

Foo, Y. W., Goh, C., Chan, L., Li, L. and Li, Y. (2017) Generalized Hybrid

Evolutionary Algorithm Framework with a Mutation Operator Requiring no

Adaptation. In: The 11th International Conference on Simulated Evolution

and Learning (SEAL 2017), Shenzhen, China, 10-13 Nov 2017, pp. 486-

498. (doi:10.1007/978-3-319-68759-9_40)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/154248/

Deposited on: 22 December 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/978-3-319-68759-9_40
http://eprints.gla.ac.uk/154248/
http://eprints.gla.ac.uk/

Generalized Hybrid Evolutionary Algorithm Framework

with a Mutation Operator Requiring no Adaptation

Yong Wee Foo1,2, Cindy Goh2, Lipton Chan2, Lin Li3,4 and Yun Li2,4*

1 School of Engineering, Nanyang Polytechnic, Singapore 569830, Singapore

Foo_Yong_Wee@nyp.edu.sg;
2 School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K.

Cindy.Goh@glasgow.ac.uk; Dr.Lipton.Chan@gmail.com
3 School of Computer Science and Engineering,

South China University of Technology, Guangzhou, Guangdong 510006, China

LinLi@ieee.org;
4* School of Computer Science and Network Security,

Dongguan University of Technology, Songshanhu, Guangdong 523808, China

* Corresponding author: Yun.Li@ieee.org

Abstract. This paper presents a generalized hybrid evolutionary optimization

structure that not only combines both nondeterministic and deterministic algo-

rithms on their individual merits and distinct advantages, but also offers behav-

iors of the three originating classes of evolutionary algorithms (EAs). In addition,

a robust mutation operator is developed in place of the necessity of mutation ad-

aptation, based on the mutation properties of binary-coded individuals in a ge-

netic algorithm. The behaviour of this mutation operator is examined in full and

its performance is compared with adaptive mutations. The results show that the

new mutation operator outperforms adaptive mutation operators while reducing

complications of extra adaptive parameters in an EA representation.

Keywords: Optimization algorithms, Evolutionary algorithms, Evolutionary

computation, Derivative-free optimization, heuristic search

1 Introduction

Conventional optimisation algorithms are often deterministic and are restricted to nu-

merical optimisation with one objective and one optimum [1-2]. Lifting much of the

restriction with nondeterministic search, evolutionary algorithms (EAs) are able to deal

with extra-numerical, multi-objective and multimodal problems [3]. However, an in-

evitable cost an EA pays for this is that it converges far more slowly around a local

optimum. Therefore, combining the global aspect of EAs with the local strength of

conventional algorithms has been an active research topic in evolutionary computation,

resulting in hybrid algorithms with both merits and deficiencies [4-5].

Historically, the development of EAs originated from three initial paradigms: the

genetic algorithm (GA), the evolution strategy (ES), and the evolutionary programming

(EP) [6]. These algorithms have much in common but also have differences. Merging

Formatted: Indent: First line: 0 cm

mailto:Foo_Yong_Wee@nyp.edu.sg
mailto:Cindy.Goh@glasgow.ac.uk
mailto:Dr.Lipton.Chan@gmail.com
mailto:LinLi@ieee.org
mailto:Yun.Li@ieee.org

2

these three EAs, this paper develops a generalized hybrid EA (GHEA) with customiza-

ble operations to commission EAs with differing behaviors for different applications.

Without the need for adaptation, a simulated binary mutation (SBM) operator is pro-

posed for the GHEA framework. This framework is to improve the flexibility of a ma-

turing population via a number of different selection techniques, so as to enhance both

local and global search.

The remainder of this paper is organized as follows. Section 2 analyzes the merits

and deficiencies of hybrid EAs reported so far. Based on these analyses, Section 3 de-

velops the details of the GHEA. The SBM operator is detailed in Section 4. Section 5

presents test results and discussions. Section 6 concludes the paper with recommenda-

tions for future work.

