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ABSTRACT: During the end of the last glacial period in the Northern Hemisphere 
near 12.9k cal a BP, deglacial warming of the Bølling-Ållerod interstadial ceased 
abruptly and the climate returned to glacial conditions for a ≈ 1,300 year interval 
known as the Younger Dryas stadial.  The Younger Dryas Impact Hypothesis 
proposes that the onset of the Younger Dryas climate reversal, Pleistocene 
megafaunal extinctions, and disappearance of the Clovis paleoindian lithic technology 
were coeval and caused by continent-wide catastrophic effects of impact/bolide 
events in North America.  While there are no known impact structures dated to the 
Younger Dryas onset, physical evidence of the impact/bolide events is argued to be 
present in sediments spanning several continents at stratigraphic levels inferred to 
date to the Bølling-Ållerod / Younger Dryas boundary (YDB).  Reports of nanometer 
to submicron-sized diamonds in YDB sediments, in particular the rare 2H hexagonal 
polytype of diamond, lonsdaleite, have been presented as strong evidence for shock 
processing of crustal materials.  We review the available data on diamonds in 
sediments and provide new data.  We find no evidence for lonsdaleite in YDB 
sediments and find no evidence of a spike in nanodiamond concentration at the YDB 
layer to support the impact hypothesis. 
 
KEYWORDS: Nanodiamonds; cubic diamond; hexagonal diamond; lonsdaleite; 
Younger Dryas Impact Hypothesis 
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Introduction 

The Younger Dryas (YD) Impact Hypothesis attempts to explain the rapid and 

dramatic changes that occurred at the end of the Pleistocene as arising from 

catastrophic extraterrestrial mechanisms.  The earliest versions of the YD Impact 

Hypothesis speculated that North America was impacted by intense cosmic rays from 

a supernova (Brakenridge, 1981, 2011; Firestone and Topping, 2001, 2002; Firestone 

et al., 2006), mineral debris that condensed in the supernova outflow (Firestone and 

Topping, 2001, 2002; Firestone et al., 2006), and a comet (Melton and Schriever, 

1933; Sass, 1944) whose orbit was perturbed into the inner solar system by the 

supernova shockwave (Firestone et al., 2006).  Multiple comet fragments have also 

been hypothesized to have struck the oceans across the globe (Kristan-Tollmann and 

Tollmann, 1992, 1994; Tollmann, 2001).  A planet-sized fragment of a supernova has 

even been speculated to have entered the solar system, modified planetary orbits, and 

caused terrestrial impacts (Allan and Belair, 1994, 1997).  A body ejected from a 

supernova has also been suggested to have struck North America (Firestone, 2009).  

Other early versions speculated that, during the Late Pleistocene, the Earth was 

irradiated by a burst of cosmic rays from the galactic core (LaViolette, 1987, 2005) 

and/or impacted by large solar flares in addition to coronal mass ejections from the 

sun (LaViolette, 2005, 2011), where the solar eruptions were induced by a supernova 

shockwave (Firestone et al., 2006).  The YD Impact Hypothesis has since evolved 

into several highly-controversial versions, most proposing that the abrupt YD climate 

reversal, Pleistocene megafaunal extinctions, and disappearance of the Clovis 

paleoindian lithic technology were coeval and caused by continent-wide catastrophic 

effects of one or more impact/bolide events in North America 12.9k cal a BP (e.g., 

Firestone et al., 2007). 

The coeval timing of the above events, a requirement for a singular causal 

mechanism, has not been firmly established (see van Hoesel et al., 2014) and is a 

point of controversy.  The onset of the YD stadial either spanned, or is dated to 

within, a couple hundred years of 12.9k cal a BP, depending on the applied 

chronometer (see, Meltzer and Holliday, 2010; Fiedel, 2011; van Hoesel et al., 2014; 

Meltzer et al., 2014).  However, the chronologies of the Pleistocene megafaunal 

extinctions (timing and rate of population decline) are not well constrained and are 

debated.  During the Pleistocene, at least 33 (or > 70%) of North American 
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megafaunal genera disappeared (Barnosky et al., 2004) and, of these, the extinction of 

16 genera (e.g., mammoths, mastodons, giant short-faced bears, saber-tooth tigers) are 

constrained between 12,000 and 10,000 14C a BP (~13,800 - 11,400 cal a BP) 

(Grayson, 2007; Faith and Surovell, 2009; Woodman and Athfield, 2009).  

Additionally, a recent study that compared ancient DNA and radiocarbon data over 

the last 56k a concluded that the megafauna extinction events are correlated with the 

multiple Dansgaard-Oeschger interstadial warming events (Copper et al., 2015), 

suggesting the YD stadial is not unique.  Furthermore, Pleistocene megafaunal 

extinctions were not limited to North America and also occurred at different times in 

South America, the Caribbean, Africa, Eurasia, and Australia.  For discussions on the 

climatic changes that define the YD stadial see e.g., Berger (1990) and Carlson 

(2013), and on the dynamics of the paleoindian populations during this period see 

Collard et al. (2010). 

There are no recognized impact structures in North America that date to the onset 

of the YD stadial.  Several geomorphic features have been suggested as possible YD 

craters: oriented shallow depressions in Alaskan, Canadian, and Siberian permafrost 

(Allan and Belair, 1994, 1997), the Carolina Bays (Melton and Schriever, 1933; Allan 

and Belair, 1994, 1997; Firestone and Topping, 2001; Firestone et al., 2007, 2010a; 

Firestone, 2009; Kinzie et al., 2014, Kennett et al., 2015a), small playa basins of the 

High Plains (Firestone et al., 2006), and deep depressions in four of the Great Lakes 

(Firestone et al., 2007, 2010a; Firestone, 2009); however, there is no evidence to 

support their impact origin (see Holliday et al., 2014).  The 4 km-diameter, circular 

Corossol structure in the Gulf of St. Lawrence has also been suggested as a possible 

YD-age crater based on the discovery of a single 4 cm long breccia clast suggesting 

impact metamorphism (Higgins et al., 2011).  However, the breccia clast could have 

been deposited by glacial activity from one of many distal impact structures in 

Quebec (Reimold et al., 2014).  More importantly, the age of the Corossol structure is 

poorly constrained between the Mid-Ordovician to just prior to the Quaternary 

glaciations (Lajeunesse et al., 2013). 

To account for a non-crater-forming YD impact event, the inferred YD impactor 

has been variously interpreted as a porous, loosely-bound, low-density impactor 

(Firestone et al., 2006); as highly fragmented multiple impactors (Kristan-Tollmann 

and Tollmann, 1992, 1994; Firestone et al., 2007; Firestone, 2009; Kennett et al., 

2009a,b; Bunch et al., 2012; Wittke et al., 2013; Napier et al., 2013; Petaev et al., 
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2013a,b); as oblique-trajectory impactors into the Laurentide ice sheet (Firestone et 

al., 2007); or as a bolide airburst similar to the Tunguska event, but orders of 

magnitude larger (Firestone, 2009; Israde-Alcántara et al., 2012a).  However, 

bolide/impact scenarios that produce catastrophic environmental effects on an 

intercontinental scale and disperse shock-transformation products globally – while not 

forming a crater – have been argued to be improbable and inconsistent with geologic 

evidence and physical models (Deutsch et al., 1994; Melosh, 2009; French and 

Koeberl, 2010; Boslough 2012; Boslough et al., 2012, 2013; Boslough, 2013a; 

Holliday et al., 2014).  It has further been suggested that the YD impact crater 

remains undiscovered (Kristan-Tollmann and Tollmann, 1994; Firestone et al., 2010a; 

Kinzie et al., 2014), despite suggestions that such a large and geologically young 

crater should be easily recognized. 

While there are no known impact structures in North America that date to the YD 

onset, YD impact proponents nonetheless argue that physical evidence of the 

impact/bolide event is present in sediments, at multiple sites in North America, South 

America, Europe, and the Middle East that are claimed to be chronologically 

synchronous with the Bølling-Ållerod / YD boundary (YDB) layer (see, Kennett et 

al., 2015a,b).  Elevated concentrations of a range of minerals interpreted as products 

of impact/bolide processes and geochemical indicators of the impactor/bolide are 

reported in these inferred YDB layers.  Multifarious criticisms have been raised 

regarding the identification, analysis, and interpretation of these materials as impact 

markers (Deutsch et al., 1994; Southon and Taylor, 2002; Pinter and Ishman, 2008; 

Marlon et al., 2009; Surovell et al., 2009; Gill et al., 2009; Paquay et al., 2009, 2010; 

Haynes et al., 2010a,b; Scott et al., 2010; Daulton et al., 2010; Daulton, 2012; Pinter 

et al., 2011; Pigati et al., 2012; Hardiman et al., 2012; Boslough, 2013a,b; van 

Hosesel, 2014; van Hoesel et al., 2014; 2015; Holliday et al., 2014; Thy et al., 2015; 

Scott et al., 2015) as well as regarding the dating of their host sediment horizons (e.g., 

see Blaauw et al., 2012; van Hoesel et al., 2013, 2014; van Hosesel, 2014; Ives and 

Froese, 2013; Meltzer et al., 2014; Holliday et al., 2014, Boslough et al., 2015; 

Holliday et al., 2015).  Accurate dating of stratigraphy at high resolution (required for 

proper evaluation of the YD Impact Hypothesis) is difficult because sites frequently 

have complex depositional/erosional histories and, except for lakebeds or ice sheets, 

rarely preserve a continuous record of sedimentation.  Consequently, measurements 

that can provide sufficient chronological control are often poorly constrained or 
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nonexistent.  Meltzer et al. (2014) performed a critical analysis of the chronologies at 

29 sites (including the Greenland ice sheet) in which the YDB layer has been studied 

in detail.  The nature of the site, luminescence and radiocarbon ages, and age-depth 

models were examined.  Meltzer et al. (2014) concluded that sediments at only three 

sites (Daisy Cave, San Miguel Island, California; Sheriden Cave, Ohio; and Big Eddy, 

Missouri) could be dated with any confidence to the YD onset. 

Materials that have been reported in YDB layer sediments and interpreted as 

markers of supernova/impact/bolide processes include: tektites including one 

embedded in a YD-dated tree trunk (Kristan-Tollmann and Tollmann, 1994); 

paleoindian chert artifacts with high-velocity particle tracks, with embedded 

chondritic micrometeorites, and with isotopic anomalies in K, U, and Pu (Firestone 

and Topping, 2001; Firestone et al., 2006, 2010a; Firestone, 2009); millimeter-scale 

magnetic particles embedded in mammoth tusks and other Pleistocene megafaunal 

remains (Firestone et al., 2006); iron micrometeorites and mammoth tusks with rusty 

pits (Baker et al., 2008); radioactive sediment; radioactive mammoth bones and teeth 

(Firestone et al., 2006, 2007, 2010a,b); magnetic grains and elevated Ir concentrations 

inside an extinct horse skull (West et al., 2007; Firestone et al., 2010a); magnetic 

grains (Darrah et al., 2007) and fullerenes with isotopically anomalous helium 

(Darrah et al., 2007; Firestone et al., 2007); high abundance of unoxidized Fe-Ni, Cu-

Ni, Fe-Sn-Ni, and Pt minerals (Darrah et al., 2007), anomalously high concentrations 

of elements including U, Th, Ir, Pt, Ni, Cr, and Cu (see Firestone et al., 2007; Bunch 

et al., 2010; Petaev et al., 2013a,b; Andronikov et al., 2014); chondritic iron oxide 

framboids (Fayek et al., 2012); pyrite framboids (Israde-Alcántara et al., 2012a); 

shocked quartz with planar deformation features (Mahaney et al., 2010); siliceous 

“scoria-like objects”; and lechatelierite (amorphous SiO2) (Bunch et al., 2012; Wittke 

et al., 2013a,b,c).  While all the proposed impact markers discussed up to this point 

are reported in one or several YDB sediments, the following markers are reported in 

many to most YDB sediments studied: magnetic minerals (“grains”, 

“microspherules”); carbonaceous combustion products (charcoal/soot, “glass-like 

carbon,” “carbon elongates,” and “carbon spherules”) (e.g., see Firestone et al., 2007; 

Kennett et al., 2008); nanometer to submicron-sized diamonds (loosely termed 

“nanodiamonds”); as well as controversial phases “n-diamond” and “i-carbon” (e.g., 

see Kennett et al., 2009a,b; Kinzie et al., 2014).  Further, excess 14C (defined by the 

difference between radiocarbon dates and actual dates) is reported in terrestrial YDB 
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sediments, including tree remains, carbon spherules, glass-like carbon, and charcoal 

contained within those sediments, as well in Icelandic YDB marine sediments (see 

Kristan-Tollmann and Tollmann, 1994; Firestone and Topper 2001; Firestone et al., 

2006; Firestone, 2009; LaViolette, 2011).  A number of these reported markers are no 

longer considered credible, some are currently considered credible by only a few YD 

impact proponents, and others continue to be widely debated (for reviews see Pinter et 

al., 2011; Boslough et al., 2012; van Hosesel, 2014; van Hoesel et al., 2014; Holliday 

et al., 2014; Taylor and Bar-Yosef, 2014). 

Reports of nanodiamonds, in particular the rare 2H hexagonal polytype of 

diamond, lonsdaleite, in YDB sediments; carbonaceous forms in these sediments 

(carbon elongates, carbon spherules, and glass-like carbon); and Greenland ice, all 

reportedly dating to the YDB, continue to be presented as strong evidence for 

multiple impact/bolide events.  We review the available data on diamonds as well as 

associated carbonaceous minerals in sediments and provide additional data for 

evaluating the YD Impact Hypothesis. 

