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Finding First Foliation Tangencies in the Lorenz System∗

Jennifer L. Creaser† , Bernd Krauskopf‡ , and Hinke M. Osinga‡

Abstract. Classical studies of chaos in the well-known Lorenz system are based on reduction to the one-
dimensional Lorenz map, which captures the full behavior of the dynamics of the chaotic Lorenz
attractor. This reduction requires that the stable and unstable foliations in a particular Poincaré
section are transverse locally near the chaotic Lorenz attractor. We study when this so-called foliation
condition fails for the first time and the classic Lorenz attractor becomes a quasi-attractor. This
transition is characterized by the creation of tangencies between the stable and unstable foliations
and the appearance of hooked horseshoes in the Poincaré return map. We consider how the three-
dimensional phase space is organized by the global invariant manifolds of saddle equilibria and saddle
periodic orbits—before and after the loss of the foliation condition. We compute these global objects
as families of orbit segments, which are found by setting up a suitable two-point boundary value
problem (BVP). We then formulate a multi-segment BVP to find the first tangency between the
stable foliation and the intersection curves in the Poincaré section of the two-dimensional unstable
manifold of a periodic orbit. It is a distinct advantage of our BVP setup that we are able to detect
and readily continue the locus of first foliation tangency in any plane of two parameters as part of
the overall bifurcation diagram. Our computations show that the region of existence of the classic
Lorenz attractor is bounded in each parameter plane. It forms a slanted (unbounded) cone in the
three-parameter space with a curve of terminal-point, or T-point, bifurcations on the locus of first
foliation tangency; we identify the tip of this cone as a codimension-three T-point-Hopf bifurcation
point, where the curve of T-point bifurcations meets a surface of Hopf bifurcation. Moreover, we
are able to find other first foliation tangencies for larger values of the parameters that are associated
with additional T-point bifurcations: each tangency adds an extra twist to the central region of the
quasi-attractor.

Key words. Lorenz system, chaotic attractor, quasi-attractor, foliation tangency, invariant manifold, T-point
bifurcation, T-point-Hopf bifurcation

AMS subject classifications. 37M20, 37D10, 37D45, 37C29, 65L10, 65P30

DOI. 10.1137/17M1112716

1. Introduction. The Lorenz system [47] is regarded as a paradigmatic example of a
chaotic dynamical system. It consists of the three coupled ordinary differential equations

(1)





ẋ = σ (y − x),
ẏ = ρ x− y − x z,
ż = x y − β z,
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with three positive dimensionless parameters: the Rayleigh number ρ, the Prandtl number σ,
and the coupling strength β. System (1) is invariant under rotation by π about the z-axis, so
that its dynamics are symmetric under the transformation

(2) (x, y, z) 7→ (−x,−y, z).

The origin 0 = (0, 0, 0) is always an equilibrium of system (1); it is stable for 0 < ρ < 1 and
becomes a saddle in a pitchfork bifurcation at ρ = 1. For ρ > 1, the origin is hyperbolic and
has two negative real eigenvalues and a third positive eigenvalue. Therefore, by the Stable
Manifold Theorem [51], there exists a two-dimensional stable manifold W s(0) that consists of
all trajectories that tend to 0 in forward time and a one-dimensional unstable manifold W u(0)
that consists of all trajectories that tend to 0 in backward time. Under the symmetry (2), the
stable manifold W s(0) is invariant, and the two branches of W u(0) map to one another. The
stable manifold W s(0) plays an important role in organizing the dynamics in phase space and
is referred to as the Lorenz manifold [44]. System (1) also has a pair of secondary equilibria,

p± =
(
±
√
β(ρ− 1), ±

√
β(ρ− 1), ρ− 1

)
,

which exist for ρ > 1 and are each other’s image under the symmetry (2). The equilibria p±

arise from the pitchfork bifurcation at ρ = 1 and are initially stable; they become saddles in
a Hopf bifurcation at

(3) ρ = ρH :=
σ (β + σ + 3)
σ − β − 1

.

Hence, as saddles, their stable and unstable manifolds, denoted W s(p±) and W u(p±), have
dimensions one and two, respectively. Famously, Lorenz found sensitive dependence on initial
conditions for ρ = 28, σ = 10, and β = 8

3 [47, 61]. At these now classical parameter values,
the well-known Lorenz attractor is the only attractor.

The route to chaos and the birth of the chaotic attractor, denoted by L, has been the
subject of much study, particularly for 0 < ρ ≤ 28 with σ = 10 and β = 8

3 fixed; for example,
see [11, 24, 25, 26, 41, 54]. In 1977, Afraimovich, Bykov, and Shilnikov studied the analogous
route to chaos for β and ρ fixed at their classic values and 0 < σ < 10 [1]. The occurrence in
the system of trajectories with arbitrarily long transients was investigated in 1979 by Kaplan
and Yorke, who dubbed this behavior preturbulence and found it to be a precursor of the more
complicated chaotic dynamics discovered by Lorenz [41]. The concept of turbulence, meaning
irregular and complicated chaotic behavior, was coined by Ruelle and Takens in the 1970s in
their study of viscous fluids [55]. They indicated that this behavior could be the result of the
presence of a strange attractor and went on to investigate the relationship between turbulence
and the Lorenz attractor in [54].

The structure of the strange attractor in the Lorenz system was further investigated by
Guckenheimer and Williams [33, 65]. In their work and independently in [1], one finds the
first geometric description of the dynamics on the Lorenz attractor and the introduction of the
geometric Lorenz model. The analysis is done via reduction to a one-dimensional map with
equivalent behavior. This reduction is based on the two-dimensional (invertible) Poincaré
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return map that is defined on the planar section Σρ := {z = ρ − 1} (chosen to contain
the equilibria p±) in the region where the flow is down. The behavior of contraction and
expansion on Σρ is organized by so-called stable and unstable foliations, each consisting of
curve segments, or leaves, that are mapped in forward or backward time to other leaves in the
foliation; in particular, L is contained in the unstable foliation. The one-dimensional map,
called the Lorenz map [34], is obtained by projection along leaves of the stable foliation. The
Lorenz map completely represents the dynamics of L provided that the leaves of the stable
foliation are locally transverse to L, they map injectively under the flow, and the dynamics
on the stable leaves is a contraction toward L; this is called the foliation condition.

The foliation condition is satisfied for the geometric Lorenz model [1, 2, 33, 35, 65], and
the dynamics on L are accurately described by the one-dimensional Lorenz map representing
the dynamics from leaf to leaf in the stable foliation. Tucker [61] proved in 1999 that the
Lorenz system (1) for the classical parameter values satisfies the conditions of the geometric
Lorenz model; hence, the foliation condition holds, and the chaotic dynamics are described
by the one-dimensional Lorenz map. It is generally believed that this is also true for ρ ≤ 30
with σ = 10 and β = 8

3 . However, for ρ past 30, there is a first tangency between the stable
and unstable foliations, and the foliation condition fails [17, 37, 38, 60]. As a result, for larger
ρ-values, the one-dimensional map no longer captures the full dynamics on L, and much less
is known about the dynamics of the Lorenz system.

