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Abstract 

Regular imaging is used throughout image guided radiation therapy (IGRT) to improve treatment 

delivery. In order for treatment procedures to be optimized, the doses delivered by imaging exposures should 

be taken into account. CT dosimetry methods based on the CT dose index (CTDI), measured with a 100 mm 

long pencil ionization chamber (CTDI100) in standard phantoms, are not designed for the cone beam CT 

(CBCT) imaging systems used in radiotherapy, therefore a modified version has been proposed for CBCT 

by the International Electrotechnical Commission (CTDIIEC). Monte Carlo simulations based on a Varian On 

Board Imaging (OBI) system have been used to derive conversion coefficients that enable organ doses for 

ICRP reference phantoms to be determined from the CTDIIEC for different scan protocols and different beam 

widths (80 – 320) mm. A dose–width product calculated by multiplying the CTDIIEC by the width of the 

CBCT beam is proposed as a quantity that can be used for estimating effective dose. The variation in 

coefficients with CBCT beam width has been studied. Coefficients to allow estimation of effective doses 

have been derived, namely 0.0034 mSv(mGy cm)-1 for the head, 0.0252 mSv(mGy cm)-1 for the thorax, 

0.0216 mSv(mGy cm)-1 for the abdomen and 0.0150 mSv(mGy cm)-1 for the pelvis, and these may be 

applicable more generally to other CBCT systems in radiotherapy. If data on effective doses are available, 

these can be used in making judgements on the contributions to patient dose from imaging, and thereby assist 

in optimization of the treatment regimes. The coefficients can also be employed in converting dosimetry data 

recorded in patient records into quantities relating directly to patient doses. 
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1. Introduction  

Clinical imaging based on computed tomography (CT) technology in the form of cone beam CT (CBCT) 

has become an essential component of radiotherapy treatments. It is used for monitoring and checking the 

position of the planning target volume (PTV) and organs at risk prior to treatment delivery for image guided 

radiation therapy (IGRT). The frequency of imaging and exposure levels used are important, and for 

optimization of the treatment to be achieved, a knowledge of the dose levels delivered by imaging is required. 

Moreover, the European Basic Safety Standards require information relating to patient exposure to form part 

of the report for any medical radiological procedure, as well as information relating to risk to be provided to 

the patient (Euratom, 2014). Currently, the dose measurement used for CT dosimetry is the CT dose index 

(CTDI), which is measured with a pencil ionization chamber of length 100 mm (CTDI100) within standard 

cylindrical PMMA head and body phantoms (IEC, 2001). The CTDI100 was developed for CT scans 

performed with narrow beams 40 mm on conventional mutli–detector CT (MDCT) scanners, but CBCT 

systems use flat panel detectors as the image receptors, and beams extend beyond the lengths of the pencil 

chamber, and the standard phantoms for some scans (Mori et al., 2005, Boone, 2007, Kyriakou et al., 2008, 

Abuhaimed et al., 2014). Therefore alternative dose indices based on different approaches have been 

proposed for use in CBCT dosimetry to provide a better representation of the dose within the body by 

including more of the contribution from scattered radiation (Mori et al., 2005, Islam et al., 2006, Fahrig et 

al., 2006, Amer et al., 2007, Kyriakou et al., 2008, Geleijns et al., 2009, IEC, 2012, AAPM, 2010). These 

have been discussed in detail in previous studies (Abuhaimed et al., 2014, Abuhaimed et al., 2015, 

Abuhaimed et al., 2015b, Abuhaimed et al., 2015c).  

The link between the volume averaged CTDI (CTDIvol) and doses to organs irradiated has been 

investigated for MDCT scanners (Turner et al., 2010). They used similar scan parameters and phantoms to 

develop conversion coefficients to allow estimation of organ doses from CTDIvol for four CT scanners. The 

mean variation in organ doses normalized with respect to the CTDIvol for each scanner was ±5%. In a similar 

manner, coefficients linking dose–length product (DLP) to effective dose have been developed (Shrimpton 

et al., 2016). The use of scanner–independent conversion coefficients for a range of CT scan protocols and 

scanners can be used to estimate organ and effective doses for patients undergoing MDCT scans (Turner et 

al., 2011, McMillan et al., 2014, Choonsik et al., 2015).  
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Information on the correlation between the dose indices proposed for CBCT dosimetry and organ and 

