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Abstract

Mg/Ti order/disorder and the lattice dynamics of orthorhombic pseudobrookite-type MgTi2O5 have been

studied by experiment and modeling. A mechanochemical activation by high speed ball milling allowed us to

synthesize pure MgTi2O5 from MgO and TiO2 anatase at a comparatively low temperature of 1173K. The

Mg/Ti order of MgTi2O5 was characterized by X-ray diffraction and Raman spectroscopy. Density functional

theory calculations based on fully ordered MgTi2O5 allow an assignment of all experimentally observed

Raman and infrared modes and a re-evaluation of earlier findings. A standard entropy of 134.24 Jmol−1 K−1

and a bulk modulus of 161(1)GPa was predicted for fully ordered MgTi2O5 and is in good agreement with

experimental findings based on quasi-adiabatic calorimetry of samples with different Mg/Ti ordering states

and earlier high pressure studies, respectively. A linear relation of the B1g(5) Raman blue-shift with the

Mg/Ti disorder was observed, which can be used to rapidly quantify the ordering state of MgTi2O5.
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1. Introduction

Due to a combination of interesting physical and structural properties, such as a low bulk thermal

expansion coefficient [1, 2], a high refractive index [3], the ability to host transition metal ions [4–6], a

one-dimensional channel structure [7], and a wide bandgap of 3.4 eV [8], MgTi2O5 (karrooite) is employed

in numerous applications, such as ceramic pigments [3, 9], filter materials [10], UV photocatalysts [11],

and anode materials for batteries [7, 12, 13]. According to the MgO–TiO2 equilibrium phase diagram at

atmospheric pressure [14–16] MgTi2O5 is thermodynamically stable over an extended temperature range,

limited by melting at ∼ 1953K and decomposition to MgTiO3 (geikielite) and TiO2 at temperatures below

∼ 403K [17]. Due to a large positive entropy at high temperatures [18–21] and the slow kinetics of the Mg/Ti

interchange at low temperatures (below 973K) [15, 18, 19, 22] metastable MgTi2O5 with an orthorhombic

pseudobrookite structure and Mg/Ti disorder can be employed even at lower temperatures [18, 23, 24].

The structure of orthorhombic MgTi2O5 (figure 1) is commonly described in space group Cmcm (D17
2h)

[17, 18, 25, 26]. Alternative settings use space groups Bbmm [22, 23] and Ccmm [27]. It consists of edge-

sharing and corner-sharing MO6 octahedra, where M refers to Mg/Ti cations, which are highly distorted

and fully occupied by the cations. The M1 octahedron (Wyckoff position 4c with site symmetry mm) is

relatively larger than the M2 octahedron (Wyckoff position 8f with site symmetry m). As shown in figure

1, the edge-sharing M2 octahedra form double chains running along the [010] direction, which are linked

through the oxygen bridges O1 and the M1 octahedra. Figure 1 shows that the double chains extend in the

[100] direction and the bridge oxygens O1 link the octahedra forming corners. The corner-sharing of the

M1 and M2 octahedra is depicted in figure 1. In an ideal fully ordered structure of MgTi2O5, the larger

M1 sites are exclusively occupied by the Mg2+ ions (mean radius rMg = 0.72 Å) [28] while the Ti4+ ions

(rTi = 0.605 Å) [28] would occupy the M2 sites. In reality, part of Mg2+ in the M1 sites is exchanged by

Ti4+, producing Mg/Ti disorder and giving rise to a lattice expansion. The Mg/Ti disorder parameter X ,

which is defined as the atomic concentration of Ti in M1 sites, can be linearly correlated with the ambient-

temperature lattice parameter b (corresponds to the lattice parameter a in space group Bbmm) according

to the equation: X = 8.6909b – 84.334 [21]. The Mg/Ti order of MgTi2O5 is dependent on the thermal

history [21]. Usually, quenching from high temperatures leads to an increase of the cation disorder, while

annealing at low temperatures or high pressures results in a more ordered structure [21, 22, 29]. Due to

the kinetic hindrance, the Mg/Ti disorder attained at high temperatures can be partly or fully retained at

ambient conditions [20].

Both solid state syntheses and wet chemical processes have been employed to synthesize MgTi2O5 [17].