In this paper, we build on the recent approach taken in [23, 25], where the computation
of stable and unstable manifolds, via the continuation of suitable two-point boundary value
problems (BVPs), revealed the geometric mechanisms in the full three-dimensional phase
space that are behind the transition to chaotic dynamics in the Lorenz system (1). We are
interested here in the precise moment when the foliation condition fails. The only specific
numerical estimate available for the loss of foliation condition was computed by Sparrow [60]
as lying in the interval ρ ∈ [30.1, 30.2] for fixed σ = 10 and β = 8

3 . He found this interval
by using numerical integration to determine how vectors in Σρ align with the attractor on
return to the section. Furthermore, Bykov and Shilnikov [16] computed, for fixed β = 8

3 ,
a locus in the (ρ, σ)-plane along which L changes to a nonorientable or quasi-attractor ; see
also the translation [17]. A quasi-attractor is a complex limit set that contains a dense set of
stable periodic orbits with narrow basins of attraction [2, 58]. The quasi-attractor contains
infinitely many windows of stability related to the creation and destruction of stable periodic
orbits; hence, the dynamics in this region are far more complicated. This topological change
corresponds to the loss of the foliation condition, and it was detected by Bykov and Shilnikov
as a change of orientability of homoclinic orbits. We refer to subsection 5.1 for details on their
computational approach and Figure 9(b) for a reproduction of their sketch [17, Figure 3].
Although no precise values are given there, the value for σ = 10 appears to be ρ ≈ 31.0.

Our computational approach to investigating the loss of the foliation condition is to identify
and calculate the onset of a tangency between the stable and unstable foliations of the Poincaré
section Σρ, which we call a first foliation tangency and denote by F1. We approximate
leaves of the stable and unstable foliations in Σρ directly as intersection curves with Σρ

of two-dimensional manifolds of equilibria and periodic orbits. We detect the parameter
values at which the first foliation tangency occurs by solving BVPs with the software package
Auto [20, 21]; for the general theory, see [22, 44]. The BVP setup has the particular benefit
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that it is straightforward to continue specific families of solutions and, hence, the locus of the
loss of the foliation condition in any pair of the system parameters.

More specifically, our results are as follows. Our estimate for the value of the loss of the
foliation condition when σ = 10 and β = 8

3 is ρ ≈ 31.01, which is correct to two decimal
places. We also compute the locus F1 in the (ρ, σ)-plane for fixed β = 8

3 and find good
agreement with the sketch by Bykov and Shilnikov. We find that F1 is a smooth curve in
this plane with a codimension-two terminal-point, or T-point, also known as a Bykov cy-
cle [18, 31, 52]. At this T-point, the one-dimensional unstable manifold W u(0) is contained
in the one-dimensional stable manifolds W s(p±), creating a heteroclinic connection from 0 to
p±; moreover, the two-dimensional manifolds W u(p±) intersect W s(0) transversally, forming
a heteroclinic connection from p± to 0. There are many other such T-points in the Lorenz
system, corresponding to increasingly complicated windings of W u(0) around p± before con-
necting to p±; see [18] for details. The bifurcation structure near a T-point has been studied,
for example, in [40, 43, 59, 66] but not in the context of the loss of the foliation condition. The
bifurcation curves of the main homoclinic and heteroclinic bifurcations of p± both terminate
at a T-point. These bifurcation curves lie extremely close to each other in the (ρ, σ)-plane
for fixed β = 8

3 . As was also shown in [18], each T-point in the Lorenz system is associated
with a phenomenon called an α-flip bifurcation, where the α-limits of the respective branches
of W s(p±) switch sides. The first, or principal, T-point was discovered by Petrovskaya and
Yudovich [52] in 1980 and independently by Alsfen and Frøyland [4] in 1985. The first 25
T-points in the Lorenz system are shown in [18] in relation to the homoclinic and heteroclinic
bifurcations of p± and the α-flip bifurcation of W s(p±).

The chaotic attractor L is created in a so-called EtoP bifurcation, at which W u(0) connects
to a (symmetric) pair of periodic orbits; we refer to section 2 and [1, 41, 55] for details. We
find that the bifurcation curve EtoP and the locus F1 have two intersection points, meaning
that the region of existence of the Lorenz attractor L is bounded in the (ρ, σ)-plane for fixed
β = 8

3 . This discovery already goes beyond the work of Bykov and Shilnikov, who found
only one intersection point. Moreover, we determine that the region of existence of L is also
bounded in the (ρ, β)- and (σ, β)-planes, with σ = 10 and ρ = 28, respectively. By computing
the curves EtoP and F1 in the (ρ, σ)-plane for different values of β, we show that the region of
existence of L has the shape of a slanted cone in the three-dimensional (ρ, σ, β)-space, which is
bounded by surfaces EtoP and F1. There exists a curve T1 of principal T-points on the surface
F1 that ends at the bottom or tip of the cone in a degenerate T-point called a T-point–Hopf
(TH) bifurcation; at this point, the equilibria p± involved in the T-point bifurcation undergo
a Hopf bifurcation. The codimension-three bifurcation point TH has been studied in [5, 28] in
general terms as an organizing center for homoclinic bifurcations of the origin in the Lorenz
system; however, its role for the loss of the foliation condition has not been recognized.

After the first foliation tangency, along the locus F1, the stable and unstable foliations
are no longer transverse, and the foliation condition is lost. We find that, as ρ and σ are
increased, additional first foliation tangencies occur, and we adapt our BVP setup to detect
them. Specifically, we detect a further two first foliation tangencies and compute their loci
F2 and F3 in the (ρ, σ)-plane for fixed β = 8

3 . We observe that the loci F2 and F3 also each
have T-points T2 and T3 on them, respectively; see Figure 12. In [13], Barrio, Shilnikov, and
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Shilnikov computed a color code for the kneading sequence based on the number of revolutions
of W u(0) around p±. Their image of the (ρ, σ)-plane with β = 8

3 shows regions of stability and
the structure of homoclinic orbits around T-points. Our computation of homoclinic bifurcation
curves and boundaries of the regions of stability in the (ρ, σ)-plane are in good agreement with
their findings, and we discuss the loci of the first foliation tangency in this context. Finally,
we show how each additional first foliation tangency manifests itself as additional folds in the
unstable foliation.

The layout of this paper is as follows. In the next section, we briefly review the bifurcations
involved in the route to chaos and the birth of L, and we discuss known properties of the Lorenz
map for parameters outside the region where the foliation condition is satisfied. We illustrate
transverse and nontransverse foliations in Σρ in section 3 and present more specific evidence
for the existence of a foliation tangency in subsection 3.2. In section 4, we formulate and
implement as a BVP the computation of the first foliation tangency associated with the loss
of the foliation condition and determine its ρ-value for σ = 10 and β = 8

3 fixed. In section
5, we compute bifurcation diagrams near the principal T-point in the planes defined by each
possible parameter pair, and in subsection 5.2, we present the locus F1 of the first foliation
tangency in the full three-parameter space. Subsection 5.3 presents two additional loci of first
foliation tangencies in the (ρ, σ)-plane with β = 8

3 and discusses their manifestation in terms
of W u(Γrl). We finish with a discussion in section 6. The list the parameters used for the
BVP computations and further computational details can be found in Appendix A.