2 Merits and Deficiencies of Existing Hybrid EAs

A number of hybrid EA techniques were summarized in the Handbook of Evolutionary

Computation [7]. Subsequently, many effective hybrid EA algorithms have been devel-

oped for specific applications. One example is a hybrid EA with fitness approximation

for solving the two-stage capacitated facility location problem, which uses genetic op-

erations with a restarting strategy and extreme machine learning to approximate the

fitness of most of the individuals [8]. Another example incorporates a tabu search pro-

cedure into the framework of an evolutionary algorithm in solving a job shop schedul-

ing problem [9]. For tackling continuous multiobjective optimization problems, a re-

combination operator is proposed to at the gene level to combine the advantages of

simulated binary crossover with local search and differential evolution with global

search [10]. However, these hybrid EAs rely on GA operators, and do not accommodate

ES or EP for customizability or flexibility.

A hybridized EA framework should take the advantage of the global search capabil-

ity of the EA and the search speed as well as accuracy of local search algorithms such

as hill-climbing. Further, Baldwin effect and Lamarckian evolution also help achieve

this goal [11-13]. With the Baldwin effect, individuals will learn locally but the learning

does not affect their genetic code. With the Lamarckian principle of “use and disuse”,

however, each individual will pass much of the learning results in genetic code to off-

spring. Hence, a hybrid EA framework should readily support both of these options.

Alternative, conventional optimization algorithms can also be incorporated into a

hybrid EA, so that whenever appropriate the EA can evaluate an individual for local

optimization with resulting solutions stored back into the individual. Conventional al-

gorithms are deterministic in nature and are dependent of their initial starting position.

This strengthens exploitation of the exploration results brought about by the EA popu-

lation. For example, gradient guided algorithms such as the quasi-Newton methods and

the conjugate gradient methods. Quasi-Newton methods store an estimate of the Hes-

sian internally and iterate it using Newton’s method whereas conjugate gradient meth-

ods use line optimisations in directions that are conjugate to previously tried directions.

These methods are very fast at locating optima, but the derivative function is required.

3

3 Generalized Hybrid EA Framework

Based on the analyses of the merits and deficiencies of hybrid EAs in the literature, a

generalized hybrid EA framework is proposed in this paper, as shown in Fig. 1. The

framework also includes other basic elements that are part of applying an EA, such as

objective, constraints and other housekeeping tasks. It is to allow customization of EAs

with different behaviours, to improve flexibility for the formation of adult population

via a number of different selection techniques, and to enhance EA performance through

integration of both local and global optimization algorithms. The framework also im-

plements a new non-adaptive mutation operator which does not require any evolving

scaling parameters.

Fig. 1. Generalization of Hybrid EAs

 In the GHEA framework, once an offspring population is created, an adult popula-

tion follows from it, which will eventually replace the current population. A number of

different techniques exist to create this adult population. In , ES, for example, the

best offspring individuals are used to create the adult population. In ES, how-

ever, the parents and the offspring are aggregated and the best individuals are used.

From GAs, the notion of generation gap was created to describe the formation of the

adult population. The generation gap is the percentage of individuals in the current pop-

ulation to be deleted and replace by offspring to form the adult population [7]. The

GHEA framework accommodates for all these variations in adult population creation.

A replacement selection pool of individuals is created from the offspring population

and the current population can optionally be included. A number of individuals are then

selected from this pool and the same number of individuals is selected for deletion from

the current population. These replacement individuals and remainder individuals then

form the adult population.

4

4 Simulated Binary Mutation for Improved Efficiency

4.1 Adaptive Mutations

A commonly used real-value mutation scheme in an EA involves a Gaussian distribu-

tion, as given by:

 𝑥𝑖[𝑡 + 1] = 𝑥𝑖[𝑡] + 𝑁𝑖(0, 𝜂𝑖[𝑡]) (1)

where N(μ,σ) is a normal distribution of mean μ and standard deviation σ. Another

mutation operator which appears to be better than the Gaussian mutation, especially for

multimodal problems, is the Cauchy mutation [14-15], as given by:

 𝑥𝑖[𝑡 + 1] = 𝑥𝑖[𝑡] + 𝜂𝑖[𝑡]𝛿𝑖[𝑡] (2)

where δi is a sample from the Cauchy density function:

 𝑓(𝑥) =
1

𝜋(𝑥2+1)
 (3)

These two mutation operators can be made to adapt their shapes according to the

landscape of the objective function, in a way similar to the Estimation of Distribution

Algorithm (EDA). Such adaptive mutation operators have generally been found to out-

perform their static counterparts.

