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Abstract: Two dinuclear copper(II) complexes, [Cu2(L)2(1,1-NCO)2] (1) and [Cu2(L)2(1,3-

NCS)2]H2ODMF (2)  have been synthesized using a tridentate N2O donor Schiff base ligand 

(HL) [1((2-(ethylamino)ethylimino)methyl)naphthalen-2-ol] and characterized by elemental 

analysis, spectral study and X-ray crystallography. Both complexes are centrosymmetric dimers 

in which square pyramidal copper(II) centres are connected by pseudo-halides; end-on cyanate in 

1 and end-to-end (EE) thiocyanate in 2. Variable temperature (2–300 K) magnetic susceptibility 

measurements indicate the presence of ferromagnetic exchange coupling between copper(II) 

centres in complex 1 (J = 0.97 cm-1), and antiferromagnetic exchange coupling in 2 (J = - 0.6 

cm–1). 
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Introduction  

  Designed synthesis of di and polynuclear copper(II) complexes is an interesting area of 

research for their diverse structures and potential applications in magnetic materials.1 Although 

different bridging ligands have been employed for their synthesis, use of pseudohalide as 

bridging ligand in preparing such complexes is a common practice, as pseudohalides with 

various bridging modes can lead to the formation of complexes with surprising difference in the 

structures and magnetic properties.2 The most widely used pseudo-halide is azide,3 and the 

chemistry of azide coordinated complexes have already been reviewed.4 On the other hand, 

although works on cyanato and thiocyanato bridged complexes are relatively less, reports on the 

synthesis and characterization of such complexes could also be found in literature.5 The 

structures of cyanate and thiocyanate are very similar with both having linearly exposed 

N∙∙∙C∙∙∙X (X=O in cyanate and X=S in thiocyanate) skeleton. Both these ligands may be used as 

terminal ligands6 and may be used as bridging ligands.7 They may show end-on (EO) and/or end-

to-end (EE) binding modes when act as bridging ligands.8 

  Focusing to copper(II), both type of bridges can be either symmetrical or unsymmetrical 

due to active Jahn–Teller effects on the metal centre which make the structures even more 

versatile.9 The magnetic exchange via the pseudo-halide bridge can be ferro- or 

antiferromagnetic. When pseudo-halide ligand bridges two copper(II) centres in an end-on, 

basal–basal manner, ferromagnetic exchange coupling is observed only when the value of Cu–

N–Cu angle is less than 109°, whereas  antiferromagnetic exchange coupling is observed when 

the value of Cu–N–Cu angle is 109°.10 On the other hand, any meaningful overlap between 

magnetic orbitals is absent for end-on basal–apical bridges leading to very small magnetic 

couplings.11 Same is the case for the end-to-end pseudo-halide bridged complexes due to 



relatively longer distance between the copper(II) centres.12 In the present work, a tridentate 

Schiff base, 1((2-(ethylamino)ethylimino)methyl)naphthalen-2-ol, (HL) has been used to prepare 

two copper(II) complexes in presence of cyanate and thiocynate coligands. It has been observed 

that cyanate forms EO bridges and thiocyanate forms EE bridges to form two centrosymmetric 

dinuclear complexes, [Cu2(L)2(1,1-NCO)2] (1) and [Cu2(L)2(1,3-NCS)2]H2ODMF (2) 

respectively. Variable temperature magnetic susceptibility was measured. EE thiocyanate 

transmits antiferromagnetic interactions, whereas EO cyanate transmits ferromagnetic 

interactions among copper(II) centres in 1 and 2 respectively. 

Preparations  

Preparation of [Cu2(L)2(1,1-NCO)2] (1)   

The Schiff base ligand, HL, was prepared by the condensation of N-ethyl-1,2-

diaminoethane (0.105 mL, 1 mmol, 0.837 g/mL) and 2-hydroxy-1-acetonaphthone (186 mg, 1 

mmol) in methanol solution under reflux for ca. 1 h. The Schiff base ligand was not isolated. A 

methanol (10 mL) solution of copper(II) acetate monohydrate (200 mg, 1 mmol) was added into 

the methanol solution of the ligand followed by addition of methanol-water solution of sodium 

cyanate (65 mg, 1 mmol) with constant stirring. The stirring was continued for an additional ca. 