2. Review of the bifurcations en route to and beyond the creation of L. We briefly
recall the main bifurcations that occur in the Lorenz system (1) in the transition to chaos
and the birth of L; see also [23, 25] and references therein. Here, we assume that σ = 10 and
β = 8

3 are fixed at their classical values and that only ρ is varied.
As mentioned in the introduction, the origin 0 is stable for 0 < ρ < 1; at ρ = 1, a pitchfork

bifurcation occurs that gives rise to two stable equilibria p± that are rendered saddles in
a Hopf bifurcation at ρ = ρH ≈ 24.7368. A homoclinic bifurcation of 0 occurs at ρ ≈
13.9265 when W u(0) is contained in W s(0) and consists of a loop hr and its symmetric
counterpart hl around p+ and p−, respectively; we will use hr to denote this homoclinic
bifurcation throughout. The homoclinic bifurcation hr generates a chaotic saddle S containing
infinitely many saddle periodic orbits; this bifurcation is also called the homoclinic explosion.
In particular, the homoclinic explosion creates the symmetric pair of periodic orbits Γ+ and
Γ−, which loop once around p+ and p−, respectively. The periodic orbits Γ± have two-
dimensional stable manifolds W s(Γ±) and two-dimensional unstable manifolds W u(Γ±). A
heteroclinic connection from 0 to Γ± forms when W u(0) is contained in W s(Γ±) at ρ ≈
24.0579; this is the EtoP connection referred to in the introduction. The parameter interval
between hr and EtoP is the preturbulent regime identified by Kaplan and York [41, 42]. In
this regime, the equilibria p± remain the only attractors, but trajectories with arbitrarily long
chaotic transients can be found. The complicated dynamics can be attributed to the Cantor-
like structure of the stable manifold of S [25]. The EtoP bifurcation creates L [1, 41, 55], which
initially coexists with the attractors p± until their stability changes at the Hopf bifurcation.
Except for Γ±, the saddle periodic orbits created in the homoclinic explosion persist through
the Hopf bifurcation and are dense in L [23, 47, 63].
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The classic Lorenz attractor L is an attracting set in the Lorenz system that consists of
an infinite number of two-dimensional surfaces that join along the one-dimensional unstable
manifold of the origin W u(0) [1, 34, 47]. A sketch of L was already presented in Lorenz’s
original paper [47]. The point 0 and the unstable manifold W u(0) are contained in L [1,
65], and W u(0) forms a natural boundary of L. Furthermore, L does not enter a certain
neighborhood of p± at the classic parameter values. Points on the one-dimensional stable
manifolds W s(p±) are the only points in phase space that do not tend to L. Since saddle
periodic orbits are dense in L [47, 63], their unstable manifolds accumulate on L due to the
stretching nature of the dynamics. In fact, L contains the sheets of all the two-dimensional
unstable manifolds of the periodic orbits, which lie very close together in phase space due to
the strong contraction in the system, and connect up along W u(0) [33]. Therefore, the two-
dimensional unstable manifold of any saddle periodic orbit gives a good representation of L.

The geometric Lorenz model and the associated Lorenz map provide a way of accurately
describing the dynamics on L provided that the technical conditions of the reduction hold. In
particular, each point of each intersection set of L with Σρ needs to intersect exactly one leaf
(locally) of the stable foliation [34]. Numerical investigations by Bykov and Shilnikov [17],
Hénon and Pomeau [37, 38], and Sparrow [60] show that the two-dimensional return map
appears to develop hooked horseshoes that persist for large values of ρ. Then the above one-
to-one correspondence in Σρ is violated, the foliation condition is no longer satisfied, and,
therefore, L is no longer completely represented by the geometric Lorenz model or the Lorenz
map. The one-dimensional Lorenz map develops additional maxima and minima that enter
through the boundaries of the interval. Luzzatto and Viana studied Lorenz-like families of
one-dimensional maps with such extra critical points in an attempt to describe the change
in dynamics before and after the loss of the foliation condition [48, 49]; however, they do
not use them to find the moment of the loss of the foliation condition. Hao, Liu, and Zheng
created a series of one-dimensional maps of the Lorenz system, called first-return maps, for
28 < ρ < 200 [36]. Their first-return maps develop additional maxima and minima as ρ
is increased, corresponding to tangency points between the stable and unstable foliations in
Σρ. The first of these tangencies appears to correspond to the loss of the foliation condition.
Although Hao, Liu, and Zheng show some curves of the stable and unstable foliations of Σρ,
they do not use these to identify the loss of the foliation condition.

Dullin et al. show diagrams of the (ρ, σ)-plane with β = 8
3 , for the range (ρ, σ) ∈

[0, 2000] × [0, 2000], that are colored according to the asymptotic behavior of trajectories
in phase space [26]. These diagrams clearly show a layered periodic pattern due to the al-
ternating stability of symmetric and nonsymmetric periodic orbits. Barrio and Serrano use
maximum Lyapunov exponents and look for chaotic orbits at points in the planes given by
each pair of parameters ρ, σ and β [11, 12]. Their computations show the regions in the
parameter planes where chaos exists. The scan methods of Dullin et al. [26] and Barrio and
Serrano [11, 12] do not give any indication of a topological change in L.

3. Transverse and nontransverse foliations in Σρ. The stable and unstable foliations in
Σρ are not known analytically and can only be approximated numerically. We compute them
as intersection curves of stable and unstable manifolds of periodic orbits and equilibria for
fixed σ = 10 and β = 8

3 . Our computations are based on continuation of a two-point boundary
value problem, and we refer to [18, 24, 25, 44] for more information on the setup.
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3.1. Transverse foliations for ρ = 28. As described in section 2, the chaotic attractor L
consists of infinitely many surfaces each of which intersects Σρ in a one-dimensional curve that
is part of one of the leaves of the unstable foliation [32]. Furthermore, the two-dimensional
unstable manifold of any periodic orbit lies dense in L. Therefore, its intersection curves with
Σρ form a dense subset of the intersection curves of L with Σρ. We denote each periodic
orbit in L by Γs1,...,sn , where s1, . . . , sn is the symbol sequence of the orbit such that si = r
indicates a loop around p+ and si = l indicates a loop around p−. Throughout this paper,
we work mainly with the topologically simplest periodic orbit in L, the symmetric periodic
orbit Γrl that loops once around p+and then once around p−; however, we also consider Γrll
to confirm our calculations. The periodic orbit Γrll loops once around p+ and then twice
around p−; hence, it is not symmetric and coexists with its symmetric counterpart Γlrr.
Viswanath [63] uses a modified Newton method to find periodic orbits in L up to a high
period and provides a list of initial conditions in Σρ for each periodic orbit to high precision
(14 significant figures). We take the appropriate initial condition for Γrl (or Γrll) from this
list as sufficiently accurate for the computation and continuation with Auto [20, 21]. More
recently Barrio, Dena, and Tucker [14] created a comprehensive database of periodic orbits in
the Lorenz system, with initial conditions verified by interval-arithmetic techniques up to an
accuracy of 1000 significant figures.

We approximate part of W u(Γrl) for ρ = 28 as a one-parameter family of orbit seg-
ments that start close to Γrl in its linear unstable direction and are computed up to a maxi-
mum chosen integration time τmax. We then compute a sufficient number of the intersection
curves

W̃ u(Γrl) := W u(Γrl) ∩ Σρ

directly as end points of a one-parameter family of solutions of a suitable BVP. The intersection
curves W̃ u(Γrl) are part of the unstable foliation.

The unstable manifold W u(0) forms the outer boundary to W u(Γrl). We approximate
W u(0) as two orbit segments that are computed up to a maximum arclength Lmax from their
starting points near 0 on the linear unstable direction vu. We compute the intersection points

W̃ u(0) := W u(0) ∩ Σρ

by detecting when W u(0) crosses Σρ. Values of τmax, Lmax and other accuracy parameters
used to create each figure are given in Appendix A.

