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Optimal management of central nervous system (CNS) infiltration is a key remaining 

challenge in delivering precision therapy for childhood acute lymphoblastic leukaemia 

(ALL)1. Most CNS relapses occur in children without high-risk features and minimal residual 

disease does not reliably predict CNS relapse.1, 2 Consequently, all children receive intensive 

CNS-directed therapy, which is potentially toxic to the developing brain3.  The nature of cells 

infiltrating the CNS is a subject of much debate with some believing that a subset of cells 

selectively traffic to the CNS compartment whilst others believe that all ALL cells are capable 

of entering the CNS. The majority of mechanistic work addressing this question has been 

performed in patient-derived xenograft (PDX) models. Here, we report the first description of 

the clonal architecture of CNS and paired bone marrow (BM) compartments in patients with 

ALL, using high throughput sequencing (HTS) of primary patient BM and cerebrospinal fluid 

(CSF) samples taken at diagnosis and relapse. This addresses a significant gap in our 

understanding of how faithfully PDX models recapitulate clonal architecture in patients. Our 

data support our hypothesis that CNS and BM ALL share common characteristics and after 

their development in the BM almost all B-cell precursor ALL clones are capable of 

disseminating to the CNS. In addition, they suggest that in most cases CNS and 

accompanying BM relapses are not intrinsically different biologically, often arising from the 

same subclones at the two sites.  

 

Tailored CNS-directed therapy requires improved understanding of mechanisms of CNS 

relapse and development of more sensitive assays to track CNS response during therapy. 

CNS leukaemia is usually detected by CSF cytology. CSF flow cytometry or PCR are more 

sensitive1, 4, 5, but increased detection at diagnosis has not improved prediction of CNS 

relapse, possibly because it measures disease load at baseline rather than response to 

therapy6. PDX models suggest that up to 80% of diagnostic BM samples can engraft in the 

CNS7 and cellular bar-coding experiments show the clonal composition within murine CNS 

and BM compartments are similar7. This suggests the ability to enter the CNS-compartment 
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is a generic property of ALL. However, these results contrast with other studies indicating 

that CNS leukaemic blasts may selectively express genes associated with trafficking.2, 8, 9 

Interpretation of PDX data has caveats, since CNS infiltration is measured without selective 

pressures of CNS-directed therapy or immunosurveillance and species differences may 

make microenvironments more or less permissive for expansion.1 

New techniques using HTS of immunoglobulin gene rearrangements allow detailed 

interrogation of ALL sub-clonal composition within individual patients.10 Unlike conventional 

PCR, using allele-specific primers, HTS is able to visualise all gene rearrangements 

simultaneously and therefore uncover the extent of initial clonal diversity and the influence of 

selective pressures over time11. Here we use HTS to investigate clonal relationships 

between leukaemic cells directly isolated from patients CSF and BM in childhood ALL. This 

provides an important test of the validity of PDX models and insights into CNS and BM 

clonal selection during therapy.  

Following ethical approval (REC 13/LO/1262), BM and CSF were obtained from patients with 

CNS involvement. Clinical details and samples available for analysis are given in Table 1. 

Samples were processed as previously described.11 Briefly, DNA was amplified by multiplex-

PCR of rearranged VDJ (Variable, Diverse, Joining) segments of the immunoglobin heavy 

chain (IGH) genes, which encode the hypervariable CDR3 domain and sequenced on a 

MiSeq (Illumina, San Diego, CA). Due to sample constraints IGH was chosen as this was the 

dominant clone by screening at diagnosis in all the patients and was used as MRD marker. 

Further experimental details are described in Supplementary Methods and Supplementary 

Table 1. Rearrangements were annotated with reference to ImMunoGeneTics germline 

sequences12 using Vidjil.13 The ultra-sensitivity of HTS detecting VDJ rearrangements comes 

with the problem of distinguishing leukaemia-specific from normal-background repertoire. 

The frequency of most common IGH gene rearrangements from BM aspirates of healthy 

individuals has been shown to average 0.04 - 0.08%.14 For this study, a neoplastic clone 
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was defined as rearrangements with frequencies >1% in an individual sample, or where the 

identical rearrangement (at level >1%) is seen in a paired sample at any level.  

We analysed twelve consecutive patients with B-cell precursor ALL and CNS involvement. 