effective dose is limited. Martin et al (2016) investigated the link between the weighted CTDI (CTDIw) value 

measured with a reference beam width of 20 mm (CTDIw,ref) that is displayed currently on the console for 

the Varian On-Board Imager (OBI) used for IGRT procedures, and Wood et al. (2015) proposed a technique 

for estimating organ doses resulting from pelvic scans for prostate cancer patients for the OBI system using 

a patient dose calculator (PCXMC). Rampado et al (2016) investigated the link between several CBCT dose 

indices and organ doses received by radiotherapy patients undergoing IGRT procedures using an Elekta x-

ray volume imager (XVI), and derived conversion coefficients to allow approximate values of organ doses 

to be estimated. 

The aim of this study is to investigate the link between a dose index proposed for CBCT by the 

International Electrotechnical Commission (IEC) (IEC, 2012) and recommended by the International Atomic 

Energy Agency (IAEA) (IAEA, 2011) and the Institute of Physics and Engineering in Medicine (IPEM) 

(Platten et al., 2013), and organ and effective doses resulting from various OBI scan protocols for a wide 

range of beam widths.   

2. Materials and Methods 

2.1. Dose index of CBCT dosimetry: 

The approach suggested by the IEC is a modification of the CTDI concept and uses instrumentation 

employed for CT dosimetry (Figure 1). The symbol (CTDIIEC) has been used in this study to distinguish the 

modified method from the standard CTDI100. The CTDIIEC is derived from a measurement of the CTDI100 

using a reference beam width (ref) ≤ 40 mm in standard 150 mm long CT dosimetry phantoms to which 

correction factors are applied, equal to the ratio of CTDI measurements made free in air (FIA) for the clinical 

cone beam of width W (CTDIFIA,W) and the reference beam (CTDIFIA,ref). 

𝐶𝑇𝐷𝐼𝐼𝐸𝐶  =   𝐶𝑇𝐷𝐼100,𝑟𝑒𝑓  × (
𝐶𝑇𝐷𝐼𝐹𝐼𝐴,𝑊

𝐶𝑇𝐷𝐼𝐹𝐼𝐴,𝑟𝑒𝑓

) (1) 

 

The CTDI100,ref values are measured at the central and peripheral positions with the CTDI phantom positioned 

at the isocentre. CTDIFIA,W can be measured either by a long ionization chamber or by combining 
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measurements made with the standard 100 mm long pencil ionization chamber by moving it in steps across 

the beam. The minimum number of steps required to evaluate a beam of width W is based on the sum of W 

+ 40 mm. For example, two steps are used when the sum ≤ 200 mm, whereas three steps are required for the 

sum of ≤ 300 mm as shown in the third step in Figure 1 (IAEA, 2011). CTDIIEC,W is evaluated to account for 

the dose distribution in a manner similar to that used for the CTDIw. 

𝐶𝑇𝐷𝐼𝐼𝐸𝐶,𝑤  =  
1

3
 𝐶𝑇𝐷𝐼𝐼𝐸𝐶,𝑐  +  

2

3
 𝐶𝑇𝐷𝐼𝐼𝐸𝐶,𝑝 (2) 

 

  

 

Figure 1: Diagrammatic representations (sagittal views) of the configuration used for measurements of the 

three quantities required to determine CTDIIEC from Eq.(1) with a 100 mm pencil ionization chamber (step 

1: CTDI100,ref, 2: CTDIFIA,ref and 3: CTDIFIA,W), d = 16 cm and 32 cm for the head and body phantoms, 

respectively.  
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The advantage of the CTDIIEC over the CTDI100 is that the use of a long ionization chamber reduces the 

dependence of the CTDI100 on beam width. Figure 2 shows the influence of the beam width on CTDI100 and 

CTDIIEC. Values of CTDIIEC are approximately constant over a wide range of beam widths with variations of 

less than 1%, whereas the CTDI100 falls once the beam width exceeds the length of the chamber (100 mm) 

and the phantom (150 mm).  

  
Figure 2: Variation of CTDI100,w and CTDIIEC,w valeus (mGy / 100 mAs) with the beams of width (80 – 320) 

mm for the (a) head and (b) body phantoms (Abuhaimed et al., 2014).  

 

In the same way that the CTDIvol is multiplied by the length of a CT scan to derive the quantity DLP 

that is linked to the total amount of radiation delivered by a MDCT scan, the CTDIIEC can be multiplied by 

the width (W) of the cone beam to derive an equivalent quantity, the dose-width product (DWP). 

