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Abstract 21 

Recombination, the exchange of DNA between maternal and paternal chromosomes during 22 

meiosis, is an essential feature of sexual reproduction in nearly all multi-cellular organisms. 23 

While the role of recombination in the evolution of sex has received theoretical and 24 

empirical attention, less is known about how recombination rate itself evolves and what 25 

influence this has on evolutionary processes within sexually reproducing organisms. Here, 26 

we explore the patterns of, and processes governing recombination in Eukaryotes. We 27 

summarise patterns of variation, integrating current knowledge with analysis of linkage map 28 

data in 353 organisms. We then discuss proximate and ultimate processes governing 29 

recombination rate variation and consider how these influence evolutionary processes. 30 

Genome-wide recombination (cM/Mb) rates can vary more than 10-fold across Eukaryotes, 31 

and there is large variation in the distribution of recombination events across closely related 32 

taxa, populations and individuals. We discuss how variation in rate and distribution relates 33 

to genome architecture, genetic and epigenetic mechanisms, sex, environmental 34 

perturbations and variable selective pressures. There has been great progress in 35 

determining the molecular mechanisms governing recombination, and with the continued 36 

development of new modelling and empirical approaches there is now also great 37 

opportunity to further our understanding of how and why recombination rate varies.  38 

 39 

 40 

 41 

 42 
  43 



1. Introduction 44 

Recombination is the exchange of DNA between maternal and paternal chromosomes 45 

during meiosis, and is a fundamental feature of sexual reproduction in nearly all multi-46 

cellular organisms, producing new combinations of genetic variants or alleles which are 47 

passed on to offspring. It is also a fundamental, yet paradoxical evolutionary process: it can 48 

facilitate adaptation through the creation of novel genetic combinations, but it can also 49 

break apart favourable combinations of alleles, potentially reducing fitness [1-3]. This 50 

antagonism is central to the adaptive responses of organisms to their environment [4, 5], 51 

but also to the evolution of sex [3, 6] and to the formation of new species when there is 52 

gene flow [7, 8]. Recombination also performs an essential role during meiosis to ensure 53 

accurate segregation of chromosomes [9, 10]. As a consequence, tight regulation of the rate 54 

of recombination is expected, but studies have revealed that recombination can vary within 55 

and between chromosomes, individuals, sexes, populations and species [11-15]. 56 

Recombination rates can be influenced by environmental and demographic factors, but are 57 

also heritable and underpinned by specific genetic loci [16-20] and can respond to selection 58 

[21, 22]. Therefore, they have the potential to vary in a manner dependent on the 59 

evolutionary or selective contexts [6]. While the role of recombination in the evolution of 60 

sex and in facilitating responses to selection has been the focus of much empirical and 61 

theoretical work, investigation on how recombination rate itself evolves and how this 62 

impacts evolutionary processes within sexually reproducing organisms has received less 63 

attention. Until recently, empirical studies were restricted to cytogenetic studies of chiasma 64 

counts, or to low-density linkage map data in a handful of model organisms; however, in 65 

recent years, advances in genomic technologies have allowed more detailed 66 

characterisation of recombination rates at a finer genomic scale and in a greater number of 67 

species.  68 

 69 

In this review, we aim to explore the patterns of, and processes governing recombination in 70 

predominantly sexually reproducing Eukaryotes from an evolutionary perspective, in a 71 

manner that is accessible to a general audience. We begin by summarising the patterns of 72 

variation in the number of recombination events in the genome per megabase per 73 

generation (herein referred to as recombination rate) at different taxonomic and genomic 74 

scales across Eukaryotes – updating and integrating current knowledge with an analysis of 75 



linkage map data in 353 organisms. Then, we discuss processes governing recombination 76 

rate variation, beginning with what is known of the proximate causes and genetic correlates 77 

of recombination rate variation, before summarising the key evolutionary (ultimate) causes 78 

and consequences of this variation. We do not attempt to systematically review the 79 

enormous body of literature, but want to provide the reader with an introduction to the 80 

topic that is taxonomically broad, reflecting the development of the field, and provide 81 

directions for future research. Throughout, we use the term recombination to refer to the 82 

meiotic process whereby a double strand DNA break (DSB) is repaired via reciprocal 83 

exchange of genetic material between homologous chromosomes, resulting in a crossover 84 

(CO).  85 

2) Patterns of variation in recombination 86 

Recombination can be compared at different taxonomic scales and at different genomic 87 

resolutions, and information at these different scales provides opportunities to address 88 

different questions about how and why recombination rate varies (Figure 1). Recent 89 

advances in DNA sequencing technologies and in methods to estimate recombination rate 90 

from genetic variation data (polymorphisms) sampled from a population have facilitated 91 

estimates of genome-wide recombination rate (GwRR) across species and provided new 92 

opportunities to determine the distribution of recombination at a finer genomic scale (see 93 

Box 1). A pervasive pattern to emerge from these studies is that recombination events are 94 

distinctly non-random, and two important patterns are recognised. Firstly, the exchange of 95 

DNA during a CO event at a location on the chromosome (known as a chiasma) tends to 96 

supress the creation of nearby chiasma, in a process known as CO interference [23], and 97 

secondly, recombination events are often localised into narrow regions, termed hotspots, 98 

where recombination is an order of magnitude (2-10x) higher than the average. Hotspots 99 

have been observed in a range of organisms e.g. Saccharomyces yeast [24], fungal 100 

pathogens [25], plants [see 26], mammals [27], and birds [28], but are absent from others, 101 

e.g. Caenorhabditis elegans [29], honey bees [30] and Drosophila [see 31, 32]. Studies across 102 

different taxonomic scales have shown that recombination frequency and landscape may be 103 

controlled by different mechanisms in different taxa. Consequently, describing how 104 

recombination frequency and landscape vary at different taxonomic scales, from distantly-105 



related taxa to individuals, is a key step toward understanding their rate of evolution as well 106 

as their proximal and ultimate correlates.  107 

 108 

2a) Variation across distantly related Eukaryote taxa 109 

There have been several comparisons of GwRR per base, kilobase (Kb) or megabase (Mb) 110 

across distantly related taxa [33-36]. The most striking pattern to emerge was that 111 

microorganisms and fungi have much higher recombination rates compared to animals and 112 

plants [33, 34]. However, these studies were carried out in a relatively small number of 113 

species, often relying on chiasma count data in a single sex. Therefore, we compiled data on 114 

linkage map length, haploid chromosome number and genome size from all the major 115 

groups of Eukaryotes, to provide a more comprehensive and up-to-date picture of 116 

recombination rate variation. Details of the methods and data are provided in the electronic 117 

supplementary material, and a summary of the species included in our dataset is in Table 1 118 

(see electronic supplementary material for full list). Briefly, we obtained sex average linkage 119 

map lengths, genome size and haploid chromosome number from the published literature 120 

and public databases. In cases where a species had multiple maps we chose the map with 121 

the most markers or the most individuals in cases where two maps had a similar number of 122 

markers. We omitted linkage maps with <50 markers and where the number of linkage 123 

groups (LG) and the haploid chromosome number (HCN) differed markedly (absolute(LG-124 

HCN)/HCN > 0.7).  In our analyses, we controlled for phylogeny by fitting a Phylogenetic 125 

Generalized Linear Model with the R Package ‘Caper’ [37]. The phylogeny was obtained 126 

using the Phylotastic Web Service 127 

(https://github.com/phylotastic/phylo_services_docs/blob/master/ServiceDescription/Phyl128 

oServicesDescription.md), which extracts a Supertree from openTree [38]. All branch 129 

lengths were set to 1 in the Supertree. In total, we obtained data for 353 species, across 130 