High and low-risk patients were represented and four cases had a clinically isolated CNS 

relapse (Table 1). Criteria for CNS relapse was defined as ≥ 5 white blood cells per µl of 

CSF with morphological evidence of lymphoblasts. A combined BM/CNS relapse was 

defined as presence of CNS disease with ≥ 5% blasts in a concomitant BM aspirate. One 

patient had CNS involvement at diagnosis, in eight patients, material was available from 

diagnosis and relapse, and three patients had samples from CNS relapse but no original 

diagnostic material. Combined relapses are shown in Figure 1 and isolated CNS relapses in 

Figure 2, detailed information on the identity and percentages of clones in different 

compartments is given in Supplementary table 2. 

Firstly, we examined CNS and BM clones in the patient with overt CNS infiltration at original 

diagnosis (CNS004, Figure 1A). The CNS and BM compartments share identical dominant 

clones albeit with reversed proportions between compartments. Next, we compared BM and 

CSF at the time of combined relapse, these results fell into two distinct patterns (Figure 1G 

and Figure 1H). In the majority, (5/7: CNS001, CNS003, CNS007, CNS008, CNS009) 

(Figure 1B-F and Supplementary table 2), BM and CSF clonal composition are remarkably 

similar at the time of relapse, in terms of both the extent of clonal diversity and the dominant 

clones. In the remaining 2 patients (CNS002, CNS006, Figure 1I - J) there was evidence for 

some separate clonal evolution at the two sites although notably, all CNS clones are 

detectable in the BM albeit sometimes at very low frequencies. 

We then examined the 4 patients with apparently isolated CNS relapse (Figure 2 A-D). In 

cases, CNS010, CNS011 and CNS012 examination of the paired (apparently uninvolved) 

BM at the time of relapse using the HTS assay, identified low-level BM involvement with all 

CNS clones also detected in the BM compartment – albeit at very low frequencies. The 

fourth patient (CNS005) initially had an isolated CNS relapse at 72 months (CSF sample 



5 

 

analysed), then achieved remission before combined relapse at 100 months (BM sample 

analysed). Again the 2 dominant clones at CNS relapse were the dominant clones at BM 

relapse. Therefore, these cases of clinical CNS involvement with subclinical or later BM 

relapse also fit into pattern 1 (Figure 1G). In the 7 patients with diagnostic BM available 

(CNS001 (Figure 1B), CNS002 (Figure 1I), CNS003 (Figure 1C), CNS005 (Figure 2A), 

CNS006 (Figure 1J), CNS010 (Figure 2B) and CNS012 (Figure 2D) three patients showed 

persistence of the original dominant clone, two showed falling levels of the dominant 

diagnostic clone with a rise in minor subclones whilst the other two showed loss of the 

dominant clone and selection of minor subclones at relapse. This rise and fall of subclones 

between diagnosis and relapse is a phenomenon widely reported in the literature.15  

These data represent the first description of the clonal architecture of CNS and paired BM 

compartments in patients with ALL and extends our understanding of mechanisms of CNS 

leukaemia. However, several limitations should be noted when interpreting our results. 

Patient numbers are small due to the difficulty of obtaining these rare samples. Also, in order 

to complete the full clonal picture, other immunoglobulin and T-cell receptor gene loci could 

be assessed if DNA quantity allowed. Results from the patient with CNS disease at 

diagnosis are consistent with our hypothesis that ALL cells freely traffic to the CNS with no 

evidence for selection of “CNS-tropic” subclones. A similar situation is seen at relapse, with 

9 out of 11 patients sharing subclones between BM and CNS compartments. This supports 

our previous PDX work showing the polyclonal nature of CNS-infiltrating cells which share 

similar clonal architecture with BM and spleen9. Interestingly, although most patients showed 

emergence of minor subclones during treatment, they did not differ between CNS and BM. 

This is perhaps surprising as selective pressures (chemotherapy exposure, immune 

surveillance and nutrient availability) vary between the two sites. Two possible explanations 

can be postulated. Firstly, relapse clones emerge at one site and then freely traffic to the 

other site prior to overt clinical relapse (akin to free trafficking seen at original diagnosis). 
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This mechanism is further supported by our data showing clones identified in the CNS at 

apparently isolated relapse are also detectable in the corresponding BM at low frequency.  