𝐷𝑊𝑃 = 𝐶𝑇𝐷𝐼𝐼𝐸𝐶,𝑤 ×𝑊 (𝑚𝐺𝑦. 𝑐𝑚) (3) 

2.2. Monte Carlo simulations: 

Values for the CTDI100, together with organ and effective doses for four scan protocols (head, thorax, 

abdomen, and pelvis) commonly used in the clinic for IGRT procedures were assessed using Monte Carlo 

(MC) simulations. The MC user codes BEAMnrc (Rogers et al., 1995), Cavity (Kawrakow et al., 2017a) and 

DOSXYZnrc (Walters et al., 2017) based on EGSnrc (V2017) (Kawrakow et al., 2017b) were utilized. 

BEAMnrc was used to simulate the kV OBI system integrated into a Varian TrueBeam linear accelerator, 

and Cavity and DOSXYZnrc were utilized to assess CTDIIEC and organ doses in three-dimensions, 

respectively. CTDIIEC and organ doses were investigated using beams of width 80 – 320 mm in increments 

of 20 mm. The protocols 100 kV, head bowtie filter, and a partial rotation for the head scans, and 120 kV, 

Page 6 of 25AUTHOR SUBMITTED MANUSCRIPT - JRP-101003.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



7 

 

body bowtie, and a full rotation for the body scans were investigated. All the MC simulations were run using 

a super computer (SANAM) available at King Abdulaziz city for science and technology (KACST). 

2.2.1. kV beams: 

The geometric and dosimetric properties of the MC codes developed for the OBI system were validated 

and calibrated against experimental measurements in previous studies (Abuhaimed et al., 2014, Martin et al., 

2016). kV beams for the head and body protocols were generated with BEAMnrc using 1×1010 histories per 

beam and ISOURCE = 10 (Parallel Circular Beam Incident from Side). A variance reduction technique 

implemented in BEAMnrc known as directional bremsstrahlung splitting was utilized to obtain an efficient 

MC calculation in the kV energy range (Kawrakow et al., 2004, Mainegra-Hing and Kawrakow, 2006). This 

technique was employed with a splitting number (NBRSP) set to 2×104. Electrons and photons were tracked 

during the simulations down to ECUT of 516 keV and PCUT of 1 keV, respectively (Abuhaimed et al., 2017). 

These values were also set to the low energy thresholds for creation of secondary electrons (AE) and photons 

(AP). The resulting beams were stored at a source-surface-distance (SSD) of 50 cm in files known as phase 

space (PHSP) files. 

2.2.2. Assessments of CTDIIEC: 

The PHSP files generated with BEAMnrc were transferred into Cavity user code to simulate the kV 

beams. The configuration shown in Figure 1 required for the CTDIIEC assessment was simulated using the 

standard 150 mm long CTDI head (16 cm diameter) and body (32 cm diameter) phantoms and a 100 mm 

long pencil ionization chamber (Radcal 10X6-3CT). CTDI100,ref and CTDIFIA,ref were assessed using a 

reference beam of width 20 mm. Since the MC code allows simulation of a chamber of any length, the 

technique shown in the third step of Figure 1 was not applied for CTDIIEC,W. The chamber length used for 

CTDIIEC,W was specified based on the beam of interest as W + 40 mm (IAEA, 2011). All phantoms were 

placed at a source-isocentre-distance (SID) of 100 cm, thus the distance between the PHSP files obtained 

with BEAMnrc at 50 cm and the phantoms was set to 50 cm. The CTDI100,ref calculations were made at the 

central and peripheral positions of the phantoms to obtain CTDIIEC,w. The partial rotation (200°) that was 

used for the head protocol began at 90° (left of the patient), and the x-ray source moved beneath the phantom 

stopping at the right side at 290°. 1.0×108 histories were run for each projection to obtain a statistical 
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uncertainty <1%. Values for the CTDIIEC,w were multiplied by the width of the cone beam at the isocentre to 

derive values for the DWP as in Eq.(3). 