 

Experimental Methods 

Millimeter-scale carbonaceous spherules and/or their fragments were isolated 

from Arlington Canyon, Santa Rosa Island California sediments AC-003 (Kennett et 

al., 2008; 2009b) and SRI 09-28A from Locality III (Scott et al., 2010; 2016) that 

were dated to the YDB (12,800-13,100 cal a BP and 12,718-13,079 cal a BP, 

respectively).  Full details describing the collection/acquisition of those sediments are 

provided in, Scott et al. (2016).  Three different specimen sets were separately 

crushed between sapphire discs: 1) five spherules/fragments from SRI 09-28A; 2) 

eight spherules/fragments from AC-003; and 3) 13 acid-washed spherules/fragments 

from AC-003.  Each specimen set should contain at least one spherule containing 

nanodiamonds given that Kinzie et al. (2014) state, “For carbon spherules, 111 of 153 

samples investigated (73%) contained no detectable NDs [nanodiamonds]” and “ND 

concentrations in carbon spherules is >35% at three sites.” 

The finely crushed material from each set was deposited directly on amorphous 

carbon-coated Cu transmission electron microscopy (TEM) grids (dry mount).  

Additional TEM grids were prepared by depositing several µL aliquots of ethanol- or 

nanopure water-suspended particles on the support film of the TEM grids (wet 

mount). 
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In addition, a sequence of sediment from Lommel Belgium that bracketed and 

included the presumed YDB-aged black mat that is reported to contain nanodiamonds 

(Tian et al., 2011) was provided by Ph. Claeys.  Black mat sediment (7.064g) was 

processed by acid dissolution.  The sediment was first treated with 10M HF - 1M HCl 

followed by 6M HCl, and this alternating treatment was repeated eight additional 

times to remove silicates.  This was followed by an alternating treatment of 6M HCl - 

2M HF followed by 6M HCl - 0.6M H3BO3 and this was repeated four additional 

times to dissolve remaining silicates.  The residue was divided into colloidal and non-

colloidal fractions by colloidal separation using NaOH (pH = 10) following the 

procedure commonly used to concentrate nanodiamonds from primitive meteorites 

(see Lewis et al., 1987).  Due to the surface charge on the diamonds, they are 

expected to stay in suspension in basic solution (Lewis et al., 1989).  The colloidal 

fraction was then oxidized with Cr2O7
2– for 20.5 hours at ~80°C, and the remaining 

residue was treated with HClO4 for 2.0 hours at 204°C to further remove 

carbonaceous matter other than the diamond.  Colloidal separation of the residue was 

again carried out in an attempt to further concentrate diamonds.  Several µL aliquots 

of the final colloidal suspension were deposited on TEM grids. 

Specimen nanostructure was characterized using a JEOL JEM-2100F field 

emission scanning transmission electron microscope.  This instrument was equipped 

with a high-resolution pole piece and a Schottky field emission gun: 0.5 nA at 1 nm 

full width at half maximum probe diameter.  This instrument was operated at 200kV 

and, at that energy, has a rated point resolution of 0.23 nm and a lattice resolution of 

0.1 nm.  The instrument was equipped with a Bruker Quantax 200-STEM energy 

dispersive X-ray spectroscopy (EDXS) system that consisted of an XFlash 60 mm2 

active-area silicon drifted detector (SDD) as well as drift correction and HyperMap 

software packages for spectral mapping.  The instrument was also equipped with a 

Gatan Model 863 Tridiem electron energy-imaging filter (GIF) with spectrum 

imaging package (model 777 STEMPack) capable of electron energy loss 

spectroscopy (EELS), EELS spectral imaging, and electron energy-filtered imaging.  

The GIF utilized an Ultrascan 1000 FT 2048 x 2048 pixel, 16-bit, fiber optically 

coupled, peltier-cooled, charge-coupled device (CCD) camera as the main detector.  

For scanning (S)-TEM imaging, the instrument is equipped with Gatan Model 805 

dark-field (DF) and bright-field (BF) STEM detectors as well as a Gatan Model 806 

high angle annular (HAA)-DF STEM detector capable of Z-contrast imaging.  For 
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conventional TEM imaging, the instrument has a retractable Gatan Orius SC1000B 

2672 x 4008 pixels, 14 bit, fiber optically coupled, peltier-cooled CCD camera 

mounted on-axis directly above the GIF. 

Elemental maps were acquired by STEM-EELS and STEM-EDXS spectral 

imaging in which EELS and EDXS spectra, respectively, were collected at each pixel 

position within a STEM region of interest.  For STEM-EELS, a spectrometer 5 mm 

diameter entrance aperture, a collection angle of 2β = 22.66 ± 0.06 mrad, and an 

energy dispersion of 0.2 eV/channel were used to measure an energy loss region of 

640 to 1050 eV.  The EELS spectra were corrected for dark current and channel-to-

channel gain variation of the CCD detector array and collected in the diffraction mode 

of the microscope (i.e., image coupling to the EELS spectrometer).  Ratios of 

integrated EELS core-loss signal between elements were converted to their 

corresponding atomic ratios using partial cross-sections that were calculated from 

theoretical Hartree-Slater models.  Unlike maps of EELS core-loss signal, maps of 

relative elemental compositions are, in principle, not influenced by variations in 

specimen thickness and electron diffraction.  Ratios of integrated EDXS signal 

between elements were converted to their corresponding atomic ratios using 

standardless k-factors. 

 

Experimental Results 

Grain fragments of crushed carbonaceous spherules deposited on the TEM grids 

were systematically examined using a variety of techniques, including: selected area 

electron diffraction (SAED); bright-field, dark-field, and high-resolution imaging; and 

EDXS spot analysis.  In total for all specimens, approximately 2000 grains were 

individually examined.  The carbonaceous spherules primarily consisted of 

amorphous material (~95%) dominated by C and O, but also exhibiting a range of 

common elements that varied and included: Al, Ca, Fe, K, Mg, Na, P, S, Si, and/or Ti.  

A small fraction of these amorphous grains (~ several percent thereof) contained 

nanocrystals embedded within their matrix.  In no case were any of these nanocrystals 

found to be carbonaceous, and no nanocrystals of diamond were observed.  The 

remainder of the material (~5%) on the TEM grids from the crushed spherules 

consisted of submicron- (hundreds of nanometer-) sized monocrystalline non-

carbonaceous minerals (e.g., aluminosilicates, pyrite), disordered graphite, and 
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polycrystalline aggregates of graphene/graphane/graphite (with some trace elements 

present).  In comparison, spherules examined in Daulton et al. (2010) contained 

higher abundances of graphene/graphane/graphite aggregates than those examined 

here.  No diamonds were observed. 

The acid-dissolution residues of YDB Lommel sediments contained submicron 

crystals that were rich in O, Al, Si, Zr, and/or Ti.  No diamonds were observed.  The 

Lommel residue was subsequently subjected to harsher acid dissolution treatment to 

remove more of the non-diamond minerals.  These further-processed residues still 

contained abundant non-carbonaceous submicron crystals that survived acid 

dissolution.  Again no diamonds were observed, although an exhaustive search was 

not performed.  It was our intention to perform mass balance measurements of the 

nanodiamond abundance in Lommel sediment horizons across the YDB.  In the mass 

balance approach, abundance is estimated from the initial mass of the sediment and 

the mass of the resultant acid dissolution residue (assuming pure diamond isolates).  

For non-pure isolates, mass modal abundances of minerals present in the residues are 

required to estimate the initial diamond abundance.  Due to the large amounts of 

surviving non-diamond minerals in the Lommel black mat acid residue, and as will be 

discussed latter, quantitative mass balance measurements are incapable of yielding 

any reliable abundance estimations for diamond.  Therefore, it was not possible to 

determine if there was a peak in the diamond concentration at the Lommel YDB. 

van Hoesel (2014) were similary unable to find nanodiamonds in their acid 

dissolution residues of “black mat” YDB sediment from  Lommel or from Murray 

Springs, Arizona.  As is the case for any mineral phase that was not observed, lack of 

observation of diamond does not demonstrate the total absence of said mineral in the 

samples examined; it can, at best, only constrain its possible abundance.  For the 

specimens we examined, it was not possible to accurately constrain the possible 

abundance of nanodiamonds. 

 

The Nanodiamond Evidence 

One of the main lines of evidence presented to support the YD Impact Hypothesis 

has been the reports of cubic and hexagonal nanodiamonds within bulk terrestrial and 

lacustrine sediments; carbonaceous forms in these sediments (carbon elongates, 

carbon spherules, and glass-like carbon); and Greenland ice, all reportedly dating to 
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the YDB (Firestone et al., 2007, 2010a; Kennett et al., 2009a,b; Kurbatov et al., 2010; 

Israde-Alcántara et al., 2012a,b; Kinzie et al., 2014).  In a culmination of several 

connected studies, Kinzie et al. (2014) report a nanodiamond-containing YDB 

sediment horizon (with nanodiamonds completely absent above and below this 

horizon) that span several continents at 9 out of 22 YDB sites studied.  If correct, this 

would suggest that a unique event occurred at the time this layer was deposited.  In 

regard to the nature of this event, much emphasis has been placed on the reported 

discovery of lonsdaleite in YDB sediments (Kennett et al., 2009b; Redmond and 

Tankersley, 2011; Israde-Alcántara et al., 2012a; Kinzie et al., 2014). 

 

Lonsdaleite 

Lonsdaleite is the 2H hexagonal polytype of diamond (space group 194, P63/mmc: 

a = 2.508 Å, c = 4.183 Å: Yoshiasa et al., 2003) that differs structurally from the 3C 

cubic polytype of diamond (space group 227, Fd3m: a = 3.567 Å) in the stacking 

sequence of tetrahedral close packed planes.  In cubic diamond, the stacking sequence 

is (A
b
)(B

c
)(C

a
)…, whereas in lonsdaleite it is (A

b
)(B

a
)… (Fig. 1).  Lonsdaleite was 

first discovered in laboratory experiments to synthesize diamond.  Bundy and Kasper 

(1967) after discovering lonsdaleite in transformation products of their high-static-

pressure compression experiments, became aware of a Netherlands patent (1965) 

reporting the formation of hexagonal diamond by shock compression.  They 

subsequently identified lonsdaleite in the Canyon Diablo iron meteorite and attributed 

it to shock formation (Bundy and Kasper, 1967).  Additional reports of lonsdaleite 

soon followed in meteorites (Hanneman et al., 1967; Frondel and Marvin, 1967; 

Clarke Jr. et al., 1981; Daulton et al., 1996); interplanetary dust (Rietmeijer and 

Mackinnon, 1987); material from Ries, Popigai, Sudbury, and Obolon impact 

structures (Hough et al., 1995; Koeberl et al., 1997; Goryainov et al., 2014; 

Shumilova et al., 2014; Masaitis et al., 1999; Gurov et al., 2009); and peat from the 

Tunguska bolide epicenter (Kvasnitsa et al., 1979; Kvasnytsya et al., 2013).  This has 

led to the perception that natural lonsdaleite was exclusively associated with shock 

metamorphism.  Although in the case of interplanetary dust, Rietmeijer and 

Mackinnon (1987) argued against shock formation of the lonsdaleite they observed. 

By contrast, the broader literature contains reports of natural lonsdaleite with no 

directly connected association with shock processes.  The Russian literature reports 
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lonsdaleite within titanium placers of the Ukrainian Shield (Sokhor et al., 1973); 

eclogites in Sal’niye Tundra, Kola Peninsula and the Urals (Golovnya et al., 1977); 

metamorphosed and metasomatically modified rocks of the Kumdykol diamond 

deposit in North Kazakhstan (Shumilova et al., 2011); and metamorphic rocks of the 

Kokchetav Massif in North Kazakhstan (Dubinchuk et al., 2010).  Additionally, 

lonsdaleite is reported in polycrystalline diamonds from the Udachnaya kimberlite 

pipe, Yakutiya (Gorshkov et al., 1999; Titkov et al., 2001) and in similar 

polycrystalline diamond from placers in Yakutiya (Kaminsky et al., 1985; Petrovsky 

et al., 2013).  The situation is complicated further in that some published data 

identifying natural lonsdaleite, whether at impact structures or not, is not rigorously 

convincing, with identifications sometimes based on several diffuse X-ray lines or a 

few transmission electron microscopy (TEM) electron diffraction patterns.  In some 

studies (Koeberl et al., 1997; Masaitis et al., 1999; Titkov et al., 2001), no data are 

presented to support the lonsdaleite identification. 

Microanalysis of lonsdaleite is difficult because it is always reported intergrown 

with cubic diamond and sometimes graphite on the nanometer to submicron scale.  

These phases often have high defect densities (e.g. dislocations, stacking faults, twin 

planes, and disordered grain boundaries).  Consequently, the interpretation of 

structural measurements performed at a spatial scale greater than the grain size of 

these polycrystalline diamonds (such as with X-ray diffraction and TEM SAED) is 

not straightforward (see Daulton et al., 2003).  Németh et al. (2014) go so far as to 

speculate that lonsdaleite does not exist and is an illusion created by lattice faults in 

polycrystalline cubic diamond having nanometer grain size.  Earlier, Cayron et al. 

(2008) had shown that many reports of hexagonal-diamond Si had misinterpreted 

micro/nanotwins in cubic-diamond Si; note that these Si phases are isostructural to 

carbon’s lonsdaleite and cubic diamond, respectively.  A stacking fault of tetrahedral 

close-packed planes in cubic diamond, …(A
b
)[(B

a
)(A

b
)(B

c
)](C

a
)… where a (C

b
) plane 

is missing and the preceding (B
c
) plane is altered to (B

a
), necessarily forms a unit cell 

and a half wide lamellae of lonsdaleite.  While such lamellae should not be considered 

a 2H hexagonal phase, there is sufficient evidence that well ordered …(A
b
)(B

a
)… 

stacking of tetrahedral planes (Fig. 1, 2) occurs at scales up to, at least, tens of 

nanometers for C (e.g., see Chen et al., 1996; Daulton et al., 1996; Lifshitz et al., 

2001; Kulnitskiy et al., 2013), Si (Dahmen et al., 1989; Cerva, 1991; Algra et al., 
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2011; Hauge et al., 2015), Ge (Xiao and Pirouz, 1992; Vincent et al., 2014), and SiC 

(Daulton et al., 2003).  Therefore, lonsdaleite, as well as other 2H hexagonal-diamond 

isostructural phases, do exist on at least this spatial scale.  Nevertheless, some 

previous diffraction studies of heavily disordered cubic diamond minerals may have 

overestimated or misidentified the presence of lonsdaleite. 