For the adaptive versions, each real-value parameter of the objective function is re-

placed by a 2-tuple of real values, 𝑥𝑖 → (𝑥𝑖, 𝜂𝑖). The new parameter, 𝜂𝑖 , is the scaling

parameter for the adaptive mutation and is itself mutated using the following update:

 𝜂𝑖[𝑡 + 1] = 𝜂𝑖[𝑡]exp (𝑁(0, 𝜏′) + 𝑁𝑖(0, 𝜏)) (4)

where the recommended values of τ and 𝜏′ are (4𝑛)−1/4 and (2𝑛)−1/2, respectively

[16].

4.2 Simulated Binary Mutation

To reduce overhead of the scaling parameters especially for real-time applications of

an EA, a new static mutation operator is developed in this section. Binary coding has

been used in GAs, where the accuracy of the resulting solutions has been limited by the

chromosome length. The mutated bit in an individual chromosome can be the LSB,

MSB, or any other bit. Thus the mutation has equal probability of making large changes

as of making small changes.

In binary coding, when a real value, 𝑥 ∈ [𝑎, 𝑏], is represented by a string of l bits,

𝒔 ∈ {0,1}𝑙, the real value is given by:

 𝑥 = 𝑎 + 𝑟 ∑ 2𝑖−1𝑠𝑖
𝑙
𝑖=1 (5)

 𝑟 =
𝑏−𝑎

2𝑙−1
 (6)

If the ith bit in s is flipped, i.e., 𝑠𝑖[𝑡 + 1] = 1 − 𝑠𝑖[𝑡], then:

5

 𝑥[𝑡 + 1] = 𝑥[𝑡] ± |∆𝑖| (7)

 |∆i |=2^(i-1) r (8)

In a real value representation, however, there may not be any bounds on the value

and thus no resolution is set. Therefore, the smallest or largest resolution for a real value

parameter is dependent on the order of magnitude of the value itself without the original

value losing significance.

 𝑟[𝑡] = 2−𝑚|𝑥[𝑡]| (9)

m is the bits of significance. The perturbation amount due to the mutation can then be

defined for real value parameters as:

 |∆[𝑡]| = 2𝑖|𝑥[𝑡]| (10)

where 𝑖 ∈ [−𝑚, 𝑚]. This can be converted to base-10 so that:

 |∆[𝑡]| = 10𝑗|𝑥[𝑡]| (11)

and 𝑗 ∈ [−𝑘, 𝑘] where 𝑘 = 𝑚
ln 2

ln 10
. Now k is the number of significant digits in base-

10. The perturbation amount is now proportional to the value of the parameter and this

will result in a perturbation of zero always when the value is zero. Thus, the zero case

has to be treated specially and the mutation of the real value is defined as:

 |∆[𝑡]| = {
10𝑘𝑈(−1,1)|𝑥[𝑡]| if 𝑥[𝑡] ≠ 0

10𝑘𝑈(−1,1)|𝑥𝑠𝑚𝑎𝑙𝑙| if 𝑥[𝑡] = 0
 (12)

 𝑝[𝑡] = 𝑈(−1,1) (13)

 𝑥[𝑡 + 1] = {
𝑥[𝑡] + |∆[𝑡]| if 𝑝[𝑡] ≥ 0

 𝑥[𝑡] − |∆[𝑡]| if 𝑝[𝑡] < 0
 (14)

where U(a,b) is a sample from a uniform distribution in the interval [a,b] and 𝑥𝑠𝑚𝑎𝑙𝑙 is

the smallest number greater than zero that can be represented.