2.2.3. Estimation of organ doses: 

Organ and effective doses resulting from the four scan protocols were assessed using DOSXYZnrc user 

code for the International Commission on Radiological Protection (ICRP) adult male and female reference 

computational phantoms (ICRP, 2009). A computational method based on MATLAB codes applied in 

(Martin et al., 2016) was used to transfer the format of the ICRP phantoms to the MC code format. The codes 

were also applied to extract and report mean values of organ doses in three dimensions. The PHSP files 

generated with BEAMnrc were transferred to DOSXYZnrc, and run as kV sources using ISOURCE = 8 

(Phase-Space Source Incident from Multiple Directions). The ICRP phantoms were placed at a SID of 100 

cm, and 1.0×1010 and 1.5 × 1010 histories were run for the male and female phantoms, respectively, to achieve 

statistical uncertainty values of < 1% for organs located inside the scan fields. The centre for the head scan 

was positioned at the middle of the phantom head, whereas the scan centres were located at the middles of 

the lung, the pancreas and the pelvis for thorax, abdomen and pelvis scans, respectively. Table 1 lists height 

and weight of the ICRP phantoms and the effective diameter (ED) of the regions studied. ED was estimated 

as described in (AAPM, 2011), which is based on assessing the anterior and posterior (AP) and the lateral 

(LAT) dimensions as: 

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝐸𝐷) = √𝐴𝑃×𝐿𝐴𝑇 (4) 

The middle slice of each region, that was used as a isocentre for the scan, was also used to estimate AP 

and LAT values.  

Table 1: Height and weight of the ICRP adult phantoms, and the effective diameter (ED) of the regions 

investigated. 

 Male Female 

Height (m) 1.76 1.63 

Weight (kg) 73.0 60.0 

ED Head (cm) 18.92 15.47 

ED Thorax (cm) 32.37 28.54 

ED Abdomen (cm) 32.10 26.48 

ED Pelvis (cm) 30.21 28.84 
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The mean dose for each tissue (T) or organ (HT) resulting for beam widths of 80 – 320 mm were then 

normalized with respect to the corresponding va;lues of the CTDIIEC,w to derive the conversion coefficients 

(CCT). 

𝐶𝐶𝑇 =  
𝐻𝑇

𝐶𝑇𝐷𝐼𝐼𝐸𝐶,𝑤

 (5) 

 

The mean doses for organs and tissues were used to evaluate the effective dose (𝐸) using tissue 

weighting factors (WT)  recommended by ICRP 103 (ICRP, 2007), and conversion coefficients (CCE) for 

determining effective doses from values for DWPs were derived as in Eq. (5).  

𝐶𝐶𝐸 =  
∑ 𝑤𝑇𝐻𝑇𝑇

𝐷𝑊𝑃
 (6) 

3. Results  

3.1. Assessment of CTDIIEC: 

Table 2 gives values of the CTDIIEC per 100 mAs assessed at centres and peripheries of the phantoms. 

CTDI100,ref and CTDIFIA,ref were assessed using a reference beam of width 20 mm, from which the correction 

factors of CTDIFIA,W / CTDIFIA,ref for the beams studied were calculated, and hence CTDIIEC values. For the 

head scans, peripheral measurements were smaller than those at the centres by 6%. This is because the head 

phantom was scanned according to the protocol over a partial scan (200°), which is employed at the clinic in 

order to minimize the dose to the eyes. It delivers higher doses to posterior and lateral peripheral positions in 

the phantom, but a lower dose at the anterior. For example, CTDIIEC,p at the top of the head phantom (0°) was 

1.56 mGy, whereas that at the bottom (180°) was 5.55 mGy. In body scans (thorax, abdomen and pelvic), for 

which a full rotation 360° was applied, the central values were about ~40% less than the peripheral ones due 

to higher attenuation in the larger body phantom (Abuhaimed et al., 2015).  

Since CTDIFIA,W values for the different beams are assessed free in air, the variations between the 

correction factors were minimal, within ±1.6% and ±2.3% for the head and body protocols, respectively. This 

gave CTDIIEC values that are approximately constant over all beam widths (Figure 2) (IAEA, 2011, 

Abuhaimed et al., 2014). 
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Table 2: Values of CTDIIEC in (mGy/100 mAs) for the scan protocols studied using beams of width 80 – 320 

mm. 