While the literature on lonsdaleite can be murky, it is clear that shock 

metamorphism has not been established as the exclusive mechanism by which 

lonsdaleite is formed in terrestrial deposits.  Recall that lonsdaleite has been reported 

to form under high-static pressure (Bundy and Kasper, 1967).  With the exception of 

lonsdaleite, none of the studies of YDB sediments report identification of any of the 

generally accepted and recognized shock minerals found at known impact structures 

(c.f., French and Koeberl, 2010; van Hosesel, 2014; van Hoesel et al., 2014).  

Therefore, in the absence of other shocked minerals, the presence of lonsdaleite in 

sediments can only provide tenuous evidence for an association with shock 

processing.  While it can be debated under what circumstances lonsdaleite can be 

used as an impact marker, it is premature to consider this question further in assessing 

the YD impact hypothesis as the reports of lonsdaleite in YDB sediments are not well 

supported. 

Daulton et al. (2010) demonstrated that Kennett et al. (2009b) misidentified 

polycrystalline aggregates of graphene and graphane present in various carbonaceous 

forms within the sediments as lonsdaleite.  Independent studies have confirmed this 

conclusion (Madden et al., 2012; van Hoesel et al., 2012; van Hosesel, 2014; Bement 

et al., 2014) and have failed to observe lonsdaleite in YDB sediments (Tian et al., 

2011).  Graphene is a two-dimensional, single-atom-thick planar molecule with sp2 

bonded carbon (1.42 ± 0.1 Å bond length) in a hexagonal arrangement of 2.46 ± 0.02 

Å edge length (Geim and Novoselov, 2007; Elias et al., 2009).  Graphene was first 

observed as randomly oriented and uncorrelated sheets (i.e., a polycrystalline 

aggregate) within the cores of many circumstellar graphite spherules isolated from 

chondritic meteorites (Bernatowicz et al., 1996).  When graphene sheets are 

periodically stacked normal to their plane (e.g., AB, AA, or ABC stacking), they form 

various graphite polytype structures or turbostratic graphite if the stacking is 

disordered.  Graphane is a hydrogenated form of graphene, with H bonded on the 

surface resulting in a out-of-plane puckering of C bonds and an effective contraction 

of the hexagonal edge length to between ≈ 2.34 - 2.46 Å (Elias et al., 2009). 
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Kuratov et al. (2010) and Israde-Alcántara et al. (2012a), in which Kennett is a 

coauthor, also misidentified lonsdaleite.  For example, the high-resolution (HR)-TEM 

lattice image of a nanocrystal from residues of Greenland ice shown in Figure 6 of 

Kuratov et al. (2010) and identified as lonsdaleite is inconsistent with the crystal 

structure of lonsdaleite.  No crystallographic zone axis of lonsdaleite exists that can 

display two differently oriented sets of 2.06 Å spaced {002} planes because there is 

only one such set of planes in the structure (Fig. 3).  The HR-TEM lattice image of a 

nanocrystal from Lake Cuitzeo identified as twinned lonsdaleite and shown in Figure 

11B of Israde-Alcántara et al. (2012a) is inconsistent with the crystal structure of 

lonsdaleite.  Using as spatial calibration the annotated 1.93 Å {101} spacing and scale 

marker of their figure, we measure a spacing of 1.75 ± 0.05 Å for the nearly vertical 

atomic planes (whose plane normal is perpendicular to the direction of the arrows in 

the figure) with cross plane angle of 67.4 ± 0.4°.  Lonsdaleite lacks 1.75 Å spaced 

planes (see Table 1).  If the plane spacings were both 1.93 Å (i.e., closest lonsdaleite 

spacing to our measured 1.75 Å spacing, see Table 1), the cross plane angle is 

restricted to 52.41° for <011>, 55.81° for <110>, or 80.15° for <121>, and all are 

inconsistent with the HR-TEM image.  Furthermore, the most common twin 

configuration in diamond is twinning across the tetrahedral basal plane (e.g., {111}3C 

and {002}2H) with twin angle of 70.53° (Σ=3) (see, Daulton et al., 2003), and this 

twin configuration will not alter the 2H lonsdaleite structure (i.e., stacking sequence).  

Although stacking faults in lonsdaleite are frequently reported, twining in lonsdaleite 

is yet to be reported, with the exception of Israde-Alcántara et al. (2012a). 

The recent study by Kinzie et al. (2014) reports no new or convincing evidence 

for lonsdaleite.  Contrary to earlier publications (Kennett et al., 2009b; Kuratov et al., 

2010; Israde-Alcántara et al., 2012a), the term “lonsdaleite-like” is now used to 

describe these grains in Kinzie et al. (2014); note that all of these publications share at 

least one coauthor.  Curiously, Kinzie et al. (2014) also state that “lonsdaleite has 

never been observed in any deposits of any age in Europe or North America, where 

YDB lonsdaleite-like crystals are currently found.”  The reason the term lonsdaleite-

like is now used is simple; these grains are not consistent with lonsdaleite.  Kinzie et 

al. (2014) argue that the grain shown in their Fig. 15, which is the same grain as 

shown in Figures 2a-c and S2 of Kennett et al. (2009b), is a lonsdaleite-like grain.  

The original identification of this grain by Kennett et al. (2009b) as lonsdaleite was 
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questioned by Daulton et al. (2010).  Kinzie et al. (2014) wrote in response, “He 

[Daulton et al. (2010)] questioned figure 2A-2C of Kennett et al. (2009b).  Although 

the analyses were insufficient to conclusively identify the nanocrystal shown as 

lonsdaleite, we find no evidence to eliminate it as a possibility.”  Despite their 

inability to conclusively identify the grain, Kennett et al. (2009b) categorically 

identified it as lonsdaleite, and Kinzie et al. (2014) identified it as lonsdaleite-like. 

The grain in question displayed an azimuthally asymmetric polycrystalline 

diffraction pattern with partial rings (forming doubled rings, see Fig. 4), and this is 

indicative of heterogeneity either in the form of texturing or a multiphase mixture.  

Texturing (defined as a distribution of crystallographic orientations of polycrystalline 

grains, in which all possible orientations do not occur with equal probability) can 

produce asymmetric ring intensity.  However, texturing can be ruled out because this 

diffraction pattern completely lacks intensity from many lonsdaleite reflections (see 

Fig. 4) including (101) and (102) (see Table 1; Bundy and Kasper, 1967; Frondel and 

Marvin, 1967) even for a wide range of specimen orientations achieved by tilting the 

TEM goniometer.  The diffraction pattern is thus inconsistent with the lonsdaleite 

structure; however it is consistent with a two-phase aggregate of polycrystalline 

graphene/graphane, a mineral assemblage (Fig. 5) observed ubiquitously in the 

sediments (Daulton et al., 2010; van Hoesel et al., 2012; Bement et al., 2014). 

The identification by Kinzie et al. (2014) of other reported lonsdaleite-like grains 

is based on the same analysis used by Israde-Alcántara et al. (2012a) to identify 

lonsdaleite.  Both use single, off-zone-axis HR-TEM lattice images and their fast 

Fourier transformations (FFTs) that can easily yield misleading results (e.g., see 

Kohno et al., 2003; Cayron et al., 2008; den Hertog et al., 2012) and cannot provide a 

conclusive mineral identification.  In particular, Kohno et al. (2003) demonstrated 

that HR-TEM images of twinned nanocrystals of cubic-diamond Si can be confused 

with hexagonal-diamond Si.  The structural information contained in an individual 

HR-TEM image and its associated diffraction pattern is incomplete because they are 

two-dimensional projections of three-dimensional structures with potentially complex 

twin and stacking-fault configurations (see, Daulton et al., 2003; den Hertog et al., 

2012).  The analysis of a single HR-TEM image cannot conclusively determine the 

structure of a nanocrystal; instead, methods such as comparison of simulated phase-

contrast lattice images to a through-focus series of HR-TEM images must be applied 

for a range of nanocrystal orientations (see also Billinge and Levin, 2007). 
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Kinzie et al. (2014) comment on an EELS analysis of a lonsdaleite-like grain,  

“Figure 17B is an HR-TEM image of a rounded 10-nm lonsdaleite-like crystal.  The 

ED[X]S results were presented in Kurbatov et al. (2010), confirming that the crystal 

is carbon, and an EELS spectrum indicated high sp3 bonding.”  However, the only 

EDXS and EELS results presented in Kurbatov et al. (2010) are found in their Figure 

8 for a grain they claim is “n-diamond,” not lonsdaleite.  Further, the EELS C-K edge 

spectra and the associated low-loss plasmon peak at 22 eV reported by Kurbatov et al. 

(2010) are consistent with amorphous C (e.g., see Kincaid et al., 1978; Fallon and 

Brown, 1993) from the ~ 70 nm thick TEM support film upon which the nanocrystals 

were mounted.  The EELS spectra shown by Kinzie et al. (2014) for “n-diamond” is 

also consistent with amorphous C; as in the case of Kurbatov et al. (2010) and others, 

the spectra is likely dominated by contributions from the amorphous C TEM support 

film.  Nevertheless, no C-K edge EELS spectrum of the lonsdaleite-like grain was 

published that can be evaluated here.  Adding to the confusion, Kinzie et al. (2014) 

state in their Figure 17b caption, “B, HR-TEM image of a 10-nm lonsdaleite-like 

monocrystal from Lake Cuitzeo (YDB: 493 ppb at 280 cmbs).”  However, Kurbatov 

et al. (2010) did not examine Lake Cuitzeo specimens. 

 

Cubic Diamond 

Nanometer-sized grains of the 3C cubic polytype of diamond in YDB sediments 

has also been interpreted as supporting the YD Impact Hypothesis.  This 

interpretation is based on reports of cubic diamonds of nanometer to tens-of-micron 

size in Cretaceous/Tertiary boundary sediments (Carlisle and Braman, 1991; Hough et 

al., 1997); of submicron to millimeter size at Ries, Popigai, Sudbury, Gardnos, and 

Obolon impact structures (Hough et al., 1995; Koeberl et al., 1997; Masaitis et al., 

1999; Gilmour et al., 2003; Gurov et al., 2009); and of submillimeter size in peat at 

the Tunguska bolide epicenter (Kvasnitsa et al., 1979; Kvasnytsya et al., 2013).  

Furthermore, ureilite and iron meteorites contain submicron- to millimeter-sized cubic 

diamond believed formed by shock (see Ksanda and Henderson, 1939; Nakamuta and 

Aoki, 2000) and primitive carbonaceous chondrites contain presolar cubic 

nanodiamonds (0.5-10 nm diameter, mean 2.6 nm) believed formed primarily by gas 

condensation (Lewis et al., 1987; Daulton et al., 1996).  Submillimeter to centimeter 

polycrystalline aggregates of cubic diamond found in alluvial placers, known as 
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carbonados (from Mesoproterozoic deposits in Brazil and Central Africa) and 

yakutites/carbonados (from Yakutiya, Russia), have been attributed to formation by 

shock metamorphism (see Smith and Dawson, 1985; Kaminsky, 1994).  However, 

Cartigny (2010) argued that a mantle origin for carbonados cannot be excluded.  

Formation mechanisms other than shock such as crystallization from a carbon-

supersaturated fluid have been suggested (Ketcham and Koeberl, 2013), and the 

origins of carbonados remain poorly understood (Haggerty, 1999; 2014; Heaney, 

2005; McCall, 2009; Cartigny, 2010).  Yakutites have been described as differing 

from carbonados in several aspects (but see McCall, 2009), one being that they 

contain lonsdaleite (Kaminsky, 1994; Heaney et al., 2005), which is traditionally 

associated with shock processing.  However, yakutites have been reported in 

kimberlite pipes (Gorshkov et al., 1999; Titkov et al., 2001), which are volcanic in 

origin. 

On the other hand, cubic diamonds of non-impact and non-shock origin occur 

widely in the crust.  Centimeter-size down to tens-of-micron, or smaller, cubic 

diamonds (including polycrystalline aggregates variously known as framesite, boart, 

ballas, stewartite, diamondite, and sometimes carbonado/yakutite) occur as xenocrysts 

in volcanic rocks (e.g., kimberlites, lamproites, and ultramafic lamprohyres) of pipe 

structures formed during mantle eruptions through the crust (see Haggerty, 1999; 

Gorshkov et al., 1999; Kurat and Dobosi, 2000; Titkov et al., 2001; Nowicki et al., 

2007; Dobosi et al., 2008; Shirey et al., 2013).  Micron- to tens-of-micron-sized cubic 

diamonds (microdiamonds) have been found worldwide as inclusions within or in 

association with metamorphosed crustal rocks of regional metamorphic terrains: 

Kokchetav Massif, Kazakhstan (Rozen et al., 1972; Sobolev and Shatsky, 1990); 

Maksyutov Complex, Russia (Bostick et al., 2003); Western Gneiss region, Norway 

(Dobrzhinetskaya et al., 1995); Bohemian Massif, Germany (Stöckhert et al., 2001); 

Lago di Cignana Western Alps, Italy (Frezzotti et al., 2014); Rhodope Massif, Greece 

(Schmidt et al., 2010); Dabie Shan, Su-Lu, and Qinling regions, China (Xu et al., 

1992, 2005; Yang et al., 2003); and Akluilâk minette dike system, Canada (Cartigny 

et al., 2004).  Polycrystalline cubic microdiamonds have also been found in the 

ultrahigh-pressure metamorphic terrain of Erzgebirge, Germany (Dobrzhinetskaya et 

al., 2013).  The formation of metamorphic microdiamonds has been attributed to deep 

continental subduction of primary crustal rocks followed by rapid tectonic uplift of 

recrystalized material to the crust (see Ogasawara, 2005; Dobrzhinetskaya et al., 
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2007; Dobrzhinetskaya, 2012).  However, fluid-metasomatic formation of 

microdiamond in the crust has also been suggested (see Pechnikov and Kaminsky, 

2008).  Hawaiian mantle-derived, garnet pyroxenite xenoliths have been found to 

contain cubic nanodiamonds within melt inclusions (Wirth and Rocholl, 2003) and 

CO2-H2O-H2S fluid inclusions (Frezzotti and Peccerillo, 2007).  Cubic nanodiamonds 

also may be prevalent in metamorphic terrains; MicroRaman spectra of inclusions in 

garnets from the Maksyutov Massif (Bostick et al., 2003) and the Rhodope Massif 

(Perraki et al., 2006) suggest the presence of nanodiamonds or nanodiamond 

aggregates, although this has not been confirmed by other microanalytical techniques.  