Figure 1 shows L for ρ = 28 as represented by W u(Γrl), the intersection curves W̃ u(Γrl),
and as a sketch of the one-dimensional Lorenz map. Panel (a) shows the computed part of
the two-dimensional surface W u(Γrl) with Γrl and W u(0). The classic section Σρ through p±

is also shown. Panel (b) shows curves in W̃ u(Γrl); in this and subsequent similar panels, we
rotate Σρ by π

2 so the horizontal axis is the diagonal where x = y. The four intersection points
in γrl := Γrl ∩ Σρ lie on W̃ u(Γrl) and are shown in panel (b). Also shown in panel (b) are
the first eight intersection points of W̃ u(0), which correspond to the end points of the main
segments of W̃ u(Γrl). Furthermore, panel (b) shows the tangency locus C that contains p±

and separates Σρ into regions where the flow is upward (�) and downward (⊗) [46]. A sketch
of the one-dimensional Lorenz map is shown in Figure 1(c) with the line of discontinuity at
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(a)

Wu(Γrl)

Γrl

Wu(0)

0

Σρ

p+

p−

✘✘✿ x
❅❅❘ y

✻
z

(c)
−a

a

a0

(b)Σρ ⊗ ⊙

⊗⊙ C

C

p+

p−

W̃u(Γrl)

W̃u(0)

γrl

Figure 1. Representation of the classic Lorenz attractor L for ρ = 28, σ = 10, and β = 8
3 . Panel (a) shows

Wu(Γrl) with the periodic orbit Γrl (yellow), the first part of Wu(0) (brown), and the Poincaré section Σρ
(green). The intersection curves W̃u(Γrl) (red) in the plane Σρ are shown in panel (b), together with the four
intersection points of γrl (yellow) and the first eight of W̃u(0) (brown). Also shown are p± and the tangency
locus C (gray) that divides Σρ into regions where the flow is up � and where it is down ⊗; note that Σρ has been
rotated so the diagonal (where x = y) is the horizontal axis. Panel (c) shows a sketch of the one-dimensional
Lorenz map with the vertical line of discontinuity at 0 (blue).

0 corresponding to points that lie on W s(0) and, hence, do not return to the plane Σρ. The
boundaries ±a = ±

√
β(ρ− 1) of the Lorenz map are the x-components of p±, respectively.

The empty square regions in the corners of panel (c) correspond to the local regions around
p± that are not part of L; see also [34].

On the level of Figure 1(b), it appears that W̃ u(Γrl) consists of only four disjoint curves.
In fact, the intersection of the Lorenz attractor with the Poincaré section has a fractal
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structure [47], but the distance between the curves is less than 10−5 [64] because of the strong
contraction toward the Lorenz attractor L. We actually computed and plot 60 intersection
curves, which cannot be distinguished at the scale of panel (b). Further points in W̃ u(0), be-
yond the first eight that are shown, correspond to end points of the shorter curves of W̃ u(Γrl).
The intersection set W̃ u(Γrl) does not cross C when ρ = 28, and so the curves of W̃ u(Γrl) in
the outer regions, where the flow is up, are the images under the flow of the central curves
of W̃ u(Γrl), in which the flow points down. Historically, the Lorenz map is constructed from
the central region of Σρ, where the flow is down, in between the two curves that form the
tangency locus C.

Figure 2 compares W u(Γrl) in panel (a) with two alternative representations of L, gen-
erated by the unstable manifolds W u(Γrll) of Γrll in panel (b) and W u(p+) of the equilib-
rium p+ in panel (c); all these panels show the projection onto the (x, z)-plane along the
y-direction. Note that W u(p+) only accumulates on L because the local manifold W u

loc(p
+)

near p+ is not part of L. Panel (d) shows all three manifolds together with the plane Σρ in
the three-dimensional (x, y, z)-space. Also shown in each panel are the first parts of the two
symmetrically related branches of W u(0), which can be seen to bound W u(Γrl), W u(Γrll) and
W u(p+).

Each of the invariant manifolds shown in Figure 2 was computed as a separate family of
orbit segments that start in the linear unstable direction of the periodic orbit or equilibrium.
Due to the strong contraction in the Lorenz system, it is impossible to distinguish these
unstable manifolds at the level of the surfaces shown in panel (d); however, they can be
distinguished by the associated families of orbit segments. The close proximity of the computed
surfaces in phase space constitutes a confirmation of the accuracy of our computations.

The theory also tells us that the stable foliation contains the intersection curves of the
two-dimensional stable manifolds of all equilibria and periodic orbits [36]. To find curves of
the stable foliation, we consider the intersection curves

W̃ s(0) := W s(0) ∩ Σρ

of the two-dimensional Lorenz manifold W s(0) with Σρ. The Lorenz manifold lies dense in
phase space due to the sensitivity on initial conditions [61], and therefore its intersection
curves with Σρ form a dense subset of the curves of the stable foliation [36]. To compute these
intersection curves, we start with the same approach as in [18, 24], where W s(0) is computed
inside a suitably large sphere SR with radius R. Here, we choose R = 70 to ensure that
the entire attractor for ρ = 28 and, hence, W u(Γrl) is fully contained in SR. The sphere is
centered at (0, 0, ρ− 1), and therefore Σρ bisects SR at the equator into two equal halves. We
first compute an orbit segment with one end point on an ellipse in the stable eigenspace of
the origin and the other end point on SR. We then continue the orbit segment around the
ellipse and detect each instance that the end point on SR intersects Σρ at the equator. For
each of these detected solutions, we then constrain the end point to lie on Σρ and continue
around the ellipse to generate a family of orbit segments whose end points in Σρ trace out
curves in W̃ s(0). Due to the finite-time nature of our computations, we can compute only a
finite number of curves in W̃ s(0).
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Figure 2. Representation of L for ρ = 28, σ = 10, and β = 8
3 by three different unstable manifolds (red),

namely, of Γrl (yellow) (a), Γrll (orange) (b), and p+ (black) (c). Panel (d) shows all three unstable manifolds
together with Σρ (green). Also shown in all panels is the first piece of Wu(0) (brown).
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W̃u(0)

W̃ s(0)

Figure 3. Section Σρ and the stable manifold W s(0) for ρ = 28, σ = 10, and β = 8
3 . Panel (a) shows W s(0)

(blue) computed inside the sphere SR for R = 70 with Σρ (green). The surface W s(0) is rendered transparent
above Σρ and solid below, and the computed part of W s(0)∩ SR has been highlighted in black. Panel (b) shows
curves of W̃ s(0) (blue) and W̃u(Γrl) (red) and points of γrl (yellow) and W̃u(0) (brown) within the circle with
radius R = 70 around (0, 0, ρ− 1) in Σρ. Panel (c) is an enlargement of W̃ s(0), W̃u(Γrl), γrl, and W̃u(0) in
the rotated view of Σρ; compare with Figure 1(b).

Figure 3 shows the computed part of the Lorenz manifold W s(0) and its intersection
curves with Σρ. Panel (a) shows the initial piece of W s(0) within SR for R = 70, together
with Σρ in the three-dimensional phase space. Here, W s(0) is rendered as a solid blue surface
beneath Σρ and a transparent blue surface above it. The equator of SR is the black circle
on Σρ. The intersection curves W̃ s(0) in Σρ lie inside the equator and are shown as blue
curves in each panel. Panel (b) also shows W̃ u(Γrl), and panel (c) is an enlargement near
the curves W̃ u(Γrl) in the rotated view. Panels (b) and (c) also show the sets of points p±,
γrl, and W̃ u(0) and the tangency locus C; compare with Figure 1(b). Figure 3(c) shows
that, locally near the attractor, the computed intersection curves in W̃ s(0) and W̃ u(Γrl) are
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transverse, meaning that each curve in W̃ s(0) intersects each curve in W̃ u(Γrl) exactly once
near L. Figure 3 suggests that the foliation condition is satisfied, which is indeed the case for
ρ = 28 [17, 35, 60].

