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The health benefits of UV radiation exposure through vitamin D production or non-vitamin D 

pathways 

Blood pressure and cardiovascular disease. 

Dr Richard Weller.  

MRC Centre for Inflammation Research. University of Edinburgh 

 

The detrimental effects of ultraviolet radiation are well known. Skin cancer, photo-aging, and 

induction or exacerbation of photosensitive dermatoses have been the focus of  most 

photobiological research since 1928 when  Findlay confirmed the carcinogenicity of ultraviolet 

radiation using a  murine model of skin cancer
1
.  The epidemiological, mechanistic and clinical trial 

data have enabled the classification by the International Agency for Research on Cancer of 

ultraviolet radiation as a Group 1 (‘sufficient evidence’) carcinogen for human skin
2
.   Public health 

advice in most developed countries with a pale-skinned population following this has advocated 

limiting exposure to sunlight through use of clothing, sunblock and behavioural alterations
3-5

.   

Despite this plethora of data, one striking omission is evidence that ultraviolet radiation shortens 

life, and as I will lay out in this chapter, epidemiological and now mechanistic data suggest that UV 

may have significant benefits on health and in particular cardiovascular health.   

Hypertension,  latitude and season 

The most recent World Health Organisation Global Burden of Disease survey assesses high blood 

pressure as the leading global risk factor for lost Disability Adjusted Life Years
6
.  Hypertension is an 

important risk factor for cardiovascular and cerebrovascular disease, themselves two of the leading 

causes of death and disability.   A considerable body of epidemiological data is consistent with the 

hypothesis that sunlight might reduce blood pressure and heart disease. Population blood pressure 

correlates inversely with latitude
7
 as does atherosclerosis, for which high blood pressure is  a risk 

factor.  Temperature and exercise may account for some of this but UV appears to be an 

independent variable
8
. In a prospective Europe wide study to determine factors determining 

cardiovascular events, measurements of carotid artery intima-media thickness (C-IMT) were 

recorded. C-IMT is a marker of sub-clinical atherosclerosis and correlates closely with risk of 

cardiovascular death.  Subjects were enrolled in 7 centres from Kuopio in Finland to Perugia in Italy. 

Multivariate regression analysis showed that latitude was the major independent determinant for C-

IMT, accounting for almost half of  variation, and significantly more important than other measured 

variables such as age, dietary factors, smoking, lipids, exercise, gender, age or blood pressure
9
.  

Correspondingly, risks of death from cardiovascular disease in Europe also correlate with latitude, 

being higher in northern countries
10-12

.   Genetic or cultural differences such as dietary salt intake 

may account for these pan-European differences, but the linear relationship between latitude and 

cardiovascular endpoints is more consistent with a causative factor with a steady cline such as 

temperature or UV, than a discrete and random variable such as genetic variation or diet. 

Further evidence differentiating between population determined effects (e.g. diet, genetics) and 

environmental effects (e.g. UV, temperature) can be obtained by examining seasonal effects.  In 

those living in temperate climates, strong seasonal variations are seen in blood pressure which 

cannot be accounted for by inter-population differences at different geographical locations
13

. Within 

the UK, blood pressure is higher in untreated hypertensives in winter than summer, particularly in 

older patients, and this seasonal variation even occurs in patients on treatment with thiazide 
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diuretics or propranolol
14

.  Patients undergoing renal dialysis show the same seasonal variation with 

higher BP in winter than summer
15

 and this effect also occurs following renal transplantation
16

. 

Temperature accounts for some of this variation
15

, but an analysis of BP data from over 1/3 million 

dialysis patients that I am currently undertaking shows that UV is associated with reduced BP 

independently of temperature. 

Vitamin D 

Vitamin D has been extensively studied and is widely available as an over the counter health 

supplement, with many claimed benefits.  Measurements of serum vitamin D levels (as 25-

hydroxyvitamin D) show that populations with higher vitamin D levels are less likely to have 

hypertension, cardiovascular disease, cerebrovascular disease, or in fact death from any cause
17

.  