The probability of mutation for each individual is set as
1

𝑛
 , where n is the number of

real-value parameters in the individual. Thus, in probability there will on average be

one real value parameter mutated in each individual. The probability distribution func-

tion of the new value of the mutated parameter is thus:

 Pr(𝑥[𝑡 + 1]) {
4𝑘(𝑥[𝑡 + 1] − 𝑥[𝑡] ln 10)−1 if 𝑥[𝑡](1 + 10−𝑘) ≤ 𝑥[𝑡 + 1] ≤ 𝑥[𝑡](1 + 10𝑘)

4𝑘(𝑥[𝑡] − 𝑥[𝑡 + 1] ln 10)−1 if 𝑥[𝑡](1 + 10−𝑘) ≤ 𝑥[𝑡 + 1] ≤ 𝑥[𝑡](1 + 10𝑘)
0 otherwise

 (15)

This p.d.f. is illustrated in Fig. 2. The range of this mutation is determined by the con-

stant k which as mentioned previously is the number of significant digits that this mu-

tation will perturb to. In most cases, after considering the floating-point implementation

and accumulated round-off errors, the constant k can be determined.

6

Pr(𝑥[𝑡 + 1]) 𝑥[𝑡] 2𝑥[𝑡]

10𝑘

4𝑘𝑥[𝑡] ln 10

1

4𝑘𝑥[𝑡] ln 10

10−𝑘

4𝑘𝑥[𝑡] ln 10

 0 𝑥[𝑡 + 1]

 𝑥[𝑡](1 − 10𝑘) 𝑥[𝑡](1 + 10𝑘)
 𝑥[𝑡](1 − 10−𝑘) 𝑥[𝑡](1 + 10−𝑘)

Fig. 2. Probability distribution of the mutated real value where there is on average one real pa-

rameter mutated in each individual

If, however, true arbitrary preci sion is desired, then a variant of this mutation can

be used instead where (12) is replaced by the following

 |∆[𝑡]| = {
10𝑁(0,𝑘)|𝑥[𝑡]| if 𝑥[𝑡] ≠ 0

10𝑁(0,𝑘)|𝑥𝑠𝑚𝑎𝑙𝑙| if 𝑥[𝑡] = 0
 (16)

where the uniform distribution is replaced by the Gaussian distribution. The mutation

operator defined by (12) will be referred to as the simulated binary mutation – uniform

or SBM-U(k) for short, and the mutation operator defined by (16) will be referred to as

SBM-G(k).

Now that the SBM operators have been defined, their performance is compared with

those of the adaptive Gaussian and the adaptive Cauchy mutations in the next section.

5 Tests and Result Discussions

In order to evaluate their performance of SBM operators on different functions, it is

further compared with those of those of the adaptive Gaussian and the adaptive Cauchy

mutations. The adaptive mutations require a coding representation that stores both the

real value parameters and their corresponding scaling parameters. The SBMs, however,

does not require any evolving scaling parameters and the coding requires nothing other

than the real value parameters themselves. For the SBMs, k was set to 5, and for the

adaptive mutations the scaling parameters were bounded to the interval [10−5, 105]
with the initial scaling set to 3.

Table 1 lists the objective functions used. Functions 𝑓1 to 𝑓7 are unimodal functions

with high dimensionality. Functions 𝑓8 to 𝑓11 are high dimensional multimodal func-

tions and 𝑓12 to 𝑓16 are low dimensional multimodal functions. The EP algorithm with

the population size, µ, being 100 are performed on each of the objective functions in

Table 1 for 50 runs for all of the two adaptive mutations and the two SBMs.

7

Table 1. Benchmark objective function used to test the performance of mutation operators

In the unimodal tests, 𝑓1 − 𝑓7,, there was very little difference in the performance of

SBM-U and SBM-G. Both of them outperformed the adaptive Gaussian and the adap-

tive Cauchy mutations for most of these benchmark problems. However, the SBMs’

convergence has been seen worse in benchmark functions 𝑓3 and 𝑓5. The averaged best

results are plotted against the generation number in Fig. 3 and the average final results

are tabulated in Table 2. Thus, to be fair, the SBMs results are also compared with the

published results of [15] in Table 2. Again, the SBMs performed better in all but func-

tions 𝑓3 and 𝑓5 . On average and for almost all the unimodal benchmark problems,

SBMs converges linearly with increasing generations.

The results of the tests on the four high-dimensional multimodal benchmark func-

tions, 𝑓8 − 𝑓11, show that both of the SBMs performed significantly better than the two

adaptive mutations. These results are shown in the plots of Fig. 4 and are tabulated in

Table 3. The performance of SBM-U and SBM-G were virtually identical in this set of

functions and showed linear convergence in 𝑓9 and 𝑓10. In all of these the worst per-

former was undoubtedly the adaptive Gaussian mutation which got trapped in poor lo-

cal optima for all four test functions. The averaged result of the adaptive Cauchy mu-

tation was, like the adaptive Gaussian, trapped by local optima in 𝑓9. For this test func-

tion, both SBMs had found the global optimum in all the trials.