3.2. Nontransverse foliations for ρ = 60. Next, we consider the intersection curves
W̃ u(Γrl) and W̃ s(0) in Σρ for ρ = 60. This value of ρ was chosen well past the estimated
ρ-value at which the foliation condition is lost. Figure 4 shows W u(Γrl) and the corresponding
intersection curves W̃ u(Γrl) and W̃ s(0). Panel (a) is a view of W u(Γrl) with Σρ in the three-
dimensional phase space; compare with Figure 1(a). Panel (b) shows curves in W̃ u(Γrl) ⊂ Σρ

with the points γrl that lie on W̃ u(Γrl) and the points of W̃ u(0) that lie at the end of the visible
curve segments. In panel (b), W̃ u(Γrl) appears to consist of two disjoint curve segments, but
again 60 curves have actually been plotted. The points p± and locus C are also shown in
panel (b). The sheets of the two-dimensional manifold W u(Γrl) have been pulled up and
folded back near p± in Figure 4(a); compare with Figure 1(a). The boundary of W u(Γrl) is
still formed by W u(0), but it is no longer the curve that lies closest to p±.

The structure of the intersection curves W̃ u(Γrl) in Figure 4(b) is also different from those
in Figure 3(c). For ρ = 60, some curves in W̃ u(Γrl) cross the tangency locus C. Intersections
of W̃ u(Γrl) and C are brought about by a tangency of W u(0) with Σρ that, by definition,
occurs on C. The tangency occurs at ρC ≈ 30.4318, which we found by continuation of the
first-return point of W u(0) to Σρ in ρ until a fold was detected. The tangency occurs near but
does not correspond to the loss of the foliation condition [24]. The second and more important
difference between Figures 3(c) and 4(b) is that some of the curves of W̃ s(0) in the central
region of Σρ in Figure 4(b) now intersect curves of W̃ u(Γrl) twice. Moreover, there are points
of (approximate) tangency between curves of W̃ u(Γrl) and curves of W̃ s(0). Note that W̃ s(0)
does not undergo a dramatic change between Figures 3(c) and 4(b).

Indeed, Figure 4(b) illustrates that W̃ u(Γrl) and W̃ s(0) are not locally transverse for
ρ = 60. Rather, there are structurally stable, quadratic tangencies arbitrarily close to L,
which means that the foliation condition does not hold. More specifically, each curve of
W̃ u(Γrl) is diffeomorphic to another curve of W̃ u(Γrl) under the flow (1). Hence, each curve
of W̃ u(Γrl) has a point of tangency with W̃ s(0); most tangency points are impossible to
distinguish by eye due to the strong contraction of the system. Indeed, the sheets of the two-
dimensional unstable manifolds of periodic orbits in L connect along W u(0) [34], and so all
intersection curves of these unstable manifolds with Σρ have a point of tangency with W̃ s(0).

4. The first foliation tangency. We wish to find the ρ-value that corresponds to the
onset of quadratic tangencies between W̃ u(Γrl) and W̃ s(0); we call this onset a first foliation
tangency bifurcation. From the estimates of Sparrow [60] and Bykov and Shilnikov [17], the
foliation condition fails between ρ = 30 and ρ = 32. Figure 5 shows the stable and unstable
foliations for ρ = 30 and ρ = 32, just before and just after the loss of the foliation condition,
respectively. Panel (a1) shows computed curves in W̃ u(Γrl) and W̃ s(0) in Σρ for ρ = 30, and
panel (b1) shows them for ρ = 32. Since p+ is the image of p− under the symmetry (2), it
suffices to consider a neighborhood of, say, p+. Panels (a2) and (b2) are enlargements that
show W̃ u(Γrl) near p+ for ρ = 30, and ρ = 32, respectively, and just two curves of W̃ s(0) in
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Figure 4. The unstable manifold Wu(Γrl) for ρ = 60, well past the loss of the foliation condition. Panel (a)
shows Wu(Γrl) (red) together with Γrl (yellow), Wu(0), and Σρ (green); compare with Figure 1(a). Panel (b)
shows W̃u(Γrl) (red) and W̃ s(0) (blue) in Σρ; compare with Figure 3(c).
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Figure 5. Foliations in Σρ very close to the loss of the foliation condition. The curves W̃u(Γrl) (red)
and W̃ s(0) (blue) and the points W̃u(Γrl) (yellow) and W̃u(0) (brown) in Σρ are shown in column (a) for
ρ = 30 and in column (b) for ρ = 32. Panels (a1) and (b1) show the region (x, y) ∈ [−45, 45] × [−45, 45],
and enlargements are shown in panels (a2) and (b2), where the ranges for x and y are [4, 13.5] and [4.5, 13.5],
respectively. The direction V (light blue) is shown both at p± and at the point qu.

the bottom-left corner of each panel. Points of W̃ u(0) are shown at the end of the main curve
segments as before; the point qu ∈ W̃ u(0) is the second intersection point of W u(0) with Σρ.
The tangency locus C is shown in each panel as before.

Figure 5 shows that W̃ u(Γrl) comes very close to p± for values of ρ near the loss of the
foliation condition. Unfortunately, the computed intersections curves in W̃ s(0) do not come
sufficiently close to p+ to allow for the comparison with W̃ u(Γrl), also not for much higher
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integration times. Since W s(0) winds around W s(p+) without intersecting it, we approximate
the direction of W̃ s(0) locally near p+ by the stable eigenspace of p± projected orthogonally
onto Σρ; that is, we define

(4) V := ΠΣρE
s(p±).

The direction vector V can readily be computed and is shown as the light-blue curve through
p± and qu in Figure 5. Observe that the curves in W̃ s(0) closest to p± appear to be parallel
to V for all practical purposes.

A qualitative change in W̃ u(Γrl) with respect to V occurs near the equilibria p± for ρ
between ρ = 30 and ρ = 32; compare panels (a2) and (b2) of Figure 5. Figure 5(a2) shows
that the direction V at qu has only one intersection with each of the curves in W̃ u(Γrl), which
indicates that the stable and unstable foliations are transverse to each other and the foliation
condition holds for ρ = 30. Figure 5(b2) shows that the direction V at qu has additional
intersections with curves in W̃ u(Γrl) for ρ = 32. The curves in W̃ u(Γrl) have formed visible
hooks in Figure 5(b2). This means that the foliation condition no longer holds.

4.1. Characterization of the first foliation tangency. To detect numerically the first
foliation tangency, we select the curve from W̃ u(Γrl) that ends at the point qu and corresponds
to orbit segments on W u(Γrl) with the fewest returns to Σρ; we denote this curve by W̃ u

F (Γrl).
We define the direction vector Z as the unit vector tangent to W̃ u

F (Γrl) at qu. The direction
vectors V , defined above in (4), and Z both depend on ρ; indeed, the angle between Z and V
has a regular sign change between ρ = 30 and ρ = 32. We define the first foliation tangency
as the moment at which the angle is zero.