2 h. Dark green single crystals, suitable for X-ray diffraction, were obtained after few days by 

slow evaporation of dark green acetonitrile solution of the compound in open atmosphere. 

Yield: 267 mg [73.98%, based on copper (II)]; Anal. Calc. for C34H38Cu2N6O4 (721.78): 

C, 56.58; H, 5.31; N, 11.64%. Found: C, 56.5; H, 5.4; N, 11.4%. ESI-MS (positive ion mode, 

acetonitrile) m/z: 678.24 [{Cu2(L)2(1,1-NCO)}]+; 318 [Cu(L)]+. FT-IR (KBr, cm−1):3201 (νNH), 



2215 (νNCO), 1615 (νC=N); UV-Vis, λmax (nm) [εmax(Lmol-1cm-1)] (acetonitrile): 310 (1.3x104), 

387 (1.25×104), 595 (2.61x102).  

Preparation of [Cu2(L)2(1,3-NCS)2]DMFH2O (2)  

It was prepared in a similar method as that of complex 1, except that sodium thiocyanate 

(81 mg, 1 mmol) was used instead of sodium cyanate. Single crystals, suitable for X-ray 

diffraction, were obtained after few days on slow evaporation of the solution. 

Yield: 318 mg [~67.9%, based on copper (II)]; Anal. Calc. for C40H56Cu2N8O6S2 

(936.12): C, 51.32; H, 6.03; N, 11.97%. Found: C, 51.2; H, 6.1; N, 11.8%. ESI-MS (positive ion 

mode, acetonitrile) m/z: 696.07 [{Cu2(L)2(1,3-NCS)}]+; 318 [Cu(L)]+. FT-IR (KBr, cm−1): 3227 

(νNH), 2101 (νNCS), 1601 (νC=N); UV-Vis, λmax (nm) [εmax(Lmol-1cm-1)] (acetonitrile): 312 

(1.45×104), 388 (1.21×104), 594 (2.25x102). 

Result and discussion 

Synthesis 

The tridentate N2O donor Schiff base ligand (HL) was produced by the condensation of 

N-ethyl-1,2-diaminoethane and 2-hydroxy-1-acetonaphthone following the literature method.1a 

The monocondensed Schiff base ligand, HL, on reaction with copper(II) acetate monohydrate 

and different pseudo-halides gave copper(II) complexes, [Cu2(L)2(1,1-NCO)2] (1) and 

[Cu2(L)2(1,3-NCS)2](DMF)H2O (2) (Scheme 1).  



 

Scheme 1: Synthetic route to complexes 

The reaction with cyanate and thiocyanate produced double end-on and end-to-end 

bridged copper(II) dimers, respectively. The structures of both complexes have been determined 

by single crystal X-ray diffraction analysis. The crystallographic and refinement data of both 

complexes are displayed in Table 1.   

 Table 1: Crystal data and refinement details of complexes 1 and 2. 

Complex 1 2 

Formula C34H38Cu2N6O4 C40H56Cu2N8O6S2 

Formula weight 721.78 936.12 

Temperature(K) 100 100 

Crystal system Monoclinic Monoclinic 

Space group P21/c P21/n 

a(Å) 11.4708(6) 15.5100(4) 

b(Å) 14.4673(7) 7.1497(3) 

c(Å) 9.4198(5) 19.7873(5) 

β(°) 98.641(2) 101.121(2) 



Z 2 2 

dcalc(g cm-3) 1.551 1.444 

µ(mm-1) 1.426 1.140 

F(000) 748 980 

Total reflections 31312 23622 

Unique reflections 3554 4551 

Observed data [I > 2σ(I)] 3310 3977 

R(int) 0.023 0.023 

R1, wR2 (all data) 0.0231, 0.0562 0.0281, 0.0748 

R1, wR2 [I > 2σ(I)] 0.0207, 0.0550 0.0243, 0.0738 

 

The difference in structures of both complexes may be related with the size of pseudo-

halide co-ligands. Small cyanate prefers to bind in end-on fashion. This end-on bridged dimer 

gets extra-stability due to intra-dinuclear hydrogen bonding interactions. On the other hand, the 

larger thiocyanate prefers to bind copper centres in end-to-end fashion. The bridging ability of 

thiocyanate also favours to connect copper centres in end-to-end fashion. 