Solid state methods are often preferred over the wet methods because they allow to control the cation
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disorder by annealing, quenching and high pressure techniques [21, 30]. In the conventional solid state

synthesis of MgTi2O5, high temperatures above 1673K are employed [31]. Usually several cycles are required

to achieve homogenization and purification, causing a high energy consumption relative to wet methods.

Recently a solid formation mechanism of MgTi2O5 has been proposed, which leads to a reduction of the

synthesis temperature to 1273K [10, 32]. However, it requires adding 0.5wt.% of LiF as a mineralizer to

the starting materials. LiF acts as a flux [33] and may cause the formation of impurity phases like MgF2

[15] and Li2MgTi2O5 [7]. Here we will show that high energy ball milling, which is increasingly used in

the manufacturing of advanced materials [34, 35], can be employed to significantly and reliably decrease the

synthesis temperature of single phase MgTi2O5 without adding any flux.

Figure 1: Polyhedral structure of orthorhombic pseudobrookite-type MgTi2O5 with MO6 octahedra (M = Mg/Ti) in Cmcm

space group setting. The red, green and gray spheres denote oxygen atoms, M1 sites and M2 sites, respectively. The black

rectangles show the unit cell dimensions. (a) and (b) present views along [100] and [010], respectively. (c) gives the corner-

sharing of 2 M1 octahedra and 2 M2 octahedra via the bridging oxygen O1.

According to group theory, the orthorhombic pseudobrookite-type MgTi2O5 has 24 Raman active modes

(8Ag + 5B1g + 3B2g + 8B3g), 21 infrared modes, of which 18 are optical (7B1u + 7B2u + 4B3u) and 3 are

acoustic (B1u + B2u + B3u), as well as 3 silent modes (3Au). There have been several Raman and infrared

spectroscopy studies on MgTi2O5. Raman spectra have been recorded up to around 1500 cm−1 [8, 36].

Liermann et al. [36] have investigated the Mg/Ti order by Raman spectroscopy of oriented MgTi2O5 single

crystals. However, they did not provide an assignment of modes. The published IR spectra suffer from a

poor signal-to-noise ratio and only three infrared peaks in the range 400–1000cm−1 have been identified

[8, 37, 38]. In this study, Raman spectra have been obtained for samples at several ordering states and

lattice dynamical calculations have been carried out using a model of fully ordered MgTi2O5 based on

density functional perturbation theory (DFPT), which allows an unambiguous assignment of all observed

bands.

That the bulk modulus of MgTi2O5 may depend on the Mg/Ti ordering state has been shown in a
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high pressure study of MgTi2O5, where values for B = 167(1) GPa and B = 158(1) GPa were obtained for

fully ordered and disordered single crystals, respectively, but where the pressure range was rather limited,

with a maximum pressure of 8 GPa [30]. Up to now the elastic stiffness coefficients of MgTi2O5 have not

been obtained, and in the present study DFT calculations have been employed to probe the elasticity of

fully ordered MgTi2O5, using the experimentally determined bulk modulus of Hazen and Yang [30] as a

benchmark.

For a deeper understanding of the stability, the thermodynamic properties (enthalpy, entropy and Gibbs

free energy) need to be known. The molar Gibbs free energy of MgTi2O5 consists of a configurational contri-

bution as well as a lattice vibrational contribution [19]. The configurational contribution, −TSconfig, depends

on the Mg/Ti disorder [18–21]. In earlier studies several thermodynamic models have been constructed.

The model parameters, which depend on the temperature and pressure, are fitted by using the experimental

Mg/Ti disorder data at high (p, T ) conditions as well as the measured high-temperature relative enthalpies

[19–21]. The temperature dependence of the heat capacity of a MgTi2O5 powder sample (197 g, purity

≈99.5%) was measured between 50K and 298K from which a vibrational entropy of 127.2(8) Jmol−1 K−1

[39] at ambient temperature was obtained. Unfortunately, no detailed information regarding the ordering

state of the sample was included in the study by Todd [39]. Here, we have measured the low-temperature

heat capacities of MgTi2O5 with different Mg/Ti disorder parameters in a more extended temperature range

of 2–300K and have calculated the vibrational entropies and enthalpies of MgTi2O5.