All of these diamonds can be eroded from their source rocks, transported, and 

deposited into placer deposits, sediments (see de Wit, 2004), and sedimentary 

conglomerates (see Fleischer, 1998). 

Cubic nanodiamonds have also been reported in sediments and in carbonaceous 

forms within sediments without clear association with impact structures and which do 

not date to the YDB.  Nanometer to submicron-sized diamond were reported in 

carbon spherules, similar to those reported at the YDB, but from modern forest soils 

in Germany and Belgium (Yang et al., 2008).  Similar sized nanodiamonds were also 

reported in glass-like carbon from the Usselo horizon in Geldrop-Aalsterhut, The 

Netherlands; however that horizon postdates the YD onset by two centuries (van 

Hoesel et al., 2012, 2013). 

Diamond is chemically inert, highly resistant to weathering (e.g., decomposition 

and transformation), and will persist in the surface environment.  Erosion of diamond-

bearing source rocks and transport by wind or water could widely redistribute 

nanometer- to submicron-sized diamonds into distant alluvial deposits and sediments 

that bear little resemblance to the diamond source rocks.  Similarly could be the case 

for micron-sized host grains containing nanodiamond inclusions, and those inclusions 

would be extracted from their host minerals during laboratory acid dissolution of the 

sediments.  It is intriguing that nanodiamonds are present in the Pleistocene to 

Holocene sediments, and work is clearly needed to understand their origin.  Similar to 

lonsdaleite, the literature on nanometer- to submicron-sized cubic diamonds in 

terrestrial deposits is complicated by the varying strength of the published data.  Also, 

questions of laboratory contamination have been raised for some metamorphic rocks 

(see Chopin and Sobolev, 1995).  Nevertheless, it is clear that the presence of these 

cubic diamonds in sediments cannot be used as an impact marker because shock 
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metamorphism does not appear to be the predominant formation mechanism of 

diamonds of that size found in the crust. 

 

Nanocrystals of “n-diamond” and “i-carbon” 

In addition to the two known polytypes of diamond, impact proponents also report 

nanometer-sized crystals of “n-diamond” and “i-carbon” in YDB sediments and 

Greenland ice (Kinzie et al., 2014).  While neither are polytypes of diamond, impact 

proponents often describe them as nanodiamonds.  They also interpret these 

nanocrystals as evidence for a YD impact event.  “N-diamond” is a hypothesized 

carbonaceous phase that displays diffraction lines strikingly similar to that of 3C 

diamond, with the notable exception that the Bragg reflections kinematically 

forbidden in 3C diamond are present.  This has lead to the speculation that “n-

diamond” is a modified form of 3C diamond polytype (Hirai and Kondo, 1991).  

Aggregates of nanocrystals that display “n-diamond” reflections sometimes exhibit 

additional reflections that are attributed to another hypothesized nanocrystalline 

carbon phase termed “C8” or “i-carbon” (see, Matyushenko et al., 1979; Hirai and 

Kondo, 1991).  The atomic structure of “n-diamond” has yet to be determined and its 

identification as a modified form of 3C diamond remains controversial (e.g., see Wen 

et al., 2007).  Similary, “i-carbon” is controversial, and its atomic structure has not yet 

been determined. 

In YDB sediments, “n-diamonds” are usually reported at much higher 

concentrations than cubic diamonds, and in many cases where “n-diamonds” are 

reported cubic diamonds are not observed.  Table D2 of the supplementary materials 

of Kinzie et al. (2014) report “n-diamonds” present in 22 of 24 sites that date to the 

YDB, “i-carbon” in 20 of these sites, cubic diamonds were reported in only 8 of these 

sites, and hexagonal diamond in only 5.  Israde-Alcántara et al. (2012a) report “n-

diamonds” at Lake Cuitzeo, but write, “. . . we could not unequivocally identify the 

cubic allotrope.  This may be due to masking by i-carbon and/or n-diamonds, which 

share some d-spacings with cubic NDs.”  Kinzie et al. (2014) write in regard to Lake 

Cuitzeo, “Using HRTEM and FFT, we identified . . . n-diamonds, i-carbon, and 

cubics [cubic diamond] have a ratio of 3:1:1.” 

The presence of “n-diamonds” in sediments cannot be used as an impact marker 

because they are also reported in sediments that do not date to the YDB and, 
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importantly, their formation by impact processes has not be demonstrated.  

Nanocrystals with diffraction patterns consistent with “n-diamond” were reported in 

surface forest soils in Germany and Belgium (Yang et al., 2008).  At Bull Creek, 

Oklahoma, cubic nanodiamonds were not found, but nanocrystals of “n-diamond” 

were reported in multiple horizons (Madden et al., 2012) and in sediments dated 

<3000 14C a BP (Bement et al., 2014).  Firestone et al. (2007) reported nanodiamonds 

in glass-like carbon from the rims of Carolina Bays using nuclear magnetic resonance 

(NMR); while that identification was questioned (Kerr et al., 2008), Kinzie et al. 

(2014) reported confirmation by TEM.  Kinzie et al. (2014) wrote, “We used a 

focused ion beam to mill a piece of glass-like carbon extracted from the YDB layer at 

the M33 site, the rim of a Carolina Bay in Myrtle Beach, South Carolina (for site 

details, see Firestone et al., 2007).  The TEM analyses showed that diamonds were 

present only from the surface down to a depth of ≈0.75 µm and were not observed in 

the interior (fig. 14A).”  The caption for Figure 14 of Kinzie et al. (2014) identifies 

these nanocrystals as “n-diamond”.  Firestone et al. (2010) earlier reported, “All of 

the Bay rims examined [15 in total] were found to have, throughout their entire 1.5-5-

m sandy rims, a typical assemblage of YDB markers (magnetic grains, magnetic 

microspherules, iridium, charcoal, soot, glass-like carbon, nanodiamonds [emphasis 

added], carbon spherules, and fullerenes with helium-3).”  However, Firestone et al. 

(2010a) did not disclose the methods and data by which the nanodiamonds were 

identified. 

The Carolina Bays are thousands of shallow elliptical depressions with elevated 

rims scattered along the Atlantic Coastal Plain (see Brooks et al., 2010), which 

formed asynchronously over a significant period of time with multiple periods of rim 

accretion with intervening periods of erosion (Grant et al., 1998; Rodriguez et al., 

2012).  Meltzer et al. (2014) write, “Firestone et al. (2) subsequently admitted that the 

ages of the Carolina Bays vary but then suggested that because sediment from 15 

Carolina Bays contained supposed impact markers and because such impact markers 

occur only in the supposed YDB layer and were ‘identical to those found elsewhere in 

the YDB layers that date to 12.9 ka,’ the supposed YDB layer in the Carolina Bays 

must be the same age (ref. 2, p. 16019).”  Rodriguez et al. (2012) studied Lake 

Mattamuskeet, one of four Carolina Bays on the Albemarle-Pamlico Peninsula of 

North Carolina that Firestone et al. (2007, 2010a) reported contain impact markers 

(including nanodiamonds) and concluded that rim accretion significantly postdated 
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the YD stadial.  In fact, Firestone (2009) measured radiocarbon ages between 685-

8455 14C a BP for glass-like carbon from several Carolina Bays including Myrtle that 

is reported to contain nanodiamonds (Firestone et al., 2007; Kinzie et al., 2014).  

Firestone (2009) suggests that the glass-like carbon from the Carolina Bays must be 

enriched in 14C relative to their assumed YD age and offered the implausible scenario 

that the YD impactor was ejected from a near-Earth supernova to account for the 

enrichment.  A more probable explanation is that the assumed YD age of those 

Carolina Bays is incorrect. 

 

Nanodiamond Host Minerals 

Nanometer-sized diamond, “n-diamond”, and/or “i-carbon” have been reported 

within glass-like carbons (Firestone et al., 2007, 2010a; Firestone, 2009; Israde-

Alcántara et al., 2012a supplemental materials; Kinzie et al., 2014), carbon elongates 

(Kennett et al., 2009b), and carbon spherules (Firestone, 2009, Firestone et al., 2010a; 

Kennett et al., 2009a; Israde-Alcántara et al., 2012a supplemental materials; Kinzie et 

al., 2014) from YDB sediments as well as acid dissolution residues of these 

sediments.  Glass-like carbon was described by Firestone et al. (2007) as “Pieces up 

to several cm in diameter . . . associated with the YDB and [Carolina] Bays, and their 

glassy texture suggests melting during formation, with some fragments grading into 

charcoal.”  Firestone et al. (2007) also describe “Carbon spherules (0.15–2.5 mm) are 

black, highly vesicular, subspherical-to-spherical objects (Fig. 3).  SEM analyses 

show them to have cracked and patterned surfaces, a thin rind, and honeycombed 

(spongy) interiors.  SEM/energy dispersive spectrometer and microprobe analyses 

show that the spherules are dominantly carbon (75%).”  Kennett et al. (2009b) 

describes, “Carbon elongates differ from the carbon spherules in having an irregular 

array of walls and voids, whereas carbon spherule interiors display a well-organized 

honeycomb (reticulated) pattern.  Both types are composed entirely of glass-like 

amorphous carbon indicative of high-temperature formation.  The general shape of 

elongates ranges from angular (hexagonal in cross-section) to subrounded.”  Kinzie et 

al. (2014), with Kennett as a coauthor, report carbon spherule abundances at 

Arlington Canyon that are equal to the sum of carbon spherule and carbon elongate 

concentrations reported by Kennett et al. (2008, 2009b).  No explanation was 
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provided by Kinzie et al. (2014) on why they reclassified the so-called carbon 

elongates as carbon spherules (see also Hardiman et al., 2012). 

While carbon spherules may have multiple origins, most carbon spherules studied 

in YDB sediments have external and internal morphologies indistinguishable from 

sclerotia (Fig. 6) of saprobic (e.g., Sclerotium Athelia rolfsii), phytopathogenic (e.g., 

Rhizoctonia solani, Botryotinia cinerea), and ectomycorrhizal (e.g., Cenococcum 

geophilum) fungi (Scott et al., 2010), to name a few.  Sclerotia are resting bodies (i.e., 

persistent propagules) of fungi, composed of closely packed (pseudoparenchymatous) 

hyphae, whih have a range of morphologies and form during periods of environmental 

stress (see Smith et al., 2015).  Typically, they usually consist of an outer rind of 

tightly packed hyphal tips that develop an impervious thick-walled and pigmented 

(melanized) layer surrounding a medulla of hyphae with extended vacuoles that store 

reserves of glyocgen, proteins, lipids, and polyphospates.  Viable sclerotia can remain 

dormant for many years during adverse conditions and germinate in favorable 

conditions to produce mycelia.  Sclerotia are ubiquitous in forest litter and soils, and 

even after death can persist for at least many thousands of years (see Trappe, 1969; 

Hormes et al., 2004; Benedict, 2011; McLaren et al., 2014).  Further, fossil sclerotia 

(or similar structures) of Palaeosclerotium pusillum have been reported preserved in 

the matrix of coal dated to the Middle Pennsylvanian (≈ 310 Ma) (Rothwell, 1972; 

Dennis, 1976; Taylor et al., 2015).  Consequently, sclerotia are common at 

archaeological sites (e.g., see McWeeney, 1989; Shay and Kapinga, 1997; Deal, 

2005), and the common association of sclerotia with wood-charcoal in sediments has 

lead to the suggestion that charring of sclerotia by wildfires may contribute to their 

long-term preservation (Benedict, 2011).  Carbon spherules were extracted from YDB 

sediments by flotation (Firestone et al., 2007; Kennett et al., 2008, 2009b; Israde-

Alcántara et al., 2012a; Kinzie et al., 2014), and this method will readily collect dead 

sclerotia, which float in water (see Trappe, 1969; Shay and Kapinga, 1997, Benedict, 

2011).  Scott et al. (2010) suggested that carbon elongates in YDB and other 

sediments include non-spherical sclerotia and/or arthropod fecal material. 

Israde-Alcántara et al. (2012a) responded to Scott et al. (2010), asserting that “. . . 

charred and uncharred sclerotia have textured, filamentous, low-reflectivity interiors, 

whereas at Cuitzeo [their study site], SEM imaging demonstrates that CSp have 

smooth, glassy, highly reflective interiors with no evidence of filamentous structure 

observed in fungal sclerotia (or cellular structure found in charcoal) (SI Appendix, 
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Fig. 5)” (see also Israde-Alcántara et al., 2012b).  However, fungal sclerotia can be 

hollow (see, Ferdinandsen and Winge, 1925; Trappe, 1931) and have smooth interior 

surfaces (Fig. 7) (private communication M. Watanabe).  In the image of a carbon 

spherule from Arlington Canyon shown in the supplemental materials of Kennett et 

al. (2009b) septal pores which allow movement of cytoplasm and organelles in fungi 

hyphae (see, Reichle and Alexander, 1965; van Peer et al., 2009) are clearly evident 

(Fig. 8) and conclusively identify it as a fungal sclerotia at some undetermined stage 

of diagensis (private communication M. Watanabe).  Septa pores are also clearly 

evident in the image of a carbon spherule from a Carolina Bay that is attributed to 

Allen West (see, Largent, 2008).  We also observed septal pores in carbon spherules 

from the YDB layer at Arlington Canyon provided to us by G. J. West and J. J. 