Those whose measured vitamin D levels are in the lowest quartile are around twice as likely to have 

one of these conditions as those whose levels are in the highest quartile
18

. Correlation is not 

evidence for causation however.  Over 45 clinical trials have now been performed studying vitamin D 

supplementation as a treatment for hypertension.  Earlier meta-analyses had raised the possibility of 

a vitamin D induced non-significant reduction of systolic but not diastolic blood pressure
18

, or of 

diastolic but not systolic pressure
19

.  The proliferation of trials of vitamin D supplementation on 

cardiovascular outcomes has reduced this uncertainty, and the most recent and thorough meta-

analyses combining the data from all eligible studies confirm that intervention with oral vitamin D 

supplementation has  no effect on blood pressure
20

.  Meta-analyses looking at cardiovascular and 

cerebrovascular outcomes show a similar lack of effect on oral vitamin D supplementation
17, 18, 21

. 

They also confirm that the large number of patients enrolled in such studies exceeds the power 

needed to confirm any direct link between oral vitamin D supplements improved cardiovascular 

health, and that no further studies are needed
21

  

Further proof that Vitamin D does not play an important part in maintenance of cardiovascular 

health comes from Mendelian randomisation studies, which behave like a natural randomised, 

controlled clinical trial. Random assortment of genetic variants at the time of gamete formation acts 

in the same manner as randomisation for a clinical trial and prevent confounding, as long as there is 

no linkage disequilibrium.  Polymorphisms in the genes DHCR7 and CYP2R1 lead to lifelong reduced 

25-hydroxy vitamin D formation.  Nearly 100,000 Danes were studied in the Copenhagen City Heart 

Study, General Population Study, and Ischaemic Heart Study. All participants were genotyped for 

these two variants and an allele score given dependent on how many low vitamin D coding variants 

they carried.   An allele score associated with reduced genetic vitamin D production correlated with 

an increased cancer and all-cause mortality, but no increase in cardiovascular  mortality,  (in fact a 

trend to reduced cardiovascular mortality)
22

.  Similar Mendelian randomization studies using BP as 

an outcome measure have shown no effect of polymorphisms affecting Vitamin D synthesis, 

metabolism or signaling
23

 

Vitamin D independent mechanisms of cardiovascular benefit. 

Measured vitamin D levels inversely correlate with cardiovascular health, but Vitamin D is not 

causally related to cardiovascular health. Several explanations can be made for this. 

Poor cardiovascular health and hypertension may directly reduce vitamin D levels. Vitamin D levels 

are a function of a balance between synthesis and inactivation pathways
24

.  Levels inversely  

correlate with inflammatory markers in patients with heart failure
25

, although there are no published 

data showing any direct effect of heart disease on this homeostatic balance.  
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Vitamin D may be a marker for poor cardiovascular health, as impaired health may lead to poor diet 

and less time spent outside in the sunlight.  This explanation seems unlikely to account for the 

hypertension data, as this is a symptomless condition and should not therefore affect dietary or 

exercise choices. Symptomatic cardiovascular disease will have an effect on exercise and thus time 

spent outside, although epidemiological studies generally sought to exclude individuals with this 

confounder.    

Measured vitamin D levels may be a marker for exercise performed outside.  Exercise has a potent 

beneficial effect on cardiovascular health, lowering blood pressure and incident heart disease.  

Healthy lifestyles will thus be reflected by higher vitamin D levels.   

Finally and perhaps most controversially given the concerns of the dermatological community on the 

hazards of UV exposure, sunlight may have beneficial cardiovascular effects, independently of 

Vitamin D production.  Vitamin D could in these circumstances act as a marker for sunlight exposure 

and its postulated beneficial effects
26

.   

A recent retrospective study from Denmark study looked at all Danes over the age of 40 from 1980 

to 2006.  Denmark has extremely thorough health records, and records 98% of cancer diagnoses and 

all myocardial infarctions.  Using a case-control design, all incident cases of skin cancer were 

matched with 5 controls by age, birth year and gender. A diagnosis of non-melanoma skin cancer 

conferred an odds ratio of myocardial infarction of 0.90 (95% confidence intervals 0.88–0.92) and 

cutaneous melanoma an odds ratio of 0.74 (0.68–0.81)
27

.  Ultraviolet radiation is the major risk 

factor for non-melanoma skin cancer in a fair skinned population such as the Danes, and as such, 

NMSC can act as a proxy for cumulative sun exposure
28

.  Other environmental risk factors for NMSC 

include use of photosensitising anti-hypertensive medication, chronic inflammatory skin conditions 

(Marjolin’s ulcer), immunosuppression-either iatrogenic, or due to conditions such as HIV, and 

smoking
29

.  As these risk factors were not controlled for, the reduction in the odds ratio of 

developing a myocardial infarction or indeed mortality from any cause (0.97 95% confidence 

intervals 0.96–0.99) in this case-control study is striking
28

. Factors associated with development of 

NMSC such as sunlight, or outdoor lifestyle, must be beneficial enough to outweigh the adverse 

effects of the other exposures.   