Our approach of detecting a zero angle between V and Z is based on the continuation of
multiple orbit segments and motivated by Lin’s method [45]. The multi-segment BVP setup
for the first foliation tangency is well defined and has user-specified accuracy parameters to
allow for the convenient continuation of its solutions in any of the parameters. This BVP can
be set up readily for invariant objects other than Γrl, and we consider also the two-dimensional
unstable manifolds W u(p+) of the equilibrium p+ and W u(Γrll) of the nonsymmetric periodic
orbit Γrll; a detailed comparison of the different approximations can be found in Appendix B,
Table 2. We also checked that V is indeed a good approximation to the stable foliation in the
vicinity of p+ and refer to Table 3 in Appendix B for details.

We calculate an approximation of Z numerically as a secant in the following way. First,
we calculate an orbit segment u0(t) that lies on W u(0) with one end point in the unstable
eigendirection of 0 and the other end point at qu in Σρ. We then consider a circle Cκ ⊂ Σρ

of radius κ centered at qu and compute a second orbit segment, uΓ(t) on W u(Γrl), with one
end point on the unstable eigendirection of Γrl and the other end point on Cκ; we refer to the
latter point on W̃ u

F (Γrl) as qκ. The vector direction Z is then approximated by the normalized
unit vector

(5) Zκ =
(qu − qκ)

κ
.

The direction Zκ is a good approximation of Z provided that κ = |qu−qκ| is sufficiently small.
In our calculations, we choose Zκ with κ = 10−4. Full implementation details are given in
subsection 4.2.
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Figure 6. Setup of the multi-segment BVP at ρ = 32 with the orbit segments u0(t) ⊂ Wu(0) and uΓ(t) ⊂
Wu(Γrl) that determine the direction Zκ (orange); also shown are the periodic orbit Γrl (yellow) and the
direction vector V (light blue) at p±.

Figure 6 shows the setup of the multi-segment BVP used to compute Zκ for ρ = 32; here,
κ was chosen very large to illustrate the different components. The orbit segment u0(t) on
W u(0) (dark red) starts near 0, and its other end point is qu in Σρ, which is not labeled but
lies quite close to p+. The orbit segment uΓ(t) on W u(Γrl) (red) starts near Γrl, and its other
end point is qκ in Σρ, at distance κ from qu. The secant Zκ is shown in orange between qu
and qκ, and the direction V in Σρ is shown at p±.

We continue the multi-segment BVP that defines Zκ (for sufficiently small, fixed κ) in ρ;
the effect is that qκ moves along the circle Cκ. We monitor the test function

(6) φκ(ρ) = φκ(ρ, σ, β) := V ⊥ · Zκ,
where V ⊥ ∈ Σρ is perpendicular to V ; initially, σ = 10 and β = 8

3 are fixed. The function
φκ(ρ) is a regular test function in ρ, meaning that it is smooth and, generically, its roots are
regular and isolated. During the continuation of the BVP in the direction of decreasing ρ, a
root ρFκ of the function φκ will be detected. Since Zκ → Z, the root ρFκ → ρF as κ → 0; for
convenience of notation, we write ρF instead of ρFκ from now on.

Figure 7 illustrates that the detection of a regular zero of φκ corresponds to a tangency
between W̃ u

F (Γrl) and V at qu. The curve W̃ u
F (Γrl) and the direction V are shown for ρ = 30 in

column (a), for ρ = ρF ≈ 31.01 in column (b), and for ρ = 32 in column (c). Panels (a1)–(c1)
show the situation locally near p+, and panels (a2)–(c2) show substantial enlargements of the
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Figure 7. Illustration of the numerical setup to detect the foliation tangency. Shown are the curve W̃u
F (Γrl)

and the direction V at p+ and at qu in Σρ for ρ = 30 (a1), for ρ = ρF ≈ 31.01 (b1), and for ρ = 32 (c1); the
respective ranges for both x and y are [7.9150, 8.9932], [8.6053, 9.0255], and [8.0615, 9.3203]. Panels (a2)–(c2)
are enlargements that also show the circle Cκ for κ = 10−4 around the point qu (brown) and the associated
secant Zκ (orange line inside Cκ).

circle Cκ with κ = 10−4 centered at qu. The point qκ ∈ W̃ u
F (Γrl) ∩ Cκ defines the secant Zκ.

Figure 7(b1) corresponds to the moment of first tangency between W̃ u(Γrl) and V , which can
be confirmed in the enlargement in panel (b2) that shows the alignment of Zκ and V , with
W̃ u
F (Γrl) tangent to V in very good approximation.

4.2. Implementation as a boundary value problem. We now give the specific boundary
conditions for the computation of the multi-segment BVP to find the point of tangency be-
tween the stable and unstable foliations in Σρ; for the general theory, we refer to [27, 45].
Without loss of generality and for ease of notation, we describe our implementation for the
unstable manifold W u(Γ) of a periodic orbit Γ.

In all computations, we use the time-rescaled Lorenz system

(7) u′(t) = τf(u(t)),

where f is given by (1). A solution u(t) of (7) is an orbit segment on the time interval t ∈ [0, 1]
with end points u(0) and u(1). This orbit segment is also a solution of (1) but with respect
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to the unscaled time t τ , where τ is the total integration time for (1). In our formulation, τ is
positive when computing unstable manifolds and negative when computing stable manifolds.

For fixed ρ = 32, σ = 10, and β = 8
3 , we compute an orbit segment u0(t) ⊂ W u(0)

satisfying (7) by continuation in τ subject to the boundary condition

(8) u0(0) = δ0vu,

where vu is the normalized unstable eigenvector of 0 and δ0 = 10−7. We monitor the z-
component u0

z (1) of u0(1). Whenever u0
z (1) = ρ − 1, the end point u0(1) lies in Σρ. We

choose the end point that corresponds to qu ∈ Σρ and impose the boundary condition

(9) u0
z (1)− (ρ− 1) = 0,

which constrains u0
z (1) to lie in Σρ.

We compute a second orbit segment uΓ(t) on W u(Γ) in the following way, where we
assume that we have available Γ and its unstable Floquet bundle (as solutions of an additional
BVP [44, 45]). Since trajectories on W u(Γ) spiral away from Γ, it suffices to consider only
one normalized vector vu(γ) of the unstable Floquet bundle. For convenience, we choose γ as
the intersection point of Γ with Σρ. The point wu0 is defined as

(10) wu0 = γ + δΓvu(γ),

where δΓ is a fixed distance from Γ along vector vu(γ). We define the point wu1 as the first
return of the trajectory through wu0 to the local planar section spanned by vu(γ) and a vector
vΣ ∈ Σρ that is perpendicular to vu(γ). The line segment between wu0 and wu1 can be viewed
as an approximate fundamental domain for W u(Γ), and we consider the boundary condition

(11) uΓ(0) = wu0 + ζ(wu1 − wu0 ),

where ζ ∈ [0, 1). The orbit segment uΓ(t) is computed as satisfying (7) and (11), and we again
monitor its z-component uΓ

z (1) to detect the returns to Σρ. We choose the point uΓ(1) = qκ
that lies on W̃ u

F (Γ) near p+ and corresponds to the orbit segment with the lowest number of
returns to Σρ, namely, 16 returns. We then impose the boundary condition

(12) uΓ
z (1)− (ρ− 1) = 0.