Johnson (e.g., see Fig. S5D of the supplemental materials of Scott et al., 2010).  

Indeed, we found sclerotia at many levels at locality AC003 and other localities at 

Arlington.  Further, our measured elemental composition of an Arlington Canyon 

carbon spherule is similar to that of fossil sclerotia.  The amorphous matrix of the 

spherules had an elemental composition, as determined by EDXS, of 82.49 at.% C, 

13.40 at.% O, and 0.35 at.% Si, consistent with that reported for YDB carbon 

spherules (Firestone et al., 2010a; Israde-Alcántara et al., 2012a).  In comparison, 

fossilized sclerotia from sediments of Lake Biwa, Japan contained 83 at.% C, 15 at.% 

O, and 2 at.% Si (Itoh et al., 2013).  Sclerotia undergo diagenetic changes in 

composition and structure while in sediments.  Itoh et al. (2012) demonstrated that the 

high O/C≈ 0.5 in initally viable C. geophilum sclerotia within soils decreased to 0.3 to 

0.1 with increased diagensis. 

Israde-Alcántara et al. (2012a) also responded that “CSp also contain numerous 

noncarbon particles, including aluminosilicates, indicating that these cannot be 

primary biological entities, such as sclerotia.”  Their reasoning is inconsistent with 

their own observation that “CSp are dominantly carbon (>87%) with minor 

particulates, such as Si, Al, and Fe, concentrated in the rind,” suggesting that the 

aluminosilicates are embedded in or present on the surface of the carbon spherules.  

Furthermore, Israde-Alcántara et al. (2012a) neglect studies such as Watanabe et al. 

(2001, 2004a) that found the exteriors and interiors of sclerotia contained inorganic 

components such as Al2O3, SiO2, and Fe2O2.  Inorganic nanocrystals (e.g., boehmite) 

were also reported in C. geophilum sclerotia and were thought to have formed by Al 

dissolution-precipitation reactions (Watanabe et al., 2004b). 

Page 22 of 79

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



THE NANODIAMOND EVIDENCE 

23 

23

Kinzie et al. (2014) claimed that, “There is no credible mechanism by which fungi 

can create NDs in sclerotia,” and “There is no plausible process by which sclerotia 

could extract NDs from surrounding sediment.”  Within crushed spherule fragments 

that we studied (from Arlington Canyon, AC-003), TEM revealed the presence of 

amorphous-carbonaceous grains with numerous rounded nanocrystals embedded with 

their matrix (Fig. 9) that were strikingly similar to nanodiamond containing fragments 

reported by Kennett et al. (2009b), Bement et al. (2014), and Kinzie et al. (2014).  

Electron diffraction from the embedded nanocrystals is nearly identical to that 

reported for “n-diamond” in YD boundary sediments (Fig. 10).  Kinzie et al. (2014) 

report that “n-diamond” is far less resistant to oxidation by perchloric acid during acid 

dissolution than cubic diamond, and state, “This was an advantage when analyzing 

cubic NDs but a major disadvantage for the other allotropes, which were no longer 

present [in the acid residues].” 

To further characterize the nanocrystals embedded in the Arlington Canyon 

carbon spherule fragments, EDXS and EELS spectral image maps were collected, and 

representative elemental maps are shown in Fig. 11.  These maps revealed that the 

nanocrystals were Cu (see also Daulton et al., 2010).  Native Cu (space group 225, 

Fm-3m: a = 3.6149 Å) has the same diffraction lines as “n-diamond” that differ by ≈ 

1% in plane spacing (Table 2).  The Cu nanoparticles may be stabilized from 

oxidation by the amorphous carbon that surrounds them, by adsorbed surface groups, 

or by a protective oxide surface layer.  The primary oxidation product of copper, 

Cu2O, is also present in the spherules (Daulton et al., 2010).  Cuprite, Cu2O (Space 

Group 224, Pn-3m: a = 4.2696 Å), has essentially the same diffraction lines as the 

controversial “i-carbon”, with planar spacings differing by ≈ 1% (Table 2).  The 

crushed spherules also contained nanocrystals that were not embedded in any matrix 

(Fig. 12).  Elemental mapping demonstrated these nanocrystals were copper sulfides 

(e.g., covellite, chalcocite, digenite, geerite, anilite, djurleite and/or roxbyite).  All the 

amorphous carbon fragments with embedded nanocrystals that we examined 

contained Cu nanocrystals.  We found no nanocrystals (embedded within amorphous 

C or not) that were consistent with diamond, “n-diamond”, or “i-carbon”.  While our 

observations cannot prove that diamond, “n-diamond,” and “i-carbon” are not present 

in the carbon spherules (and sediments), they clearly demonstrate that native Cu 

nanocrystals occur at far higher concentrations than “n-diamond” – should that 

modified form of 3C diamond exist and be present in the YDB.  Since Cu 
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nanocrystals were not reported in previous studies of YDB nanodiamonds, they were 

undoubtedly misidentified as “n-diamond” in the previous studies.  Similarly, Cu2O 

nanocrystals were not reported and were likely misidentified as “i-carbon” in those 

studies. 

Interestingly, common wetlands plants (undoubtedly present in “black mat” 

forming environments) have been shown to form nanocrystals of Cu near roots with 

the possible assistance by endomycorrhizal fungi (Manceau et al., 2008), and such 

fungi include species known to form sclerotia (Münzenberger et al., 2009).  The 

filamentous fungi Hypocrea lixii (Salvadori et al., 2013) and Trichoderma 

koningiopsis (Salvadori et al., 2014) have been shown to synthesize spherical 

nanocrystals of Cu from mine waste waters.  Hypocrea lixii is the telomorph (i.e., 

sexual reproductive stage) of Trichoderma harzianum, a widely distributed fast 

growing soil fungal species (Chaverri and Samuels, 2002).  Mycoparasitic species of 

Hypocrea/Trichoderma can grow on sclerotia surfaces and penetrate the rind (Elad et 

al., 1984; Benhamou and Chet, 1996).  Sclerotia in forest soils have been shown to 

contain H. lixii (Asmaya et al., 2015).  Further, the sclerotia colonizing fungus 

Fusarium oxysporum (Xu et al., 2008) has been shown to form nanoparticles of 

copper sulfide (chalcocite) (Hosseini et al., 2012).  Biomineralization mechanisms 

(see Pantidos and Horsfall, 2014) could account for the nanocrystalline Cu and Cu 

compounds observed in the carbon spherules. 

Furthermore, nanocrystals (e.g., aluminosilicates and other minerals including 

diamond, if present) associated with the carbon spherules could be located on surfaces 

or within the often-reported fissures and cracks that exist now (e.g., Fig. 10), or 

existed previously but were closed by organic carbon accumulation and/or by low-

intensity burning/annealing in sporadic wildfires.  Furthermore, nanometer-sized 

minerals including diamond can readily enter biological systems, and this has opened 

the possibility of their use for drug delivery and raised concerns over their toxicity in 

the environment (e.g., Zhang et al., 2012; Perevedentseva et al., 2013).  For example, 

nanodiamonds labeled with tritium were shown to absorb on the surface of roots and 

penetrate into wheat shoots (Myasnikov et al., 2014). 

 

Nanodiamond Abundances 

Whether or not a unique event – but not necessarily an impact – occurred at the 
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onset of the YD stadial depends on if nanodiamonds occur in YDB sediments at 

concentrations significantly elevated with respect to underlying and overlaying 

sediments.  Kinzie et al. (2014) reported nanodiamond concentrations of several 

hundred parts per billion (ppb) at the YDB layer and 0 ppb for multiple horizons at 

depths of tens to hundreds of centimeters above and below the YDB layer for 9 sites 

worldwide.  However, it is technologically impossible with present instrumentation 

and techniques to accurately estimate concentrations of nanometer-sized minerals in 

sediments at and below ~tens to hundreds of parts per million (ppm) concentrations. 

The problems associated with representative sampling and dating of fluvial 

sediment samples are discussed in Scott et al. (2016); therefore we focus on the 

methodology used by Kinzie et al. (2014) to measure nanodiamond concentrations.  

Similar methodologies were employed by several coauthors of Kinzie et al. (2014) 

(e.g., Kennett et al., 2009a,b; Kurbatov et al., 2010; Israde-Alcántara et al., 2012a), as 

well as by (Bement et al., 2014).  Remarkably, Kinzie et al. (2014) tested their 

nanodiamond isolation and measurement methodology using a control sediment 

specimen loaded with a relatively large (0.01%) concentration of synthetic 

nanodiamonds, in contrast to the three to four orders-of-magnitude lower abundances 

(11-494 ppb) they reported for the YDB bulk sediments they processed by acid 

dissolution.  Acid dissolution is the technique by which nanodiamonds were first 

isolated from carbonaceous chondrites (Lewis et al., 1987), and the isolates were 

initially thought to be relatively pure.  However, it was later recognized they contain 

significant amounts of amorphous to poorly crystalline carbons that were difficult to 

quantify by TEM and X-ray diffraction.  Acid-dissolution residues always contain 

non-diamond impurities, representing: minerals that survive acid dissolution, 

transformation products/residues/condensates of acid dissolution, and laboratory 

contaminants (e.g., Gilmour et al., 1992, 2003; Daulton et al., 1996; Stroud et al., 

2011; Israde-Alcántara et al., 2012a; Heck et al., 2014; Kinzie et al., 2014).  The 

amount of impurities is usually large, ~50% to near 100%, and can be dominated by 

amorphous to poorly crystalline carbons.  Israde-Alcántara et al. (2012a) and Kinzie 

et al. (2014) subjectively estimated the purity of their acid residues at “about ±50%” 

and “< 50%”, respectively. 

Due to the significant levels of non-diamond phases in the acid dissolution 

isolates, the abundance estimations of nanodiamonds in sediments based on mass 

balance are subject to large error.  For nanodiamond concentrations below ~several 
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ppm, where the recovered nanodiamond masses are very small (<micrograms per 

gram of processed material) and subject to greater relative contamination, the mass 

balance approach has extremely large errors.  In fact, contamination levels are greater 

and nanodiamonds are more readily lost when large amounts of matrix (> several tens 

of grams) are processed, and this is particularly problematic with small nanodiamond 

concentrations (i.e., less than a ppm).  Kinzie et al. (2014) processed between 20 to 

150 g of dry-sieved material per sediment horizon and state, “The acid extraction 

process commonly yielded very little residue that was nearly invisible to the naked 

eye inside the centrifuge tubes and often was detectable only by light microscope.”  

They further state in their supplemental materials that, “We placed all the residue on a 

single [TEM] grid, whenever possible.  If not, we measured the total amounts used or 

not used to get a percentage per grid.” 

The combined errors in measurement of the minuscule mass of the recovered 

residue, and the fraction thereof placed on the TEM grid, is compounded with the 

error in measuring relative modal (mass) abundance of the different minerals present 

in the non-pure residue.  Accurate measurements of modal abundances are required 

for determination of the mass of the recovered nanodiamonds from the mass of acid 

residues or from the mass of crushed carbon spherules.  Kinzie et al. (2014), Bement 

et al. (2014), and Kurbatov et al. (2010) estimated modal abundances by measuring 

projected areal densities (i.e., projected TEM support film coverage) of nanometer to 

submicron-sized grains deposited on TEM grids.  Projected areal densities are not 

measurements of the relative mass of nanodiamonds with respect to the mass of non-

diamond minerals, and their use will yield large errors in the determination of the 

nanodiamond abundance in sediments, carbon spherules, and ice cores.  For example, 

to estimate the relative mass of the ubiquitous amorphous to poorly graphitized 

carbon within which the nanocrystals were observed requires measurement of the 

thickness and mass density of those carbon forms, in additional to a projected areal 

density.  The thickness – and therefore mass – of the amorphous to poorly graphitized 

carbon can vary greatly on the TEM grids. 

Furthermore, the greatest limitation of the approach of Kinzie et al. (2014) and 

others is that detailed measurements must be performed on each individual grain in 

order to correctly identify it as diamond (see, Daulton et al., 2010).  Kinzie et al. 

(2014) state, “NDs represent <50% of the residue, and the remaining non-ND residue 

can mask the NDs, thus making them difficult to identify.  In addition, there are 
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inherent difficulties and uncertainties in correctly identifying tiny crystals <2 nm in 

diameter.”  Kinzie et al. (2014) further state, “By themselves, SA[E]D patterns are 

insufficient to identify NDs, and so further investigations, such as those using 

HRTEM, FFT, ED[X]S, and EELS, were performed on these nanoparticles to confirm 

that they are NDs and not some other mineral.”  In their conclusions, Kinzie et al. 

(2014) wrote, “The identification of the isolated NDs involves two main methods, 

electron microscopy imaging and electron spectroscopy, using up to nine imaging, 

analytical, or quantification procedures: scanning electron microscopy, STEM, TEM, 

HRTEM, ED[X]S, SA[E]D, FFT, EELS, and EFTEM.  The entire procedure is labor-

intensive and technically demanding.”  However, Kinzie et al. (2014) perplexingly 

describe in their supplemental materials, “. . . for the purpose of estimating 

abundances, we assumed that all rounded particles were NDs [emphasis added].  We 

also observed abundant amorphous carbon nanoparticles, but almost none were 

rounded, and therefore, we discounted them.  This estimation procedure focused 

solely on the presence or absence of rounded particles [emphasis added].”  Given the 

importance of this point, it is troubling that it was stated not in the main paper but 

only in the supplemental materials.  We reiterate that Kinzie et al. (2014) measured 

projected areal densities of “rounded particles,” not necessarily nanodiamonds, and 

they certainly did not measure modal mass abundances.  This is a critical flaw, given 

that the acid-dissolution residues and crushed spherules are not pure diamond. 