2. Experimental and computational approaches

2.1. Sample preparation

Powder samples of MgO and TiO2 anatase (purity 99%, Merck, Germany) were used. The MgO was

pre-calcined at 1073K for 2 h. A mixture of the oxides with a stoichiometric molar ratio of 1:2 was first

ball milled at 300 rpm for 3 h using a planetary ball mill (Fritsch P7, Germany). Tungsten carbide milling

balls (diameter of 10mm) and bowls (volume 80mL) were used and the mass ratio of balls to powder was

20:1. Then the mixture was pressed into cylinders (diameter of 5mm and height of 10mm), followed by

heat-treatments at 1073–1473K in air for 4–96h. Finally, the samples were cooled down by turning off the

furnace and were ground into fine powders for further characterizations. As a reference, the stoichiometric

mixture without ball milling was ground, pressed, heat-treated at 1273–1473K in air and then cooled within

the furnace.
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2.2. X-ray powder diffraction

X-ray powder diffraction data (XPRD) were collected on a X’Pert Pro X-ray diffractometer (PANalyt-

ical) (40 kV, 30mA) with Bragg-Brentano geometry over a 2θ range 10–140◦ using CuKα1 radiation (λ

= 1.5406 Å) at ambient conditions. In the incident beam path, a curved Ge(110) monochromator, 0.5◦

divergence slit and 15mm brass mask were mounted. Silicon powder was added as an internal standard for

a long measurement with collecting times of around 17 h, using a step size of 0.002◦ and the time per step

of 200 s.

Rietveld refinements of the XPRD data with pseudo-Voigt profile function were carried out using the

GSAS program [40] and the EXPGUI interface [41]. Initial cell and atomic parameters of MgTi2O5 and TiO2

rutile were taken from the literature [21, 42]. The background was well fitted by a Chebyshev polynomial with

8 terms. All atom displacement parameters were constrained to be isotropic and composition was assumed

to be stoichiometric. Due to the small difference in the scattering power between the Mg2+ ion and the

Ti4+ ion for 8 keV X-rays, the site occupancy was not refined but calculated from the ambient-temperature

lattice parameter b using the linear relation mentioned earlier [21].

2.3. Micro-Raman spectroscopy

Raman spectra of powders were collected in quasi-backscattering configuration without polarization

analysis at ambient conditions with a micro-Raman spectrometer (Renishaw) using the 532 nm line of an

Nd:YAG laser (manufacturer Lightwave). The spectral region ranged from 100 cm−1 to 1500 cm−1. In order

to avoid sample degradation, the laser output power was kept at 20mW and the sample was exposed for

10 s. A 1800groovemm−1 grating was used and the Rayleigh line filtered with an edge filter. The spectral

resolution was 2 cm−1.

2.4. Quasi-adiabatic micro-calorimetry

Two small pellets with dimensions 2×2×0.5mm were cut from the sample milled for 3 h and sintered

at 1473K. One pellet was measured without further treatment while the other one was enclosed in Pt foil

and annealed at 873K for 1500h (62.5 days) in order to increase the Mg/Ti order. Low-temperature heat

capacities of the two pellets were measured in the range 300–2K using a physical properties measurement

system (PPMS, Quantum Design). At each temperature, the response to a heat pulse was measured three

times. The heat capacities of the empty holder containing Apiezon N grease, with which the sample was

thermally coupled to the sample holder, was measured and subtracted from the data for the samples. The

enthalpies and entropies of MgTi2O5 were calculated after fitting the measured heat capacity data by high-

order polynomials for different temperature ranges.
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2.5. Density functional theory

DFT calculations for a fully ordered MgTi2O5 model were performed with commercial and academic

versions of the CASTEP program using the generalized gradient approximation (GGA) formalized by

Perdew-Burke-Ernzerhof (PBE) with a plane wave basis set and norm-conserving pseudopotentials from the

CASTEP data base [43, 44]. The maximum cutoff energy of the plane waves was 990 eV. The calculations

were carried out using a primitive cell, where a 8×8×4 Monkhorst-Pack grid was employed corresponding 40

k-points in the irreducible part of the Brillouin zone with a k-point separation less than 0.036 Å−1. Lattice

dynamical properties of fully ordered MgTi2O5 and related thermodynamic properties were obtained using

density functional perturbation theory, DFPT [45] in the harmonic approximation. For the sampling of the

phonon density of states a 3×2×7 Monkhorst-Pack set was employed, giving a maximum spacing of 0.049

Å−1 between points. Raman activities were obtained from a hybrid DFPT/finite displacement approach [46]

as implemented in CASTEP [45]. Elastic stiffness coefficients were obtained from stress-strain relations [47].