Animals, Plants, Fungi and the SAR (Stramenopiles-Alveolates-Rhizaria Eukaryote) 131 

supergroup. Not surprisingly, there is a bias towards model species, domestic and crop 132 

species, and parasitic or disease causing species, for which QTL studies have been the focus 133 

of much research. 134 

 135 

To estimate GwRR from linkage map data we divided the linkage map length (the sum of the 136 

length of all sex-averaged linkage groups) by the haploid genome size (in Mb), Box 2 Figure 137 



2). This is a commonly reported measure of recombination rate [11, 33, 34, 39-41] and 138 

provides a useful metric to compare across taxa with vastly different genome sizes. This 139 

measure averages recombination across both the open and transcriptionally active 140 

euchromatic region and the closed and inactive heterochromatic regions of the genome. 141 

Recombination is often suppressed in heterochromatic regions, and the strength of 142 

suppression and the proportion of the genome that is heterochromatic varies greatly 143 

between organisms [see 42]. Thus, GwRR represents a genome average that reveals 144 

differences in recombination rate, but will be related to differences in the amount of 145 

heterochromatin in the genome and how strongly recombination is suppressed in these 146 

regions. Taking account of the proportion of the genome that is heterochromatic may 147 

provide more informative estimates of recombination with respect to evolutionary 148 

processes [41, 42], however this data is only available for relatively few organisms, so we 149 

have not included it in this analysis. Overall our analysis confirms the previously reported 150 

pattern of higher GwRR in Fungi and SAR compared to Plants and Animals, but also provides 151 

estimates for new taxonomic groups (Figures S1-S3) and opportunities to begin to address 152 

enduring questions about the evolution of recombination rate (Figure 1). 153 

 154 

In contrast to comparing recombination rate across distantly related taxa, comparisons 155 

within specific taxonomic groups are more common (i.e. mammals [43], plants [39, 41, 44, 156 

45], homopterous insects [46] and hymenoptera [47]), and several notable patterns have 157 

been identified. For example, amongst insects, social hymenoptera have much higher 158 

recombination rates [33]; amongst mammals, marsupials have lower recombination rates 159 

[48]; and amongst plants, conifers have very low recombination rates [39]. Comparing 160 

within taxonomic groups in our data we also observed these patterns and make several new 161 

observations; amongst Crustaceans, the Cladocerans (represented by two species of 162 

Daphnia) have much higher recombination rates (electronic supplementary material Figure 163 

S1), Dipterans have the lowest rates of recombination rate across insects (electronic 164 

supplementary material Figure S1) and fishes have the highest recombination rate amongst 165 

vertebrates (Figure 2).  166 

 167 

2b) Variation among closely related taxa and between populations within species  168 



Linking variation in recombination rates between closely related species and between 169 

populations with variation in selection and demography may elucidate long-term 170 

mechanisms driving recombination rate evolution. Differences in chiasma count between 171 

sister species, populations, accessions and inbred lines of cultivated and model species have 172 

been studied since the 1930s [e.g. 49, 50-52]. Within a more ecological context (i.e. natural 173 

populations, non-model species), early empirical work identified relationships between 174 

chiasma frequency and ecological and environmental variables. For example, chiasma 175 

frequency per bivalent (Cf/B) in Orthopterans is associated with latitude [see 15], was 176 

higher in low density populations of grasshoppers [53] and snails [54], and in plants Cf/B 177 

was higher in selfers compared to outcrosses [55, 56]. In many cases where clinal variation 178 

in recombination has been detected, karyotypic differences, which are known to modify 179 

recombination, are also present (e.g. accessory or B chromosomes [see 15, 54], 180 

chromosomal inversions [54]). These karyotypic differences can suppress GwRR and may 181 

explain the variation observed. At a finer genomic scale, comparisons between closely 182 

related taxa find, in general, greater variation in the recombination landscape compared to 183 

the GwRR. For example, similar linkage map lengths are evident across species (e.g. 184 

Eucalyptus [57], flycatchers (Ficedula) [58]), strains (e.g. Caenorhabditis briggsae [59]), 185 

cultivars (e.g. maize (Zea mays) [60]) and populations (e.g. great tit (Parus major) [61], 186 

honey bee (Apis mellifera) [62]). In most mammals, the position of hotspots appears to be 187 

dynamic, differing between subspecies of mice [63] and between humans and chimps [64], 188 

while hotspot location is more conserved in other groups, for example birds [28, 58], dogs 189 

[65] and in Saccharomyces yeast [66]. Recent work in determining the molecular 190 

mechanisms governing hotspot activity has shed light on this pattern, most notably, in 191 

species with rapidly evolving hotspots, hotspot position is determined by a common gene 192 

(PRDM9), whereas this gene is missing or non-functional in species with more conserved 193 

hotspots [67 and discussed in Section 2].    194 

 195 

2c) Variation in recombination between the sexes 196 

The most widely reported within-species variation in recombination rate is that seen 197 

between the sexes. Differences between sexes can be as extreme as one sex lacking 198 

recombination completely (achiasmy), or where recombination is present but different in 199 

both sexes, in terms of the rate and landscape (heterochiasmy), [68]. Achiasmy has evolved 200 



independently at least 26 times [15, 69, 70] and nearly always occurs in the heterogametic 201 

sex (e.g. in XY Drosophila males and ZW Bombyx females) [71-73]. By contrast, 202 

heterochiasmy is phylogenetically dispersed across plants and animals, and reduced 203 

recombination is not always observed in the heterogametic sex [68, 69]. In animals and 204 

plants, females tend to have higher overall rates of recombination, although exceptions 205 

exist, such as in corals, marsupials, macaques and sheep [68, 74, 75]. There appears to be no 206 

link between sex chromosomes or sex determining mechanism (genetic, environmental) and 207 

the direction of heterochiasmy. However, only one species that has environmental sex 208 

determination (ESD) has been studied to date, and more studies are needed in clades that 209 

have evolved ESD multiple times (e.g. lizards and turtles) to test this more explicitly.  210 

 211 

2d) Variation in recombination between individuals 212 

Examination of recombination at the individual level, using cytogenetic and pedigree-based 213 

approaches, has shown that genome-wide recombination rates can vary substantially 214 

between individuals within a population. Studies in humans, cattle, sheep, mice and 215 

Drosophila have shown that variation in regional or genome-wide recombination rates 216 

(cM/Mb) often have an underlying heritable component, explaining 8 – 40% of the 217 

phenotypic variance in rate [16-18, 76, 77]. Mammalian studies have identified meiotic 218 

genes that consistently underlie rate variation, notably ring finger protein 212 (RNF212); 219 

studies at finer genomic scale e.g. in humans and cattle have also exposed heritable 220 

differences in recombination landscape and hotspot usage mediated by variation in PRDM9 221 

[18, 78]. We explain these genetic mechanisms driving heritable variation in more detail in 222 

Section 3b. 223 

 224 

2e) Variation within individuals 225 

Variation in recombination rate has been observed within individuals, i.e. between 226 

subsequent measurements or between clones experiencing different environments, 227 

demonstrating plasticity in recombination rate. Intrinsic factors, such as age and stress, as 228 

well as a diverse range of extrinsic factors, such as parasites, have been found to influence 229 

crossover frequency [79-81]. Of all studies to date, there are three commonly reported 230 

factors affecting recombination rate within individuals. 231 

 232 



The first, age, has been considered in several model species, but there is little consensus in 233 

broad trends. In humans, recombination rate (cM/Mb) tends to increase with maternal age, 234 

whilst there appears to be little effect of paternal age (see [82] and references therein, for 235 

an exception see [83]); in mice, patterns in females and males are varied [84-87]. In 236 

