 and averaged the reported incidence. This reported

incidence was extrapolated backwards until 1932. It is therefore not surprising that the

published numbers in [16] including the third and fourth columns of Table 2 are larger

than the figures obtained in this paper. The difference represents up to a certain point

the state of the infection prior to 2000 and from this point of view the results seem to

be consistent with what was believed about the infection in Brazil.

From the results of the current method expressed in Table 2 it is possible to observe

that the difference between taking into account the constructed data backwards until

1932 and the official SINAN period of 2000-2012, reflects the significant contribution of

this period to both the SINAN and the total prevalence of HCV in Brazil. Note that the

artificially constructed incidence will manifest itself for individuals older than 40 years.

Fig. 3 Comparison of the total prevalence calculated according to Amaku et al. [16] (continuous line) and
assuming the notification as a sigmoidal extrapolation (dotted line)

Table 2 Summary of the results

Results Current method First method of [16] Second method of [16]

Prevalence of Notified HCV Infections 163,902a

169,382b
-
240,120c

-
227,074c

Prevalence of Non-Notified HCV in Brazil 1,433,638a

1,446,771b
-
1,650,100c

-
1,632,300c

Total Prevalence of HCV in Brazil 1,597,540a

1,616,153b
-
1,890,220c

-
1,859,374c

aUsing only the official SINAN period (2000-2012) assuming zero notification incidence for all years and ages from 2000
backwards until 1932
b Calculated from real data (2000-2012) and extending the data backwards assuming a sigmoidal decay until 1932
c Taking the average number of cases reported annually to SINAN between 2004 and 2012, a period in which a steady
state could be assumed
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Figure 4 shows the comparison between the actual size of the LTWL as in Chaib et al.

[17] and the result of the application of Eq. (17). The parameter κ was obtained in [16]

by fitting the model to the LTWL. All other parameters were obtained independently

of the LTWL. Figure 4 shows that using just this one fitted parameter the model accur-

ately reproduces the whole LTWL time series. So we can assess the model as being rea-

sonably accurate.

Discussion
This paper is an attempt to provide a method to estimate the actual number of infected

individuals (and other parameters related to transmission) of compulsory notifiable in-

fectious diseases from the officially notified number of cases. Considering that, in the

great majority of cases, the number of notified cases represents only a small but vari-

able fraction of the total number of infected individuals, a reliable method of estimating

the latter from the former can represent an important tool for public health policies.

Notwithstanding the recognised importance of under-notification of most chronic in-

fections, the tools to deal with this information gap proposed so far are varied and, to

the best of our knowledge, there is currently no consensus about which is or are the

most appropriate [3–8].

In a previous publication [16], a continuous time-dependent model for the estimation

of the total number of HCV infected individuals in Brazil was proposed. In that paper,

we assumed a steady state for the period between 2004 and 2012, and we concluded

that the non-notified to notified ratio in the number of infections was about 7 to 1.

The current work is an extension of that paper and we relaxed the steady state assump-

tion. To do a calculation for individuals with age up to 80 years, we artificially extended

the official notification database backwards from the year 2000 back to 1932. This arti-

ficially constructed database was intended only to illustrate the method. In addition, we

discretised the variables time and age both because the notification database presents

the number of cases per year and because the discrete model is easier to be

Fig. 4 Comparison between the empirical data on the size of the LTWL (crosses) as in Chaib et al. [17] and
the result of the application of Eq. (17) (dots)
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implemented, both mathematically and computationally, than the continuous age and

time corresponding model.