Alternatively, relapse mechanisms are cell-intrinsic with certain subclones predetermined to 

be biologically fitter (presumably due to additional mutations), irrespective of their local 

microenvironment. In contrast, 2 of 11 patients with CNS relapse, had some separate clonal 

evolution between BM and CNS, although many shared clones were also seen. In these 

cases, varying selective pressures or local acquisition of advantageous mutations may 

cause differential expansion in the two compartments. Using the more sensitive HTS assay, 

BM disease was detectable in all patients with apparently isolated CNS relapse, further 

evidence that BM infiltration is present at some level even in apparently isolated CNS 

relapse.1, 5  

Overall, our data support the hypothesis that CNS and BM ALL share common 

characteristics and that almost all clones can disseminate to the CNS. In addition, they 

suggest that CNS and BM relapses are not intrinsically biologically different, often arising 

from the same subclones at the two sites or freely trafficking between compartments at the 

time of relapse.  Thus we provide underpinning science to the long-held belief, derived from 

clinical observations, that CNS and BM relapses are “competing events” rather than distinct 

clinical entities i.e. increased CNS-directed therapy reduces overt CNS relapses but results 

in late BM relapses and vice versa5. These observations support use of at least some CNS-

directed therapy for ALL irrespective of CSF findings at diagnosis. Ultra-sensitive techniques 

such as HTS may allow dynamic tracking of CNS and BM response to treatment permitting 

more precise risk-adapted therapy tailored to the risks of BM and CNS relapse.  
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Table 1. Patient characteristics of ALL samples with CNS involvement 
CNS-1 no blasts in CSF; CNS-2 atraumatic < 5 blast/µl; CNS-3 > 5 blast/ µl; CCR continued complete remission; BM bone marrow; CSF cerebrospinal 
fluid; • sample available; � no sample available; NA not applicable; *on treatment relapse; † BM samples at time of combined relapse. 

Patient Age at 

diagnosis 

(years) 

Highest 

WCC 

(x10
9

/l) 

CNS at 

diagnosis 

Cytogenetics Treatment 

protocol 

End of  

induction 

MRD 

Time to 

relapse 

(months) 

Relapse Samples available 

 

D
ia
g
n
o
st
ic
 

B
M
 

C
S
F
   

 B
M
 a
t 
C
S
F
 

re
la
p
se
  

CNS001 3 2.6 CNS-1 CDKN2A deletion 

 

UKALL2011 Low risk 17 * Combined  
• • • 

CNS002 4 6.7 CNS-1 ETV6-RUNX1 UKALL2011 Risk 34 Combined 

 
• • • 

CNS003 1 263.2 CNS-1 KMT2A [t(9;11)] UKALL2011 Risk 3* Combined 

 
• • • 

CNS004 3 7.5 CNS-3 High hyperdiploid UKALL2011 Risk CCR None 

 
• • NA 

CNS005 4 12.7 CNS-1 High hyperdiploid UKALL2003 Low Risk 72 Isolated CNS then 

combined 
• • •† 

CNS006 1 207.4 CNS-1 KMT2A[t(9;11)] UKALL2011 Risk 6* Combined 

 
• • • 

CNS007 1 296 CNS-2 KMT2A [t4;11)] UKALL2011 Risk 18* Combined 

 
9 • • 

CNS008 2 240.0 CNS-1 ETV6-RUNX1 UKALL2011 Risk 48  Combined 

 
9 • • 

CNS009 5 18.1 CNS-1 ETV6-RUNX1 UKALL2011 Risk 45 Combined 

 
9 • • 

CNS010 4 

 

3.5 CNS-1 ETV6-RUNX1 UKALL2003 Low risk 74  Isolated CNS 
• • • 

CNS011 3 

 

1.5 CNS-1 CDKN2A deletion UKALL2011 Risk 22* Isolated CNS 
9 • • 

CNS012 2 

 

7.1 CNS-1 High hyperdiploid UKALL2011 Low risk 30* Isolated CNS 
• • • 
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Figure legends 