Full geometry optimisations were carried out until forces were smaller than 0.01 eV/Å and no component

of the stress tensor exceeded 0.02 GPa. This resulted in a ground state structure with lattice parameters of

a = 3.7317 Å, b = 9.7919 Å and c = 10.1112 Å, which agree to within 0.5% of the experimental values [21].

3. Results and discussion

3.1. Mg/Ti order

After 3 h of ball milling, no reaction occurred and the average crystalline sizes of the starting materials

(TiO2 anatase and MgO) decreased to around 500nm, as estimated by applying the Scherrer equation to

diffraction data [48, 49]. Pure MgTi2O5 was obtained after a heat-treatment at 1173K. Figure 2 shows the

Rietveld refinement results (in a selected 2θ range of 10–75◦) of XPRD data for the pure MgTi2O5.

Table 1 summarizes the synthesis conditions and refinement results. The required synthesis temperature

could be decreased from 1373K to 1173K by 3h of ball milling. The Mg/Ti disorder parameter X varied

from 0.30(1) to 0.37(1) and drastically decreased to 0.14(1) on annealing at 873K. With increasing disorder,

the average M1–O1 bond length decreased while the average M2–O1 bond length increased, in accordance

with data published earlier [21, 22]. In all refinements, the thermal displacement parameter was fixed to

be 0.006 Å2 for cations and 0.01 Å2 for oxygen anions. Rwp factors are relatively high and χ2 are around

1. This is mainly due to the relative low intensity of the Bragg reflections with respect to the background

[50, 51]. However, the refinements converged quite satisfactorily, as indicated by figure 2.

The dependence of the Mg/Ti disorder parameter X on the synthesis conditions of MgTi2O5 is depicted

in figure 3 where earlier experimental data [18, 22] and thermodynamic models [19, 20] are also plotted. In
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Table 1: Synthesis conditions and Rietveld refinement results of MgTi2O5 with space group Cmcm and Z=4. Thermal dis-

placement parameters were fixed to reasonable values: Uiso (M1) = Uiso (M2) = 0.006 Å2, Uiso (oxygen) = 0.01 Å2. Estimated

standard deviation (esd.) in the last decimal digit are indicated with parentheses. aProfile R-factor Rp =
∑

|Io−Ic|∑
Io

, where

Io and Ic denote the observed and computed intensities, respectively [40]. bWeighted profile R-factor Rwp =

√∑
w(Io−Ic)2∑

wI2o
,

where w is the weight. cGoodness of fit χ2 =
R2

wp

R2
exp

, with R2
exp = N∑

wI2o
and N , the number of data points. dThe Mg/Ti

disorder parameters X are calculated values: X = 8.6909b - 84.334 [21].

Milling time [h] 0 0 3 3 3 3 3

Sintering temperature [K] 1373 1473 1173 1273 1373 1473 1473

Sintering time [h] 4 4 15 4 4 4 4

Annealing temperature [K] - - - - - - 873

Annealing time [h] - - - - - - 1500

Purity [wt.%] 98(1) 99(1) 100 100 100 100 100

a [Å] 3.7439(1) 3.7433(1) 3.7448(1) 3.7437(1) 3.7444(1) 3.7456(1) 3.7386(1)

b [Å] 9.7384(1) 9.7381(1) 9.7422(1) 9.7422(1) 9.7432(1) 9.7463(1) 9.7192(1)

c [Å] 9.9956(1) 10.0012(1) 9.9958(1) 9.9989(1) 9.9960(1) 9.9939(1) 10.0160(1)

V [Å3] 364.44(1) 364.57(1) 364.67(1) 364.67(1) 364.71(1) 364.84(1) 363.95(1)

M1–O1 length [Å] 2.014(1) 2.025(3) 2.023(1) 2.026(1) 2.017(1) 1.975(2) 2.076(2)