HCV is recently becoming virtually a 100%-curable disease due to antiviral treatments

such as Ledipasvir/Acetonate/Sofosbuvir and others. So, there will be fewer and fewer in-

dividuals waiting for liver transplantation because of that. It is straightforward to modify

the theoretical model to take account of this. If we have data on age, treatment and cure

rates of individuals, let ξ(a, t) denote the rate at which notified infectious individuals of

age a are given treatment and cured at time t. Then in the continuous model (2) in the

first partial differential equation for S(a,t) there is an extra term

+ξ(a, t)IN(a, t)

corresponding to infectious, notified, treated individuals who are cured and in the third

partial differential equation of (2) for IN(a, t) the term

− μ a; tð Þ þ αN a; tð Þ þ γN a; tð Þ� �
IN a; tð Þ

becomes

− μ a; tð Þ þ αN a; tð Þ þ γN a; tð Þ þ ξ a; tð Þ� �
IN a; tð Þ;

so ϕN(a, t) becomes

ϕN a; tð Þ ¼ μ a; tð Þ þ γN a; tð Þ þ αN a; tð Þ þ ξ a; tð Þ:

Thus it is straightforward to model antiviral treatment.

The method presented in this paper is applicable to any compulsory notifiable infec-

tious disease provided that one has information about at least two end-points of the

natural history of the disease of interest, or carrying out an alternative diagnostic test

in a representative sample of the affected population. For instance, for the case of HCV,

we used the number of notified cases and the size of the Liver Transplantation Waiting

List. For other diseases, in which one has only the number of notified cases, an alterna-

tive to the Liver Transplantation Waiting List depends on the disease one is interested

in. For instance, for the case of dengue in a sufficiently small region, an age-dependent

seroprevalence profile of a properly designed sample of the population would be suffi-

cient. For infections like HIV, in addition to the reported number of cases, a sample

representing each group of risk should be used.

The method demonstrated to be accurate in retrieving the number of infected individ-

uals for the case of HCV as it fits the Liver Transplant Waiting List data (see Fig. 4) and

the results are in good accordance with the previous estimations by Amaku et al. [16].

We have already said that the notification rate is the most important parameter in

the model. This could be improved by various methods, for example public education

about risk factors for HCV such as injecting drug use and new treatments, publicity

campaigns, or screening programs, either of the general public or targeted high risk

populations. Most important, however, would be a population-based seroprevalence

study that could unequivocally determine individuals previously infected by HCV. The

ratio of notified individuals to seropositive ones would determine the actual value of

notification rate (κ).

In spite of its accuracy and simplicity, the method here presented has some import-

ant limitations that are worthwhile mentioning. Firstly, the model is data-greedy in the

sense that a long time series of notified cases is necessary for the calculations. Secondly,
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the model has a large number of parameters whose values are not known with any pre-

cision for the great majority of cases. For example, as the model deals with long time

series, demographic parameters such as the natural mortality rate are crucial for the

calculations.

Notwithstanding those limitations, the model has the advantage that it can predict

quantities that can be iteratively used to improve it. For instance, for HCV the model

allows the calculation of the proportion of individuals that have the infection for τ

years, that is the age of infection. If this can be checked from information from patients

(e.g., blood transfusion time), the model can be improved immediately. This is thor-

oughly explained in Amaku et al. [16].

Conclusions
We can conclude that the model proposed in this paper can be useful for estimation of

the actual magnitude of endemic states of infectious diseases, particularly for those

where the number of notified cases is only the tip of the iceberg. In addition, the

method can be applied to other situations, such as the well-known under-reported inci-

dence of criminality (for example rape), among others.

Appendix
In this Appendix, we deduce the Eq. (7) from the main text. Let us define the function

INN(a + x, t + x), which is a function that expresses the evolution of a cohort. Then

d
dx

INN aþ x; t þ xð Þ
 � ¼ λd aþ x; t þ xð Þ S aþ x; t þ xð Þ
− κd aþ x; t þ xð Þ þ ϕNN

d aþ x; t þ xð Þ
 �
INN aþ x; t þ xð Þ;

ðA1Þ

where

ϕNN
d aþ x; t þ xð Þ ¼ μd aþ x; t þ xð Þ þ γNNd aþ x; t þ xð Þ þ αNNd aþ x; t þ xð Þ:

Multiplying both sides by exp
R x
0 κd aþ z; t þ zð Þ þ ϕNN

d aþ z; t þ zð Þ� �
dz


 �
; we have

d
dx

exp
Z x

0
κd aþ z; t þ zð Þ þ ϕNN

d aþ z; t þ zð Þ� �
dz

� 	
INN aþ x; t þ xð Þ

� 	
¼

λd aþ x; t þ xð Þ S aþ x; t þ xð Þ exp
R x
0 κd aþ z; t þ zð Þ þ ϕNN

d aþ z; t þ zð Þ� �
dz


 �
:

ðA2Þ

So integrating we deduce that

INN a; tð Þ ¼ INN a−1; t−1ð Þ ðA3Þ

exp −
R 1
0 κd a−1þ z; t−1þ zð Þ þ ϕNN

d a−1þ z; t−1þ zð Þ� 
dz

h i
þ R 1

0 λd a−1þ x; t−1þ xð ÞS a−1þ x; t−1þ xð Þ

exp −
R 1
x κd a−1þ z; t−1þ zð Þ þ ϕNN

d a−1þ z; t−1þ zð Þ� 
dz

h i
dx:

The first term corresponds to non-notified individuals ages a-1 at time t-1 who re-

main infectious and non-notified at time t (when their age is a). The second term

which we denote
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INCIDENCE a; t−1; tð �ð Þ

is the density with respect to age a of the incidence of HCV in the cohort of individuals

born at time t-a which occurs in the time interval (t-1,t] and is still infectious and not

notified at time t.

Now, INN*{A,i}, the absolute number of infectious non-notified individuals of age in

the interval [A,A + 1) at time ti,

¼
Z Aþ1

A
INN a; tið Þda; ðA4Þ

≈INN Aþ 1
2
; ti

� �
; ðA5Þ

taking the midpoint as an approximation.

Now from (A3) and (A4)

INN� A; if g ¼
Z Aþ1

A
INN a−1; ti−1ð Þ

exp −
Z 1

0
κd a−1þ z; ti−1þ zð Þ þ ϕNN

d a−1þ z; ti−1þ zð Þ� 
dz

� 	
da

þ
Z Aþ1

A
INCIDENCE a; ti−1; tið �ð Þda;

ðA6Þ

where for a ≤ 0, INN(a, t) is interpreted as zero. The last term in (A6), which we shall

denote INC{A,i}, represents the incidence between times ti-1 and ti of HCV that is still

infectious and not notified at time ti, in the cohort born between times ti-A-1 and ti-A.

In the first term in (A6) again for the a-integration we take a = A+1
2 as an approxima-

tion, as the integration interval has length one.

INN� A; if g≈INN A−
1
2
; ti−1

0
@

1
A

exp −
R 1
0 κd A−

1
2
þ z; ti−1þ z

0
@

1
Aþ ϕNN

d A−
1
2
þ z; ti−1þ z

0
@

1
A

8<
:

9=
;dz

2
4

3
5

þINC A; if g:

¼ INN A−
1
2
; ti−1

0
@

1
A

exp −
R 1
0 κd A−

1
2
þ z; ti

0
@

1
Aþ ϕNN

d A−
1
2
þ z; ti

0
@

1
A

8<
:

9=
;dz

2
4

3
5þ INC A; if g;

as κd A− 1
2 þ z; t

� �
and ϕNN

d A− 1
2 þ z; t

� �
are the same for t ∈ (ti − 1, ti].

≈INN� A−1; i−1f g exp −
1
2

κA−1;i þ κA;i þ ϕNN
A−1;i þ ϕNN

A;i

� �2
4

3
5þINC A; if g;

because

(i) Noting that year i-1ends at time ti-1 we have

INN A− 1
2 ; ti−1

� �
≈INN

�
A−1; i−1f g; by (A5).
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(ii) for z∈ 0; 12
�

; κd A− 1

2 þ z; ti
� � ¼ κA−1;i and for z∈ 1

2 ; 1
�

; κd A− 1

2 þ z; ti
� � ¼ κA;i.
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