Description of structures  

Complexes [Cu2(L)2(1,1-NCO)2] (1)  

Single crystal X-ray crystallography reveals that complex 1 is a centrosymmetric dimer 

and crystallizes in the monoclinic space group P21/c. The asymmetric unit contains a copper(II) 

centre, which adopts a  elongated (4+1) square pyramidal geometry, bonded to three donor atoms 

(N,N,O) of the deprotonated tridentate Schiff base (L-) and end-on bridging cyanate ligand. The 

perspective view of complex 1 with selective atom numbering scheme is depicted in Fig. 1.  



  

Fig. 1: Perspective view of complex 1 with selective atom numbering scheme. Hydrogen atoms 
have been omitted for clarity. Symmetry transformation: a = 1-x,1-y,1-z.  

The Addison parameter13 (trigonality index,  = (-)/60, where  and  are the two 

largest L–M–L angles of the coordination sphere) is zero for a perfectly square pyramidal and is 

one for a perfectly trigonal bipyramidal complex. The Addison parameter value () is 0.102 

indicating the coordination sphere around copper(II) centre very close to ideal square-pyramidal 

geometry. As usual for square pyramidal structures, copper(II) centres are slightly pulled out of 

the mean square planes towards the apical donor atoms at distances of -0.0439(3) Å in 1. The 

three donor atoms of the Schiff base occupy the equatorial plane while the anionic ligand in the 

dimer occupies an equatorial position in one copper coordination sphere and an axial position at 

a longer distance in the other. The Cu–Nimine distance (1.936(4) Å) is significantly shorter than 

the Cu–Namine distance (2.028(5) Å), as was observed in similar complexes.14 The five membered 

chelate ring Cu(1)–N(1)–C(2)–C(3)–N(4) assumes an intermediate conformation between half-



chair and envelope being twisted on C(2)-C(3) with puckering parameters15 q(2) = 0.4152(14) Å 

and (2) = 265.81(15)°. Deviations of the coordinating atoms, N(1), N(4), O(7) and N(1'), from 

the least-square basal planes are 0.0765(12), -0.0579(12), 0.0811(10) and -0.0558(13) Å. The 

bridging pseudo-halide is quasi-linear with the N–C–O angle being 177.4(2)°. The intra-dimer 

CuCu distance is 3.2354(4) Å. Selected bond lengths and angles are given in Tables 2 and 3, 

respectively.  

Table 2: Selected bond lengths (Å) around the copper(II) in complexes 1 and 2. 

Complex 1 2 

Cu(1)-O(7) 1.8963(10) 1.9316(11) 

Cu(1)-N(1) 2.0374(11) 2.0457(14) 

Cu(1)-N(1') 1.9375(12) 1.9635(14) 

Cu(1)-N(4) 1.9504(12) 1.9572(13) 

Cu(1)-N(1')a 2.7216(13) 1.958(3) 

Cu(1)-S(3')a - 2.7729(5) 

 

The hydrogen atom, H(1), attached to the amine nitrogen atom, N(1), forms intra dimer 

hydrogen bond with the symmetry related (a = 1-x,1-y,1-z) phenoxo oxygen atom, O(7)a, 

depicted in Fig. 2. The details of hydrogen bonding interactions are depicted in Table 4.  



 

Fig. 2: Intra-dimeric hydrogen bonding interaction in complex 1. Symmetry transformation, a = 

1-x, 1-y, 1-z.  

 The phenyl rings [C(6)-C(7)-C(8)-C(9)-C(10)-C(15)] and [C(10)-C(11)-C(12)-C(13)-

C(14)-C(15)], is involved in intermolecular ππ interactions with the symmetry related (2-x,1-

y,2-z) phenyl ring C(10)-C(11)-C(12)-C(13)-C(14)-C(15), leading to the formation of 1D chain 

(Fig. 3). The geometric features of ππ and C–H∙∙∙π interactions are gathered in Tables 5 and 6, 

respectively.  

Table 3: Selected bond angles (0) around copper(II) in complexes 1 and 2. 