The distance between the two points u0(1) and uΓ(1) in Σρ is initially large, as in Figure 6.
We continue the BVP for uΓ satisfying (7) and boundary conditions (11) and (12) with ζ as
a free continuation parameter and monitor

κ = |qu − qκ| = |u0(1)− uΓ(1)|

until κ = 10−4. We then impose the additional boundary condition

(13) |qu − qκ| − κ = 0

and continue the BVP for u0 and uΓ with (8), (9), and (11)–(13), where the system parameter
ρ is decreasing. We detect ρF as the moment when (6) is zero, which means that Zκ is aligned
with V .
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The radius κ of Cκ determines the accuracy of Zκ with respect to the actual tangent Z of
W̃ u
F (Γ) at the end point qu. The difference between Zκ and Z is O(κ2) since W̃ u

F (Γ) is smooth.
On the other hand, there is a trade-off, and κ should not be chosen too small: as κ decreases,
the point qκ approaches the point qu, which implies that uΓ(t) passes very close to 0. In the
limit of κ → 0, the orbit segment uΓ(t) connects to 0, and the integration time τ goes to
∞. Numerically, this means that it is difficult to calculate uΓ(t) accurately for very small
κ. We found that κ = 10−4 is the most suitable value for the calculations we present here,
and we have confidence in our value of ρF ≈ 31.01 to two decimal places. This statement is
corroborated by performing the above computation of ρF for each of the manifolds W u(Γrl),
W u(Γrll), and W u(p+) and for several choices of κ. We found that the ρF -values for each κ
only change in the fourth decimal place; see Appendix B and the data in Table 2 for details.

5. The locus of the first foliation tangency. The advantage of our method is that, once
a zero of (6) has been detected, it can be continued in any pair of the system parameters. To
this end, we impose the additional boundary condition

(14) V ⊥ · Zκ = 0

and continue the BVP for u0 and uΓ with (8), (9), and (11)–(14) with either ρ and σ, ρ and
β, or σ and β as continuation parameters. In this way, we find the locus F1 of the loss of the
foliation condition in any two-parameter plane.

When starting the computation of F1 in the (ρ, σ)-plane from the detected value of ρF

for σ = 10, we find that ρ decreases and σ increases. As we continue F1 in the direction of
decreasing ρ, the point qu moves closer to p+ in Σρ, and the integration time τ increases dra-
matically. In the limit when qu coincides with p+, the computed branch of the one-dimensional
unstable manifold W u(0) coincides with the respective branch of the one-dimensional stable
manifold W s(p+); by the symmetry (2), the other branch of W u(0) connects to p−. This
configuration is known as a T-point [31, 52], and the locus F1 is associated with the first, or
principal, T-point, denoted T1, that is located at (ρT , σT ) ≈ (30.8680, 10.1673). There exists
an infinite sequence Ti of T-points, each of which can be found accurately and systematically
with a BVP setup; we refer to [18] for details.

We cannot continue the curve F1 of first foliation tangency through the point T1, but
we can find the other side of F1 past T1 by setting up the BVP anew. This is illustrated
in Figure 8. Panel (a) shows that the locus F1 has two branches that meet at the point T1.
From the point T1 emerge two curves, labeled α1 and h1. Along α1, there is a sudden switch
in the direction of escape to infinity for the one-dimensional stable manifolds W s(p±). This
phenomenon, referred to as an α-flip [18], leads to an additional half turn for one branch
of W s(p±). There are other curves αi for any integer i that end at the respective principal
T-points Ti; see [18] for details. The curve h1 represents the main homoclinic and heteroclinic
connections of p±, which lie extremely close together so that they cannot be distinguished in
the (ρ, σ)-plane. Also shown is a circle Cη with center T1 and radius η = 2.8729, which is
parameterized as

(15)
{
ρ = ρT + η cos(θ),
σ = σT + η sin(θ).
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Figure 8. Computing the locus F1 past the T-point T1. Panel (a) shows the curves F1 (brown), h1 (green),
and α1 (teal) in the (ρ, σ)-plane with the circle Cη for η = 2.8729 centered at T1. Panel (b) shows intersection
curves of Wu(Γrl) in Σρ at θ = 0.3142, indicated by the black dot on Cη, together with the direction V at p+;
the range shown is the square with all sides at distance 5 from p+.

The curve F1 intersects Cη at θF ≈ 2.1231 and θF ≈ −0.7680, while α1 intersects Cη at
θα ≈ 3.28720 and h1 at θh ≈ 0.14097. The black dot on the circle Cη labeled (b) corresponds
to θ = 0.3142; the situation on Σρ for this parameter point is illustrated in Figure 8(b), which
shows intersection curves in W̃ u(Γrl) near p+, the point qu, the direction V at p+, and the
locus C. We observe that the phase portraits in Figure 8(b) and Figure 5(b2), for (ρ, σ)-pairs
on either side of h1, are topologically different. Nevertheless, the curve W̃ u

F (Γrl) has the end
point qu in Σρ also in Figure 8(b). This allows us to set up a BVP as in subsection 4.2 but now
with the additional condition that the values of ρ and σ lie on a circle Cη. That is, we continue
the BVP for u0 and uΓ with conditions (8), (9), (11)–(13), and (15), where θ is a decreasing
(or increasing) continuation parameter, until (6) is again satisfied. We then compute the new
branch of F1 as before with ρ and σ as continuation parameters and without requiring (15).
Indeed, the top branch of F1 in Figure 8(a) was computed in this way. Note that the overall
curve F1 is smooth at T1.

5.1. Tangency locus in the (ρ, σ)-plane. Figure 9 is a direct comparison of our computed
bifurcation diagram in panel (a) with the corresponding sketch by Bykov and Shilnikov [16, 17]
in panel (b). The main elements of comparison are the curve EtoP of heteroclinic connections
from the origin to Γrl and the curve F1 of first foliation tangency, with the T-point on it;
they are denoted EtoP, F1, and T1, respectively, in panel (a) and la, lk, and Q, respectively,
in panel (b). The agreement between these objects is very good. Notice, in particular,
that the intersection K1 ≈ (27.74, 17.87) of EtoP and F1 in panel (a) agrees well with the



FIRST FOLIATION TANGENCIES IN THE LORENZ SYSTEM 2147

(a)
hr F1 EtoP H

T1
h1

α1

K1

K2

ρ12 18 28 42 60

σ

0

10

28

(b)

Figure 9. First foliation tangency locus F1 and associated bifurcation curves of (1) in the (ρ, σ)-plane for
β = 8

3 . Panel (a) shows our computations, where the curves EtoP (blue) and F1 (brown) intersect at points
K1 and K2 and bound the region where the Lorenz attractor L exists (purple shading). Also shown are T1 and
the curves hr (black), H (red), h1 (green), and α1 (teal); the region of preturbulence is shaded gray, and the
region for which a quasi-attractor exists is shaded blue; darker tints indicate regions of multistability. Panel (b)
is the sketch [17, Figure 3] by Bykov and Shilnikov. It shows the curve la of EtoP connections and the curve lk
of first foliation tangency, which intersect at the point K; the T-point is the point Q, and the Lorenz attractor
exists in the shaded region A; reproduced from Springer and Birkhäuser, Selecta Mathematica Sovietica, On the
boundaries of the domain of existence of the Lorenz attractor, 11, 1992, 375–382, V V Bykov and A L Shilnikov,
with kind permission of Springer Science+Business Media.
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intersection point K ≈ (27.7, 17.7) of la and lk in panel (b); similarly, the location of T1 at
(ρT , σT ) ≈ (30.8680, 10.1673) in panel (a) agrees well with Q ≈ (30.4, 10.2) in panel (b). The
region shaded purple in panel (a) agrees with the shaded region labeled A in panel (b), where
the Lorenz attractor L was found to exist by Bykov and Shilnikov.