Arabadopsis thaliana paternal recombination rate (cM/Mb) measured at nine genomic 237 

intervals was stable in five of these regions, but increased with age in the other four [88]. In 238 

cattle and humans, crossover interference, which can set a minimum distance between 239 

neighbouring crossovers, decreases with maternal age, which may explain observed 240 

increases in recombination frequency [86, 89].  241 

 242 

Secondly, temperature is one of the most commonly reported extrinsic correlates of 243 

recombination rate variation. In exothermic organisms, successful completion of meiosis is 244 

sensitive to changes in temperature, which are frequently associated with failures in 245 

synapsis and subsequent declines in fertility [see 90]). The relationship between increasing 246 

temperature and crossover number and positioning varies across species; for example in 247 

plants, it is associated with increased paternal recombination in Arabidopsis and barley 248 

(Hordeum vulgare L.), but decreases in other species (e.g. Allium ursinum, Locusta 249 

migratoria) [see 79]. Relationships can also vary non-linearly with temperature, such as in 250 

Drosophila, where the highest recombination rates occur at both high and low temperature 251 

extremes [see 90]). Interestingly, temperature can also influence the degree of 252 

heterochiasmy; in barley, at 100C sex specific rates of recombination (cM/Mb), estimated 253 

from linkage maps, were similar with a male/female map length ratio of 1.02, but at 300C 254 

this ratio increased to 1.58 [91].  255 

 256 

The third extrinsic factor frequently associated with variation in recombination rate is 257 

pathogen infection. In line with predictions of the Red Queen hypothesis - enhanced 258 

recombination rates will increase the genetic diversity of offspring, so that more rapidly 259 

evolving parasites cannot exploit a static host genotype [92] - studies have observed longer 260 

linkage maps, increased recombination frequency and rate (cM/Mb) with parasite infection; 261 

e.g. Tribolium castenatum [93, 94], Arabidopsis [95] and tomato and barley [96], but see 262 

other studies in e.g. mice [97] and T. castenatum [98]). A study in D. melanogaster showed 263 

increased production of recombinant offspring in response to two bacteria and to a parasitic 264 



wasp, and this increase was driven by transmission distortion of recombinant chromatids – 265 

either during meiosis or due to asymmetric viability of gametes [76]. 266 

 267 

3) Molecular mechanisms governing variation in recombination rate 268 

Meiosis evolved in the early history of Eukaryotes, and many of the core mechanisms 269 

governing meiosis are highly conserved across the group [45, 99, 100]. Recombination is 270 

initiated by a DSB generated by SPO11 endonuclease, which is a DNA binding domain [see 271 

101]. Most DSBs are repaired via a non-crossover (NCO) pathway, which results in gene 272 

conversion rather than the exchange of DNA between chromosomes (e.g. only 5 % of DSBs 273 

are repaired by CO in Arabidopsis [26]; ~10% in mice [102], ~60% in yeast [103]). 274 

Recombination is therefore a function of DSB formation, but also processes that govern CO 275 

versus NCO. Multiple factors govern the position of the DSB at multiple genomic scales; 276 

from the chromosome/sub-chromosomal regions to variation in the DNA sequence. DSBs 277 

occur predominantly within the euchromatic regions of the chromosome, preferentially in 278 

the chromatin loops, and are associated with several sequence features, with these 279 

mechanisms working hierarchically [see 99, 100]. For example, two identical DNA sequences 280 

can experience markedly different recombination frequencies if they occur within different 281 

chromatic regions [100]; likewise, an active initiation site can lose its activity if it is inserted 282 

into a region with low DSB activity [104]. In this section, we review the genetic and 283 

epigenetic factors that are associated with variation in recombination, reflecting this 284 

hierarchy; starting at the broad genomic scale, moving to DNA sequence and epigenetic 285 

levels. 286 

 287 

3a) How does genomic architecture relate to recombination? 288 

Genome-wide recombination rate has often been attributed to variation in the underlying 289 

genomic architecture, namely genome size, haploid chromosome number (HCN), changes in 290 

ploidy, chromosome size and chromosomal rearrangements. Although a negative 291 

relationship between genome size and recombination rate is often assumed, there is little 292 

robust data in support of this (see Box 2). Our analysis of linkage map data across 293 

Eukaryotes suggests little evidence that recombination rate decreases with genome size in 294 

Fungi and Animals, but that larger Plant genomes have reduced recombination rates (Figure 295 

3a, Box 2). It should be noted that our data averages across genomes with different 296 



chromosome numbers and across hetero- and euchromatic regions. In addition, we did not 297 

include data on the proportion of the genome that is heterochromatic, however we did 298 

explore the relationship between HCN and recombination rate.  Although HCN explains 299 

variation in the total number of recombination events across a genome, i.e. the linkage map 300 

length (Figure 3b) it explains little variation in recombination rate per megabase (cM/Mb) 301 

(Figure 3c). Our analysis suggests that genome architecture may play a limited role in driving 302 

variation in recombination rate at a broad scale (after controlling for phylogeny), which is 303 

consistent with the prediction that changing the number of COs per chromosomes is more 304 

effective at changing the efficacy of selection compared to changing the number of 305 

chromosomes [105].  306 

 307 

Considering variation between chromosomes, recombination can be absent or greatly 308 

reduced on entire chromosomes (i.e. absent in one sex (achiasmate) or on certain 309 

autosomes (e.g. D. melanogaster Chr 4 and Toxoplasmodia gondii Ch1a [106]), but also 310 

influenced by the presence of chromosomal rearrangements, such as inversions, fissions, 311 

fusions and translocations. Inversions represent a well-known case of rearrangement that 312 

can modify recombination: recombination is suppressed in individuals that are heterozygous 313 

for the inversion (heterokaryotype), because the inversion causes problems with pairing and 314 

segregation during meiosis [107]. This local suppression of recombination can also modify 315 

the recombination landscape in the longer term, so that suppression can extend to 316 

individuals homozygous for the inversion and to other, non-rearranged chromosomes [e.g. 317 

20, 108, 109-111]. Such a long-term suppression of recombination due to strong selection 318 

may be achieved through a reduction in hotspot loci in the inverted and rearranged regions, 319 

which persists beyond the heterozygous state of such rearrangements [108]. 320 

 321 

One broad-scale and general pattern observed within chromosomes is a lower 322 

recombination rate around centromeres. While this could be attributed to selection against 323 

recombination in highly repetitive regions, repeat sequence is not necessary for 324 

suppression; organisms that have no or few centromeric repeats also show suppressed 325 

recombination at the centromere [112]. Suppression is likely driven by chromatin structure; 326 

DSB are less common in condensed heterochromatin, and chromatin environment can 327 

influence the probability that a DSB is repaired with a NCO rather than a CO [99]. Recently, 328 



Talbert and Henikoff [112] argued that DSB and repair via NCO may be common in 329 

centromeres, and this could explain the accumulation of repetitive elements and 330 

diversification of centromeres, despite apparently little CO recombination. Differences in 331 

the chromatin structure between males and females may also explain sex differences in 332 

GwRR in mammals, for example in mice females have longer bivalents (less compact 333 

chromatin) and have greater CO number [113]. Although heterochromatic regions are often 334 

difficult to sequence and study, it is likely they can provide important insights into factors 335 

influencing CO and NCO repair mechanisms and recombination.  336 

 337 

3b) Fine-scale molecular genetic mechanisms related to determining recombination   338 

The genome architecture and chromatin structure clearly influence large scale patterns in 339 

recombination, but what do we know about the patterns at smaller genomic scales? 340 