Complex 1 2 

O(7)-Cu(1)-N(1) 172.62(5) 164.89(5) 

O(7)-Cu(1)-N(1') 88.76(5) 90.32(5) 

O(7)-Cu(1)-N(4) 92.24(4) 90.39(5) 

O(7)-Cu(1)-N(1')a 90.71(4) 98.69(4) 

N(1)-Cu(1)-N(1') 93.05(5) 92.52(6) 

N(1)-Cu(1)-N(4) 86.05(5) 85.53(5) 



N(1)-Cu(1)-N(1')a 82.04(4) - 

N(1')-Cu(1)-N(4) 178.78(5) 174.96(6) 

N(1')-Cu(1)-N(1')a 93.77(5) - 

N(1') a-Cu(1)-N(4) 86.92(4) - 

S(3')a-Cu(1)-N(1) - 95.79(4) 

S(3')a-Cu(1)-N(1') - 95.89(4) 

S(3')a-Cu(1)-N(4) - 88.94(4) 

Symmetry transformations: a =1-x,1-y,1-z, b =1-x, -y,1-z 

 

 

Fig. 3: Supramolecular one-dimensional chain of complex 1 formed via π···π interactions. Cg(4) 

and Cg(5) represent the centre of gravity of the rings [C(6)-C(7)-C(8)-C(9)-C(10)-C(15)] and 

[C(10)-C(11)-C(12)-C(13)-C(14)-C(15)] for complex 1. Hydrogen atoms have been omitted for 

clarity. 

Table 4: Geometric parameters for H-bonding interactions for complexes 1 and 2. 

Complex D–H∙∙∙A D–H (Å) H∙∙∙A (Å) D∙∙∙A (Å) D–H∙∙∙A (°) 

1 N(1)–H(1)∙∙∙O(7)a 0.876(18) 2.374(18) 3.0665(15) 136.1(15) 

 

2 

N(1)–H(1)∙∙∙O(1W)a 0.84(2) 2.33(2) 3.0762(19) 148.3(17) 

O(1W)–H(1W)∙∙∙O(7) 0.79(3) 2.11(3) 2.8664(17) 161(3) 

O(1W)–H(2W)∙∙∙O(1L) 0.83(2) 1.97(2) 2.797(2) 171(2) 

D, donor; H, hydrogen; A, acceptor. Symmetry transformation a = 1-x,1-y,1-z. 



Table 5: Geometric features (distances, Å and angles,) of the π···π stacking interactions in 

complexes 1 and 2. 

Complex Cg(Ring I)···Cg(Ring J) Cg···Cg(Å) α (°) Cg(I)···Perp(Å) Cg(J)···Perp(Å) 

 

1 

Cg(4)···Cg(5)c 3.9495(8) 5.41(7) 3.7118(6) 3.6043(6) 

Cg(5)···Cg(5)c 3.8972(9) 0 3.6342(6) 3.6341(6) 

 Symmetry transformations: c = 2-x,1-y,2-z. 

α = Dihedral angle between ring I and ring J. Cg(I)···Perp = Perpendicular distance of Cg(I) on 

ring J. Cg(J)···Perp = Perpendicular distance of Cg(J) on ring I. Cg(4) = Centre of gravity of the 

ring [C(6)-C(7)-C(8)-C(9)-C(10)-C(15)]; Cg(5) = Centre of gravity of the ring [C(10)-C(11)-

C(12)-C(13)-C(14)-C(15)]. 

[Cu2(L)2(1,3-NCS)2]DMFH2O (2) 

Single crystal X-ray crystallography reveals that complex 2 is also a centrosymmetric 

dimer and it crystallizes in the triclinic space group P21/n. The asymmetric unit contains a square 

pyramidal copper(II) centre bonded to three donor atoms (N,N,O) of the deprotonated tridentate 

Schiff base (L-) and end-on bridging anionic ligand cyanate leading to elongated (4+1) square 

pyramidal geometry. The perspective view of complex 2 with selective atom numbering scheme 

is depicted in Fig. 4. The Addison parameter value [= 0.167] indicates that the coordination 

sphere of copper(II) centre is close to the ideal square-pyramidal geometry. As usual for square 

pyramidal structures, copper(II) centres are slightly pulled out of the mean square planes towards 

the apical donor atoms at distance of -0.1349(2) Å in 2. The three donor atoms of the Schiff base 

occupy the equatorial plane while each of the anionic ligand in the dimer occupies an equatorial 

position in one copper coordination sphere and an axial position at a longer distance in the other. 