Two prospective cohort studies from Scandinavia have recently been published, each designed to 

identify the risks of sunlight exposure on melanoma induction and mortality.  The strength of both 

these studies is that sun exposure data for each participant was assessed.  The Melanoma in 

Southern Sweden study (MISS) recruited just under 30,000 Swedish women and gave them a sun 

exposure rating at the start of the study based on whether they sunbathed in summer, in winter, 

went on foreign holidays, or used artificial tanning lamps
30

.  Extensive correction was made for 

known confounders both from questionnaire data and by cross-referencing their study records with 

health and tax databases.  25 years after study initiation, it was found that those with the highest 

sun exposure scores did indeed have an increased incidence of melanoma, but that there was a 

straight line inverse relationship between UV exposure and all-cause mortality.  Extrapolating the 

findings of the study to the Swedish population, 3% of deaths in Sweden could be accounted for by 

inadequate sun exposure
30

, and those with the lowest sun exposure scores carried a similar hazard 

for death compared to the  maximally exposed group as smokers
31

. 

The Swedish Women’s Lifestyle and Health Study also found that increased sunlight exposure 

correlated with reduced all cause and particularly cardiovascular mortality
32

. 38,472 women were 

recruited and completed a health questionnaire at initiation. 15 years later, incident malignant 

melanoma was higher in those with higher numbers of sunburns, mole numbers, red hair, and weeks 
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spent on sunbathing holidays
33

.    However, multivariately adjusted hazard ratios for all-cause 

mortality and for cardiovascular disease were significantly reduced in those with the highest sun 

exposure habits, as assessed by weeks spent on sunbathing holidays
32

.   

One other epidemiological study has studied UV and all-cause mortality, but used estimates of 

population UV exposure rather than individual estimates. The findings of this study are the only ones 

which suggest a link between UV and increased deaths, but weaknesses in the study make a causal 

relationship seem unlikely.   Lin et al calculated incident environmental UV from NASA’s Total Ozone 

Mapping Spectrometer and mapped this onto the residential addresses of 346,615 participants in 

the NIH-AARP Diet and Health study, recruited from 6 American states.  The participants were not 

asked about UV related behaviour, and no occupational data (e.g. indoor vs outdoor) was collected 

so it is not known to what degree this outdoor environmental data indicates actual personal 

exposure.  Those living in the highest sunlight areas had a higher standardised all- cause mortality.  

Although this might suggest a UV induced excess of deaths, the causes of death did not match 

known UV driven mechanisms.  The major relative increased cause of death was for respiratory 

disease.  There was a slight increase in deaths from cardiovascular disease and stroke in high versus 

low UV regions, but no dose-response relationship.  Deaths from cancer were increased in men 

proportionately to the amount of UV, but  women did not have higher death rates in  higher UV 

areas. The cancers with the highest relative risk increase were, in descending order: liver, melanoma, 

and lung.  Deaths from injury were increased in men living in sunnier areas.    These data appear at 

odds with those from the Scandinavian studies, where UV exposure was assessed with reference to 

personal behaviour.  Skin cancer is the only disease for which epidemiological, mechanistic and 

clinical trial data all confirm a UV-cancer induction cause-effect relationship.  If the incident UV at 

the geographical location of participants homes correlates directly with personal UV exposure, one 

would have expected skin cancers (such as melanoma) to be a leading cause of UV related death.  

The high prevalence of respiratory causes of death, and cancers other than skin suggest that 

confounding may underlie this apparently higher hazard ratio for UV related deaths. 

Nitric oxide and the skin 

Avitamin D independent mechanism by which sunlight acting on skin can exert beneficial 

cardiovascular effects has recently been described by Christoph Suschek’s group in Dusseldorf
35

 and 

mine in Edinburgh
34

. It relies on the UVA mediated mobilisation of cutaneous nitric oxide stores to 

the systemic circulation.   