Recombination frequency and position co-vary consistently with several DNA sequence 341 

features; it is positively correlated with GC content and gene density and negatively 342 

correlated with Transposable Element (TE) density, and it is also consistently related to a 343 

number of gene regulatory elements and to histone modification (i.e. methylation) [for 344 

review, see 41, 99, 114, 115]. Determining cause and effect from these correlations is 345 

problematic [see 114 for discussion about TEs]. For example, recombination may drive 346 

increases in GC content via biased gene conversion in DSB repair in for example mammals 347 

[116], insects [117], birds [118] and rice [119]. However, in yeast, AT to GC substitutions are 348 

not directly correlated with recombination [120] and GC content may be a modifier of 349 

recombination [121]. Within genic regions, DSBs and subsequent recombination are more 350 

common in gene promoters or in regions with promoter-like features [see 26, 45, 99, 101].  351 

 352 

In mammals and plants, several specific genetic mechanisms underlying variation in 353 

recombination rate have been identified. Loci that have been repeatedly implicated in this 354 

variation include RNF212 (and its paralogue RNF212B), meiotic recombination protein REC8, 355 

and E3 ubiquitin-protein ligase CCNB1IP1 homolog HEI10, which have been consistently 356 

associated with rate in maize, yeast, Arabidopsis, cattle, humans, mice and sheep [16, 18, 357 

60, 77, 122-124]. Research in mice has shown that RNF212 is essential for crossing-over, 358 

with a key role in synapsis and the formation of recombination complexes specific to COs 359 

[125], whereas HEI10 plays an antagonistic role which is essential for regulating NCO/CO 360 



processes [122]; studies suggest that these proteins have a dosage dependent effect on 361 

crossover rates.  362 

 363 

As most recombination occurs in hotspots, understanding what governs hotspot position is 364 

highly relevant to revealing the genetic mechanisms governing recombination. The post-365 

translational modification of histones, in particular trimethylation of lysine 4 on histone 3 366 

(H3K4me3), is associated with DSB in many species [26, 67, 99, 101, 126]. The regulatory 367 

element PR domain zinc finger protein 9 (PRDM9), which can modify H3K4, has been shown 368 

to drive DSB formation in mice and humans [17]. Not all H3K4me3 sites are recombination 369 

hotspots and many species lack functional copies or orthologues of PRDM9 (e.g. Drosophila, 370 

yeast, dogs, birds and most plants), demonstrating that other mechanisms most certainly 371 

exist. In Arabidopsis, DNA methylation of H3K9me2 can suppress euchromatic CO hotspots 372 

[127]. There are likely to be at least two classes of hotspots; ancestral – occur in a wide 373 

range of organisms, are temporally stable and associated with gene promoter regions - and 374 

derived – location determined by e.g. the PRDM9 DNA binding motif and rapidly evolving 375 

[128]. Not all species studied have obvious recombination hotspots and considerable 376 

progress has also been made in determining the mechanisms governing recombination in 377 

these cases and outside hotspots. In C. elegans histone modifications do not strongly 378 

associate with recombination [129], however other post-translational modifications have 379 

been identified; phosphorylation of REC-1 has been shown to govern CO distribution in C. 380 

elegans [130].  381 

 382 

4) Evolutionary processes governing variation in recombination rate 383 

Recombination frequency is a heritable trait, which can be controlled by a few genes 384 

(oligogenic) [e.g. 16, 18, 43, 131] and/or by many genes (polygenic) [20, 98], and it can 385 

respond to selection [21, 22, 132]. Selection on recombination can be direct and indirect: it 386 

can act directly on variation in recombination when recombination influences gamete 387 

viability or fitness (direct consequence in offspring), and indirectly when recombination 388 

alters haplotype frequencies and increases selection efficacy (variation-and-selection 389 

models) [6, 133, 134]. With a growing understanding of the genes and molecular 390 

mechanisms determining variation in recombination frequency and landscape, and data 391 

accumulating in a greater range of organisms, we are in a good position to begin to address 392 



long standing questions about how recombination evolves and how variation in 393 

recombination frequency or landscape influences evolutionary processes such as adaptation 394 

and speciation. In this section, we begin by exploring the evidence for indirect and direct 395 

selection on genome-wide recombination, we then discuss how selection acts to modify 396 

recombination in specific regions of the genome and how this influences local adaptation 397 

and speciation, and finish with discussion of the evolutionary explanations of the evolution 398 

of sex differences in recombination rate.  399 

 400 

4a) Indirect selection on variation in genome-wide recombination rate 401 

Indirect selection on recombination rate has received much empirical and theoretical 402 

consideration in order to understand the evolution of sex, but there has been less focus on 403 

understanding the processes that govern recombination variation in obligate sexuals [see 404 

134]. Models of the evolution of sex suggest that one of the main advantages of 405 

recombination is that it can increase the efficacy of selection and facilitate adaptation [see 406 

3, 105, 135, 136]. It does this by reducing the amount that genetic variants or alleles 407 

interfere with each other’s response to selection. Alleles can interfere in at least two ways: 408 

first, when the presence of one allele alters the fitness effects of another allele (epistasis); 409 

and second, when the probability of two alleles at two different loci occurring together in a 410 

population is non-random (referred to as linkage disequilibrium (LD)), which can be due to 411 

their physical proximity on a chromosome (genetically linked) or because of selection, 412 

migration or drift [see 137]. For simplicity, we will use the more general term allelic non-413 

independence to refer to LD, epistasis and other processes that make alleles behave non-414 

independently. Allelic non-independence can interfere with how an allele responds to 415 

selection. For example, selection at one locus interferes with selection at other selected loci, 416 

reducing its probability of fixation (termed the Hill-Robertson interference (HRI) [136] and 417 

the degree of interference increases with genetic linkage between the loci under selection. 418 

Another example is when alleles in LD experience conflicting selection pressures - if a 419 

beneficial allele is associated with a deleterious allele it can be lost from the population, 420 

whereas a deleterious allele can rise to high frequency if it is associated with a beneficial 421 

allele. Finally, selection at one locus can reduce the level of polymorphism at linked loci (an 422 

effect called background selection when purifying selection acts on a deleterious allele and 423 

selective sweep when positive selection acts on a beneficial allele) and this selection at 424 



linked sites was found to be a key factor determining genetic diversity within a species and 425 

diversity within the genome across animals and plants [138]. The most recognised benefits 426 

of recombination in sexual species is that it can increase the efficacy of selection by 427 

modifying the degree of independence among alleles: it can break down negative linkage 428 

disequilibrium generated by selection and drift, thus reducing HRI, it can create beneficial 429 

combinations of alleles and create greater genetic variation that selection can act on. What 430 

makes recombination paradoxical is that is can break apart combinations of beneficial 431 

alleles that selection has brought together, resulting in negative fitness effects, both direct 432 

[2] and indirect [4, 40]. Therefore, the benefits of recombination are dependent on how 433 

alleles are associated and how breaking up these associations influences fitness.  434 

 435 

Several demographic and ecological factors can increase the number and strength of allelic 436 

non-independence within a population. For example, small effective population size (Ne) 437 

and high rates of inbreeding or selfing will increase associations between alleles and thus 438 

HRI; in these cases, indirect selection should favour an increase in the rate of recombination 439 