The Cu–Nimine distance is significantly shorter 1.922(3) Å than the Cu–Namine distance 2.036(4) Å 

for 2, as observed in similar complexes.14 The copper(II)-nitrogen(anion) bond lengths in the 

equatorial plane range from 1.937(4)-1.979(5)Å, while the copper(II)-nitrogen(anion) axial bond 

lengths range from 2.442(5)-2.692(4) Å. The five membered chelate ring Cu(1)–N(1)–C(2)–

C(3)–N(4) assumes intermediate conformation between half-chair and envelope being twisted on 

N(1)-C(2) with puckering parameters q(2) = 0.4307(16) Å and (2) = 263.97(16)°. Deviations of 

the coordinating atoms, N(1), N(4), O(7) and N(1'), from the least-square basal planes are 

0.1165(14), -0.0556(12), 0.1221(11), and -0.0481(14) Å. The bridging Cu2N2 network is planar. 

The bridging pseudo-halides are quasi-linear with the N–C–S angle being 179.3(1)°. The intra 

dimer CuCu distance is 5.6382(4) Å. Selected bond lengths and angles are given in Tables 2 

and 3, respectively. 

 

Fig. 4: Perspective view of complex 2 with selective atom numbering scheme. Hydrogen atoms 

have been omitted for clarity except solvent molecules. Symmetry transformation: a = 1-x,-y,1-z. 



The hydrogen atoms H(1W) and H(2W), attached to the oxygen atom O(1W), are 

involved in hydrogen bonding interactions with the symmetry related the symmetry related 

phenoxo oxygen atom, O(7)a and oxygen atom, O(1L)a (a = 1-x,1-y,1-z), respectively. The 

hydrogen atom H(1), attached to nitrogen atom N(1), is engaged in bifurcated hydrogen bonding 

interactions with the symmetry related oxygen atoms O(1W)a and phenoxo oxygen atom, O(7)a, 

(a = 1-x,1-y,1-z) leading to the formation of a chain (Fig. 5). The geometric features of C–H∙∙∙π 

interactions are given in Table 6. 

 

Fig. 5: (a) One-dimensional hydrogen bonded chain structure of complex 2. (b) 

Highlighted H-bonding interactions. Selected hydrogen atoms and ethyl group have been omitted 

for clarity. Symmetry transformation, a = 1-x, -y, 1-z. 

Table 6: Geometric features (distances in Å and angles in ) of the C-H···π interactions obtained 

for complexes 1 and 2. 

 

Complex C-H···Cg(Ring) H···Cg C-H···Cg (°) C···Cg (Å) 

1 C(16)H(16C)···Cg(5)d 2.96 162 3.9081(16) 

 C(3L)H(3LA)···Cg(4)e 2.81 144 3.651(2) 



 

2 

C(3L)H(3LB)···Cg(4)f 2.74 149 3.618(2) 

C(4L)H(4LA)···Cg(3)e 2.73 141 3.544(2) 

C(4L)H(4LC)···Cg(3)f 2.89 131 3.615(2) 

 

Symmetry transformations: d= x,1/2-y,-1/2+z;  e= 3/2-x,1/2+y,1/2-z;  f= 3/2-x,-1/2+y,1/2-z 

For complex 1: Cg(5) = Centre of gravity of the ring [C(10)-C(11)-C(12)-C(13)-C(14)-C(15)]; 

For complex 2: Cg(4) = Centre of gravity of the ring [C(10)-C(11)-C(12)-C(13)-C(14)-C(15)]; 

Cg(3) = Centre of gravity of the ring [C(6)-C(7)-C(8)-C(9)-C(10)-C(15)]. 