Head – 100 kV 

Position CTDI100,ref CTDIFIA,W / CTDIFIA,ref CTDIIEC 

Centre 3.82 0.995 – 1.011 3.80 – 3.86 

Periphery 3.59  3.58 – 3.63 

Weighted 3.67  3.65 – 3.71 

Body (Thorax, Abdomen and Pelvis) – 120 kV 

Centre 1.89 0.990 – 1.013 1.87 – 1.91 

Periphery 2.71  2.69 – 2.75 

Weighted 2.44  2.41 – 2.47 

 

3.2. Estimation of organ doses: 

Organ and effective doses of the protocols studied were estimated using beams of width 80 – 320 mm. 

The mean doses for some organs and tissues in (mGy/100 mAs) and effective doses in (mSv/100 mAs) 

resulting from three widths 80, 200, and 320 mm are listed in Tables 3 – 6, and the full width at half maximum 

(FWHM) of these widths are listed in Table 7. FWHM values were assessed with Cavity code at centre and 

periphery of 600 mm long CTDI head and body phantoms. For the purpose of brevity, “organs” is used 

throughout this study to describe organs and tissues. Only organs that were covered fully or partially by the 

primary beam were considered. Doses to organs that were near to or partially within the primary beam 

increased substantially when wider beams were used, through direct irradiation of the organ and increased 

exposure from scatter radiation. The use of different beam widths for the head scan, for example, increased 

brain dose for both phantoms by a factor of ~6. However, the increase was less significant (≤ 1 mGy) for 

organs that were completely inside the scan fields, e.g. oral mucosa and Salivary glands (Table 3). Variations 

of similar magnitude were also found for organ doses resulting from the other protocols (Tables 4 – 6).  

Table 3: Mean organ doses in (mGy/100 mAs) for the ICRP adult male and female reference computational 

phantoms using the head scan and beams of width 80, 200, and 320 mm.  

Head Male Female 

Organ 80 mm 200 mm 320 mm 80 mm 200 mm 320 mm 

Extrathoracic region 1.19 2.44 2.64 2.57 3.78 3.93 

Oral mucosa 1.81 2.37 2.48 2.54 3.49 3.63 

Brain 0.78 3.26 4.55 0.77 3.57 4.74 

Salivary glands 3.45 4.79 4.99 4.33 5.60 5.78 

Eye lens 0.27 1.00 1.09 0.77 1.05 1.12 

Eye bulb 0.34 1.18 1.29 0.75 1.13 1.21 

Effective dose (mSv/100 mAs) 0.11 0.29 0.54 0.17 0.47 0.76 
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Table 4: Mean organ doses in (mGy/100 mAs) for the ICRP adult male and female reference computational 

phantoms using the thorax scan and beams of width 80, 200, and 320 mm. 

Thorax Male Female 

Organ 80 mm 200 mm 320 mm 80 mm 200 mm 320 mm 

Lung 3.54 7.20 8.21 4.55 9.05 10.22 

Breast 1.68 6.87 7.35 6.10 9.26 9.73 

Heart 4.96 9.45 10.47 6.22 11.76 12.88 

Spleen 0.78 3.26 6.34 0.71 3.18 7.96 

Thymus 1.51 10.74 13.19 2.09 12.37 13.84 

Oesophagus 2.29 5.87 8.86 2.73 7.44 11.14 

Liver 0.67 3.05 6.51 0.73 3.78 8.52 

Thyroid 0.61 2.44 15.61 0.74 3.22 17.28 

Spinal cord 1.14 2.88 4.94 1.37 3.41 6.15 

Effective dose (mSv/100 mAs) 1.04 3.06 4.91 1.72 3.65 5.60 

 

Table 5: Mean organ doses in (mGy/100 mAs) for the ICRP adult male and female reference computational 

phantoms using the abdomen scan and beams of width 80, 200, and 320 mm. 

Abdomen Male Female 

Organ 80 mm 200 mm 320 mm 80 mm 200 mm 320 mm 

Colon 8.57 17.67 22.38 2.22 10.83 21.76 

Stomach 13.00 25.84 29.05 18.35 31.92 35.86 

Gall bladder 15.42 22.01 24.04 18.34 29.51 31.95 

Kidneys 14.47 22.98 25.41 18.73 28.11 30.57 

Pancreas 17.53 25.04 27.42 25.09 33.62 35.94 

Spleen 5.68 17.40 20.61 6.39 22.34 26.61 

Liver 9.24 20.79 24.04 9.87 25.56 30.97 

Effective dose (mSv/100 mAs) 3.79 8.52 13.30 3.75 8.69 13.99 

 

Table 6: Mean organ doses in (mGy/100 mAs) for the ICRP adult male and female reference computational 

phantoms using the pelvis scan and beams of width 80, 200, and 320 mm. 