Figure 1. Combined relapses, CNS disease at presentation and schematic 
presentation of the types of relapse seen. (A) CNS004. CNS involvement at diagnosis, 
showing both compartments share the two dominant clones albeit at reversed frequencies. 
(B) CNS001. The dominant diagnostic BM clone is IGHV4-34*01/IGHD2-2*01/IGHJ5*02 at 
85%, only present at 0.002% in BM relapse and undetectable at CNS relapse. The dominant 
clone in BM and CNS relapse samples is IGHV6-1*01/IGHJ5*02 at 78% and 88% 
respectively (in original diagnostic BM only 4%). (C) CNS003. The dominant clone in all 
three samples is IGHV1-46*01/IGHD3-3*01/IGHJ4*02 at 91%, 50% and 94% in diagnosis 
BM, BM relapse and CNS relapse respectively. (D) CNS007. Identical dominant clone 
IGHD6-13*01/IGHJ4*02 37% and 45% respectively in the BM relapse and CNS relapse 
samples. There is a smaller clone (15%) IGHD2-2*02/IGHJ4*02 in BM, not detectable in 
CNS sample. In contrast, there is 11% IGHD2-2*02/IGHJ4*02 in CNS relapse not detectable 
in the BM relapse sample. (E) CNS008. Identical dominant clone IGHV3-30-3*01/IGHD3-
9*01/IGHJ6*03 at 95% and 64% in BM relapse and CNS relapse respectively. (F) CNS009. 
Identical dominant clones IGHV1-46*01/IGHD5-12*01/IGHJ4*02 at 34% and 48%, and 
IGHV3-71*02/IGHD6-6*01/IGHJ4*02 at 31% and 40% in BM and CNS respectively. (G and 
H) Schematic presentation of the two patterns of relapse seen. Left panel (“Pattern 1”) 
shows the same ALL clones in BM and CNS at relapse with no evidence for selection of 
“CNS-tropic” subclones, this could be due to relapse occurring at one or other site and then 
free trafficking between the CNS and BM, or due to the same clones surviving treatment 
independently at the two sites. The right panel (“Pattern 2”) shows the alternative pattern, 
where there is evidence for some separate clonal evolution at the two sites although many 
clones are also present in both compartments. (I) CNS002. Dominant diagnostic BM clones 
are 36% IGHV1-69*06/IGHD5-12*01/IGHJ4*02, 11% IGHV3-72*01/IGHD2-8*02/IGHJ4*02 
and 10% IGHV1-18*01/IGHD2-2*02/IGHJ6*02. The dominant clone in the relapse BM 
sample is also IGHV1-69*06/IGHD5-12*01/IGHJ4*02 at 45%, however, this is only present 
at 5% in the CNS relapse sample. The second dominant clone in the relapse BM sample is 
IGHV3-74*01/IGHD5-12*01/IGHJ4*02 at 34% is only present at 0.1% in diagnostic BM and 
0.1% in CNS relapse. CNS relapse dominant clone is IGHV3-74*01/IGHD7-27*01/IGHJ6*02 
at 43% which is absent in the original diagnostic BM and only 0.6% in BM relapse.  The 
second dominant clone in the CNS is IGHV3-74*01/IGHJ6*02 14% (which is again absent in 
the original diagnostic and only 0.06% in BM relapse.  The dominant clones in the CNS 
(IGHV3-74*01/IGHD7-27*01/IGHJ6*02 and IGHV3-74*01/IGHJ6*02) share the same IGHV 
and IGHJ gene usage but the CDR3 regions are different and unrelated– shown in 
Supplementary Figure 1. (J) CNS006. Shows change in clones from diagnosis through to 
combined BM and CNS relapse. Dominant diagnostic BM clone is IGHV6-1*01/IGHD3-
10*01/IGHJ6*02 26% (this is very low level at 0.9% in relapse BM and undetectable in CNS 
relapse). IGHV3-30-3*01/IGHJ4*02 was only 2% at diagnosis but 10% in relapse BM and 
1% in CNS relapse. Dominant clone in the relapse BM IGHV3-11*06/IGHJ4*02 at 41% was 
not detectable in the diagnostic sample or in CNS relapse samples. Other dominant relapse 
BM clones were 11% IGHV1-3*01/IGHD2-8*01/IGHJ4*02 (2% in original diagnostic BM and 
1% in CNS relapse), 10% IGHV3-30-3*01/IGHD2-8*01/IGHJ4*02 (2% in original diagnostic 
BM and 1% in CNS relapse). The dominant clone in CNS relapse was  IGHV6-1*01/IGHD2-
8*01/IGHJ4*02 at 26% was only low level in original diagnostic and relapse BM samples at 
0.4% and 0.5% respectively; The other dominant clones in the CNS were 21% IGHV3-
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30*18/IGHJ4*02 (0.01% and in original diagnostic and relapse BM respectively) and 16% 
IGHV7-4-1*01/IGHJ6*02 (0.02% in original diagnostic and 0.1% in relapse BM).   

