
Similarity-based Classi�cation with

Dominance-based Decision Rules

Marcin Szel¡g1, Salvatore Greco2,3, Roman Sªowi«ski1,4

1 Institute of Computing Science, Pozna« University of Technology,
60-965 Pozna«, Poland, {mszelag, rslowinski}@cs.put.poznan.pl

2 Department of Economics and Business, University of Catania,
Corso Italia, 55, 95129 Catania, Italy, salgreco@unict.it

3 Portsmouth Business School, University of Portsmouth, UK
4 Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw

Abstract. We consider a similarity-based classi�cation problem where
a new case (object) is classi�ed based on its similarity to some previ-
ously classi�ed cases. In this process of case-based reasoning (CBR), we
adopt the Dominance-based Rough Set Approach (DRSA), that is able
to handle monotonic relationship �the more similar is object y to object
x with respect to the considered features, the closer is y to x in terms
of the membership to a given decision class X�. At the level of marginal
similarity concerning single features, we consider this similarity in ordi-
nal terms only. The marginal similarities are aggregated within induced
decision rules describing monotonic relationship between comprehensive
similarity of objects and their similarities with respect to single features.
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1 Introduction

People tend to solve new problems using the solutions of similar problems en-
countered in the past. This process if often referred to as case-based reasoning

(CBR) [9]. As observed by Gilboa and Schmeidler [3], the basic idea of CBR
can be found in the following sentence of Hume [8]: �From causes which appear
similar we expect similar e�ects. This is the sum of all our experimental con-
clusions.� We can rephrase this sentence by saying: �The more similar are the
causes, the more similar one expects the e�ects�.

We consider classi�cation performed according to the (broadly construed)
CBR paradigm, i.e., a similarity-based classi�cation. In the similarity-based clas-
si�cation problem, there is given a �nite set of training objects (case base), de-
scribed by a set of features, a set of marginal similarity functions (one for each
feature), and a set of prede�ned decision classes. This information is used to
suggest membership of a new (unseen) object to particular decision classes.

In case-based reasoning, one needs a similarity model aggregating marginal
similarities into comprehensive similarity. Traditionally, this model has the form



of a real-valued aggregation function (e.g., Euclidean norm) or binary rela-
tion (e.g., fuzzy relation). In this paper, we present a method based on the
Dominance-based Rough Set Approach (DRSA) [4, 11, 12], using a new similar-
ity model in terms of a set of if-then decision rules employing dominance relation
in the space created by marginal similarity functions. The �rst method concern-
ing application of DRSA to CBR was introduced in [5�7], and then extended in
[14]. The method presented in this paper, �rst described in an unpublished PhD
thesis [13], concerns revision and improvement of the approach given in [14].

The proposed rule-based similarity model makes it possible to avoid an ar-
bitrary aggregation of marginal similarity functions. In this approach, compre-
hensive similarity is represented by decision rules induced from classi�cation
examples. These rules underline the monotonic relationship �the more similar is
object y to object x with respect to the considered features, the closer is y to x in
terms of the membership to a given decision class X�. Violation of this principle
causes an inconsistency in the set of objects, which is handled using DRSA. An
important characteristic of the proposed approach is that induced rules employ
only ordinal properties of marginal similarity functions. Thus, this approach is
invariant to ordinally equivalent marginal similarity functions.

We improve over [14] by proposing a way o inducing decision rules, and by
introducing a new rule-based classi�cation scheme extending the one given in [1].

This paper is organized as follows. Section 2 describes problem setting. In
Section 3, we discuss basic notions and assumptions. Section 4 de�nes considered
similarity learning task. In Section 5, we introduce two comprehensive closeness

relations. Section 6 de�nes rough approximations of the sets of objects being
in either kind of comprehensive closeness relation with a reference object x. In
Section 7, we describe induction of monotonic decision rules from the rough
approximations. Section 8 concerns application of induced rules. In Section 9,
we present an illustrative example. Section 10 concludes the paper.