Pelvis Male Female 

Organ 80 mm 200 mm 320 mm 80 mm 200 mm 320 mm 

Colon 5.31 10.25 15.95 10.18 25.35 38.44 

Prostate / Uterus 7.01 31.43 37.73 15.40 34.10 38.35 

Small intestine 5.44 13.82 23.96 12.12 22.76 31.62 

Testes / Ovaries 0.80 3.34 18.29 15.27 33.46 38.08 

Urinary Bladder 27.08 40.83 44.14 22.18 44.28 47.94 

Effective dose (mSv/100 mAs) 2.73 5.53 8.66 4.47 10.35 13.88 
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Table 7: Full width at half maximum (FWHM) values of the beam widths used in Tables 3 – 6. 

 FWHM Head (mm) FWHM Body (mm) 

 centre periphery centre periphery 

80 mm 82.1 75.2 93.8 69.2 

200 mm 201.3 187.6 206.4 171.1 

320 mm 319.1 298.95 325.2 273.6 

 

3.3. Conversion coefficients for organ and effective doses: 

Organ and tissue doses for each scan protocol (Tables 3 – 6) have been normalized with respected to 

the weighted values of CTDIIEC,w (Table 2) as in Eq.(5) to obtain the conversion coefficients (CCT), and 

results for some organs are given in (Figures 3 – 6). In a similar manner to the CTDIvol, CTDIIEC,w gives an 

average dose within a section of the scan. Results show that CTDIIEC,w can provide an indication of the doses 

to a small number of organs such as the salivary glands resulting from the head scan (Figure 3), but the 

relationship is limited for the majority of organs as they only lie partially within the primary beam or are at 

such a depth that the average dose value given by CTDIIEC,w is not appropriate.  

Another factor is that CTDIIEC,w is measured using phantoms with different shapes and diameters from 

the heterogeneous human body (McCollough et al., 2011). This affects organs in the thorax especially, since 

the attenuation of the lung tissue is lower, so values of CCT for organs in the thorax are greater than 1.0 for 

most beam widths (Figure 4). The coefficients for the lung, breast, and heart rise rapidly initially and then 

level off once the majority of the organ is within the scan field, while that for the oesophagus rises gradually 

as the field extends to cover a greater proportion of the length. The dose to the thyroid, which lies in the 

narrower neck region, rises even more rapidly once the field extends to cover the thyroid. Nevertheless, the 

CCT values linked to CBCT beam width could be utilized in assessment of organ doses for a reference patient 

undergoing IGRT procedures using the scan protocols employed in the clinic. 
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Figure 3: Conversion coefficients (CCT) to give mean doses for a selection of organs resulting from head 

scans with beams of width 80 – 320 mm for the ICRP adult male (M) and female (F) reference computational 

phantoms.  
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Figure 4: Conversion coefficients (CCT) to give mean doses for a selection of organs resulting from thorax 

scans with beams of width 80 – 320 mm for the ICRP adult male (M) and female (F) reference computational 

phantoms. 
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Figure 5: Conversion coefficients (CCT) to give mean doses for a selection of organs resulting from abdomen 

scans with beams of width 80 – 320 mm for the ICRP adult male (M) and female (F) reference computational 

phantoms. 

 

Coefficients for organs covered by the abdominal scan all follow a similar pattern increasing at a greater 

rate initially for narrow scan widths (Figure 5) and then levelling off once the majority of the organ is within 

the scan field, although continuing to rise because of the build-up of radiation scattered with field size. A 

similar pattern is also followed for the bladder, prostate, uterus, and ovaries for the pelvis scan, but the colon 

and small intestine increase linearly as the beam gradually encompasses a greater proportion of the organ. 

The dose to the testes only rises for wider beams when they fall within the radiation field.  
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Figure 6: Conversion coefficients (CCT) to give mean doses for a selection of organs resulting from pelvis 

scans with beams of width 80 – 320 mm for the ICRP adult male (M) and female (F) reference computational 

phantoms. 

 

Doses to individual organ have been combined with tissue weighting factors to calculate values of 

effective dose from which coefficients (CCE) can be derived linking DWP values to effective doses for 

imaging procedures. Values of CCE, derived as in Eq.(6) are plotted against beam width for the four protocols 

in Figure 7.  