Israde-Alcántara et al. (2012a) report that, “[Lake] Cuitzeo [Mexico] CSp [carbon 

spherules] contain numerous noncarbon particles including aluminosilicates.”  We 

observed a range of non-carbonaceous crystalline minerals in carbon spherules from 

Arlington Canyon; their mass abundance was of the order of several percent of the 

spherule mass.  We also found the carbon spherules contained amorphous-carbon 

with rounded nanocrystals embedded with their matrix (Fig. 6) that were strikingly 

similar to nanodiamond containing spherule fragments reported by Kennett et al. 

(2009b), Bement et al. (2014), and Kinzie et al. (2014).  However, we found the 

embedded nanocrystals were native Cu in all spherule fragments examined.  In no 

case did we observe diamond, “n-diamond,” and “i-carbon,” and while our 

observations cannot prove their absence in the carbon spherules, they clearly 

demonstrate that native Cu nanocrystals occur at far higher concentrations than “n-

diamond.”  As in the case for the carbon spherules, glass-like carbon from YDB 

sediments have been shown to contain nanocrystals of Ca-rich, Ti-rich, Ti-rich, and 
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Fe-rich phases which can have rounded morphologies (van Hoesel, 2014).  

Nanocrystals of native Cu, Cu compounds, and other minerals that are present in 

crushed carbon spherules are undoubtedly included in the counting statistics of Kinzie 

et al. (2014) and others that counted “rounded particles.” 

The method of estimating TEM grid surface coverage of rounded particles by 

Kinzie et al. (2014) is further puzzling given that angular, octahedral, and euhedral 

nanodiamonds have been reported in YDB-aged sediments.  Kennett et al. (2009b) 

claim, “. . . clusters of stable cubic diamonds (≈1,000 in total) were found with carbon 

elongates . . . These diamonds appear more angular than the associated n-diamonds,” 

and “TEM study revealed conspicuous subrounded, spherical, and octahedral 

crystalline particles . . . Analysis of the particles by electron diffraction show 

reflections consistent with . . . metastable ‘new-diamond’ polymorph or n-diamond.”  

Similar descriptions of the YDB nanodiamonds appear in Kennett et al. (2009a).  

Furthermore, an example of a cubic diamond from black mat sediments of presumed 

YDB-age at Lommel Belgium, and shown in Fig. 2 of Tian et al. (2011), is flake-like 

with an irregular non-rounded shape.  van Hoesel et al. (2012) reported submicron 

cubic diamonds with irregular non-rounded shape (their Fig. 6) in the Usselo horizon 

at Geldrop-Aalsterhut, The Netherlands.  Israde-Alcántara et al. (2012a) described the 

nanodiamonds they reportedly identified as, “. . . nanocrystalline carbon particles 

ranging in shape from spherical to elongate to euhedral . . . embedded in amorphous 

carbon, as Tian et al. (14) described.  We identified three of four previously reported 

ND variants, of which, n-diamond was the most abundant.” 

Kinzie et al. (2014) prepared TEM specimens by placing dried acid residues or 

crushed spherules into suspension using NH4OH, depositing aliquots of suspended 

grains on the TEM grids, and allowing the aliquots to evaporate.  Another limitation 

of the TEM approach for determining modal abundances is that depositing liquid-

suspended grains on a TEM grid results in highly heterogeneous grain dispersions.  

This is problematic because variation in surface chemistry of different minerals or 

mineral grains of different sizes can result in different tendencies to cluster and/or 

adhere to the TEM support film.  Consequently, measured modal distributions based 

only on analysis of the TEM-accessible regions, with nearly monolayer dispersions of 

spatially well-separated grains, can be greatly skewed from the true modal 

distribution.  Often electron-transparent multilayer deposits form, consisting of 

overlapping grains that make it difficult to identify individual grains or determine 
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modal abundances.  Furthermore, thick grain aggregates are electron-beam opaque 

and cannot be analyzed by TEM.  These regions can have different mineral modal 

abundances than the TEM-accessible regions. 

Kinzie et al. (2014) state in their supplemental materials that they analyzed 

between 16 and 92 (average of 28) random 350 x 350 nm2 TEM field of views.  

Unfortunately, the sampling was not identical for each TEM grid, and it is unclear 

which sediment horizons received increased scrutiny (e.g., the horizons that were 

expected to contain nanodiamonds).  A larger problem is that their mean sampling 

corresponds to ≈0.000017% of the viewable area of a TEM grid.  Given the highly 

inhomogeneous grain dispersions on their TEM grids, this represents a statistically 

inadequate grain sampling that could account for the 0 ppb nanodiamond abundances 

they measured in sediments that bracketed the reported YDB layer.  Of course, TEM 

can provide no measure of any grains dispersed on the TEM inaccessible grid bars. 

The numerous experiment difficulties in using TEM to measure nanodiamond 

abundances in sediments render this approach infeasible.  The only analytical method 

accepted to reasonably assess ~several to tens of ppm abundances of nanodiamonds 

within a matrix is a technique applied to meteoritic nanodiamonds that measures the 

amount of supernova-derived Xe-HL gases (see review by Daulton, 2006) released 

during stepped combustion of acid-dissolution residues.  By measuring a tracer 

unique to the nanodiamonds, only the nanodiamonds are measured; this contrasts with 

the mass-balance approach that measures the combined mass all the different 

materials (including adsorbed moisture) present in the acid residue.  Diamonds are 

thought to be the only carriers of the Xe-HL gases in the non-pure nanodiamond 

isolates, based on the smooth elemental abundance pattern of extracted noble gases 

relative to cosmic abundances, suggesting all HL noble gases are a single gas 

component trapped in a single mineral species (Huss and Lewis, 1994).  This 

assumption is also based on the high release temperatures (1100-1600°C) of the HL 

gas component (Huss and Lewis, 1994).  Furthermore, the release of HL gases is 

accompanied by release of CO2 (Lewis, 1994), indicating that the HL component 

resides only in the most refractory carbonaceous minerals (see also Daulton, 2006).  

This method has the advantage that it can be used to monitor any decrease in the HL 

gas component (i.e., loss of the carrier phase) after each step of the acid-dissolution 

process, or following any post-processing.  However, the method has the 

disadvantage that is does not directly measure nanodiamonds that lack Xe-HL gases. 
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A number of noble gas measurements have been performed on terrestrial 

diamonds (for a review, see Basu et al., 2013).  For example, Verchovsky et al. 

(1991) measured one diamond from the Popigai crater and reported unusually high 

concentrations of radiogenic 40Ar.  Subsequent measurements of Popigai diamonds 

yielded a similar range of 40Ar/36Ar ratios as in kimberlitic diamonds, however with 

significantly higher 40Ar concentrations (Shelkov et al., 1998).  Metamorphic 

microdiamonds from the Kokchetav Massif have primary 40Ar concentrations that fall 

between the ranges exhibited by kimberlitic and Popigai impact diamonds 

(Verchovsky et al., 1993).  Secondary processes, such as implantation of U and Th 

decay products, appear to have severely modified the primary isotopic compositions 

of the noble gases that were trapped during formation of the microdiamonds.  

Kokchetav microdiamonds contain 4He concentrations that are among the highest 

observed in any terrestrial diamonds (Verchovsky et al., 1993).  Carbonado diamonds 

from Africa and Brazil also contain large amounts implanted radiogenic 4He in 

addition to nucleogenic Xe and Kr (Ozima et al., 1991).  Unfortunately, there have 

been no measurements of trapped noble gases performed on nanodiamonds from the 

YDB boundary or the underlying/overlaying sediment layers.  Therefore it is unclear 

if they carry any unique trapped gas component useful as a tracer for abundance 

measurements. 

 

Carbon Isotopic Compositions of Nanodiamonds 

Nanodiamonds are a minor component (see Lewis et al., 1987; Rietmeijer and 

Mackinnon, 1987, Dai et al., 2002) of the ~ 4 x107 kg/yr interplanetary dust flux that 

is accreted by Earth (Love and Brownlee, 1993), with accretion rates in the last 

glacial period comparable to the present (Yada et al., 2004).  In arguing against the 

fall of interplanetary dust as an explanation for nanodiamonds in YDB sediments, 

Israde-Alcántara et al. (2012a) incorrectly state that “Tian et al. (14) concluded that 

YDB NDs are not cosmic because they display δ13C abundances (−28.1 to −26.3‰) 

that are terrestrial.”  van Hoesel et al. (2012) make a similar incorrect statement.  Tian 

et al. (2011) actually stated, “carbon isotope measurements and C/N values were 

determined from the black material of the Lommel YDB layer.  The nanodiamond 

particles in the present material could not be analyzed separately because of their 

small size.” Tian et al. (2011) performed these measurements to look for evidence of 
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an impact event through the presence of C in the sediments that originated from the 

impactor and concluded that, “results obtained on the Lommel material do not 

distinguish between terrestrial and extraterrestrial origins for the carbon.”  Israde-

Alcántara et al. (2012a) also incorrectly concluded that “Isotopic analyses of the 

carbon-rich YDB interval at Cuitzeo yielded values ranging from −23 to −19‰ for 

δ13C consistent with the formation of Cuitzeo NDs from terrestrial, not cosmic, 

carbon.”  Similar to Tian et al. (2011), Israde-Alcántara et al. (2012a) measured 

sediment, not nanodiamond isolates.  Neither of the bulk sediment δ13C measurements 

can provide direct information about the nanodiamonds, which make up only a tiny 

fraction of the C in the sediments.  Kinzie et al. (2014) also invoke this erroneous 

evidence by citing both papers and stating, “(δ13C, δ15N, and C/N) in YDB NDs are 

consistent with a terrestrial origin.”  They also incorrectly interpret the δ13C 

measurements of sediments by Tian et al. (2011) as ruling out a mantle origin of the 

nanodiamonds. 

Measurement of the δ13C compositions of nanodiamonds isolated from sediments 

or matrix by acid dissolution is experimentally challenging.  The non-diamond 

carbonaceous phases, which can comprise over half the residue, are potentially of 

different origin as the nanodiamonds and hence can have different C isotopic 

compositions.  While δ13C values measured from C released at high temperature 

during stepped combustion of the acid residue will limit C contributions from the 

most labile (low-temperature released) components, it is not possible to correct for 

contributions from the non-diamond carbonaceous minerals that combust along with 

the nanodiamonds.  Consequently, bulk C isotopic measurements of acid residues are 

highly suspect with respect to the true nanodiamond C isotopic composition.  

Therefore, bulk C isotopic measurements of acid dissolution isolates of terrestrial 

sediment nanodiamonds (Carlisle, 1992; Gilmour et al., 1992), impact diamonds 

(Hough et al., 1995; Gilmour et al., 2003), and meteoritic nanodiamonds (c.f., Swart 

et al., 1983, Russell et al., 1996) cannot provide information about their origins.  

Indeed, this point has driven recent attempts by two groups to pursue C isotopic 

measurements of individual meteoritic nanodiamonds using atom probe tomography 

(Heck et al., 2014). 

 

Synchronous Chronologies and Stratigraphic YDB Markers 
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An important challenge for the YD Impact Hypothesis is that, in order to attribute 

the source of nanodiamonds in Late Pleistocene sediments to an impactor/bolide 

event, it is necessary that all sediments reported to contain nanodiamonds date 

synchronous to the YD onset.  However, nanodiamonds (and “n-diamond”) have been 

reported in sediments and in carbonaceous forms within sediments that do not date to 

the YDB (Firestone et al., 2007, 2010a; Yang et al., 2008; van Hoesel et al., 2012, 

2013; Bement et al., 2014; Kinzie et al., 2014).  Most importantly, and despite 

widespread claims of synchroneity by YD impact proponents (see, Kennett et al., 

2015a,b), age control is poor or nonexistent at nearly all sites where nanodiamonds 

are reported “at” the YDB layer (e.g., see Blaauw et al., 2012; Ives and Froese, 2013; 

Wittke et al., 2013c; van Hoesel et al., 2013, 2014; Meltzer et al., 2014; Holliday et 

al., 2014).  There are only two sites where nanodiamonds are reported at a layer that 

can be confidently dated to the YD onset: Daisy Cave and Sheriden Cave (Meltzer et 

al., 2014).  However, Meltzer et al. (2014) cautions that at Sheriden Cave, “. . . the 

supposed YDB layer has the required age, but its age is inconsistent with the ages of 

the layers that encompass it.” 

The YDB sediment layer is often described as being at the base of a dark-colored 

stratum termed by YD impact proponents as “the black mat” that is used as the 

primary stratigraphic marker for the YDB (Firestone et al., 2007, 2010a; Firestone 

2009, Mahaney et al., 2010; Israde-Alcántara et al., 2012a; Wittke et al., 2013a).  

Nanodiamonds and other proposed impact markers are reported directly beneath the 

black mat (Firestone et al., 2007, 2010a).  A distinct, dark colored stratum is present 

at the Murray Springs, Arizona archeological site, with sediments containing Clovis 

artifacts and megafaunal fossils below the horizon and sediments devoid of these 

materials above.  Haynes (2008) identified 55 localities in the western United States 

and 2 in the eastern United States with ". . . a black organic-rich layer or ‘black mat' 

in the form of mollic paleosols, aquolls, diatomites, or algal mats with radiocarbon 

ages suggesting they are stratigraphic manifestations of the Younger Dryas cooling 

episode."  These and other similar deposits have been described as organic-rich, silty 

sediments (e.g., Brakenridge, 1981; Quade et al., 1998; Baker et al., 2008), however 

their total organic carbon content varies (most cases < 5 wt. %) and is not correlated 

with sediment texture and color (see Pinter et al., 2011; Harris-Parks, 2014, 2016).  In 

fact, such deposits vary in color and white-colored diatomites have been described as 

“black mats” (Haynes, 2008).  These deposits form in wet environments ranging from 
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wet meadows to shallow ponds (Quade et al., 1998; Haynes, 2008; Harris-Parks, 

2016).  “Black mat” formation, at least in southern Nevada, peaked during the YD 

from 11,200-10,000 14C a BP (Quade et al., 1998).  However, formation was time-

transgressive across, rather than synchronous with, the YDB (Holliday and Meltzer, 

2010; Harris-Parks, 2014, 2016).  Such dark colored deposits are not unique to the 

western United States or to the YDB, but in fact are well recognized as paleo-wetland 

deposits found in similar settings around the world and at numerous time horizons 

through at least the late Quaternary (e.g., Quade et al., 1998; Rech et al., 2003; 

Mandel, 2008; Pinter et al., 2011; Pigati et al., 2012). 