IR and electronic spectra 

 In the IR spectra of complexes 1 and 2, strong and sharp bands around 1610 cm-1 were 

routinely noticed due to azomethine (C=N) groups of Schiff bases.16 One moderately strong band 

in the region of 3200-3228 cm-1 in the IR spectrum of both complexes may be assigned to N–H 

stretching vibration.17 The bands in the range of 2985-2860 cm-1 may be assigned to as alkyl C-H 

bond stretching vibrations.18 One sharp and strong band at 2209 cm-1 in the IR spectrum of 1 

indicates the presence of the N bonded cyanate group.19 The µ-1,3 bridging mode of the 

thiocyanate group in complex 2 is confirmed by the splitting of the absorption band 

corresponding to the γC=N asymmetric stretching at 2103 and 2053 cm-1 indicates the S- and N-

coordination modes of the thiocyanate ligand respectively.20,21 Two medium bands at 831 and 

762 cm-1 may be attributed to ν(CS).21 

The broad absorption bands around 595 nm were observed for both complexes i.e. in the 

visible region due to d-d transitions. The absorption bands around 310 nm may be assigned to 



intraligand π* n transitions of azomethine (C=N) function of Schiff base. 22 The band around 

390 nm may be attributed to LMCT transition.23 

Magnetic properties   

Variable temperature (2–300 K) magnetic susceptibility data were collected for 

microcrystalline samples of both complexes. The agreement factor R is defined as R 

=i[(MT)obsd- (MT)calcd]2/i[(MT)obsd]2. The temperature independent paramagnetism (TIP) was 

taken as -338 × 10-6 and -369 × 10-6 cm3K mol–1 for complexes 1 and 2, respectively. 

Since both complexes consist of isolated copper(II) dimers with double pseudo-halide 

bridges, a simple Bleaney-Bowers dimer model for two S = 1/2 ions was used to fit the magnetic 

data. This model reproduces very satisfactorily magnetic properties in the whole temperature 

range. Therefore, the magnetic behaviour (χMT vs T and χM vs T plots) was simulated using the 

standard Heisenberg-Dirac-van Vleck Hamiltonian, Ĥ = -2JS1·S2 + µBgSH, where all the 

parameters have their usual meanings. 

Complex 1  

  A MT versus T plot (M is the molar susceptibility for two copper(II) ions) for complex 

1 is shown in Fig. 6. The value of M T for 1 at 300 K is 0.834 cm3 K mol–1, which is as expected 

for two magnetically quasi-isolated spin doublets (g > 2.00). The MT values remains practically 

constant from 25–300 K. Below 25 K, there is an abrupt increase of MT, reaching a value of 

1.034 cm3 K mol–1 at 2 K. The M values increase monotonically when the temperature decreases 

(Fig. 6 ). The fit of the experimental data yields the following values: g = 2.115(2); J = 0.97(6) 

cm-1; R= 5.4 × 10–3. 



 

Fig. 6: Plot of χMT vs T for a powder sample of complex 1 in a 1 T external magnetic field. 

Experimental data are shown as blue squares and the best fit is represented by the red line. Inset 

shows plot of χM vs T where the experimental data are shown as blue circles and the best fit is 

represented by the red line. 

Complex 2  

The MT and M (inset) versus T plots (M is the molar magnetic susceptibility for two 

copper(II) ions) are shown in Fig. 7. The value of MT at 300 K is 0.822 cm3 K mol–1, which is 

as expected for two magnetically quasi-isolated spin doublets (g > 2.00). The MT values remain 

practically constant until around 30 K, then decreases slowly and finally drops to 0.697 cm3 K 

mol–1 at 2 K due to antiferromagnetic exchange coupling between copper(II) centres. No 

maximum was found in the M versus T plot. The global feature is characteristic of weak 

antiferromagnetic coupling. The best fit was achieved for g = 2.09(1) and J = - 0.6(1) cm–1 (R= 

2.9 × 10–2). The relatively high value of R originates probably from the strong intermolecular H-

bonding interactions in 2. 



 

Fig. 7: Plot of χMT vs T for a powder sample of complex 2 in a 1 T external magnetic field. 

Experimental data are shown as blue squares and the best fit is represented by the red line. Inset 

shows plot of χM vs T where the experimental data are shown as blue circles and the best fit is 

represented by the red line.  