 Test Function n Range 𝑓𝑚𝑖𝑛

𝑓1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 30 [−100,100]𝑛 0

𝑓2(𝑥) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛
𝑖=1

𝑛
𝑖=1 30 [−10,10]𝑛 0

𝑓3(𝑥) = ∑ (∑ 𝑥𝑗)2𝑖
𝑗=1

𝑛
𝑖=1 30 [−100,100]𝑛 0

𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30 [−100,100]𝑛 0

𝑓5(𝑥) = ∑ (100(𝑥𝑖+1 − 𝑥2)2 + (𝑥𝑖 − 1)2)𝑛−1
𝑖=1 30 [−30,30]𝑛 0

𝑓6(𝑥) = ∑ (⌊𝑥𝑖 + 0.5⌋)2𝑛
𝑖=1 30 [−100,100]𝑛 0

𝑓7(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑈𝑛

𝑖=1 [0,1) 30 [−1.28,1.28]𝑛 0

𝑓8(𝑥) = − ∑ 𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖|
𝑛
𝑖=1 30 [−500,500]𝑛 -1.2569.5

𝑓9(𝑥) = 10𝑛 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑛

𝑖=1 30 [−5.12,5.12]𝑛 0

𝑓10(𝑥) = 20 + 𝑒 − 20𝑒𝑥𝑝 (−√
1

25𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1) − 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝑛

𝑖=1)
30 [−32,32]𝑛 0

𝑓11(𝑥) = 1 +
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠
𝑥𝑖

√𝑖

𝑛
𝑖=1

𝑛
𝑖=1 30 [−600,600]𝑛 0

𝑓12(𝑥) = (
1

500
+ ∑ (𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)

62
𝑖=1)

−1
25
𝑗=1)

−1

2 [−65.536,65.536]𝑛 ~1

𝑓13(𝑥) = ∑ (𝑎𝑖 −
𝑥𝑖(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)11
𝑖=1

2

4 [−5,5]𝑛 3.075x10-4

𝑓14(𝑥) = 4𝑥2 − 2.1𝑥1
4 +

1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 2 [−5,5]𝑛 -1.0316285

𝑓15(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)

2
+ 10 (1 −

1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10

2 [−5,10] x [0,15] 0.398

𝑓16(𝑥) = (1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2

2))

x (

30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 + 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))
2

2 [−2,2]𝑛 3

8

 Fig.3. Average of 50 trials on best fitness on high dimensional unimodal benchmark problems

Table 2. Comparison of best results averaged over 50 trials for unimodal benchmark functions

Func-

tions

Gen Gaussian Cauchy SBM-U SBM-G Yao et al. [17]

Gaussian Cauchy

f1 1500 8.79×10-2 4.55×10-3 5.56×10-6 6.22×10-6 2.2×10-4 5.7×10-43

f2 2000 6.51×10-4 2.55×10-3 1.61×10-6 1.63×10-6 2.6×10-3 8.1×10-3

f3 5000 3.05 1.26 53.5 101.6 5.0×10-2 1.6×10-2

f4 5000 1.14 0.205 2.95×10-3 4.20×10-3 2.0 0.3

f5 20000 1.59 1.72 22.8 16.3 6.17 5.06

f6 1400 169.4 0.02 0 0 577.8 0

f7 3000 0.147 2.64×10-2 1.77×10-2 1.86×10-2 1.8×10-2 7.6×10-3

9

Fig. 4. Average of 50 trials on best fitness on high dimensional multimodal benchmark problems

Table 3. Comparison of best results averaged over 50 trials for high dimensional multimodal

benchmark functions

Func-

tions

Gen Gaussian Cauchy SBM-U SBM-G Yao et al.[17]