Figure 2. Isolated CNS relapses. (A) CNS005. Dominant diagnostic BM clone is IGHV1-
8*01/IGHD2-2*02/IGHJ6*03 at 55%. At relapse, the dominant clones are IGHV3-23/IGHD2-
2*02/IGHJ6*03 and IGHV1-2*04/IGHD3-22*01/IGHJ6*03 respectively in BM 40% and 48%, 
and CNS 39% and 45%. In original diagnostic BM IGHV3-23/IGHD2-2*02/IGHJ6*03 
represents 0.005% and IGHV1-2*04/IGHD3-22*01/IGHJ6*03 represents 0.01%. The 
dominant clone in the diagnostic BM IGHV1-8*01/IGHD2-2*02/IGHJ6*03 55% is not 
detectable at relapse, but on further analysis, this has been V-V replaced whereby IGHV1-
8*01 is replaced to create the IGHV3-23/IGHD2-2*02/IGHJ6*03 clone at relapse 
(Supplementary Figure 2). The presence of the IGHV3-23/IGHD2-2*02/IGHJ6*03 clone in 
the diagnostic BM albeit at very low level also demonstrates there is V-V replacement at 
diagnosis. (B) CNS010. Dominant clone in diagnostic BM is IGHV3-15*01/IGHD6-
19*01/IGHJ6*02 at 31%, there are three other subclones, 24% IGHV4-59*01/IGHD3-
10*01/IGHJH3*02, 12% IGHV3-33*01/IGHD6-6*01/IGHJ2*01 and 6% IGHV1-
46*01/IGHJ4*02. At time of CNS relapse the dominant clone is also IGHV3-15*01/IGHD6-
19*01/IGHJ6*02 at 41%, however, the other three dominant clones present in diagnostic BM 
are undetectable in the CSF sample. The other dominant clone in the CNS relapse is 
IGHV4-59*01/ IGHD3-10*01/IGHJH3*02 at 46% which is only present at a level 0.0001% in 
diagnostic BM. The BM in morphological remission at time of CNS relapse shows very low 
level of the CNS dominant clone IGHV4-34*01/ IGHJ2*01 at a level 0.12% and the original 
diagnostic BM clone IGHV3-15*01/IGHD6-19*01/IGHJ6*02 0.05%. (C) CNS011. Dominant 
clones in CSF at CNS relapse IGHV4-34/IGHD3-9*01/IGHJ6*02 at 54% and IGHV3-
33*01/IGHD3-10*02/IGHJ3*02 at 34%. These clones are detected at low level in BM at time 
of CNS relapse 0.54% and 0.33% respectively, with no additional dominant clones detected. 
(D) CNS012. Dominant clones in diagnostic BM are IGHV1-2*04/IGHD7-27*01/IGHJ2*01 
and IGHV7-4-1*02/IGHD5-12*01/IGHJ6*02 at 32.4% and 31.7% respectively. In the CNS 
relapse CSF sample, the same two dominant clones are present at comparable levels. The 
BM at time of CNS relapse was morphologically negative, however, there was low-level 
positivity for both clones by both real-time PCR and HTS. 
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SUPPLEMENTARY MATERIAL

Supplementary Methods

Processing of samples

For BM samples, the total mononuclear cell fraction was isolated following centrifugation on

Ficoll-Hypaque. CSF cells were pelleted by centrifugation and directly DNA directly

extracted. DNA was extracted according to standardised protocols using QIAamp DNA Mini

or Mirco Kit (Qiagen). DNA concentration was estimated using spectrophotometry

(Nanodrop, Thermo Scientific) and then accurately quantitated by RQ-PCR using albumin as

a control/reference gene. DNA and approximate cells numbers (based on 6.6 pg DNA per

cell) analysed are show in supplementary table 1.