M2–O1 length [Å] 2.067(1) 2.054(4) 2.065(1) 2.059(1) 2.075(1) 2.109(2) 2.011(2)

O1–M1–O1 angle [◦] 136.8(1) 135.1(4) 135.4(2) 134.9(1) 135.5(4) 143.1(3) 128.4(2)

Rp
a [%] 16.7 12.9 15.1 13.6 13.5 15.1 15.9

Rwp
b [%] 26.4 20.8 22.2 21.7 20.5 24.9 25.8

χ2 c 1.10 1.09 0.98 1.04 1.01 1.15 1.15

Disorder parameter Xd 0.30(1) 0.30(1) 0.33(1) 0.33(1) 0.34(1) 0.37(1) 0.14(1)
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Figure 2: Rietveld refinement results of XPRD data for the pure MgTi2O5 which was synthesized at 1173K. 10wt% silicon

powder was added as an internal standard in MgTi2O5. The bottom black curve represents the difference between the

observed data (black circles) and the calculated (continuous red curve) data. The bottom tickmarks indicate the location of

Bragg reflections for the crystalline phases.

the temperature range 1273–1473K, the X values obtained here are lower than the reported experimental

data [18, 22] due to the short holding time and the slow cooling rate from the synthesis temperature in

this study. The figure shows that ball milling prior to the heat-treatment causes an increase of the Mg/Ti

disorder. When annealed at low temperature our data match the T -independent model of Xirouchakis et al.

[20] very well.

3.2. Vibrational properties

Raman spectra of the MgTi2O5 samples with differing ordering states are shown in figure 4. The

spectra were normalized to the most intense band in the sample with the least disorder [X = 0.14(1)] to

facilitate a comparison. Due to the significant broadening present in all samples, only 12 Raman modes

were unambiguously identified. For the samples with a larger X value, only 9 bands could be identified. As

the Mg/Ti disorder increases, the mode at 640(2) cm−1 shows the largest blue-shift within the resolution of

our Raman spectrometer (±2 cm−1).

Figure 5 shows a comparison of the theoretical Raman spectrum of fully ordered MgTi2O5 to the mea-

sured Raman spectrum of MgTi2O5 with X = 0.14(1), and gives a plot of the theoretical Raman shifts

of MgTi2O5 against the experimentally determined values. Calculated spectra are normalized to the peak

intensity of the first B1g(1) Raman mode. The agreement between the relative peak intensities with respect
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Synthesis (this study, 3 h ball milling)
Synthesis (this study, without ball milling)
Annealed (this study)

Annealed and quenched (Yang and Hazen, 1998)
In situ HT XRD (Brown and Navrotsky, 1989)

Model (Ghiorso et al., 1999)

Model (T−independent, Xirouchakis et al., 2002)
Model (T−dependent, Xirouchakis et al., 2002)
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Figure 3: Dependence of the Mg/Ti disorder parameter X on the synthesis conditions of MgTi2O5. MgTi2O5 obtained with

and without a mechanochemical activation process by ball milling is shown by the filled squares and circles, respectively.

The filled diamond denotes MgTi2O5 annealed at 873K. The open triangles indicate experimental data for MgTi2O5 single

crystals quenched from different annealing temperatures [22], while the open squares represent the results from in situ high-

temperature X-ray powder diffraction measurements [18]. The T -independent and T -dependent thermodynamic models [19]

were constructed by using the former data [18] while the model with blue dashes [20] was based on the latter experimental

data [22].

to this Raman mode is outstanding. The agreement for the frequencies is very good except for the mode at

640(2) cm−1 which is a B1g(5) Raman mode according to the calculations. Table 2 shows the frequencies

and assignment of our calculated and observed Raman modes, as well as those previously reported in the

literature [8, 36]). The assignments were based on the frequencies and intensities. The theoretical Raman

spectrum of fully ordered MgTi2O5 shows Raman shifts between 100–800cm−1, a much more limited fre-

quency range than previously reported by Liermann et al. [36] who assigned Raman modes up to 1500 cm−1.

Only one higher frequency mode was observed in our experiments at around 902(2) cm−1 which can be

assigned to an overtone due to the combination of the B1g(3) mode at 251(2) cm−1 and B1g(5) mode at

650(2) cm−1. This band is very likely identical to the previously reported Raman bands at 915 cm−1 and

913 cm−1 [8, 36].