Black mats and the unreliable reports of spikes in the nanodiamond concentration, 

as discussed previously, cannot link chronologies at different sites.  The reported 

concentration spikes of the other currently debated mineralogical and geochemical 

markers at the YDB have all been vigorously challenged.  These markers include 

combustion products (charcoal/soot, glass-like carbon, carbon elongates, and carbon 

spherules), magnetic minerals (grains, spherules), and Ir (see, Firestone et al., 2007, 

2010a; Firestone, 2009; Kennett et al., 2008, 2009b).  In addition, Bunch et al. (2012) 

reported a correlation between elevated abundances of siliceous scoria-like objects 

and Fe/Si-rich microspherules at the YDB layer at three out of 18 sites studied (Abu 

Hureyra, Syria; Melrose, Pennsylvania; and Blackville, South Carolina).  Of these 

materials, nanodiamonds have been reported within glass-like carbons (Firestone et 

al., 2007, 2010a; Firestone, 2009; Israde-Alcántara et al., 2012a supplemental 

materials; Kinzie et al., 2014), carbon elongates (Kennett et al., 2009b), and carbon 

spherules (Firestone, 2009, Firestone et al., 2010a; Kennett et al., 2009a; Israde-

Alcántara et al., 2012a supplemental materials; Kinzie et al., 2014). 

One aspect of most versions of the YD Impact Hypothesis is the assertion that 

intense, impact-ignited wildfire raged across North America and Europe (Kristan-

Tollmann and Tollmann, 1992; Firestone et al., 2006).  Charcoal/soot, glass-like 

carbon, carbon elongates, and carbon spherules reported in YDB sediments are 

interpreted as high-temperature combustion products and evidence of synchronous 

intercontinental wildfires (Firestone et al., 2007, 2010a; Firestone, 2009; Kennett et 

al., 2008, 2009a,b; Wittke et al., 2013a).  For instance, Firestone et al. (2007) 

propose, “. . . glass-like carbon, carbon spherules, and nanodiamonds were produced 

in the YDB by high temperatures resulting from the impact and associated biomass 

burning.”  Kennett et al. (2008) studied the Northern Channel Islands in California 
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and wrote, “Intense wildfire evidence is also indicated by the presence of carbon 

spherules . . . spherules occur widely in the YDB layer in North America and have 

also been found in surficial sediments associated with intense coniferous forest crown 

fires (Firestone et al., 2007).”  In apparent contradiction, Israde-Alcántara et al. 

(2012a) state that the, “. . . indication that the YDB proxies [e.g., carbon spherules, 

nanodiamonds, magnetic spherules] are not wildfire-related is that marker peaks (2.80 

to 2.75 m) were deposited earlier than the wildfire charcoal peak (2.70 to 2.65),” 

suggesting wildfires were not synchronous with (and immediately caused by) the 

impact event at their study site, Lake Cuitzeo.  As for the nanodiamonds in the YDB 

spherules, Firestone et al. (2006) first speculated that they “. . . rode in with an 

asteroid or comet, or on the supernova debris cloud,” but later speculated they were 

formed during the impact event Firestone et al. (2007).  Kinzie et al. (2014) conclude, 

“. . . the best explanation is that ND-rich carbon spherules derive from conifers that 

were incinerated by the impact event”, and cite Israde-Alcántara et al., 2012a who 

cite Kimbel et al. (2008), which report the formation of “n-diamonds” in charred coal, 

coconut shells, and wood; they state, “. . . [our] procedure is identical to the 

commercial process for producing activated charcoal . . . The process of forming n-

diamonds requires conditions unlike any that are normal to the Earth's surface . . . 

[and] match the extreme conditions that exist during an ET impact or airburst.”  

Kinzie et al. (2014) stress that the nanodiamonds and their host carbon spherules must 

have been formed within the impact fireball itself, and provide several arguments 

against their formation by wildfire, stating, “. . . there is no evidence for and no 

known process for production of NDs in natural wildfires.”  Millimeter-diameter, 

nanodiamond-containing carbon spherules that formed in an impact fireball should be 

localized to the immediate area of the impact site(s).  However, despite the assertion 

by impact proponents that the primary YD impact site is in North America, 

nanodiamond-containing carbon spherules are reported widely distributed over 

several continents.  For example, Kinzie et al. (2014) report the abundance of 

nanodiamonds in carbon spherules from YDB sediments in Ommen, the Netherlands 

are higher than at 12 out of 14 North American sites studied, and abundances in 

Lingen, Germany are higher than at 10 of those North American sites. 

A study of 35 lake sediment cores across North America could neither confirm a 

continent-wide charcoal peak associated with the YDB nor find any indication of 

continent-wide wildfire (Marlon et al., 2009).  Similar conclusions were drawn from 
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subsequent studies (Gill et al., 2009; Daniau et al., 2010; Pinter et al., 2011).  In fact, 

most YD-aged “black mats” in North America contain negligible amounts of charcoal 

(Haynes et al., 2010a; Harris-Parks, 2014, 2016).  As for as the other proposed 

impact-derived combustion products, Scott et al. (2010) report that glass-like carbon, 

carbon elongates, and carbon spherules are ubiquitous in sediments and occur 

throughout Late Pleistocene to Holocene sedimentary sequences.  Further, sclerotia 

are morphologically identical to the reported YDB carbon spherules (Scott et al., 

2010), and are commonly reported in sediments (e.g., see McWeeney, 1989; Shay and 

Kapinga, 1997; Deal, 2005). 

The reported spikes in concentration at the YDB of magnetic spherules, siliceous 

scoria-like objects, and Ir are also strongly contested.  These markers are not reported 

to be directly associated with nanodiamonds and, in fact, nanodiamonds are not 

reported at the three YDB sites where lechatelierite-containing magnetic spherules 

and scoria-like objects are reported.  Therefore, these markers will not be discussed 

further, but reviews of the contested studies are found in Pinter et al. (2001), van 

Hosesel (2014), van Hoesel et al. (2014), and Holliday et al. (2014).  The point is that 

there are no clear and undisputed concentration spikes for any mineral or geochemical 

signature that can be used identify the YDB and link chronologies at different sites. 

Even if the reported concentration spikes in Late Pleistocene sediments are 

accepted, there are problems in interpreting them as indicators of impact/bolide 

event(s).  Impact/bolide events should result in nearly simultaneous deposition of 

impact markers with respect to the mean sedimentary rates at a given site.  Natural 

mixing processes (e.g., bioturbation, transport, and redeposition) should thoroughly 

mix the different mineralogical and geochemical markers within a sediment horizon 

and widen their distribution vertically in stratigraphic sequences.  While some sorting 

might occur, the peaks in abundance with respect to stratigraphy should 

approximately overlap for all markers.  Multiple abundance peaks for any given 

marker, and marker peaks that are vertically offset and distinct from one another, 

would not be expected.  At several Carolina Bays (M31 and M33 of Myrtle Beach, 

South Carolina), two well-separated peaks in magnetic grain abundance are reported, 

with the peak at the higher stratigraphic level correlated with a peak in charcoal 

abundance (Firestone et al., 2010a).  Firestone et al. (2007, 2010a) report at Chobot, 

Alberta Canada correlated abundance peaks in carbon spherules, glass-like carbon, 

and charcoal in sediments that lie below sediments with correlated abundance peaks 
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in magnetic grains and magnetic spherules.  At Topper, South Carolina, Firestone et 

al. (2007, 2010a) report that the abundance peaks in glass-like carbon and magnetic 

grains do not overlap.  At the Gainey, Michigan, Firestone et al. (2010a) report two 

peaks in magnetic grain abundance, with the peak at the lower stratigraphic level 

correlated with a peak in magnetic spherules abundance.  At Arlington Canyon, two 

well separated sets of correlated peaks at ≈ 400 and ≈ 500 cm below surface (cmbs) 

for charcoal, carbon elongates, carbon spherules, and nanodiamonds are reported that 

bracket a horizon of gravel to coarse sand (Kennett et al., 2008, 2009b; Kinzie et al., 

2014).  Note that Kennett et al. (2008, 2009b) report carbon spherules are absent 

between 95 to 416 cmbs and their abundance peaks near 500 cmbs, while the 

abundance of carbon elongates has two resolved peaks near 394 cmbs and 500 cmbs.  

Kinzie et al. (2014), with Kennett as a coauthor, provide no abundance measurements 

for carbon elongates and instead report two peaks in the abundance of carbon 

spherules at 394 cmbs and 500.5 cmbs at concentrations that are a sum of carbon 

spherule and carbon elongate concentrations reported by Kennett et al. (2008, 2009b). 

 

Discussion and Conclusions 

The YDB nanodiamond data are considered by some as the strongest physical 

evidence for an YD impact/bolide event.  We have analyzed the nanodiamond data 

used to provide evidence for the YD Impact Hypothesis and have identified critical 

problems with the collection of those data and/or the data interpretation.  In 

evaluating the evidence we arrived at four main conclusions. 

1) The presence of lonsdaleite in sedimentary deposits can suggest  – but cannot 

on its own demonstrate – that an impact event occurred.  In YDB sediment, however, 

there is no credible evidence of the presence of lonsdaleite.  In previous studies, 

graphene/graphane aggregates have been misidentified as lonsdaleite, diffraction 

patterns have been incorrectly indexed to lonsdaleite, and FFT transforms of single 

high-resolution lattice images used to identify lonsdaleite are known to yield 

misleading results. 

2) While there is evidence of cubic nanodiamonds in Late Pleistocene sediments, 

their presence does not provide evidence of an impact because they have not been 

linked with impact processes.  To do so would require correlating the nanodiamonds 

to an established and recognized impact marker.  There are no established reports in 

Page 36 of 79

http://mc.manuscriptcentral.com/jqs

Journal of Quaternary Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



THE NANODIAMOND EVIDENCE 

37 

37

YDB sediments of any of the accepted and recognized shock minerals found at known 

impact structures (c.f., French and Koeberl, 2010; van Hoesel et al., 2014).  Carbon 

spherules, carbon elongates, and glass-like carbon reported associated with the 

nanodiamonds are not recognized as impact markers.  Furthermore, these associations 

are reported to occur in sediments that are not limited to the YDB and therefore 

cannot provide evidence of processes unique to the YD onset. 

3) The use of the controversial “n-diamond” as an impact marker, which 

constitutes the majority of the nanodiamond evidence for the YD Impact Hypothesis, 

is problematic due to the presence of native Cu nanocrystals in sediments that can be 

easily confused for “n-diamond”.  Further, “n-diamond” is reported in sediments that 

do not date to the YD onset, and more importantly, formation of these nanocrystals 

have not been linked exclusively to shock formation processes. 

4) The presence of a single spike in nanodiamond concentration within 

Pleistocene to Holocene sediments at the YDB layer would strongly suggest that a 

unique event – but not necessarily an impact – occurred at the YD onset.  

Nanodiamond abundances from bulk sediments processed by acid dissolution, for 

crushed carbon spherules, and for ice by Kinzie et al. (2014) and those previously 

published by several of its coauthors in other studies (e.g., Kennett et al., 2009a,b; 

Kurbatov et al., 2010; Israde-Alcántara et al., 2012a), as well as by a coauthor of 

Kennett et al. (2009a) (Bement et al., 2014) are all based on TEM studies.  However, 

the TEM measurements by Kinzie et al. (2014) and others using similar 

methodologies are not of nanodiamonds, but are of “rounded particles.”  More 

importantly, the many experiment difficulties inherent in using TEM to measure 

nanodiamond abundances lead to large unconstrained error, rendering this approach 

infeasible.  We find there is no evidence to suggest a unique spike in the 

nanodiamond concentration at the YDB layer.  The distribution of nanodiamonds in 

Pleistocene to Holocene sediments (and in ice, if present, which has yet to be 

confirmed by independent groups, see Boslough, 2013b) remains unclear.  Therefore, 

considering conclusions 1-4, the reports of nanodiamonds in Late Pleistocene 

sediments cannot provide evidence for an YD impact. 

 

Various criticisms have been raised on both sides of the debate regarding the 

identification, analysis, and interpretation of proposed YD impact markers.  To 

advance this field, it would be advantageous for working groups to develop and 
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standardize techniques for collection, splitting/distribution, and analysis of specimens 

from key YDB sites, in order to try to reconcile conflicting results and prevent the use 

of inappropriate approaches that lead to erroneous results.  To perform the highly 

challenging measurement of nanodiamond abundance in sediments/ice, methods other 

than TEM will need to be explored and developed.  Any method must be 

tested/calibrated against control specimens (sediments/ice initially devoid of 

nanodiamonds, that are spiked with measured ppb amounts of nanodiamonds).  

Furthermore, unlike previous abundance measurements, future measurements must be 

conducted as blind studies to preclude unconscious bias. 
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Figure Captions 

Figure 1: (a) A HR-TEM lattice image of a nanocrystal from the Allende meteorite 

acid-dissolution residue.  The nanocrystal exhibits a homoepitaxial interface 

between two crystal lattices that is consistent with the (b) 3C cubic diamond 

and 2H lonsdaleite atomic structure (figure adapted from Daulton et al., 1996).  

The grain displays one domain with close packed tetrahedral planes stacked in 

the (A
b
)(B

c
)(C

a
)… sequence defining the 3C structure and a second domain 

stacked in the (A
b
)(B

a
)… sequence defining the 2H structure.  Through-focus 

HR-TEM imaging (not shown) is consistent with these atomic structures.  