 

Page 16 of 25AUTHOR SUBMITTED MANUSCRIPT - JRP-101003.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



17 

 

 

  

  

Figure 7: Variation of the conversion coefficients (CCE) to give effective doses for CBCT beams of width 

80 – 320 mm for the ICRP adult male and female reference computational phantoms, for the four scan 

protocols studied. 

 

Values of CCE for scan protocols with the beam widths used in routine clinical practice (180 – 220) mm 

are given in (Table 8). Uncertainties are given based on values for beam widths within  20 mm of the value 

used 200 mm. Conversion coefficients from DLP to effective dose for MDCT examinations (Shrimpton et 

al., 2016) are included in Table 8 for comparison.  

Table 8: Conversion coefficients (CCE) for CBCT derived in this study for male and female phantoms as in 

Eq.(6) for effective dose, compared with factors (E/DLP) for adults undergoing MDCT scans (Shrimpton et 

al., 2016). All coefficients are in (mSv (mGy cm)-1). 

Region examined Male phantom Female phantom Average adults (E/DLP) factors 

Head 0.0026 ± 0.0001 0.0042 ± 0.0001 0.0034 ± 0.0001 0.0020a 

Thorax 0.0231 ± 0.0002 0.0274 ± 0.0003 0.0252 ± 0.0003 0.027 

Abdomen 0.0214 ± 0.0004 0.0218 ± 0.0002 0.0216 ± 0.0004 0.024 

Pelvis 0.0104 ± 0.0003 0.0195 ± 0.0005 0.0150 ± 0.0006 0.020b 
a This value relates to a head scan that does not include the neck. 
b This value relates to a scan of the abdomen and pelvis. 
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4. Discussion 

4.1. Factors influencing the conversion coefficients: 

.The CCT and CCE values can be influenced by several factors, which lead to an over/underestimation 

in assessment of organ and effective doses.   

4.1.1. Gender and stature: 

Variations in organ doses of the male and female phantoms (Tables 3 – 6) are mainly due to the height and 

shape differences of the phantoms with the male being taller (1.76 m) and wider than the female (1.63 m). 

For example, although the volumes of the colon and small intestine in the female are almost the same as those 

in the male (ICRP, 2009), doses to the colon and small intestine resulting from the pelvic scan for the female 

were about double those for the male (Table 6). This is because a CBCT scan of a fixed field size was selected 

and centred in the same position at the middle of the pelvis, which resulted in a greater proportion of the 

abdominal organs lying within the scan field for the female than for the male phantom. In addition, the x-ray 

beam is more attenuated within the thicker male body than in the female. Such variations are similar to those 

reported in an earlier study (Martin et al., 2016), and for the Elekta XVI system using the same ICRP 

phantoms (Marchant and Joshi, 2017). In general, organ and effective doses for the female phantom were 

higher than those for the male. An exception to this was that the male colon dose from the abdomen scan, 

which was higher by up to a factor of ~4 than that for the female (Figure 5). This resulted from that the male 

transverse and descending colon walls being closer to pancreas, which was the position set as the centre of 

the abdomen scan (ICRP, 2009). 

The dose variations between the male and female phantoms lead to differences in the CCT values under 

different conditions, with the female coefficients being generally larger (Figures 3 – 6). The CCE values to 

give effective doses for head, thorax and pelvic scans were larger for females, but were comparable for 

abdomen scans (Figure 7, Table 8), as the contribution from the male colon dose, which accounts for 12% of 

the effective dose counterbalanced the higher doses to other organs (Table 5).  

The CCT values for the two phantoms were within factors of ±0.48, ±0.66, ±0.56 and ±0.86 for the head, 

thorax, abdomen and pelvis scan protocols, respectively, but there are significant dose differences between 
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the phantoms. These variations indicate that gender and stature play a role in determining the conversion 

coefficients, particularly when a standard field size is used (AAPM, 2011, AAPM, 2015). Therefore, the CCT 

values provided in this study that are based on the ICRP phantoms, which represent the average size for the 

male and female populations, should not be used to assess organ doses for specific patients. However, 

derivation of CCT values based on reference phantoms, from which values for effective dose can be derived, 

are important for providing indicative assessments of the dose contributions from imaging procedures 

received by patients in general during an IGRT treatment. These can provide useful information relating to 

optimization of protocols and procedures , and can be used to compare different imaging systems (Choonsik 

et al., 2015).   