2 Problem Setting

We consider the following classi�cation problem setting. There is given a �nite set
of objects U (case base) and a �nite family of pre-de�ned decision classes D. An
object y ∈ U (a �case�) is described in terms of features f1, . . . , fn ∈ F . For each
feature fi ∈ F , there is given a marginal similarity function σfi : U ×U → [0, 1],
such that the value σfi(y, x) expresses the similarity of object y ∈ U to object
x ∈ U with respect to (w.r.t.) feature fi, and for all x, y ∈ U , σfi(y, x) = 1 ⇔
fi(y) = fi(x). Moreover, for each object y ∈ U there is given an information
concerning credibility of its membership to each of the considered classes. To
admit graded credibilities, each class X ∈ D is modeled as a fuzzy set in U [15],
characterized by membership function µX : U → [0, 1]. Thus, each object y ∈ U
can belong to di�erent decision classes with di�erent degrees of membership. The
above input information is processed to produce a recommendation concerning
a new object z, in terms of a degree of membership of z to particular classes.



3 Basic Notions and Assumptions

Pairwise fuzzy information base. Given the problem setting introduced in
Section 2, a pairwise fuzzy information base B is the 3-tuple

B =< U,F,Σ >, (1)

where U is a �nite set of objects (a case base), F is a �nite set of n features, and
Σ = {σf1 , σf2 , . . . , σfn} is a �nite set of n marginal similarity functions.

Marginal similarity functions. Di�erent marginal similarity functions can be
used, depending on the value set Vfi of feature fi ∈ F . For a numeric feature fi,
with values on interval or ratio scale, similarity can be de�ned using a function,

e.g., σfi = 1 − |fi(x)−fi(y)|
maxvi∈Vfi

−minvi∈Vfi
. For a nominal feature fi, similarity can be

de�ned using a table, like Table 1. The marginal similarity functions create an

Table 1. Exemplary de�nition of similarity for a nominal feature fi ∈ F

fi(x) \ fi(y) low medium high

low 1.0 0.6 0.3
medium 0.6 1.0 0.5
high 0.3 0.5 1.0

n-dimensional similarity space.

Problem decomposition.We consider the decision classes belonging to family
D to be mutually independent in the sense of membership function values. Then,
we decompose the original multi-class problem π to a set of single-class subprob-

lems πX , where X ∈ D. Thus, each subproblem concerns a single decision class
X ∈ D with membership function µX : U → [0, 1]. In each subproblem, let

VµX = {µX(y) : y ∈ U}. (2)

Reference objects. We assume that for each subproblem πX , there is given
a set of so-called reference objects URX ⊆ U . These are objects to which objects
from set U are going to be compared. The reference objects may be indicated by
a user, and thus, the set of reference objects should be relatively small. If such
information is not available, one can use clustering to choose a suitable set of
reference objects, sample U , or treat all the objects from U as the reference ones.

4 Similarity Learning

The method proposed in this paper is designed for the following learning task.
Given: i) the pairwise fuzzy information base B, ii) the family D of decision



classes, implying subproblems πX , X ∈ D, iii) the membership functions
µX : U → [0, 1], X ∈ D, and iv) the sets of reference objects URX ⊆ U , X ∈ D,
learn, for each subproblem πX , set of decision rules

RX =
⋃

x∈URX

RX(x), (3)

where RX(x) is the set of rules describing membership of an object y ∈ U to
class X ∈ D based on similarity of y to reference object x ∈ URX .

5 Comprehensive Closeness of Objects

Given a decision class X being a fuzzy set in U , we de�ne two kinds of binary
comprehensive closeness relations on U :

y %Xα,β x⇔ µX(x) ∈ [α, β] and µX(y) ∈ [α, β], (4)

y -Xα,β x⇔ µX(x) ∈ [α, β] and µX(y) /∈ (α, β), (5)

where y, x ∈ U and −δ ≤ α ≤ β ≤ 1 + δ, where δ ∈ R+ is any �xed positive
value (a technical parameter). When y %Xα,β x, then α ≤ µX(y) ≤ µX(x) ≤ β
or α ≤ µX(x) ≤ µX(y) ≤ β, i.e., looking from the perspective of y, µX(y) is on
the left side of µX(x) but not farther than α, or µX(y) is on the right side of
µX(x) but not farther than β. When y -Xα,β x, then µX(y) is on the left side
of µX(x) but not closer than α, or µX(y) is on the right side of µX(x) but not
closer than β. Thus, α and β play roles of limiting levels of membership to X.