Gaussian Cauchy

f8 9000 -8001.1 -11218.5 -12569.5 -12569.5 -7917.1 -12554.5

f9 5000 66.9 2.41 0 0 89.0 4.6×10-2

f10 1500 8.17 3.94×10-2 4.33×10-2 4.45×10-4 9.2 1.8×10-2

f11 2000 1.64 0.199 8.03×10-3 7.97×10-3 8.6×10-2 1.6×10-2

Fig. 5 shows the average convergence of the best solutions against generations for

the low dimensional multimodal benchmark functions, 𝑓12 − 𝑓16. The final averaged

best results are summarised in Table 4. All four mutations found the optimal solutions

for 𝑓14 − 𝑓16. and had similar convergence curves. For test function 𝑓12, both SBMs

performed better than the two adaptive mutations and found the global optimum. How-

ever, the performances of the SBMs were worse than both adaptive mutations for test

function 𝑓13.

Overall the SBMs performed better than the adaptive mutations while having a linear

convergence rate in many of the test functions. This is achieved without the added com-

plexity of having scaling parameters for each objective parameter in every individual.

[15] also introduced the improved fast evolutionary programming (IFEP) algorithm in

which each parent individual produces two individuals by adaptive Gaussian and by

adaptive Cauchy mutations and the better of the two is kept as the offspring. To allow

for fair comparison the IFEP algorithm used half the population size and results were

published for the IFEP for test functions 𝑓1, 𝑓2, 𝑓10, and 𝑓11 [15].

10

Fig.5. Average of 50 trials on best fitness on low dimensional multimodal benchmark problems

Table 4. Comparison of the best results averaged over 50 trials for the low dimensional multi-

modal benchmark functions

Func-

tions

Gen Gaussian Cauchy SBM-U SBM-G Yao et al.[17]

Gaussian Cauchy

f12 100 1.68 1.27 0.998 0.998 1.66 1.22

f13 4000 3.28×10-4 3.07×10-4 5.84×10-4 6.84×10-4 4.7×10-4 5.0×10-4

f14 100 -1.03 -1.03 -1.03 -1.03 -1.03 -1.03

f15 100 0.398 0.398 0.398 0.398 0.398 0.398

f16 100 3 3 3 3 3 3.02

The results of both of the SBMs were also better than those of the IFEP algorithm.

The similarity of the results of SBM-U and SBM-G suggests that the order k has only

a small effect on the convergence. There are however three of the test functions that the

SBMs performed worse than the adaptive mutations, namely 𝑓3, 𝑓5 and 𝑓13. By looking

into the landscapes of these test functions and the mechanism of the SBMs, the type of

problems that the SBMs perform less well in and why it is so can be found. Contour

plots of two dimensional versions of 𝑓3 and 𝑓5 are shown in Fig. 6 The minimum of 𝑓3

11

is elliptical with its major and minor axis rotated from, and thus unaligned with, the

parameter axes. The Rosenbrock function, 𝑓5, is sometimes known as the banana func-

tion due to its minimum being located within a curved valley.

Fig. 6. Contour plots of f3 and f5 with n = 2, left and right respectively

As mentioned previously, the SBM is derived from binary mutation and hence in-

herited its mutation rate method. That is, only one of the objective parameters in each

individual will undergo mutation, hence the SBM suffers from the same problem as

performing line optimisations along axes directions only. In problems like 𝑓3, where

the ellipse’s principal axis is at an angle to the parameter axis, the algorithm has to

zigzag, constantly crossing the ellipse’s principal axis, to reach the minimum. In such

problems, it is necessary to simultaneously adjust many parameters to be able to con-

verge efficiently and traverse the direction closer to the minimum. The adaptive muta-

tions performed better here because all of the objective parameters undergo mutation

and thus individuals can travel diagonally.

Likewise, for 𝑓5, individuals mutated by the SBM must zigzag around the bent valley

to reach the optimum which is very inefficient. These types of functions are probably

best tackled with the adaptive mutations with correlated mutations, i.e., rotation angles.

For the SBM to be more efficient in these types of functions, it may be necessary to

abandon the one mutation-per-individual mutation rate and adopt an alternative ap-

proach to selecting which parameters to undergo mutation.

6 Conclusions

By factoring out the common denominators of the three originating branches of evolu-

tionary algorithms (EA) and identifying their particularities, a generalised HEA struc-

ture has been created, which behaves like any of the three original EA paradigms. The

customisability and flexibility of the library makes it a more comprehensive tool in the

application and research of EAs.