[105, 139]. In line with this expectation, studies have found a negative association between 440 

recombination rate and indirect measures of Ne across species of animals and plants. In 441 

mammals, chiasma frequency per bivalent (Cf/B) was positively correlated with age at 442 

maturity, with greater age a proxy for smaller Ne [140] and in snails, it was negatively 443 

correlated with population density [54]. In plants, recombination (cM/Mb) was higher in 444 

large, long-lived tree species compared to shrubs and herbs [39], Cf/B was higher in selfing 445 

plants [141] and higher in annual plants that are likely experiencing higher rates of 446 

inbreeding and drift [50]. Higher rates of asexual reproduction, for example in 447 

parthenogenetic animals or fungi would also increase HRI and should also select for higher 448 

rates of recombination. In line with this prediction, we observed elevated recombination in 449 

parthenogenic animals compared to animals with gonochorus sexual systems - where all 450 

individuals are either male or female and reproduce sexually every generation (electronic 451 

supplementary material, Figure S4). Taken together these data suggest that optimal rates of 452 

recombination between species have evolved to reduce HRI and increase genetic variation 453 

and the efficacy of selection, however these relationships do not provide definitive proof of 454 

causality. For example, in mammals longer lived species have a longer meiotic arrest in 455 

females, which may favour higher recombination to prevent aneuploidy [142].  456 



 457 

Increased recombination can also evolve in populations experiencing strong directional 458 

selection and drift [136], even when traits unrelated to meiosis or recombination are being 459 

selected for [e.g. 143, 144]. This may explain observations of increased recombination in 460 

some domesticated species [140, 145]. However, there is mixed evidence for changes in 461 

overall recombination rates between artificially selected populations and their wild 462 

progenitors [136]: a study comparing chiasma counts in wild and domesticated mammal 463 

species pairs saw no differences [146], suggesting that an increase in recombination is not a 464 

universal feature of domestication.  465 

 466 

Populations experiencing heterogeneity in selection are also expected to benefit from 467 

higher rates of recombination. In particular, higher rates are predicted when organisms 468 

experience rapid oscillations in the fitness of certain allelic combinations, for example in 469 

organisms involved in a co-evolutionary arms race [1], or that experience fluctuating 470 

environments [5, 147] or inter-locus sexual conflict [148]. In an arms race scenario, 471 

parasite–induced selection on the host can drive increased recombination rate. This has 472 

been confirmed in several experimental evolution studies (See section 1e) and supported by 473 

indirect evidence: high recombination in genomic regions harbouring genes related to 474 

immunity (e.g. MHC [149], Arabidopsis [150]) and high somatic recombination observed in 475 

developing lymphocytes in jawed vertebrates [151]. Studies testing this model normally 476 

consider parasite-induced changes in the host; however, it is possible that host-induced 477 

selection on the parasite can also drive high recombination rate in parasites [152]. We 478 

tested this hypothesis with our data by comparing GwRR of parasitic or pathogenic species 479 

with free-living species. Using phylogenetic generalized linear models, we found parasitic or 480 

pathogenic species had a higher recombination rate compared to their free-living 481 

counterparts in SAR and in Animals, but there was no difference between parasitic or 482 

pathogenic and free living species of Fungi (electronic supplementary material Figure S5; 483 

Plants were excluded as data was not available for any parasitic or pathogenic plant 484 

species). Interestingly, parasites often have smaller genomes compared to their free-living 485 

counterparts, which is consistent with high recombination driving genome contraction 486 

(discussed earlier in Box 2), although genome contraction may also be due to selection on 487 

small cell size and fast replication rates [153, 154]. 488 



 489 

Spatial and temporal variation in the abiotic environment can also favour higher 490 

recombination [5, 137, 147], although there is little evidence testing this hypothesis in 491 

sexual species (studies more often compare between sexual and asexual populations). 492 

Temporal variation is often considered less likely to drive increases in recombination 493 

because the fluctuations in the abiotic environment are not fast or predictable enough [see 494 

148]. Data collected in the field investigating the effects of spatial variation in abiotic 495 

environment on recombination often cannot rule out other confounding effects such as 496 

demography or biotic factors. For example, marginal populations of Drosophila robusta, 497 

which can experience greater environmental fluctuations, have fewer inversion 498 

heterozygotes and thus higher recombination rates [see 5]. In plants, higher Cf/B was found 499 

in annuals that are well suited to colonising new variable habitats [50]. However, in both 500 

cases recombination rate may be favoured because of the small Ne of marginal or colonising 501 

populations. More empirical work is needed to test this hypothesis, ideally comparing 502 

across natural populations while controlling for potential confounding effects. 503 

 504 

Theoretically, differential selection pressure on males and females can induce fluctuating 505 

selection on an allele as it cycles through the male and female genomes [148]. Differential 506 

selection on male and female traits, such as mating rate or parental investment, creates 507 

intra-locus sexual conflict that could favour increased recombination [148].  One prediction 508 

that can be drawn from this model is that hermaphrodites, that do not have separate sexes 509 

and thus have low levels of intra-locus sexual conflict, should have lower recombination 510 

rates compared to species with separate sexes. We tested this in our data looking at how 511 

sexual system (gonochorous, hermaphrodite, male-haploid and parthenogenic) was related 512 

to recombination rate (GwRR/HCN) across animals. We found that parthenogenic and male 513 

haploid species had higher recombination rate compared to species with separate sexes, 514 

but found no difference between separate sexes and hermaphrodites (electronic 515 

supplementary material). The dataset used here has a limited number of hermaphrodites 516 

(n=7) and it will be interesting to explore this question and other questions relating to the 517 

strength of sexual selection with more data.  518 

 519 

4b) Direct selection on variation in genome-wide recombination rate 520 



Considering direct selection on recombination, ensuring proper chromosome segregation 521 

and efficient DNA repair imposes stabilizing selection on recombination, thus creating an 522 

“optimal range” for a given organism. Extremely high or low rates of recombination outside 523 

this optimal range can have negative effects on fitness, for example, in humans and mice 524 

very low recombination rates can cause chromosomal abnormalities in gametes and reduce 525 

fertility, and very high rates can cause genomic instability and disease [155]. As discussed, 526 

obligate crossover requirements and genomic architecture can explain some, but not all, of 527 

the variation observed between species in the optimal range of GwRR (Box 2). Changes in 528 

the environment can push recombination beyond the optimal range with negative fitness 529 

consequences, and tolerance to these perturbations may explain some of the variation 530 

between species [90].  531 

 532 

Considering less extreme modifications of recombination (within the optimal range), there 533 

are few studies linking genome-wide recombination rate to fitness, but there is no clear 534 

directional pattern. In populations at equilibrium, recombination is expected to reduce 535 

fitness because it breaks apart allelic combinations that selection has favoured (termed 536 

recombination load) [2] and several studies in Drosophila support this prediction [e.g. 2, 537 

156, 157]. In humans, a positive relationship between GwRR (cM/Mb) and female fecundity 538 

was found, which was argued to be due to a higher number of COs reducing the frequency 539 

of age-related non-disjunction, and increasing the likelihood that the gamete became a live 540 

birth (realised recombination) [131]. In flour beetles (T. castaneum), lines that evolved 541 

longer linkage map lengths (i.e. higher GwRR) during coevolution with their parasite were 542 

found to have higher fitness in the absence of the parasite compared to lines with shorter 543 

linkage maps [98]. The authors did not identify any possible explanations, but posited that it 544 

may be due to co-evolution with the parasite selecting for fitter beetles. Although studies at 545 

the genome-wide level provide evidence of correlations, they may not be very informative 546 

with respect to the mechanisms underlying any fitness-recombination relationships. Studies 547 

that can quantify where in the genome recombination is modified, not just the change in 548 

overall rate, are likely to provide more insight into the traits that are involved and how 549 

changes in recombination influence these.  550 

 551 

4c) Selection on recombination rate modification in regions of the genome  552 



In comparison to the genome-wide scale, there is good evidence that selection acts to 553 

reduce recombination on specific chromosomes (i.e. sex chromosomes) and smaller regions 554 

of the genome capturing co-adapted loci, quantitative trait loci (QTLs) and reproductive 555 

isolating loci (i.e. inversions, supergenes). Recombination between these sets of co-adapted 556 

loci can negatively affect offspring fitness and adaptation, and strong selection against 557 

recombination in these regions is expected to outweigh relatively weak selection for 558 

increased recombination to reduce HRI (Lenormand and Otto 2000). Processes leading to 559 

tight physical linkage can reduce effective recombination between sets of adaptive and 560 

reproductive isolating loci, therefore playing a key role in adaptation and speciation [8, 158], 561 

and can be selected for under prolonged periods of gene flow between locally adapted or 562 

diverging populations [107, 137, 159]. Regions of tight linkage can evolve as a consequence 563 

of several, non-exclusive mechanisms including: genomic rearrangements (translocations, 564 

inversions, transposable elements or duplications (Yeaman 2013, Ortiz-Barrientos et al. 565 