The �special� values −δ and 1 + δ, where δ ∈ R+, are considered in (5) to
allow, respectively, µX(y) /∈ (−δ, β) (i.e., µX(y) ≥ β) and µX(y) /∈ (α, 1 + δ)
(i.e., µX(y) ≤ α). This is crucial, e.g., when X is crisp � one can then consider
two meaningful relations -X0,1+δ and -X−δ,1, composed of pairs (y, x) ∈ U × U
such that µX(y) ≤ 0 and µX(y) ≥ 1, respectively.

Let us observe that %Xα,β is re�exive, symmetric and transitive and thus it is

an equivalence relation. Moreover, -Xα,β is only transitive.

Given a class X and a reference object x ∈ URX , we are interested in charac-
terizing, in terms of similarity-based decision rules, the objects y ∈ U being in:

� %Xα,β relation with x, where α, β ∈ VµX ,
� -Xα,β relation with x, where α, β ∈ VµX ∪ {−δ} ∪ {1 + δ}), α < µX(x) < β.

Let V δµX = VµX ∪ {−δ} ∪ {1 + δ}, where δ ∈ R+. We de�ne two types of sets:

S(%Xα,β , x) = {y ∈ U : y %Xα,β x}, where α, β ∈ VµX , α ≤ µX(x) ≤ β, (6)

S(-Xα,β , x) = {y ∈ U : y -Xα,β x}, where α, β ∈ V δµX , α < µX(x) < β. (7)

The strict constraint α < µX(x) < β in (7) prevents from considering not

meaningful sets S(-Xα,β , x) [13]. From this point of view, it is crucial that when
µX(x) = 0 (or µX(x) = 1), one can take α = −δ (or β = 1 + δ, respectively).

The sets of objects de�ned by (6) and (7) are to be approximated using
dominance cones in the similarity space created by functions σf1 , . . . , σfn .



6 Rough Approximation by Dominance Relation

Let us de�ne the dominance relation w.r.t. the similarity to an object x ∈ U ,
called in short x-dominance relation, de�ned over U , and denoted by Dx. For
any x, y, w ∈ U , y is said to x-dominate w (denotation yDxw) if for every fi ∈ F ,

σfi(y, x) ≥ σfi(w, x). (8)

Thus, object y is said to x-dominate object w i� for every feature fi ∈ F , y is
at least as similar to x as w is.

Given an object y ∈ U , x-positive and x-negative dominance cones of y in
the similarity space are de�ned as follows:

D+
x (y) = {w ∈ U : wDxy}, (9)

D−x (y) = {w ∈ U : yDxw}. (10)

In order to induce meaningful certain and possible decision rules concerning
similarity to a reference object x ∈ URX , we structure the objects y ∈ U by

calculation of lower and upper approximations of sets S(%Xα,β , x) and S(-
X
α,β , x).

The lower approximations of sets S(%Xα,β , x) and S(-
X
α,β , x) are de�ned as:

S(%Xα,β , x) = {y ∈ U : D+
x (y) ⊆ S(%Xα,β , x)}, (11)

S(-Xα,β , x) = {y ∈ U : D−x (y) ⊆ S(-
X
α,β , x)}, (12)

and the upper approximations of sets S(%Xα,β , x) and S(-
X
α,β , x) are de�ned as:

S(%Xα,β , x) = {y ∈ U : D−x (y) ∩ S(%Xα,β , x) 6= ∅}, (13)

S(-Xα,β , x) = {y ∈ U : D+
x (y) ∩ S(-

X
α,β , x) 6= ∅}. (14)

With respect to the three basic properties of set approximations de�ned for
rough sets in [10], it follows from de�nitions (6), (7), (11), (12), (13), and (14),
that lower and upper approximations de�ned above ful�ll properties of rough

inclusion and monotonicity of the accuracy of approximation. Moreover, these
approximations enjoy also complementarity property, as shown in [14].

Using (11), (12), (13), and (14), one can de�ne the boundary of set S(%Xα,β , x)

(or set S(-Xα,β , x)), as the di�erence between its upper and lower approximation.
It is also possible to perform further DRSA-like analysis by calculating the qual-
ity of approximation, reducts, and the core (see, e.g., [4, 11, 12]).