The mutation of chromosomes in a binary-coded GA is very good in its ability to

produce mutations of different magnitudes. The simulated binary mutation has been

created to simulate this binary-coded mutation for real-value parameters. SBM is seen

to perform very well comparing with adaptive mutations for real-value parameters

showing good convergence on many benchmark functions, although it is identified that

certain landscapes can cause SBM a difficulty. In these landscapes, the SBM would

12

have to zigzag slowly along a valley. This behaviour is due to the typical one mutation

per chromosome inherited from binary-coded mutation of GAs, but increasing the mu-

tation rate would allow individuals to traverse at a higher speed.

References

1. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization.

In: SIAM (2009).

2. Powell, M.J.D.: Direct search algorithms for optimisation calculations. In: Acta Numerica,

vol. 7, pp. 287-336 (1998). doi:10.1017/S0962492900002841

3. Fogel, D.B.: Evolutionary Computation: Towards a New Philosophy of Machine Intelli-

gence. IEEE Press (1995). doi:10.1002/0471749214

4. Grosan, C., Abraham, A.: Hybrid Evolutionary Algorithms: Methodologies, Architectures,

and Reviews. Springer Berlin Heidelberg (2007). doi: 10.1007/978-3-540-73297-6_1

5. Lin, Q., Chen, J., Zhan, Z.H.: A hybrid evolutionary immune algorithm for multiobjective

optimization problems. In: IEEE Transactions on Evolutionary Computation vol. 20(5), pp.

711-729 (2016). doi:10.1109/TEVC.2015.2512930

6. Chen, G., Low, C.P., Yang, Z.H.: Preserving and exploiting genetic diversity in evolutionary

programming algorithms. In: IEEE Transactions on Evolutionary Computation, vol. 13, pp.

661-673 (2009). doi:10.1109/TEVC.2008.2011742

7. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation. In-

stitute of Physics Publishing Ltd and Oxford University Press (1997).

8. Guo, P., Cheng, W., Wang, Y.: Hybrid evolutionary algorithm with extreme machine learn-

ing fitness function evaluation for two-stage capacitated facility location problem. In: Expert

Systems with Applications, vol. 71, pp. 57-68 (2016). doi:10.1016/j.eswa.2016.11.025

9. Cheng, T.C.E., Peng, B., Lü, Z.: A hybrid evolutionary algorithm to solve the job shop

scheduling problem. In: Annals of Operations Research, vol. 242(2), pp. 223-237 (2016).

doi:10.1007/s10479-013-1332-5

10. Zhu, Q., Lin, Q., Du, Z.: A novel adaptive hybrid crossover operator for multiobjective evo-

lutionary algorithm. In: Information Sciences, vol. 345, pp. 177-198 (2016).

doi:10.1016/j.ins.2016.01.046

11. Anderson, R.W.: The Baldwin effect. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.)

Handbook of Evolutionary Computation, C3.4:1-C3.4:7. Institute of Physics Publishing Ltd

and Oxford University Press (1997).

12. Li, L., Zhang, C.Z., Li, Z.N., Li, Y.: Particle filter with Lamarckian inheritance for nonlinear

filtering. In: 2016 IEEE Congress on Evolutionary Computation, pp.2852-2857, IEEE, Van-

couver, Canada (2016). doi:10.1109/CEC.2016.7744149

13. Li, L., Li, Y.: Particle filter track-before-detect algorithm with Lamarckian inheritance for

improved dim target tracking. In: 2017 IEEE Congress on Evolutionary Computation, pp.

1158-1164, IEEE, San Sebastián, Spain (2017). doi:10.1109/CEC.2017.7969437

14. Yao, X., Liu, Y.: Fast evolution strategies. In: Control and Cybernetics, vol. 26(3), pp. 467-

496 (1997). doi:10.1007/BFb0014808

15. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. In: IEEE Transactions on

Evolutionary Computation, vol. 3(2), pp. 82-102 (1999). doi:10.1109/4235.771163

16. Bäck, T.: Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary

programming, genetic algorithms. Oxford University Press (1996).