We conclude that the noticeable disagreement between the computed and experimentally observedB1g(5)

Raman mode is due to the sensitivity of this mode on the cation disorder, which was not included in the

9



Table 2: Theoretical and experimental [8, 36] Raman shifts ν (cm−1) and Raman activities γ (Å4/amu) of MgTi2O5. The

DFT calculations are based on fully ordered MgTi2O5 (X =0).

Theory Experimental results

X =0 X =0.14(1) X =0.37(1) X =0.070 [36] X =0.485 [36] X unknown [8]

ΓRaman ν γ ν ν ν ν ν

B1g(1) 144 201 155.4(5) 160.3(5) 165.3(3) 168(1) 165

B2g(1) 146 7

B3g(1) 193 9

Ag(1) 197 17

B1g(2) 200 28 199.6(5) 204.6(5) 206.8(3) 198(1) 207

B2g(2) 203 10

B1g(3) 245 243 250.1(5) 251.4(5) 260.7(5) 259

Ag(2) 256 153 263(1) 264.7(5) 270.34(3) 274(2)

B3g(2) 278 11

B3g(3) 284 8

Ag(3) 321 135 324.4(5) 329.1(1) 323.8(8)

Ag(4) 364 29 364.5(5) 359(1) 369.9(1) 356(1)

B3g(4) 384 66 390.0(5)

Ag(5) 415 85 417.1(5) 421.9(1) 448(2)

B3g(5) 448 4

B1g(4) 473 249 477.4(5) 483.8(5) 499(13) 491

Ag(6) 477 61

B3g(6) 488 27

Ag(7) 519 11 522(1)

B2g(3) 579 14 593(3)

B1g(5) 604 790 640.1(5) 649.4(5) 632(1) 653(3) 654

B3g(7) 633 7

B3g(8) 766 8

Ag(8) 775 1137 784.4(5) 782.5(5) 789.92(1) 779.2(1) 798

Overtone 849 901(1) 902(1) 913.0(2) 908.7(4) 915
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Figure 5: (a) The theoretical Raman spectrum with band assignment of fully ordered MgTi2O5, compared to the measured

Raman spectrum of MgTi2O5 with X = 0.14(1). Calculated spectra are normalized to the intensity of the first B1g(1) Raman

mode. (b) The theoretical Raman shifts of MgTi2O5 against the experimentally determined values.

simulation. An analysis of our data and data published earlier [36] shows that the frequency, ω, of the B1g(5)

mode of MgTi2O5 linearly depends on the Mg/Ti disorder parameter X : ω = 629(1) cm−1 + 60(5) X cm−1

(R-square = 0.91), as indicated in figure 6. This provides a convenient way for the rapid quantification of

the Mg/Ti ordering state of MgTi2O5.

In order to understand the high sensitivity of the B1g(5) Raman mode on X , we have calculated its

eigenvector. A sketch is shown in figure 7. This mode consists of an anti-phase stretching of two M2–

O1 bonds and a concomitant bending of two M1–O1 bonds where the two M2 octahedra and the two M1

11



0.0 0.1 0.2 0.3 0.4 0.5

600

620

640

660

 

 

 Exp. (this study)
 DFT (fully ordered)
 Lit. (Liermann et al.) 

R
am

an
 sh

ift
 (c

m
1 )

X

B1g(5) mode 

Figure 6: Frequencies of the observed B1g(5) Raman mode against the parameter X. The filled squares are experimental data
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sets which were assumed to carry equal weight. As a comparison, the calculated datum from the DFT calculations is plotted
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octahedra share the same corner (figure 1). This mode has an unusual displacement pattern in that it consists

of an oxygen displacement nearly parallel to [001], while all other atoms essentially remain stationary. Given

the nature of this mode, its frequency is expected to be very sensitive to the changes of the M1–O1 and

M2–O1 bonds. The Rietveld refinement results (table 1) show that the lattice parameter c decreases with

increasing disorder, while the M1–O1 bond length decreases and the M2-O1 bond length increases. While

the contribution of each of the three effects cannot be readily quantified, they add up in such a way that

the B1g(5) mode blue-shifts significantly with increasing disorder.