Furthermore, since this grain exhibits a homoeptiaxial interface of two crystal 

structures, the possible pairs of candidate phases that comprise the grain are 

significantly limited.  (c) Atomic models of the six unique (fundamental) 

bilayer planes (A
b
, A

c
, B

a
, B

c
, C

a
, and C

b
) in diamond (top), that comprise 

stacked tetrahedral planes (depicted normal to stacking direction shown at 

bottom).  The two basic stacking arrangements, (X
y
)(Y

x
) and (X

y
)(Y

z
) where X, 

Y, and Z are all different, form planes of vertex-sharing antiparallel and 

parallel tetrahedra, respectively. 

 

Figure 2: HR-TEM images of well-ordered (a)   [011 ] zone of cubic diamond and (b) 

[010] zone of lonsdaleite from products of thermobaric high-pressure, high-

temperature treatment of graphite. (c) Calculated HR-TEM image of 

lonsdaleite for [010] zone axis (figure adapted from Kulnitskiy et al., 2013). 

(d) HR-TEM image of diamond grown on (100)-oriented Si held at 600 or 

700° C by bombardment with 80 or 200 eV ions from a (CH4 or C2H2)/Ar/H2-

fed Kaufmann source (figure adapted from Lifshitz et al., 2001).  (e) 

Schematic atomic model of lonsdaleite projected along the [010] zone axis. 

 

Figure 3:  Shown in top row Fig. 6 part b and part d of Kurbatov et al. (2010); its 

figure caption states, “Lonsdaleite analyses. (b) HR-TEM image showing 

characteristic lonsdaleite lattice spacings. (d) Fast Fourier transform (FFT) of 

lonsdaleite ND crystal.  All values (Miller indices) are consistent with each 

other and with the published lattice spacings for lonsdaleite as shown in Table 

3.  Sample numbers, as referenced in Table 2, are shown in the lower left of 
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each image.”  Shown at bottom is a schematic of the atomic structure of 

lonsdaleite.  In diamond, C atoms covalently bond to four other C atoms in a 

tetrahedral geometry.  The {002} planes in the lonsdaleite structure contain 

the base of the C tetrahedra that are stacked in the structure.  The set of {002} 

planes are oriented edge-on only in [hk0] zone axes projections, and high-

resolution lattice images of [hk0] zone axes display only one set of {002} 

planes, contrary to the nanocrystal shown by Kurbatov et al. (2010). 

 

Figure 4:  Shown in top row is Fig. S2 (part B) of Kennett et al. (2009b); its figure 

caption states, “(B) cluster of lonsdaleite crystals and associated diffraction 

pattern from 4.59-4.64m(AC#348).”  We modified the diffraction pattern from 

the original published by Kennett et al. (2009b) by inverting its contrast to aid 

in visual clarity and by superimposing additional annotations on the pattern.  

In right of top row, ovals were superimposed to demonstrate the azimuthal 

asymmetry of the diffraction pattern and the presence of additional partial 

diffraction rings.  Half circles were superimposed to illustrate the predicted 

reflections for lonsdaleite.  The scale of the diffraction pattern was calibrated 

assuming that the ring labeled (110) by Kennett et al. (2009b) corresponds to 

the (110) reflection of lonsdaleite.  Notice, there are many missing lonsdaleite 

reflections.  Left of bottom row is Fig. 15 (part B) of Kinzie et al. (2014); its 

figure caption states, “Younger Dryas Boundary lonsdaleite-like crystal”.  

This is the same grain shown in Kennett et al. (2009b).  Shown at right of the 

bottom row is the diffraction pattern of Kennett et al. (2009b) with half circles 

superimposed to illustrate the predicted reflections for a homogeneous mixture 

of graphene and graphane where the <100> d-spacing in graphane is 

contracted by a factor of 1.054 from that of graphene (Daulton et al., 2010).  

The scale of the diffraction pattern was calibrated assuming the ring labeled 

(110) by Kennett et al. (2009b) corresponds to the (100) reflection of 

graphene.  Consistent with this diffraction pattern, disordered graphite could 

be present and predominantly oriented with its [001] crystallographic axis in 

the electron beam direction.  As such, the high-resolution lattice image 

published for this grain (see Fig. 16, Kinzie et al., 2014) is consistent with a 

[001] zone axis of graphitic/graphene structure.  Similarly, the diffraction 

pattern identified as lonsdaleite by Redmond and Tankersley (2011) is 
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consistent with [001] graphite. 

 

Figure 5: Typical electron diffraction pattern from aggregates of polycrystalline 

graphene/graphane recovered from sediments exhibits a) azimuthally 

asymmetric electron diffraction rings indicative of texturing of two phases 

(Daulton et al., 2010).  Different regions within the same aggregate exhibit 

diffraction rings from b) only graphene (solid triangles), c) both graphene and 

graphane, or d) only graphane (open triangles).  To aid in visual clarity, the 

diffraction patterns are displayed in reverse contrast. 

 

Figure 6: SEM images of carbon spherules from Arlington Canyon YDB sediments 

(AC-003): a) Fig. 1 (part A), b) Fig. S6 (part E), and c) Fig. S6 (part F) of 

Kennett et al. (2009b).  Their figure captions state, “SEM images represent 

carbon spherules (A)” and “(E) [relabeled B here] Bisected carbon spherule 

showing typical internal reticulate (honeycomb) structure and thin, 

nonreticulate crust.  (F) [relabeled C here] Close-up of carbon spherule 

interior shown in E [relabeled B here] with well-organized reticulate 

(honeycomb) structure and thin, nonreticulate crust.”  d) Light microscope 

image of fungal sclerotia charred at 350°C for 5 mins.  e) SEM image of 

broken fungal sclerotia from charcoal residue of a low-temperature surface 

fire, Thursley, Common, Surrey, England.  f) SEM image of broken fungal 

sclerotia charred at 350°C for 5 mins showing mesh-like internal structure 

comprising fused fungal hyphae. 

 

Figure 7: Left column is Fig. 5 of the supplemental materials of Israde-Alcántara et 

al. (2012a).  Their figure caption states, “CARBON SPHERULES from the 

2.8-m layer. A) The upper inset show a whole CSp in reflected light. B) SEM 

image of a crushed CSp; C) Photomicrograph of the same crushed CSp. D) 

Closeup of bottom of crushed CSp, illustrating the lack of filamentous texture, 

as typical of fungal sclerotia, and indicating that these objects are not sclerotia, 

as speculated by Scott et al. (2010).”  Right column or panel e) SEM image of 

the interior of cross-sectioned C. geophilum sclerotia displaying a hollow 

center with smooth interior walls (image courtesy of M. Watanabe). 
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Figure 8: a) SEM image of the interior of cross-sectioned C. geophilum sclerotia 

displaying micron-sized holes (septal pores), which are morphological features 

characteristic of sclerotia (image courtesy of M. Watanabe).  b) SEM image of 

the interior of a carbon spherule from Arlington Canyon YDB sediments (AC-

003) from Fig. S6 (part F) of Kennett et al. (2009b).  The originally published 

image (shown in Fig. 6c of this paper with a modified panel label) has been 

cropped with circles overlaid to denote several of the submicron-sized holes 

present in the cell-like walls.  Their figure caption states, “(F) Close-up of 

carbon spherule interior shown in E with well-organized reticulate 

(honeycomb) structure and thin, nonreticulate crust.”  The presence of the 

holes provides a conclusive identification of the spherule as a sclerotium 

(private communication M. Watanabe).  Both images are reproduced at the 

same spatial scale. 

 

Figure 9: High-resolution TEM lattice images (top row) and bright-field (BF) TEM 

image of nanocrystals embedded within amorphous fragments (middle row) 

obtained from finely crushed carbon spherules collected from Arlington 

Canyon YDB sediments (AC-003).  Many of the nanocrystals exhibit twining, 

particularly Σ=3 twin boundaries or occasionally Σ=9 twin boundaries when 

successive Σ=3 twin domains impinge on one another (e.g., see Luyten et al., 

1992; Daulton et al., 2003), characteristic of face centered cubic structures.  

Shown in the bottom row are Figure 13 (part A) and Figure 6 (part C) from 

Kinzie et al. (2014); their respective figure captions states, “carbon spherules 

from Gainey, Michigan (Younger Dryas Boundary [YDB]: 3933 ppb at 30 cm 

below surface [cmbs]” and “nanodiamonds (NDs) in carbon spherules 

(CS) . . . n-Diamond from Topper, South Carolina (YDB: 108 ppb at 60 

cmbs).” 

 

Figure 10: Representative diffraction pattern from amorphous grains obtained from 

finely crushed carbon spherules collected from Arlington Canyon YDB 

sediments (AC-003) that contain nanocrystals (see, Fig. 6, middle row).  The 

diffraction pattern is displayed in reversed contrast and three different electron 

exposures are superimposed to cover the large dynamic range of the Bragg 
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intensities.  The diffraction lines of cubic diamond (along with the 

kinematically forbidden diamond reflections denoted by *) are shown. 

 

Figure 11: Top: Bright-field (BF) and Dark-field (DF) STEM images of nanocrystals 

embedded within an amorphous grain from finely crushed carbon spherules 

collected from Arlington Canyon YDB sediments (AC-003).  Below are 

STEM Energy Dispersive X-ray Spectroscopy (EDXS) and Electron Energy 

Loss Spectroscopy (EELS) maps (in dashed rectangle) of relative elemental 

composition normalized to the sum of all measured elements.  Areas in the 

maps that exhibit a deficit of C and Fe correlate to areas that show an excess 

of Cu.  For nanocrystals on the surface of the amorphous C-rich and Fe-

containing grain, this is a result of the normalization of the compositions.  For 

nanocrystals within the grain, this results from the nanoparticles displacing the  

amorphous C-rich and Fe-containing matrix.  The 256 grey scale look-up table 

(LUT) is linearly mapped between the minimum and maximum element 

composition for each map.  (The elemental maps are published online in false 

color with a dynamic range of 1786 colors.)  As described in the text, the 

amorphous matrix had an elemental composition, as determined by EDXS, of 

82.49 at.% (70.56 wt.%) C, 13.40 at.% (15.27 wt.%) O, 2.87 at.% (11.41 

wt.%) Fe, 0.39 at.% (0.89 wt.%) S, 0.35 at.% (0.70 wt.%) Si, 0.17 at.% (0.47 

wt.%) K, 0.12 at.% (0.21 wt.%) Mg, 0.10 at.% (0.29 wt.%) Ca, 0.05 at.% 

(0.11 wt.%) P, 0.05 at.% (0.10 wt.%) Al. 

 

Figure 12: Top: Bright-field (BF) image of nanocrystals from finely crushed carbon 

spherules collected from Arlington Canyon YDB sediments (AC-003).  Below 

are STEM Energy Dispersive X-ray Spectroscopy (EDXS) maps of relative 

elemental composition normalized to the sum of C, O, Cu, and S 

contributions.  Carbon and O is associated with the support film and deficits in 

those elements occur in the maps where the nanocrystals are located due to the 

normalization of the elemental compositions to the sum of C, O, Cu, and S 

contributions.  If the nanocrystals contained C, excesses in C would be 

observed at the locations of the nanocrystals.  The 256 grey scale look-up 

table (LUT) is linearly mapped between the minimum and maximum element 

composition for each map.  (The elemental maps are published online in false 
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color with a dynamic range of 1786 colors.) 
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Table 1: Lonsdaleite Bragg Reflections 
 

 Predicted† Bundy and 
Kasper 
(1967) 

Frondel 
and Marvin 

(1967) 

Fedoseev 
et al. 

(1983) 

Bhargava 
et al. 

(1995) 

Ona et al. 
(2008) 

(hkl) d-spacing (Å) 
(100) 2.182 2.19 2.18 2.20-2.18 2.181 2.165 
(002) 2.060 2.06 2.061 2.06-2.07 2.045 2.089 
(101) 1.928 1.92 1.933 1.92 1.949 1.933 
(102) 1.498 1.50 1.50 1.50-1.53  1.504 
(110) 1.260 1.26 1.257 1.26-1.27 1.257 1.251 
(103) 1.162 1.17 1.17 1.18 1.167 1.172 
(200) 1.091      
(112) 1.075 1.075 1.075 1.06-1.07 1.073 1.076 
(201) 1.055 1.055   1.067  
(202) 0.964   0.970-0.985   
(203) 0.854   0.870   
(210) 0.825   0.820   
(211) 0.809 0.855     
(105) 0.771 0.820     
(212) 0.766      
(300) 0.727      
(213) 0.707      
(006) 0.687      
(302) 0.686      
† lattice parameters: a = 2.52 Å and c = 4.12 Å. 
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Table 2: Comparison of Cu and Cu2O Bragg Reflections to those of “n-diamond” and “i-carbon”. 

 
Cu “n-diamond” Cu2O  “i-carbon” / “C8” 

 Predicted† 
 

Konyashin et 
al. (2001) 

  Predicted‡ Matyushenko 
et al. (1979) 

Hirai and 
Kono (1991) 

Burkhard et 
al. (1994) 

(hkl) d-spacing (Å) (hkl) Int. d-spacing (Å) 
(111) 2.087 2.067 (110) w 3.019 3.02 3.04 3.03 
(200) 1.807 1.791 (111) vs 2.465  2.42 2.49 
(220) 1.278 1.261 (200) m 2.135 2.13 2.08 2.13 
(311) 1.090 1.078 (211) w 1.743 1.74 1.70 1.78 
(222) 1.044 1.032 (220) m 1.510 1.52 1.49 1.59 
(400) 0.904 0.892 (221) vw 1.423    
(331) 0.829 0.817 (310) w 1.350 1.352   
(420) 0.808 0.796 (311) w 1.287  1.26 1.29 
(422) 0.738 0.727 (222) w 1.233 1.234 1.19  
(333) 0.696 0.686 (321) vw 1.141  1.09 1.09 
(440) 0.639 0.630 (400) w 1.067   1.05 
† lattice parameter: a = 3.6149 Å 
‡ lattice parameter: a = 4.2696 Å 
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