Magneto-structural correlation 

Complex 1 is a double end-on cyanate bridged dinuclear copper(II) complex with a 

tridentate N2O donor Schiff base. Although Cu–N–Cu angle is the key factor in determining the 

sign of J value, when pseudo-halide ligand bridges two copper(II) centres in end-on, basal–basal 

manner,24 there is no meaningful correlation between Cu–N–Cu angle and J value in in basal–

apical pseudo-halide bridged dinuclear copper(II) complexes.25 This is because the single 

unpaired electron of copper(II) resides in dx2–y2 orbital, which lies essentially in the basal plane 

(XY plane) of the copper(II) centre having square pyramidal geometry; and therefore the 

magnetic orbital has only a small contribution in the direction of Z-axis (i.e. in the direction of 

second copper(II) linked via pseudo-halide bridge). Thus there is practically no overlap between 

the magnetic orbitals. Therefore the weak interactions amongst the copper(II) centres in end-on 

basal–apical cyanate bridged dinuclear complex 1 may be linked with the square pyramidal 

geometry of copper(II) centre. Table 7 gathers all end-on cyanate bridged and a few pseudo-

halide bridged dinuclear copper(II) complexes along with  values of copper(II) centres. Lower 

value of  indicate less deviation from ideal square pyramidal geometry, and may be expected to 

have lower value of J.5 However, this simple theory does not seem to be appropriate, as is 

evident from the data listed in Table 7.  



Table 7: Main structural and magnetic parameters for end-on bridged copper(II) complexes 

with tridentate N2O donor Schiff bases 

Complex Cu–Cu Cu–N Cu–N Cu–N–Cu  J (cm-1) 

     (Å) (basal) (Å) (apical) (Å)      (0)   

LEKDIR5a 

 

3.2715(8) 1.937(4) 2.692(4) 88.4(1) 0.001 0.513 

GOYPUH5b 3.1558(5) 1.951(2) 2.528(2) 88.60(8) 0.049 -0.54 

YADGUG8b   3.104(2) 1.999(1) 2.443(9) 88.3(4) 0.135 -2.63 

IRIREG10a 3.1807(8) 1.998(3) 2.505(3) 89.2(1) 0.176 -8.5(5) 

VOWJEY3b 3.199(7) 2.017(3) 2.490(3) 89.8(1) 0.273 1.07 

NIKHUM3c 3.208(4) 1.984(18) 2.489(19) 87.7(7) 0.149 -10.16 

NIKHOG3c 3.227(2) 2.005(5) 2.500(5) 90.8(2) 0.248 -4.18 

NIKLAW3c 3.159(2) 1.983(5) 2.551(6) 84.3(2) 0.078 -1.43 

JOPFIF1a 3.370(1) 1.968(2) 2.404(2) 100.4(8) 0.341 -11.4 

GOYPIV5b 3.158(2) 2.009(2) 2.483(2) 88.68(6) 0.172 -2.28 

LEKDEN5a 

 

3.287(9) 1.979(5) 2.442(5) 95.5(2) 0.065 -2.313 

Complex 1 3.2354(4) 1.938(1) 2.722(1) 86.23(4) 0.102 0.97(6) 

 

On the other hand, complex 2 features an end-to-end thiocyanate bridged dimer. The 

weak antiferromagnetic coupling (J = - 0.6(1) cm–1) is obviously due to the longer distance 

(5.6382(4) Å) among copper(II) centres. Only one similar dinuclear copper(II) complex with 



Schiff base blocking ligand bridged by end-to-end thiocyanate is reported in literature (Table 

8).12b 

Table 8: Main structural and magnetic parameters for end-to-end bridged copper(II) 

complexes with tridentate N2O donor Schiff bases 

  
Complex Cu–Cu (Å) J (cm-1) 

MAQRAY12b 

 
5.8629(6) -1.71(1) 

Complex 2 5.6382(4) -0.6(1) 

 

Conclusion   

The whole work can be concluded in two statements. Firstly, the use of different pseudo-

halides with different bridging ability (i.e. cyanate and thiocyanate) can regulate the electronic 

and steric demands which could effectively modulate the structural versatility of complexes: 

cyanate with least bridging ability forms end-on bridged dimer, whereas thiocyanate with 

moderate bridging ability forms end-to-end bridgrd dimer. Secondly, comparison of the 

structures and the results of magnetic properties with previously related reported dinuclear 

copper(II) complexes with tridentate N2O donor Schiff bases reveals that the magnetic exchange 

in such systems is governed by combined effects of several parameters. Synthesis and 

characterization of more complexes may be needed to arrive at any concrete generalization. 
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Experimental Section 

All chemicals were of reagent grade and used as purchased from Sigma-Aldrich without 

further purification.  