Figure 7: Oxygen O1 motions corresponding to the B1g(5) Raman mode of fully ordered MgTi2O5 in (100) plane. The red,

green and gray spheres denote oxygen atoms, M1 sites and M2 sites, respectively. Bonds between the Mg/Ti cations and the

oxygen anions are shown. The eigenvector is depicted by black arrows.
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The computed infrared absorption of fully ordered MgTi2O5 is depicted in figure 8. Wavenumbers and

representations of the 18 infrared-active modes are tabulated in table 3, excluding the three acoustic modes

with B1u, B2u and B3u symmetry.
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Figure 8: The computed infrared absorption of fully ordered MgTi2O5.

We tentatively assigned the experimentally determined infrared modes of disordered MgTi2O5 at around

426 cm−1, 505 cm−1 and 648 cm−1 [37, 38] to B3u(3), B3u(4) and B2u(6) modes, respectively. The deviation

between our theoretical infrared absorption bands and the reported experimental values is 5–9%, which is

still a reasonable agreement, as the experimentally determined spectra are of low quality and the ordering

state of the samples is unknown.

3.3. Elasticity

Table 4 lists the 9 independent elastic stiffness coefficients cij of fully ordered MgTi2O5 derived from DFT

calculations. The compression coefficients (c11, c22 and c33) as well as the shear coefficients (c44, c55 and c66)

show some anisotropy. The compressibility is smallest along the [100] direction and largest along the [001]

direction, which is, as expected, similar to the correlation observed in thermal expansion measurements [25].

Our elastic parameter calculations yielded a bulk modulus of 161(1)GPa for fully ordered MgTi2O5, which

is close to the reported value of 167(1)GPa [30]. Figure 9 is the representation surface of the longitudinal

stiffness of the fully ordered MgTi2O5 structure, showing only a moderate anisotropy.

3.4. Low-temperature thermodynamic properties

Figure 10 depicts the theoretical and experimental low-temperature heat capacities Cp of MgTi2O5. The

theoretical values were obtained from DFT calculations of fully ordered MgTi2O5. They are in reason-
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Table 3: Infrared vibrational modes ν (cm−1) and IR activity γ (Debye/Å2/amu) of fully ordered MgTi2O5 from DFT

calculation and experimental IR frequencies taken from the literature [37, 38]. The three acoustic modes are not included.

Theory Experimental results

X =0 X =0.11 [37] X =0.34 [38]

ΓIR ν γ ν ν

B1u(1) 119 3

B1u(2) 208 94

B2u(1) 210 4

B3u(1) 240 27

B1u(3) 257 12

B2u(2) 275 68

B3u(2) 294 26

B2u(3) 322 12

B1u(4) 361 0.1

B2u(4) 371 8

B3u(3) 396 166 425.99

B2u(5) 437 27

B1u(5) 451 30

B3u(4) 538 10 509.8 505.30

B1u(6) 561 0.2

B2u(6) 620 6 641.2 648.03

B1u(7) 723 6

B2u(7) 752 52

able agreement with our measured Cp values and the experimental Cp determined by Todd [39]. Further

thermodynamic properties are tabulated in table 5 and compared with data from the literature [39].

Assuming an equilibrium and random Mg/Ti distribution in each octahedral site of MgTi2O5 at a given

temperature, the configurational entropy Sconfig can be derived from the disorder parameter X by equation 1

[18, 19, 53], which is plotted in figure 11. The standard configurational entropies S◦

config of MgTi2O5 at 298K

are tabulated in table 5. They are 0, 7.6(4) and 13.4(2) Jmol−1 K−1 for fully ordered and the disordered

MgTi2O5 with X = 0.14(1) and X = 0.37(1), respectively.
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Table 4: Elastic stiffness coefficients cij of the fully ordered MgTi2O5 from theory in GPa. The resulting bulk modulus K is

predicted to be 161(1) GPa, in good agreement with an experimentally determined value of 167(1) GPa [30].

i j cij

1 1 300(1)

2 2 269(1)

3 3 244(1)

4 4 76(1)

5 5 85(1)

6 6 53(1)

1 2 145(1)

1 3 105(1)

2 3 87(1)

Table 5: Standard enthalpies and entropies of MgTi2O5 at 298K from this study and the literature [20, 39]. Values shown in

parentheses are esd. in the last decimal place.