High throughput sequencing

Paired patient samples were run on separate MiSeq lanes, as well as other measures

employed to prevent cross contamination.1 We used a single-end 250-300 read from J to V

to ensure optimal quality over the CDR3-encoding region. Indexing reads were performed to

identify the 8 base pair dual indices sequences at both ends of the amplicons.

Supplementary references

1. Bartram J, Mountjoy E, Brooks T, et al. Accurate Sample Assignment in a
Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual
Disease. J Mol Diagn. 2016;18(4):494-506.



Patient DNA samples input

BM
diagnosis

BM
relapse

CSF
relapse

CNS001 500 ng
75000 cells

500 ng
75000 cells

85 ng
12300 cells

CNS002 500 ng
75000 cells

500 ng
75000 cells

100 ng
15000 cells

CNS003 500 ng
75000 cells

500 ng
75000 cells

100 ng
15000 cells

CNS004 500 ng
75000 cells

NA
*50 ng
7500 cells

CNS005 500 ng
75000 cells

500 ng
75000 cells

100 ng
15000 cells

CNS006 500 ng
75000 cells

500 ng
75000 cells

100 ng
15000 cells

CNS007 ◌ 
500 ng
75000 cells

40 ng
6000 cells

CNS008 ◌ 
500 ng
75000 cells

50 ng
7500 cells

CNS009 ◌ 
500 ng
75000 cells

70 ng
11000 cells

CNS010 500 ng
75000 cells

6 ug
1000000 cells

100 ng
15000 cells

CNS011 ◌ 
500 ng
75000 cells

100 ng
15000 cells

CNS012 500 ng
75000 cells

1 ug
150000

100 ng
15000 cells

Supplementary table 1. DNA input and approximate cells input

*indicates CSF sample was at diagnosis. ◌ No sample available; NA = not applicable



Supplementary table 2. Detailed clone information across compartments

Diagnosis BM BM relapse CSF relapse

CNS001 IGHV4-34*01/IGHD2-2*01/IGHJ5*02 85%
IGHV6-1*01/IGHJ5 *02 4%

IGHV4-34*01/IGHD2-2*01/IGHJ5*02 0.002%
IGHV6-1*01/IGHJ5 *02 88%

IGHV4-34*01/IGHD2-2*01/IGHJ5*02 0
IGHV6-1*01/IGHJ5 *02 78%

CNS002 IGHV1-69*06/IGHD5-12*01/IGHJ4*02 36%
IGHV3-72*01/IGHD2-8*02/IGHJ4*02 11%
IGHV1-18*01/IGHD2-2*02/IGHJ6*02 10%
IGHV3-74*01/ IGHD4-23*01/IGHJ6*02 3%
IGHV3-74*01/IGHD5-12*01/IGHJ4*02 0.1%
IGHV3-74*01/IGHD7-27*01/IGHJ6*02 0
IGHV3-74*01/IGHJ6*02 0

IGHV1-69*06/IGHD5-12*01/IGHJ4*02 45%
IGHV3-72*01/IGHD2-8*02/IGHJ4*02 0
IGHV1-18*01/IGHD2-2*02/IGHJ6*02 0
IGHV3-74*01/ IGHD4-23*01/IGHJ6*02 0
IGHV3-74*01/IGHD5-12*01/IGHJ4*02 34%
IGHV3-74*01/IGHD7-27*01/IGHJ6*02 0.6%
IGHV3-74*01/IGHJ6*02 0.06%

IGHV1-69*06/IGHD5-12*01/IGHJ4*02 5%
IGHV3-72*01/IGHD2-8*02/IGHJ4*02 0
IGHV1-18*01/IGHD2-2*02/IGHJ6*02 0
IGHV3-74*01/ IGHD4-23*01/IGHJ6*02 0
IGHV3-74*01/IGHD5-12*01/IGHJ4*02 0.1%
IGHV3-74*01/IGHD7-27*01/IGHJ6*02 43%
IGHV3-74*01/IGHJ6*02 14%