4.1.2. Software version and kV system: 

The default scan protocols implemented in the recent software version of the OBI system (V2.5) are 

different from those used in previous versions. Recently, Abuhaimed et al. (2017) compared organ and 

effective doses from two software versions, V2.5 and V1.6. The main difference between these versions was 

the field size, where the beam width was extended from 198 mm in V1.6 to 214 mm in V2.5. This difference 

was found to play a role in increasing organ doses by 3 – 13%, 10 – 77%, and 13 – 21% for the head, thorax, 

and pelvis scans respectively, thus effective doses raised by 13 – 14%, 17 – 18%, and 16 – 17%, respectively, 

similar to results from other studies comparing different software versions (Palm et al., 2010, Cheng et al., 

2011). 

The organ and effective doses have been normalized with respect to the CTDIIEC to derive coefficients 

that minimize the influence of the imaging system and scan parameters used in each software version on the 

doses (Turner et al., 2010, Turner et al., 2011, ICRU, 2012, McMillan et al., 2014). The CCE values derived 

here are based on a Varian imaging system (OBI) V2.5, but may be suitable for other OBI versions and other 

systems such as the Elektra XVI, if the scan parameters are taken into account, the influence on CCE is less 

than on the CCT values, since as beam widths are extended and the DWP increases, greater proportions of 

the radiosensitive organs lie within the radiation field increasing the effective dose accordingly (Figure 7). 
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4.2. The use of CCT and CCE: 

Values of conversion coefficients CCT and CCE have been derived to allow organ and effective doses to 

be calculated for reference patients. Multiplication of the CTDIIEC by the width of the cone beam has been 

used to derive a DWP to provide a quantity that can be linked to effective dose. The variation in CCE over 

the range of beam widths likely to be used in clinical practice is 18%, so these can provide a relatively 

simple method for obtaining approximate values of effective dose that may be suitable for general use on any 

CBCT system. Values of CCE are compared with coefficients for determining effective dose from values of 

DLP for MDCT examinations using the same ICRP reference phantoms in Table 8. Although the male and 

female coefficients are different, the averaged values relating to effective dose from the combined phantom 

results, are similar to the DLP conversion factors. The values for the male and female head CCEs are 

surprisingly different, but this arises from the difference in angulation of the head (ICRP, 2009) that makes 

the result for the female phantom particularly large. The head CCE is substantially greater than the DLP 

factor, but since it includes the neck and thyroid, the comparison is not like for like. The coefficients for the 

thorax and abdomen are within 11% of the DLP factors derived, while that for the pelvis differed by 33% 

from the DLP factor, but his was for the abdomen and pelvis, so again it is not a like for like comparison.  

This study has been based on the ICRP reference phantoms. As organ doses will vary with patient size, 

the analyses cannot be applied to individual patients. However, size specific adjustment factors could be 

developed, in the same manner as for MDCT in the future (AAPM, 2011, AAPM, 2015), although such 

adjustments would need to take account of differences in patient heights, as well as diameters and beam 

widths. Effective dose, on the other hand, is based on a reference person representing the average for a 

population, and portrayed by the ICRP reference phantoms. The values of effective dose obtained could be 

used in evaluating the contribution from frequent imaging of the patient to treatment doses, and assist in the 

general optimization of protocols for the whole treatment process. 

5. Conclusions 

The increased use of frequent imaging in the direction of treatment through IGRT requires careful 

consideration about the optimal use of imaging. Although imaging has clear benefits in ensuring accurate 

delivery of treatment, there are many questions to be answered to ensure that procedures are optimized. These 
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include the frequency with which imaging should be performed and whether the same scan field and level of 

image quality are required for all images. In order to facilitate this, more information is required on doses 

received by patients from the imaging component. In this study conversion coefficients have been derived 

that should enable organ doses to be derived from assessments of CTDIIEC for different scan protocols. A 

dose–width product calculated by multiplying the CTDIIEC by the width of the CBCT beam is proposed as a 

quantity that can be used for estimating effective dose. If data on effective doses from imaging procedures 

are available, these can be used in making judgements on the contributions to patient dose from imaging and 

thereby assist in optimization of the whole treatment regime. In addition, this will provide information on 

dose levels that can be employed in converting dosimetry data recorded in patient records into quantities 

relating directly to patient doses. 
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