Nitric oxide (NO) is a small diatomic free radical with widespread physiological, immunological and 

cell signalling effects.  Nitric oxide was originally identified from its first described actions as 

‘endothelial derived relaxant factor’
36

.  This was subsequently delineated as nitric oxide, synthesised 

by  a nitric oxide synthase in the endothelial cells
37

.  It diffuses from its site of synthesis in the 

endothelial cells to the adjacent vascular smooth muscle cells to activate cyclic GMP and cause 

relaxation and vasodilatation. This pathway, and the novel idea that a small molecule might have 

tightly regulated and important biological roles earned its discoverers the 1998 Nobel Prize for 

medicine.  NO synthesis was initially described following reduction of arginine to citrulline and NO by 

one of a family of three nitric oxide synthases.  NOS I and III (neuronal and endothelial) are 

constitutive, calcium dependent enzymes broadly involved in homeostatic processes including 

neurotransmission, apoptosis and cell growth control and vasodilatation.  NOS II is an inducible NOS 

which releases much higher amounts of NO and either alone or in combination with superoxide 

anion (which generates the potent oxidiser peroxynitrite) can drive inflammatory and cytotoxic 

effects in roles such as cytolysis, and pathogen destruction.   Nitric oxide has a half-life of a few 

seconds, and is oxidised to nitrite (NO2
-
) in aqueous solution. Nitrite is more stable with a half-life of 
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several hours and is often used experimentally as an indicator of NO concentration/production.  

Nitrite is finally oxidised to nitrate anion, NO3
-
. Nitrate has traditionally been thought of as a stable 

and biologically inactive molecule which was filtered to the urine by the kidneys to be cleared from 

the body.  The major source of nitrate in man is from the diet, with green leafy vegetables such as 

spinach, and beetroot being particularly rich food sources.   Nitric oxide oxidation can also be a 

source of nitrate however and as early as 1916 it was noted that more nitrate was excreted in 

human urine than was ingested
38

,  and that urinary nitrate excretion rose in sepsis, an effect now 

known to reflect increased iNOS activity.   

The paradigm of nitrate as inert waste product of NO oxidation
39

 has recently been overturned.  

Bacteria have been long known to contain nitrate reductases, and in fact, this was a traditional 

biochemical test for the presence of Staphylococci. A mammalian nitrate reductase was first 

described in 2008 and in both rodents and man this reduces inorganic nitrate to nitrite which in turn 

is reduced to NO with involvement of xanthine oxidoreducase
40

.  Oral nitrate ingestion lowers blood 

pressure in man
41

 and reduces oxygen demand during vigorous exercise
42

 via effects on 

mitochondrial efficiency
43

.   A further mechanism of reduction of nitrate to NO has also been 

identified dependent on photolysis.  Thiols, particularly reduced thiols (R-SH), potently enhance UV 

induced reduction of nitrate (NO3
-
) to NO and S-nitrosothiols (R-SNO)

44
.   My group observed that 

delivery of NOS antagonists to human skin via routes including topical application, iontophoresis, 

microdialysis and intradermal injection failed to prevent UV induced NO release.  Problem solving 

these experiments led to the discovery by us
45

 and colleagues
46

 that the skin contains large stores of 

nitrogen oxides, in particular nitrate and S-nitrosothiols.  Discussion of these data led us to 

hypothesise that the nitrogen oxides stored in human skin, and their mobilisation by UV irradiation 

to the systemic circulation might account for the observed epidemiological effects associating 

increased sun exposure with cardiovascular health described above
26

 (Figure). 

Exposure of human skin to physiologically relevant quantities of UVA leads to a fall in blood pressure 

and rise in heart rate, independently of temperature change
34, 35

. This is accompanied by a rise in 

circulating nitrite (the more stable oxidation product of gaseous NO), and fall in nitrate
34

, with the 

rise in nitrogen oxides correlating in a linear fashion with the fall in BP
35

. Unexpectedly, the fall in 

nitrate levels was greater than the rise in nitrite, rather than following a simple stoichiometric ratio, 

a difference that as yet is unexplained
34

.  A fall in BP with rise in heart rate indicates vasodilatation 

and a decrease in total peripheral resistance.  Forearm venous plethysmography experiments 

confirm the direct vasodilatory effect of UVA on the human arterial vasculature.  Infusion of the NOS 

antagonist L-NMMA into the brachial artery to block NOS derived NO production produced the 

expected vasoconstriction, and subsequent exposure of the NOS antagonised forearm to UVA led to 

vasodilatation, presumably by NOS independent NO release
34

.  These experimental data are exciting, 

and the first description of a vitamin D independent UV driven-nitrate reduction and vasodilatation 

mechanism in man, but they may in fact be the rediscovery of an old story.  Robert Furchgott won 

the  Nobel prize for his description of ‘Endothelial Derived Relaxant Factor’
36

, now known to be nitric 

oxide generated by the action of endothelial nitric oxide synthase on arginine in endothelial cells
37

.  