2016)), supergenes, (i.e. a group of tightly linked loci that regulate a phenotype [160]) and 566 

an establishment bias where linkage with an already diverged locus can favour the 567 

establishment of new advantageous mutations nearby [159, 161]. An increasing number of 568 

empirical studies find evidence for concentrated regions of adaptive and reproductive 569 

isolating loci (supergenes, tight linkage) or their presence in regions of reduced 570 

recombination (e.g. sex chromosomes, inversions), as well as evidence for a negative 571 

correlation between recombination rate and genetic differentiation (see Table 2, provides a 572 

non-exhaustive list of recent examples).  573 

 574 

4d) Evolutionary explanations for sex differences in recombination 575 

The prevailing hypothesis for the complete absence of recombination in the heterogametic 576 

sex is that achiasmy is a pleiotropic effect of selection for tight linkage on the Y or W 577 

chromosomes and/or suppression of recombination between the heterogametic sex 578 

chromosomes [73, 75]. However, reduced recombination is not always observed in the 579 

heterogametic sex (i.e. birds and moths) and it cannot explain variation between the sexes 580 

in hermaphrodites [162]. Understanding the conditions under which heterochiasmy evolves 581 

has been the subject of extensive theoretical attention and debate [e.g. 75], but as yet, 582 

there is no consensus on its evolutionary drivers. Arguments related to the relative 583 

strengths of sexual selection, sperm competition and dispersal remain weakly supported by 584 



empirical data [163], with some arguing that sex differences are primarily driven by drift [73, 585 

75]. Nevertheless, there are two arguments gaining broader theoretical and empirical 586 

support. The first is haploid selection; the sex experiencing the strongest haploid selection 587 

should recombine less (see Lenormand 2005). In plants, both female and male gametes 588 

have a haploid phase, but Lenormand (2005) proposed that selfing could be used a proxy for 589 

the strength of selection on the female haploid phase, and showed that the degree of 590 

heterochiasmy (male-female ratio) was higher in species with moderate to high selfing. The 591 

second is the role of meiotic drive, for example where asymmetry in female meiosis can be 592 

exploited by selfish genetic elements associated with centromere strength [69, 164, 165]; 593 

selection for increased recombination at centromeric regions will counteract drive by 594 

increasing the uncertainty of segregation into the egg [164].  595 

 596 

5) Concluding remarks and future directions 597 

Recombination is a fundamental component of meiosis and a near universal mechanism in 598 

multi-cellular organisms, with far reaching effects on an individual’s fitness and on 599 

evolutionary processes. Whole genome sequencing, dense marker panels and the 600 

development of new approaches to estimate population-scaled recombination rates have 601 

provided new opportunities to estimate recombination at much greater resolution and 602 

across natural populations, with great impact. Genome-wide averages of recombination 603 

rate are useful for broad-scale comparisons; however, averaging the number of 604 

recombination events across the genome can mask the dynamic nature of changes in 605 

distribution at a finer genomic scale. Studies in the future should consider the fine genomic 606 

landscape and not only the frequency. Across Eukaryotes there is large variation between 607 

taxa, populations and individuals in the frequency and distribution of recombination. In 608 

Figure 1 we illustrate how variation collected and compared across different taxonomic 609 

scales provides complementary information to address many important and outstanding 610 

questions about how and why recombination varies.  611 

 612 

Significant progress has been made recently in identifying the genetic and epigenetic 613 

mechanisms governing the recombination landscape, for example, the presence or absence 614 

of one locus in particular (PRDM9) can explain variation across species in how conserved or 615 

dynamic their recombination landscape is. However, it is unclear how widespread 616 



recombination hotspots are, and if all hotspots fall broadly into two categories - conserved 617 

versus rapidly evolving, although comparative studies are moving some way to elucidate 618 

this issue [67]. Other features of the recombination landscape, such as sex differences and 619 

plasticity, are also lacking empirical support across a wide range of taxa. We urge 620 

researchers to collect recombination data at the fine genomic scale in a greater range of 621 

species, in particular neglected taxa (marine microorganisms, basal animals and plants) and 622 

to estimate (and report) both sex-specific and sex averaged recombination rates. LD-based 623 

estimates are likely to be especially powerful in this respect as they provide opportunities to 624 

estimate recombination rate from polymorphism data of sampled populations without the 625 

need to create crosses or use pedigrees. Data from a greater range of species can further 626 

our understanding of the molecular mechanisms underlying recombination and enable us to 627 

address a range of long standing questions regarding the evolution of recombination.  628 

 629 

Understanding the fitness consequences and evolutionary processes driving variation in 630 

recombination rate is still in its infancy. Investigation of how changes in recombination can 631 

directly influence phenotypic traits and fitness is needed and, although established theory 632 

on the evolution of sex considers the conditions under which changes in genome-wide 633 

recombination rate may be favoured, there is little empirical data testing these predictions 634 

in sexual organisms. More comparisons across related taxa, populations and individuals in 635 

the field are needed to characterise natural variation in recombination rate. Comparisons 636 

across populations and taxa could ask if, for example, drift, fluctuating selection and modes 637 

of reproduction co-vary with variation in recombination. Studying the recombination 638 

landscape across an environmental or ecological gradient while controlling for possible 639 

confounding effects of drift and changes in Ne are likely to be most informative. 640 

Experimental evolution studies could manipulate population parameters and see if 641 

recombination rate evolves in response to changes in density, inbreeding, fluctuating 642 

selection and parasites, and could investigate how changes in recombination rate influence 643 

fitness related traits.  644 

 645 

More effort should be devoted to modelling recombination rate as a quantitative trait and 646 

consider how it will respond to different selection regimes in sexually reproducing 647 

organisms [see 134]. Models of the evolution of genome-wide recombination rates may 648 



have limited explanatory power to explain variation in the landscape at fine genomic scales. 649 

Mathematical models could explore how selection influences patterns of recombination 650 

near loci under strong selection or loci involved in coevolutionary arms races, for example. 651 

Regional suppression of recombination on specific genomic features (inversions, 652 

supergenes) is receiving increased attention in the literature, spurred on by the recognition 653 

that the association of these features with suppressed recombination is key to adaptation 654 

and speciation in the presence of gene flow. Current empirical challenges reside in 655 

determining the sequence of events that have permitted favourable genomic features or 656 

recombination modifiers to establish and be maintained in the presence of gene flow, from 657 

the selection of pre-existing favourable genomic features to the selection of mechanisms 658 

generating them during the course of the processes of adaptation and speciation.  659 