CNS003 IGHV1-46*01/IGHD3-3*01/IGHJ4*02 91% IGHV1-46*01/IGHD3-3*01/IGHJ4*02 50% IGHV1-46*01/IGHD3-3*01/IGHJ4*02 94%

CNS004 IGHV4-34*01/IGHD3-16*01/IGHJ2*01 40%
IGHV6-1*01/IGHD3-9*01/IGHJ4*01 16%

NA IGHV4-34*01/IGHD3-16*01/IGHJ2*01 22%
IGHV6-1*01/IGHD3-9*01/IGHJ4*01 41%

CNS005 IGHV1-8*01/ IGHD2-2*02/IGHJ6 *03 55%
IGHV3-23/ IGHD2-2*02/IGHJ6 *03 0.005%
IGHV1-2*04/ IGHD3-22*01/IGHJ6*03 0.01%

IGHV1-8*01/ IGHD2-2*02/IGHJ6 *03 †
v-v replaced

IGHV3-23/ IGHD2-2*02/IGHJ6 *03 40%
IGHV1-2*04/ IGHD3-22*01/IGHJ6*03 48%

IGHV1-8*01/ IGHD2-2*02/IGHJ6 *03 †
v-v replaced

IGHV3-23/ IGHD2-2*02/IGHJ6 *03 39%
IGHV1-2*04/ IGHD3-22*01/IGHJ6*03 45%

CNS006 IGHV6-1*01/IGHD3-10*01/IGHJ6*02 26%
IGHV3-30-3*01/IGHJ4*02 2%
IGHV3-11*06/IGHJ4*02 0
IGHV1-3*01/IGHD2-8*01/IGHJ4*02 2%
IGHV3-30-3*01/IGHD2-8*01/IGHJ4*02 2%
IGHV3-23*01/IGHD2-8*01/IGHJ4*02 0
IGHV6-1*01/ IGHD2-8*01/IGHJ4*02 0.4%
IGHV3-30*18/IGHJ4*02 0.01%
IGHV7-4-1*01/IGHJ6*02 0.02%

IGHV6-1*01/IGHD3-10*01/IGHJ6*02 0.9%
IGHV3-30-3*01/IGHJ4*02 10%
IGHV3-11*06/IGHJ4*02 41%
IGHV1-3*01/IGHD2-8*01/IGHJ4*02 11%
IGHV3-30-3*01/IGHD2-8*01/IGHJ4*02 10%
IGHV3-23*01/IGHD2-8*01/IGHJ4*02 7%
IGHV6-1*01/ IGHD2-8*01/IGHJ4*02 0.5%
IGHV3-30*18/IGHJ4*02 0.7%
IGHV7-4-1*01/IGHJ6*02 0.1%

IGHV6-1*01/IGHD3-10*01/IGHJ6*02 0
IGHV3-30-3*01/IGHJ4*02 1%
IGHV3-11*06/IGHJ4*02 0
IGHV1-3*01/IGHD2-8*01/IGHJ4*02 1%
IGHV3-30-3*01/IGHD2-8*01/IGHJ4*02 1%
IGHV3-23*01/IGHD2-8*01/IGHJ4*02 0
IGHV6-1*01/ IGHD2-8*01/IGHJ4*02 26%
IGHV3-30*18/IGHJ4*02 21%
IGHV7-4-1*01/IGHJ6*02 16%



CNS007 NA IGHD6-13*01/IGHJ4*02 37%
IGHD2-2*02/IGHJ6*02 15%
IGHD2-2*02/IGHJ4*02 0

IGHD6-13*01/IGHJ4*02 45%
IGHD2-2*02/IGHJ4*02 0
IGHD2-2*02/IGHJ4*02 11%

CNS008 NA IGHV3-30-3*01/IGHD3-9*01/IGHJ6*03 95% IGHV3-30-3*01/IGHD3-9*01/IGHJ6*03 64%

CNS009 NA IGHV1-46*01/IGHD5-12*01/IGHJ4*02 34%
IGHV3-71*02/ IGHD6-6*01/IGHJ4*02 31%

IGHV1-46*01/IGHD5-12*01/IGHJ4*02 48%
IGHV3-71*02/ IGHD6-6*01/IGHJ4*02 40%

CNS010 IGHV3-15*01/IGHD6-19*01/IGHJ6*02 31%
IGHV4-59*01/ IGHD3-10*01/IGHJH3*02 24%
IGHV3-33*01/ IGHD6-6*01/IGHJ2*01 12%
IGHV1-46*01/ IGHJ4*02 6%
IGHV4-34*01/ IGHJ2*01 0.0001%