Long before this, he observed that strips of rabbit aorta from which the endothelium (and thus 

endothelial NOS) had been removed were alternately relaxing and constricting in their organ bath.  

The day was bright but cloudy and he identified that this was not occurring in organ baths furthest 

from the window, and that the synchronous relaxation of those strips close to the window only 

occurred when the sun was uncovered by clouds
47

.   He termed this process photorelaxation
48

 and 

over the following two decades was able to define an action spectrum with a peak photorelaxation 

at 310nm, which was enhanced and shifted to 355nm when sodium nitrite was added
48, 49

.  After the 

discovery of EDRF, and before its identification as nitric oxide Furchgott was able to compare the 
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two muscle relaxing processes and found a number of similarities.  Both photorelaxation and 

endothelial derived relaxation acted via cyclic GMP, and both could be inhibited by methylene blue 

and by haemoglobin
50

. Ultimately he proved that this in vitro photorelaxation was due to the release 

of NO from ‘long wavelength’ UV irradiated nitrite
51

 and in his autobiography on the Nobel prize 

website, he speculates ‘It is tempting to hypothesize that light (in the absence of added nitrite) 

produces relaxation of vascular smooth muscle by photoactivating the release of NO from some 

endogenous compound ..’
47

.  

 

 

 

Using rat aortic tissue, Rodriguez has shown a predominantly two component photorelaxation 

process
52

.  A 330 to 340nm photorelaxation peak corresponded to the experimental NO release 

spectrum for S-nitrosothiols.  Prolonged exposure to 335nm radiation exhausted S-nitrosothiol 

stores, revealing a flatter 310 to 360nm photorelaxation shoulder correlating with the nitrite derived 

NO release spectrum.  The S-nitrosothiols required energies of UV around two orders of magnitude 

lower than those for nitrite, but correspondingly concentrations of nitrite in rat aorta were around 

two orders of magnitude higher, suggesting that these two nitrogen oxides play a similarly important 

role.  Using human skin, Suschek has shown that human skin UVA induced NO release relies on 

stores of nitrite and nitrosothiols, which are present in higher concentrations than in plasma
46

.  

Reduced thiols strongly augment the photodecomposition of nitrite and thus enhance NO release.   

Short wavelength visible blue light can also mobilise NO in human skin
53

 although higher fluences are 

required, and this may offer an ultraviolet free means of cardiovascular protection.  

Nitrate stores exceed those of nitrite in the skin by an order of magnitude
45

.  Nitrate is an important 

precursor to nitrite and thus NO in human cardiovascular protection
54

 and can be photochemically 

reduced to inorganic nitrite
44

, but the regulatory control of this range of oxidation, reduction and 

nitrosation reactions in human skin remains only partly understood. Redox status, sunlight and thiol 

presence affects these reactions, and interactions with sulfide groups add a layer of complexity and 

probable regulatory control
55

. Inter-individual variations in photorelaxation are seen in   aortic strips 

taken from different rats which may reflect differences in stores of nitrogen oxides
52

.  The source, 

size and precise location of nitrogen oxide stores in skin remains unclear
45

 as does the extent of 

depletion of such stores on sunlight exposure.  They may be dietary in origin
26

, and it is known that a 

nitrate rich diet lowers BP
56

. Alternatively oxidation of NOS derived NO may be responsible(Figure).   

 

These recent human data
34, 35

 show the physiological relevance of photorelaxation.  High blood 

pressure is the leading cause of disability adjusted life years lost worldwide and as a risk factor 

underlies 18% of all deaths
6
.  Hypertension is a diagnostic category, but reductions in blood 

pressure, even within the healthy range confer health benefits such as reduced risk of 

cerebrovascular accidents and ischaemic heart disease
57

.  So far, we have shown a vitamin D 

independent mechanism by which sunlight could lower blood pressure, but we do not yet know 

whether alterations in UV exposure- either artificially or by lifestyle changes allowing increased 

sunlight exposure- will lead to a sustained fall in blood pressure. We have recently started a clinical 

trial on the use of UVA home phototherapy as a treatment for mild hypertension (Clinicaltrials.gov 

Identifier NCT02621866) which should provide these answers for a patient population.  The question 

as to whether improved sun exposure might to beneficial further lowering of the ‘normal’ blood 
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pressure in a healthy population will require futher studies.   Ultraviolet A radiation was used in our 

initial mechanistic studies as it does not induce vitamin D synthesis and could thus confirm a vitamin 

D independent effect of ultraviolet radiation on blood pressure. The action spectrum of nitrite 

release shows that ultraviolet B is also involved in nitrite reduction to NO
52

, and thus sunlight may be 

more effective than a pure UVA source. 