7 Induction of Decision Rules

Lower (or upper) approximations of considered sets S(%Xα,β , x) and S(-
X
α,β , x)

are the basis for induction of certain (or possible) decision rules belonging to set
RX(x), x ∈ URX . We distinguish two types of rules:



(1) at least rules:
if σfi1(y, x)≥hi1 . . . and σfip(y, x)≥hip, then certainly (or possibly) y %Xα,β x,

(2) at most rules:
if σfi1(y, x)≤hi1 . . . and σfip(y, x)≤hip, then certainly (or possibly) y -Xα,β x,

where {fi1, . . . , fip} ⊆ F , hi1, . . . , hip ∈ [0, 1], and α, β satisfy 0 ≤ α ≤ µX(x) ≤
β ≤ 1 in case of at least rules, and −δ ≤ α < µX(x) < β ≤ 1 + δ in case of at
most rules, δ ∈ R+.

Remark that according to de�nitions (4) and (5), the decision part of the
rule of type (1) and (2) can be rewritten, respectively, as:

(1) �then certainly (or possibly) µX(y) ∈ [α, β]�, i.e., the conclusion is that the
membership of object y to decision class X is inside the interval [α, β],

(2) �then certainly (or possibly) µX(y) /∈ (α, β)�, i.e., the conclusion is that the
membership of object y to decision class X is outside the interval (α, β).

A certain rule of type (1) is read as: �if similarity of object y to reference
object x w.r.t. feature fi1 is at least hi1 . . . and similarity of y to x w.r.t. feature
fip is at least hip, then certainly y belongs to class X with credibility between α
and β. A possible rule of type (2) is read as: �if similarity of object y to reference
object x w.r.t. feature fi1 is at most hi1 . . . and similarity of y to x w.r.t. feature
fip is at most hip, then possibly y belongs to class X with credibility at most α
or at least β.

Decision rules of type (1) and (2) can be induced using the VC-DomLEM
algorithm [2]. On one hand, these rules reveal similarity-based patterns present
in the training data. On the other hand, set RX =

⋃
x∈URX

RX(x) of induced

certain/possible rules can be applied to classify new objects (new cases).

8 Application of Decision Rules

The rules from RX can be applied to a new object z, described in terms of
features f1, . . . , fn ∈ F , to predict its degree of membership to class X. Then,
the rules covering z may give an ambiguous classi�cation suggestion (intervals
of µX instead of a crisp value). In order to resolve this ambiguity, we adapt and
revise the rule classi�cation scheme described in [1]. In this way, one can obtain
a precise (crisp) value of membership µX(z). Let us consider three situations,
assuming that Covz ⊆ RX denotes the set of rules covering object z, Condρ ⊆ U
denotes the set of objects covered by rule ρ, U tX = {y ∈ U : µX(y) = t}, and | · |
denotes cardinality of a set.

Situation (i). No rule from RX covers object z (i.e., Covz = ∅), so there is
no reliable suggestion concerning µX(z). If a concrete answer is expected, one
can suggest that µX(z) equals to the most frequent value µX(y), where y ∈ U .

Situation (ii). Exactly one rule ρ ∈ RX(x) ⊆ RX , x ∈ URX , covers object z
(i.e., |Covz| = 1). Then, we calculate value ScoreρX(t, z) for each membership
value t ∈ VµX covered by the decision part of this rule:

ScoreρX(t, z) =
|Condρ ∩ U tX |2

|Condρ||U tX |
. (15)



Then, µX(z) is calculated as µX(z) = maxt Score
ρ
X(t, z). Let us observe that

ScoreρX(t, z) ∈ [0, 1]. It can be interpreted as the degree of certainty of the
suggestion that µX(z) equals t.