IGHV3-15*01/IGHD6-19*01/IGHJ6*02 0.05%
IGHV4-59*01/ IGHD3-10*01/IGHJH3*02 0
IGHV3-33*01/ IGHD6-6*01/IGHJ2*01 0
IGHV1-46*01/ IGHJ4*02 0
IGHV4-34*01/ IGHJ2*01 0.12%

IGHV3-15*01/IGHD6-19*01/IGHJ6*02 41%
IGHV4-59*01/ IGHD3-10*01/IGHJH3*02 0
IGHV3-33*01/ IGHD6-6*01/IGHJ2*01 0
IGHV1-46*01/ IGHJ4*02 0
IGHV4-34*01/ IGHJ2*01 46%

CNS011 NA IGHV4-34/ IGHD3-9*01 /IGHJ6*02 0.54%
IGHV3-33*01/IGHD3-10*02/IGHJ3*02 0.33%

IGHV4-34/ IGHD3-9*01 /IGHJ6*02 54%
IGHV3-33*01/IGHD3-10*02/IGHJ3*02 34%

CNS012 IGHV1-2*04/ IGHD7-27*01/ IGHJ2*01 32.4%
IGHV7-4-1*02/ IGHD5-12*01/ IGHJ6*02 31.7%

IGHV1-2*04/ IGHD7-27*01/ IGHJ2*01 0.58%
IGHV7-4-1*02/ IGHD5-12*01/ IGHJ6*02 0.01%

IGHV1-2*04/ IGHD7-27*01/ IGHJ2*01 54%
IGHV7-4-1*02/ IGHD5-12*01/ IGHJ6*02 35.2%

NA = sample not available;
†
Patient CNS005: The dominant clone in the diagnostic BM IGHV1-8*01/ IGHD2-2*02/IGHJ6 *03 (55%) is not detectable at

relapse, but on further analysis this has been V-V replaced (Supplementary figure 2), where by IGHV1-8*01 is replaced to creating the IGHV3-23/ IGHD2-

2*02/IGHJ6 *03 clone at relapse (40% and 39% in BM and CNS respectively). The v-v replaced clone is detected at low level (0.005%) in the diagnostic BM,

indicating the presence of clonal evolution at diagnosis.



IGHD7-27*01

Clone 1 43% AAATGAACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAGAGCCCCTGGGGACTACTACGGTATGGACGTCTGGGGCCAAG
||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||

Clone 2 14% AAATGAACAGTCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCAAGAGACTTCTACTACTACTACGGTATGGACGTCTGGGGCCAAG

IGHJ6*02 ATTA4CTACTACTACTACGGTATGGACGTCTGGGGCCAAG

IGHV3-74*01 CACGGCTGTGTATTACTGTGCAAGAGA

Supplementary Figure 1. Analysis of clones in CSF sample CNS002. The dominant

clones in the CSF (clone 1 74*01/IGHD7-27*01/IGHJ6*02 and clone 2 IGHV3-

74*01/IGHJ6*02) share the same IGHV and IGHJ gene usage but the CDR3 regions are

different and unrelated.



AGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGG IGHV1-8*01

IGHV1-8*01/IGHD2-2*02/IGHJ6*03 AGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGCCACAGGAATATTGTAGTAGTACCAGCTGCTATAGAGGGCTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACC
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

IGHV3-23*01/IGHD2-2*02/IGHJ6*03 GAGGACACGGCCGTATATTACTGTGCTTAAAGACCCCTGATGGTGTTGTAGTAGTACCAGCTGCTATAGAGGGCTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACC

AGGATATTGTAGTAGTACCAGCTGCTATACC IGHD2-2*02

ATTACTACTACTACTACTACATGGACGTCTGGGGCAAAGGG IGHJ6*03

GAGGACACGGCCGTATATTACTGTGCGAAAGA IGHV3-23*01

Supplementary Figure 2. V-V replacement in CNS005. The dominant clone in the diagnostic BM IGHV1-8*01/IGHD2-2*02/IGHJ6*03 55% is

not detectable at relapse, but on further analysis this has been V-V replaced whereby IGHV1-8*01 is replaced to create the IGHV3-23/IGHD2-

2*02/IGHJ6*03 clone at relapse