 660 

To summarise, there is enormous variation in recombination frequency and landscape 661 

across species and genomes. Great progress has been made in determining the genetic and 662 

epigenetic factors controlling recombination, but more theoretical and empirical data are 663 

needed to further our understanding of why recombination varies and to determine if this 664 

variation is the result of selection.   665 

  666 



Box 1. Estimating recombination rate  667 

Two parameters can describe how patterns of recombination vary between any two 668 

individuals or groups of individuals: the genome-wide recombination rate (how often COs 669 

occur e.g. in a given meiosis) and the recombination landscape (where COs occur in the 670 

genome). These estimates of recombination rate are commonly expressed as recombination 671 

frequency per mega- or kilobase per generation [11, 33, 34, 39-41] and can be estimated at 672 

different genomic resolutions. Historically, recombination rates were estimated by directly 673 

counting the number of chiasmata during meiosis using cytogenetic methods, and from 674 

early linkage maps, where phenotypes and/or genetic markers were ordered along 675 

chromosomes based on the frequency at which they were co-inherited (i.e. not separated 676 

by a crossover). A spacing of one centimorgan (cM) indicates a one percent chance that two 677 

genes will be separated by crossing over. Both approaches provided coarse-scale estimates 678 

of recombination frequency, but lacked accuracy. In particular, linkage map estimates of 679 

recombination require pedigree information and are limited by the number of independent 680 

meioses characterised (i.e as a function of sample size, pedigree size and depth) and if 681 

marker densities are low they fail to capture all COs and underestimate map length [166, 682 

167]. Low-resolution estimates of recombination provide limited information about the 683 

recombination landscape, but can provide useful data for looking at large-scale differences 684 

between chromosomes, chromosome arms or chromosome segments. These estimates also 685 

provide common measures that are comparable across larger taxonomic scales.  686 

 687 

Today, the resolution to determine recombination rates and landscapes has dramatically 688 

improved with developments in high-throughput sequencing and genotyping technologies. 689 

It is now feasible to obtain estimates of recombination rate on a finer genomic scale, with 690 

dense linkage maps and population-scaled estimates of recombination rate. Whilst linkage 691 

maps provide an estimate of crossovers observed over a few generations, population-scaled 692 

approaches provide estimates of historical recombination [168].  This approach uses high-693 

density marker and/or genome sequence data to estimate population-scaled recombination 694 

rates (ρ) using coalescent methods that model patterns of linkage disequilibrium, the non-695 

random association of alleles across loci, within narrow genomic regions. These approaches 696 

have been used to identify recombination “hotspots”. A limitation of coalescent estimates is 697 

that linkage disequilibrium is also affected by the effective population size of a population, 698 



which is influenced by the population’s demographic history (e.g. bottlenecks, gene-flow, 699 

selection [e.g. 169]). However, new developments in population-based approaches are 700 

implementing ways to account for demographic history during recombination rate inference 701 

[e.g. 64, 170]. 702 

 703 

Despite their differences, results from linkage map and population-based estimates are 704 

highly correlated [58, 65, 78, 169, 171]. It is also important to note that all marker based 705 

estimates (linkage maps and population based estimates) can only detect a recombination 706 

event that results in a change in the allelic combination in the next generation (effective 707 

recombination) – for example, if parents are homozygote across many markers the action of 708 

recombination is not detectable, and recombination is typically only measured from 709 

gametes that successfully produced offspring (realised recombination). One method to 710 

quantify recombination events in all gametes, not just those that produce offspring, is to 711 

genotype or whole genome sequence single sperm. For example, in humans this approach 712 

has been used to fine-map the recombination landscape and investigate transmission 713 

distortion and allelic drive [172], and in Daphnia it was used to build a genetic linkage that 714 

helped to improve the genome assembly [173].  715 



Box 2. How does recombination rate vary with genome architecture? 716 

Genome size  717 

Following the observation that linkage map length was similar across Eukaryotes despite 718 

large variation in genome size, it was proposed that larger genomes have several orders of 719 

magnitude lower recombination rates [36]. This is consistent with the observed 720 

relationships between recombination rate and sequence features; recombination rate is 721 

positively correlated with gene density and negatively with the density of repetitive 722 

elements, which could drive lower recombination rates in large, repeat-rich genomes [41, 723 

114]. Higher recombination rate can also lead to reductions in genome size - if 724 

recombination rate increases mutation rate and small deletions are more common than 725 

small insertions (mutational bias), purifying selection on these mutations can drive genome 726 

contraction [153, 174]. Both positive and negative relationships between genome size and 727 

recombination rate have been found (positive [44], negative [34, 35, 41]). The disparity in 728 

results may be attributed to differences in the methods used and taxonomic breadths 729 

considered, but may also be due to statistical problems. When recombination rate is 730 

calculated as the linkage map length (cM) divided by genome size (Kb or Mb), then genome 731 

size and recombination are mathematically coupled; it is not appropriate to test for 732 

relationship between mathematically coupled variables [175]. To investigate the 733 

relationship between genome size and recombination rate, we examined the fit of linear 734 

and quadratic relationships between linkage map length and genome size, while controlling 735 

for phylogeny. In Animals and Fungi, a linear model best fit the data, but in Plants, a 736 

quadratic model was a better fit (see Figure 3a and electronic supplementary material). This 737 

suggests that recombination rate is lower in larger Plant genomes, but in Animals and Fungi 738 

there is no evidence to suggest recombination rate declines with genome size.  739 

 740 

Haploid chromosome number 741 

The number and size of chromosomes can explain variation in GwRR because a minimum of 742 

one CO per chromosome (or chromosome arm) is often required to ensure proper 743 

segregation of chromosomes during meiosis [13, 43, 134, 176, 177]. There are several 744 

exceptions (e.g. achiasmate species; see section 1d) and often more than one CO per 745 

chromosome is observed on larger chromosomes [see 177]. Under the obligate CO 746 

requirement, higher recombination rate could be achieved by increasing the number of 747 



chromosomes or by having smaller chromosomes, with bird genomes, containing many 748 

microchromosomes, providing support for this hypothesis [171, 178]. Whether karyotypic 749 

variation is driven by selection on recombination rate is unclear [e.g. 47, 179], but Burt [105] 750 

demonstrated that an increase in the efficacy of selection was better achieved by increasing 751 

the number of crossovers per chromosome rather than increasing the number of 752 

chromosomes. Whole genome duplication and polyploidy are dramatic ways to increase 753 

chromosome number, and under an obligate CO requirement this should result in at least a 754 

doubling of chiasma frequency. Polyploids’ ability to achieve stable meiosis may be partly 755 

due to a reduction in GwRR (and increase in interference distance) to ensure only one CO 756 

per pair of homologous chromosomes, as a mechanism to avoid the pairing of three or more 757 

homologous chromosomes [180, 181]. The data we compiled provide an opportunity to test 758 

if haploid chromosome number (HCN) explains variation in linkage map length and GwRR 759 

(cM/Mb) across Eukaryotes. A positive linear relationship between linkage map length and 760 

HCN was found for Plants and Fungi, while in Animals a quadratic relationship was slightly 761 

better at explaining this relationship (Figure 3b, electronic supplementary material). We 762 

found the HCN was not related to GwRR (per megabase) in Fungi and Animals, and although 763 

a relationship was found in Plants, the amount of variation explained was low (r2 = 0.02) 764 

(see Figure 3c and electronic supplementary material). Despite explaining little variation, we 765 

do suggest that scaling GwRR by haploid chromosome number provides a useful 766 

comparative measure of recombination rate and removes variation attributable to the 767 

obligate crossover requirement. 768 

 769 
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   778 



Table 1. Summary of the linkage map data compiled from the literature; linkage map length 779 

(centimorgans, cM), Genome size (Megabases, Mb), haploid chromosome number and 780 

recombination rate (cM/Mb). 781 

 782 

 783 
  784 

Group 
 

Linkage Map Length 
(cM) 

 

Genome Size (Mb) 
 

 