Situation (iii). Several rules from RX cover object z (i.e., |Covz| > 1).
Then, we calculate value ScoreX(t, z) for each t ∈ VµX covered by the decision
part of any of the covering rules:

ScoreX(t, z) = Score+X(t, z)− Score−X(t, z), (16)

where Score+X(t, z) and Score−X(t, z) represent the positive and negative part
of ScoreX(t, z), respectively. Score+X(t, z) takes into account rules ρ1, . . . , ρk ∈
Covz whose decision part covers t:

Score+X(t, z) =
|(Condρ1 ∩ U tX) ∪ . . . ∪ (Condρk ∩ U tX)|2

|Condρ1 ∪ . . . ∪ Condρk ||U tX |
. (17)

Let us observe that Score+X(t, z) ∈ [0, 1]. Score−X(t, z) takes into account the
rules ρk+1, . . . , ρh ∈ Covz whose decision part does not cover t. If there is no
such rule, then Score−X(t, z) = 0. Otherwise:

Score−X(t, z) =
|(Condρk+1

∩ Uρk+1

X ) ∪ . . . ∪ (Condρh ∩ U
ρh
X )|2

|Condρk+1
∪ . . . ∪ Condρh ||U

ρk+1

X ∪ . . . ∪ UρhX |
, (18)

where UρX is subset of U containing objects whose membership to class X is
covered by the decision part of rule ρ. Let us observe that Score−X(t, z) ∈ [0, 1].

After calculating ScoreX(t, z) for all considered values of t, we take µX(z) =
maxt ScoreX(t, z). It can be interpreted as a net balance of the arguments in
favor and against the suggestion �the membership of object z to classX equals t�.

9 Illustrative Example

Let us consider set U composed of �ve objects described by two features: f1, with
value set [0, 8], and f2, with value set [0, 1]. Moreover, let us consider decision
class X, with membership function µX . The �ve objects are presented in Fig. 1.

We assume that object x is a reference object, and that there are given two
marginal similarity functions σf1 , σf2 de�ned as:

σfi(y, x) = 1− |fi(y)− fi(x)|
fmaxi − fmini

,

where i = 1, 2, and fmaxi , fmini denote max and min value in the value set of fi.
Functions σf1 and σf2 create a 2-dimensional similarity space. Fig. 2 shows

pairs of objects (·, x) in this space.
First, using (9) and (10), we calculate x-positive and x-negative dominance

cones in the similarity space. Two such cones are shown in Fig. 1 and in Fig. 2.
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Second, we calculate sets of objects S(%Xα,β , x) according to (6), for α ∈
{0.3, 0.4, 0.5} and β ∈ {0.5, 0.6, 0.7}. Moreover, we calculate S(-Xα,β , x) accord-
ing to (7), for α ∈ {−δ, 0.3, 0.4} and β ∈ {0.6, 0.7, 1 + δ}, where δ ∈ R+.

Third, sets S(%Xα,β , x) and S(-
X
α,β , x) are approximated using the x-positive

and x-negative dominance cones in the similarity space � see Table 2.

One can observe several inconsistencies w.r.t. the x-dominance relation in the
similarity space. E.g., objects y2, y4 ∈ S(%X0.4,0.7, x) are inconsistent since they

are x-dominated by object y1, and y1 /∈ S(%X0.4,0.7, x) (because µX(y1) = 0.3).

Table 3 presents minimal decision rules induced by VC-DomLEM algorithm
from the non-empty lower and upper approximations shown in Table 2.

Example of application of induced decision rules. Consider a new ob-
ject z such that f1(z) = 5.5, f2(z) = 0.5, and thus, σf1(z, x) = 6.5/8, σf2(z, x) =
1/2. Object z is covered by rules σ2 and σ15, suggesting µX(z) ∈ [0.3, 0.6] and
µX(z) /∈ (0.4, 0.6), respectively. Applying (17), (18), and (16) for each mem-
bership degree t ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, we get the result shown in Table 4.
Consequently, one can conclude that µX(z) is equal to 0.3, 0.4, or 0.6.



Table 2. Approximations of sets S(%Xα,β , x), S(-
X
α,β , x); δ ∈ R+; objects struck through

belong to respective set but not to its lower approximation; underlined objects do not
belong to respective set but belong to its upper approximation

S(%Xα,β , x) β = 0.5 β = 0.6 β = 0.7 S(-Xα,β , x) β = 0.6 β = 0.7 β = 1 + δ

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U α = −δ {y3, y4} {y4} ∅
α = 0.4 {y2, x} {y2, y3, x} {y2, y3, y4, x} α = 0.3 {y1, y3, y4} {y1, y4} {y1}
α = 0.5 {x} {y3, x} {y3, y4, x} α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2}
S(%Xα,β , x) β = 0.5 β = 0.6 β = 0.7 S(-Xα,β , x) β = 0.6 β = 0.7 β = 1 + δ