Pharmacological mechanisms such as vitamin D and nitric oxide for the suggested health benefits of 

sunshine may not be the sole explanation.  Dopico and colleagues data mined gene expression sets 

from adipocytes and peripheral white blood cells collected from volunteers in studies in Australia, 

the Gambi, Europe and Iceland
58

.  A remarkable seasonality in gene expression was found.    23% of 

genes are differentially expressed in subjects living in temperate climates.  Broadly speaking, anti-

inflammatory genes were upregulated in summer and pro-inflammatory genes in winter.  Soluble IL-

6 receptor and C reactive proteins, which are both  markers of inflammation and risk factors for 

cardiovascular disease were also elevated in winter.  It is not clear from the data whether the pro-

inflammatory milieu in winter is an adaptive evolutionary response that prepares the body for 

combatting the higher incidence of infectious disease in winter, or is a consequence of exposure to 

such infections.  Light exposure is the predominant zeitgeber entraining circadian rhythms.  It thus 

seems likely that sunlight will also affect seasonal variations in gene expression.  Inflammation is an 

important risk factor for cardiovascular disease
59

 and sunlight entrainment of a seasonal variation in 

gene expression may thus also affect cardiovascular risk. 

Medical and public health advice on sun exposure affects how our patients behave.  We have robust 

evidence that sunlight is a risk factor for skin cancer, supported by epidemiological, mechanistic and 

trial data.  However, the prevalence of cardiovascular and cerebrovascular deaths is around 100 

times higher than those from skin cancer
6
.   Interventions leading to small changes in the incidence 

of cardiovascular disease are thus of greater benefit to the health of the public even than large 

changes in skin cancer incidence.  Epidemiological and mechanistic data now suggest that sunlight 

has cardiovascular benefits (Table).  A priority of photobiological research should now be in 

developing advice that strikes a balance between the proven carcinogenic actions of ultraviolet 

radiation with the possible/probable benefits of the same UVR on cardiovascular health and all-

cause mortality.  

 

Figure and Table Legends 

Table.   

An overview of available evidence for skin carcinogenic effects of ultraviolet radiation, and 

cardiovascular benefits. 

Figure. 

Summary of nitric oxide production pathways involving the skin 
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Table 

Evidence type. Epidemiological Mechanistic Intervention/trial 

Skin carcinogenic 

effects of UVR 

Increased incidence of NMSC and MM in:  

• Sunnier climates. 

• Sun seeking behaviour. 

• Outdoor workers (SCC). 

• With tanning bed use. 

• In lower Fitzpatrick skin types. 

• Mutagenic effects of UV 

radiation 

• UV signature mutations 

in skin cancers 

• Free radical generation 

by UVA. 

• Immunosuppressant 

effects of UVR
60

 

 

• Ultraviolet radiation 

induces skin cancers in 

murine models
1
.  

• Sunblock reduces NMSC 

incidence in man. 
61, 62

 

Cardiovascular 

benefits of UVR 

Observational data: 

• Low measured vitamin D correlates with 

increased hypertension and cardiovascular 

disease incidence
18

 

• Reduced blood pressure
14

 and incident 

cardiovascular disease in summer
63

 than winter 

• Anti-inflammatory:inflammatorygene 

expression ratio highest in summer
58

 

Case-control data:  

• Reduced odds ratio for myocardial infarctions 

in NMSC patients
27

 

Prospective cohort data: 

• Dose dependently sun seeking behaviour 

inversely correlates with all-cause mortality
30

 

• Sun seekers have reduced cardiovascular 

mortality
32

 

 

Oral vitamin D supplementation 

does not reduce blood pressure 

or cardiovascular disease 

incidence
21

 

 

UV induced ‘photorelaxation’ of 

arteries
48

 

 

UV mobilises NO from nitrate in 

the presence of thiols
44

 

 

UVA exposure of skin 

vasodilates systemic arteries in 

man independently of NOS, 

vitamin D and temperature
34

 

 

UVA exposure lowers BP in man 

independently of vitamin D and 

temperature
34, 35
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