Haploid 
Chromosome 
Number 

Recombination Rate 
(cM/Mb) 

 
n mean min max mean min max mean min max mean min max 

SAR 9 1782 653 2884 189 18.87 560 18.78 9 34 38.67 3.24 108.00 

Fungi 15 2068 86 5860 49.26 19.05 170.2 13.27 4 21 48.68 1.40 119.90 

Animals  140 1813 90 5961 1538 43.15 30880 22.27 3 73 2.52 0.12 28.10 

Plants  189 1567 309 8184 2956 120.40 29280 13.91 5 90 1.85 0.03 9.22 

Total or 
Mean 353 1807.5 

  
1183.0 

  
17.05 

  
22.93 

  



Table 2. Summary of selected studies demonstrating a link between regional suppression of recombination and adaptation and/or speciation. 785 

Details include study species, the main finding and the methods used to identify regions of suppressed recombination (CG=cytogenetic, 786 

LM=linkage mapping, LD=LD based estimate of recombination rate and Others). Studies are grouped according to nature of the relationship 787 

between recombination suppression and either adaptive and/or reproductive isolating (RI) traits or genetic differentiation. 788 

 789 
a) Adaptive and RI traits map to recombination coldspots 

    
  

Study system Main finding CG LM LD Other Ref 

Inversion clines related to local adaptation      
Fruit fly (Drosophila melanogaster) latitudinal cline in inversion, which has shifted with climate change 

   
X [182] 

Mosquito (Anopheles gambiae) genetic differentiation pronounced at inversion breakpoints across an aridity cline X 
   [183] 

Seaweed fly (Coelopa frigida) demonstrating local adaptation of the inversion along a tidal cline X 
   [184] 

Inversions capture adaptive and/or RI traits 
     

Humans (Homo sapiens) inversion shows molecular signatures of positive selection and is associated with 
higher fitness    

X 
[185] 

Butterfly (Heliconius numata) supergene for mimicry traits is associated with chromosomal rearrangements 
  

X X [186] 

Threespine stickleback  
(Gasterosteus aculeatus)  

elevated genetic differentiation and adaptive loci associated with inversions 

   
X 

[187] 

Atlantic cod (Gadus morhua) putative inversion association with salinity tolerance 
  

X 
 [188] 

Monkey flower (Mimulus guttatus) inversion with adaptive QTLs is the most divergent region between annual and 
perennial ecotypes  

X 
  [189] 

European corn borer moth  
(Ostrinia nubilalis) 

inversion contributed to accumulation of ecologically adaptive alleles and genetic 
differentiation  

X 
  [190] 

Drummond's rockcress (Boechera 
stricta) 

inversions captured multiple adaptive QTLs for phenology 
X X X 

 [191] 

Sex chromosomes  
     

Threespine stickleback  
(G. aculeatus) 

loci for behavioural isolation and hybrid male sterility map to ancestral and neo X 
chromosome  

X 
  [192] 

House mouse (Mus musculus 
musculus / domesticus) 

recombination modifier (Hstx2/Meir1) and hybrid sterility locus (Hstx2) genetically 
linked on X X 

   [193] 



 790 
 791 

b) Increased genetic differentiation (GD) in recombination coldspots           

Study system Main finding CG LM LD Other Ref 

Involving chromosomal rearrangements 
     

Mosquito (A. funestus) ecotypes segregate for inversion but GD is low outside the inversion  X 
   [194] 

Apple maggot fly 
(Rhagoletis pomonella) 

regions inside and near an inversion had higher GD compared to collinear regions 
further away   

X 
 [195] 

Fruit fly (D. pseudoobscura, D 
persimilis) 

pairwise GD higher in intergenic regions inside and near an inversion 
X 

   [196] 

House mouse (M. m. domesticus) increased GD in proximal regions of Robertsonian fusions X 
   [197] 

Monkey flower (M. guttatus) increased GD in inversions, evidence that inversion have been under recent selection 
 

X 
  [198] 

Concentrated in or around centromeres 
     

Mosquito (A. gambiae) elevated sequence divergence near centromeres   
   

X [199] 

Princess cichlid fish (Neolamprologus 
savoryi-complex) 

introgression increased with distance from chromosome center  

   
X 

[200] 

Concentrated in or around sex chromosomes and/or centromeres      
Rabbits (Oryctolagus cuniculus 
algirus, O. c. cuniculus) 

regions of high GD more common on sex chromosome and near centromeres 

   
X 

[201] 

Mosquito (Anopheles spp) barriers to introgression on X chromosomes and low recombining pericentromeric 
regions   

X X 
[202] 
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c) Genome-wide negative correlation of genetic differentiation and recombination rate           

Study system Main finding CG LM LD Other Ref 

Genomic differentiation estimated with SNPs from whole genome sequencing 
     

Monkey flower (M. nasutus/guttatus) negative relationship between recombination rate and absolute divergence  
 

X 
  [203] 

Flycatchers (Ficedula albicollis, F. 
hypoleuca, F. speculigera, F. 
semitorquata) 

differentiation is explained by variation in recombination rate and the density of 
targets for selection 

 
X 

  
[204] 

Threespine stickleback (G. aculeatus) recombination rates in regions of exceptional differentiation were often reduced 
  

X 
 [205] 

Crows (Corvus (corone) spp) heterogeneity in genetic differentiation is explained by linked selection on a shared 
genome architecture   

X 
 [206] 

European and American aspens  
(Populus tremula, P. tremuloides) 

linked selection generates heterogeneity of differentiation correlated with 
recombination   

X 
 [207] 

Darwin finches  
(Geospiza, Camarhynchus, 
Platyspiza, Pinaroloxias spp) 

genomic islands of locally elevated sequence divergence have low recombination 
rates 

  
X 

 
[208] 

Genomic differentiation based on SNPs from transcriptome sequence data 
     

Sunflowers (Helianthus annuus, H. 
petiolaris, H. debilis, H argophyllus) 

highly differentiated regions are associated with reduced recombination rates 

 
X 

  [209] 

House mouse (M. m. musculus, M. m. 
domesticus, M. m. castaneus) 

levels of differentiation were generally higher in regions of low recombination 

 
X 

  [210] 

Genomic differentiation based on SNPs sampled using SNP-chip, reduced representation libraries 
     

Humans (H. sapiens) FST reduced in the portion of the genome with the highest recombination rate 
 

X 
  [211] 

Threespine stickleback (G. aculeatus) recombination rate correlates with the magnitude of allele frequency shift 

 
X 

  [212] 

House mouse (M. m. musculus, M. m. 
domesticus) 

reduced introgression and higher genomic differentiation associated with lower rates 
of recombination     [213] 

Threespine stickleback 
(G. aculeatus) 

adaptive alleles occur more often in regions of low recombination in presence of 
divergent selection and gene flow   

X 
  [214] 
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 797 

Figure 1. Comparing recombination landscape and frequency (REC) across different 798 

taxonomic and spatial scales (boxes on the left) provides complementary data to address 799 

outstanding questions about how and why recombination varies (boxes on right).  800 

 801 



 802 

Figure 2. Variation in log of recombination rate, estimated by dividing linkage map length in 803 

centimorgans (cM) by genome size (Mb) across Eukaryotes taxa. Other plants: Pteridophyta, 804 

Chlorophyta, Bryophyta. Other Animals: Anthzoa, Holothuriodea, Ascidacae. 805 

 806 

 807 

Figure 3. Observed (points) and fitted (lines) relationships between a) Log genome size 808 

(Megabases, Mb) with log linkage map length (Centimorgans, cM), b) log haploid 809 

chromosome number with log linkage map length and c) log haploid chromosome number 810 

plotted against log recombination rate measured as linkage map (cM) length divided by 811 



genome size (Mb). Fitted linear and quadratic relationships were obtained by fitting a 812 

phylogenetic generalized linear model separately for Plants, Animals and Fungi.  813 

 814 
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