α = 0.3 {y1, y2, x} {y1, y2, y3, x} U α = −δ {y3, y4} {y4} ∅
α = 0.4 {y1, y2, x} {y1, y2, y3, x} {y1, y2, y3, y4, x} α = 0.3 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}

α = 0.5 {x} {y3, x} {y1, y2, y3, y4, x} α = 0.4 {y1, y2, y3, y4} {y1, y2, y4} {y1, y2, y4}

Table 3. Rules induced for referent x such that f1(x) = 4, f2(x) = 0; `Supp.' (`¬ Supp.')
presents ids of objects supporting a rule (covered by a rule but not supporting it);
8 possible rules, identical (except for �possibly�) to respective certain rules, are skipped

Id Decision rule Supp. ¬ Supp.

ρ1 if σf1(y, x) ≥ 5
8
and σf2(y, x) ≥ 1, then certainly µX(y) ∈ [0.3, 0.5] {y1, y2, x}

ρ2 if σf1(y, x) ≥ 5
8
, then certainly µX(y) ∈ [0.3, 0.6] {y1, y2, y3, x}

ρ3 if σf1(y, x) ≥ 1, then certainly µX(y) ∈ [0.5, 0.5] {x}
ρ4 if σf1(y, x) ≥ 7

8
, then certainly µX(y) ∈ [0.5, 0.6] {y3, x}

ρ7 if σf1(y, x) ≥ 5
8
and σf2(y, x) ≥ 1, then possibly µX(y) ∈ [0.4, 0.5] {y2, x} {y1}

ρ8 if σf1(y, x) ≥ 5
8
, then possibly µX(y) ∈ [0.4, 0.6] {y2, y3, x} {y1}

ρ9 if σf1(y, x) ≥ 4
8
, then possibly µX(y) ∈ [0.4, 0.7] {y2, y3, y4, x} {y1}

ρ12 if σf1(y, x) ≥ 4
8
, then possibly µX(y) ∈ [0.5, 0.7] {y3, y4, x} {y1, y2}

ρ13 if σf2(y, x) ≤ 0, then certainly µX(y) ≥ 0.6 {y3}
ρ14 if σf1(y, x) ≤ 4

8
, then certainly µX(y) ≥ 0.7 {y4}

ρ15 if σf1(y, x) ≤ 7
8
, then certainly µX(y) /∈ (0.4, 0.6) {y1, y2, y3, y4}

ρ16 if σf1(y, x) ≤ 6
8
, then certainly µX(y) /∈ (0.4, 0.7) {y1, y2, y4}

ρ19 if σf1(y, x) ≤ 7
8
, then possibly µX(y) /∈ (0.3, 0.6) {y1, y3, y4} {y2}

ρ20 if σf1(y, x) ≤ 6
8
, then possibly µX(y) /∈ (0.3, 0.7) {y1, y4} {y2}

ρ21 if σf1(y, x) ≤ 6
8
, then possibly µX(y) ≤ 0.3 {y1} {y2, y4}

ρ24 if σf1(y, x) ≤ 6
8
, then possibly µX(y) ≤ 0.4 {y1, y2} {y4}

Table 4. Scores of a new object z resulting from application of induced decision rules

t ∈ VµX 0.3 0.4 0.5 0.6 0.7

Score+X(t, z) 1
5

1
5

1
4

1
5

1
4

Score−X(t, z) 0 0 1 0 1

ScoreX(t, z) 1
5

1
5
− 3

4
1
5
− 3

4

10 Conclusions

We presented a method of similarity-based classi�cation using the Dominance-
based Rough Set Approach. This method exploits only ordinal properties of



marginal similarity functions and membership functions of decision classes. It
avoids arbitrary aggregation of marginal similarities into one comprehensive sim-
ilarity. Instead, it uses a rule-based similarity model employing rules describing
monotonic relationship between comprehensive similarity of objects and their
similarities with respect to single features. Thus, our case-based reasoning ap-
proach is as much �neutral� and �objective� as possible. Moreover, our method
provides more insight when determining membership of a new object z to classX
� one can see the rules matching z and the objects supporting these rules.
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