X = 0 X = 0.14(1) X = 0.37(1) X = 0 X unknown

(DFT) (Exp.) (Exp.) (Model) [20] (Exp.) [39]

H◦

vibra [kJmol−1] 23.43 22.12(3) 22.78(3) - -

S◦

vibra [Jmol−1 K−1] 134.24 124.8(1) 129.4(1) - 127.2(8)

S◦

config [Jmol−1 K−1] 0 7.6(4) 13.4(2) - -

S◦ [Jmol−1 K−1] 134.24 132.4(4) 142.8(2) 149.55 -
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Figure 9: Representation surface of the longitudinal elastic stiffness of the fully ordered MgTi2O5. The representation surface

was plotted using the WinTensorTM software [52].
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Figure 10: Low-temperature heat capacities Cp of MgTi2O5. The continuous black curve shows the theoretical data of fully

ordered MgTi2O5 from DFT calculations. The filled blue squares and the filled red circles show the measured data of MgTi2O5

from this study up to 300K with X = 0.14(1) and X = 0.37(1), respectively. The open circles are the reported experimental

data of MgTi2O5 with an unknown X in the temperature range 50–300K [39].

Sconfig = −R[X lnX + (1 −X) ln(1 −X) +X ln(X/2) + (2 −X) ln(1−X/2)] (1)

with the gas constant R = 8.314Jmol−1 K−1.

For these two ordering states, the difference in the vibrational entropy is 4.6(2) Jmol−1 K−1 at 298K,

which has the same magnitude as the excess configurational entropy of 5.9(6) Jmol−1 K−1. The increase of

the disorder parameter X from 0.14(1) to 0.37(1) leads to a change in the temperature dependence of the

heat capacity and entropy. Figure 12 shows the experimentally determined differences in the vibrational

enthalpies and entropies between two MgTi2O5 samples with differing ordering states X = 0.14(1) and X
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red circle) is marked. The calculation is based on equation 1.

= 0.37(1), respectively.
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Figure 12: Low-temperature excess vibrational enthalpy (a) and entropy (b) between the two disordered MgTi2O5 with X =

0.37(1) and X = 0.14(1).

Table 5 presents the total standard entropies S◦ of MgTi2O5 from the experiments and the calculations

[20]. The agreement between them is good. However, the corresponding excess vibrational enthalpy of

0.66(5) kJmol−1 is around an order of magnitude smaller than the total excess enthalpy of 5.8(5) kJmol−1

deduced in an earlier thermodynamic modeling study by Xirouchakis et al. [20]. Also, an extrapolation of our

experimental data for fully ordered MgTi2O5 leads to a standard entropy of 126.1 J mol−1K−1, significantly

lower than the “preferred value” of 149.55 J mol−1K−1 in the earlier study by Xirouchakis et al. [20]. As our

data set is more complete, and as there is good agreement between our new data with other spectroscopic

and calorimetric data data, we conclude that our findings are likely to be more reliable than those derived
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from thermodynamic modeling.

4. Conclusion

The solid state synthesis of MgTi2O5 compound is facilitated by high speed ball milling, which leads

to a drastically reduced synthesis temperature of 1173K compared to 1373K without ball milling. A

pre-milling process results in a more disordered structure. Reliable predictions of vibrational, elastic and

thermodynamic properties have been achieved by DFT calculations based on fully ordered MgTi2O5, all

of which are in good agreement with experimental data. A comparison between the experimental and the

theoretical Raman and IR spectra of MgTi2O5 shows that the vibrational properties are sensitive to the

Mg/Ti disorder. Particularly, the B1g(5) Raman mode blue-shifts significantly and linearly with increasing

Mg/Ti disorder, which allows a rapid quantification of the ordering state of MgTi2O5. According to the

calculation, fully ordered MgTi2O5 exhibits an elastic anisotropy which makes the [001] direction slightly

more compressible than the [100] direction. The standard entropy of fully ordered MgTi2O5 was predicted

to be 134.24 Jmol−1 K−1 while an extrapolation of our experimental data yields 126.1 Jmol−1 K−1. This

agreement is reasonable, but as thermodynamic modeling gives a much larger value (149.55 Jmol−1 K−1,

Xirouchakis et al. [20]) a further investigation seems to be warranted.
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