Physical Measurements 

Elemental analysis (carbon, hydrogen, and nitrogen) was carried out using a Perkin-

Elmer 2400 II elemental analyzer. IR spectra in KBr (4000-500 cm-1) were recorded using a 

Parkin Elmer RXI FTIR spectrophotometer. Electronic spectra in acetonitrile (1000–200 nm) 

were recorded in a Hitachi U-3501 spectrophotometer. The XRD data of the powdered sample 



were collected on a Bruker D8 Advance X-ray diffractometer using with Cu Kα radiation (λ= 

1.548 Å) generated at 40 kV and 40 mA. The PXRD spectra were recorded in a 2θ range of 5–

50° using 1-D Lynxeye detector at ambient conditions. Electro-spray ionization mass spectra 

were recorded with Waters QTOF Micro YA263. A Quantum Design MPMSXL SQUID 

(Superconducting Quantum Interference Device) magnetometer was used to measure the 

variable-temperature magnetic properties. The temperature range was 2–300 K under an applied 

magnetic field of 5000 Oe. The signal of the sample holder was taken into account to correct the 

measured data, as well as the molar diamagnetic corrections for the compound, which were 

calculated on the basis of Pascal’s constants.1-2 Fits were performed using the program julX. 

X-ray crystallography  

 Single crystals of both complexes  were used for data collection using a Bruker D8 

QUEST area detector diffractometer equipped with graphite-monochromated Mo Kα radiation (λ 

= 0.71073 Å) at 100 K. The molecular structures were solved by direct method and refined by 

full-matrix least squares on F2 using SHELXL-2016.3 X-ray intensity data were measured. The 

frames were integrated with the Bruker SAINT Software package using a wide-frame algorithm. 

Non hydrogen atoms were refined anisotropically. Hydrogen atoms attached to oxygen and 

nitrogen atoms were located by difference Fourier maps and were kept at fixed positions. Other 

hydrogen atoms were placed in their geometrically idealised positions and constrained to ride on 

their parent atoms. Numerical and/or multi-scan absorption corrections were applied to the data 

using the program SADABS.4  

Hirshfeld surfaces 



 Hirshfeld surface analysis was explored to evaluate the structural flexibility and 

magnitude of each interchain interaction in both complexes. Hirshfeld surfaces5-7 and associated 

2D-fingerprint8-10 plots were obtained using Crystal Explorer 3.11 This analysis is useful for the 

evaluation of closest intermolecular atomic contacts, even in complex crystal structures.12  

X-ray powder diffraction pattern 

The experimental powder x-ray diffraction patterns of the bulk products agree well with 

the simulated XRD patterns generated from cif. This indicates purity of the bulk samples. Fig. S1 

and Fig. S2 show the experimental and simulated XRD patterns for complexes 1 and 2, 

respectively.  

 

Fig. S1: Experimental and simulated powder XRD patterns of the complex 1 confirming the 

purity of bulk material. 



 

Fig. S2: Experimental and simulated powder XRD patterns of the complex 2 confirming the 

purity of bulk material. 

Hirshfeld surface analysis 

The Hirshfeld surfaces of both complexes, mapped over dnorm, shape index and 

curvedness, are illustrated in Fig. S3. The intermolecular interactions appear as distinct spikes in 

the 2D fingerprint plot (Fig. S4). we can decompose the fingerprint plot to highlight separate 

interactions.13  The common features of Hirshfeld surfaces is  the widespread presence of several 

red spots that are mostly recognized as C···H, O···H and N···H contacts. The proportions of 

C···H/H···C, interactions comprise 21.3 and 15.9%  of the total Hirshfeld surfaces, respectively 

for each molecule of for 1 and 2, whereas O⋯H/H⋯O interaction comprises of 19.1  and 11.9% 

to the total Hirshfeld surfaces, respectively for 1 and 2. 



 

Fig. S3: Hirshfeld surfaces mapped with dnorm (top), shape index (middle),  curvedness (bottom)  
for complexes 1 and 2. 

 

 

Fig. S4: 2D fingerprint plots: Full (top); O···H/H···O (middle) N···H/H···N (bottom) 

interactions contributed to the total Hirshfeld surface area of complexes 1 and 2. 
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