The agreement of the two panels of Figure 9 over the parameter range of panel (b) confirms
simultaneously the validity of our continuation approach for finding F1 as well as Bykov and
Shilnikov’s method for finding the equivalent curve lk. Indeed, their approach is quite different
and not based on continuation. Rather, to compute the locus lk, Bykov and Shilnikov consider
W u(0) at the boundary of the chaotic attractor as a separatrix. Specifically, they consider the
separatrix value A, which describes the orientation of the Poincaré return map: for A < 0, a
hooked horseshoe exists, and for A > 0, it does not. Therefore, the locus A = 0 are the points
at which there is a topological change in the chaotic attractor that corresponds to the loss of
the foliation condition. To approximate the value of A, Bykov and Shilnikov determine in [17]
a change in the orientation of homoclinic orbits of 0. The manifold W s(0), when followed
around a homoclinic loop of W u(0), may form either an orientable surface, homeomorphic
to a cylinder, or a nonorientable one, homeomorphic to a Möbius band. The homoclinic
orbit switches from being orientable to being nonorientable when A = 0, which occurs at a
codimension-two bifurcation point called an inclination flip [40]. For the Lorenz system, there
are many different homoclinic loops to 0, and the associated inclination flip points appear
to lie on a curve; it is not clear, however, that lk is indeed a curve. Bykov and Shilnikov
computed lk by following a trajectory close to a homoclinic loop of W u(0) and checking on
which side of W s(0) this trajectory returns to a cross section close to 0 and transverse to
W s(0); the cross section used by Bykov and Shilnikov had to be chosen carefully, especially
for parameter values near T-points [57]. Further computational details are not given in [17]
of how and for which homoclinic orbits the inclination flip points were identified to determine
and sketch the curve lk in the (ρ, σ)-plane.

Figure 9(a) shows the (ρ, σ)-plane over a larger range; moreover, apart from the curves
EtoP and F1, we also computed and show the curve hr of the first homoclinic bifurcation,
the curve H of Hopf bifurcation, and the curves α1 and h1 associated with the T-point T1. In
this way, we are able to distinguish regions of different dynamics of the Lorenz system. In the
white region to the left of the curve hr the equilibria p± are stable and the only attractors. In
the gray-shaded region between hr and EtoP, one finds the preturbulent regime [41], where p±

are still the only attractors but arbitrarily long chaotic transients can be found. To the right
of EtoP, one finds a chaotic attractor that coexists with the attractors p± to the left of the
curve H. As was already mentioned, the Lorenz attractor L exists in the purple-shaded region
bounded by the curves EtoP and F1. As Figure 9(a) shows, we find a second intersection point
between these two curves at K2 ≈ (48.02, 4.02) that was not known to Bykov and Shilnikov.
Hence, we conclude that the region of existence of L is, in fact, bounded in the (ρ, σ)-plane.
In the blue-shaded regions, a so-called quasi-attractor exists [2, 58]. In this region of the
parameter space, the quasi-attractor undergoes many more bifurcations, including period-
doubling cascades, which are not shown in the figure; see [11, 26, 60] for more details.

5.2. The locus in the full parameter space. An advantage of our BVP continuation
approach is that, once we have identified points on either of the two branches of the curve
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Figure 10. First foliation tangency locus F1 and associated bifurcation curves of (1) in the (ρ, β)-plane
for σ = 10 in panel (a) and in the (σ, β)-plane for ρ = 28 in panel (b); compare with Figure 9(a).

F1 in the (ρ, σ)-plane, we can follow them as curves in any combination of two parameters.
Figure 10 shows the locus F1 of first foliation tangency as part of the bifurcation diagram
in the (ρ, β)-plane for fixed σ = 10 in panel (a) and in the (σ, β)-plane for fixed ρ = 28 in
panel (b); the labels and shading are as in Figure 9(a). Note that the principal T-point T1
also appears in each of these parameter planes, at T1 ≈ (30.4744, 2.6232) in panel (a) and at
T1 ≈ (8.9466, 2.3490) in panel (b), and again divides the curve F1 into two branches. Moreover,
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Figure 11. The surfaces EtoP (blue) and F1 (brown) up to their intersection curves K1 and K2 form a
cone in (ρ, σ, β)-space, shown here for (ρ, σ, β) ∈ [10, 120] × [0, 50] × [1, 7]; also shown is the surface H (red)
inside the cone. The curve T1 lies on F1, and it meets K1 and K2 at the T-point-Hopf bifurcation point TH
at (ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324). The (ρ, σ)-plane for β = 8

3 from Figure 9(a) is shown in gray with the
corresponding intersections of F1, EtoP, and H highlighted as curves.

we find that the curves EtoP and F1 have two intersection points, at K1 ≈ (18.86, 1.64) and
K2 ≈ (155.98, 9.03) in the (ρ, β)-plane of panel (a) and at K1 ≈ (3.23, 1.53) and K2 ≈
(18.10, 2.70) in the (σ, β)-plane of panel (b). Hence, we conclude that the region of existence
of L between the curve F1 and EtoP is a bounded region in all three parameter planes in
Figures 9(a) and 10. Notice further that the general features of the three two-parameter
bifurcation diagrams are very similar.

Figure 11 shows that, in the full (ρ, σ, β)-space, the region of existence of the Lorenz
attractor L is a slanted cone bounded by the surfaces EtoP and F1 that intersect transversally
in curves K1 and K2. Also shown are the surface H of Hopf bifurcation inside the cone and the
curve T1 of T-points on the surface F1. The slanted conical shape explains why a bounded
region of existence of L can be found in each cross section defined by a parameter pair,
provided that the respective third parameter is large enough. Moreover, we conjecture that
in these three cross sections, the relative positions of the curves EtoP, F1, and H are always
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topologically as shown in Figures 9(a), 10(a), and 10(b). We illustrate this observation in
Figure 11 by showing the corresponding segments of the bifurcation curves in the (ρ, σ)-plane
for β = 8

3 . In fact, the surfaces in Figure 11 were obtained by computing the curve segments
of EtoP, F1, and H in the (ρ, σ)-plane for 60 different values of β ∈ [1, 7] and then rendering
the corresponding data as individual surfaces; intersection data were used to obtain the curves
K1 and K2 and the intersection between H and F1, while the curve T1 was computed directly
by continuation.

The tip of the slanted cone in Figure 11 is formed by a point TH of T-point-Hopf bifurca-
tion at (ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324). As the name suggests, at the codimension-three
bifurcation point TH, the equilibria p± involved in the T-point heteroclinic connection un-
dergo a Hopf bifurcation and, hence, are nonhyperbolic. In (ρ, σ, β)-space, this corresponds to
the curve T1 ending on the surface H. Past the point TH, the (pair of) connecting orbits from
the origin 0 to p± are no longer of codimension two but rather structurally stable because p±

are now attractors. The T-point-Hopf bifurcation point in the Lorenz system has been found
and studied by Algaba et al. in [5]. They show that a curve of codimension-two T-point
bifurcation emerges from this codimension-three point and that codimension-one connections
from 0 to the bifurcating saddle periodic orbits exist nearby. The latter correspond to the
surface EtoP in Figure 11, which indeed meets the surface H exactly at the point TH.

The new observation in Figure 11, which goes well beyond the results in [5], is that the
T-point-Hopf bifurcation point TH also involves the locus F1 of first foliation tangency and,
hence, the emergence of a region of existence of the Lorenz attractor L. In fact, we find
that the two intersection curves K1 and K2 of the surfaces EtoP and F1 are two branches
of a smooth curve K that is transverse to T1 at TH; the intersection curve of F1 and H is
also smooth and tangent to K at TH. Our results show that the codimension-three point TH
emerges as the organizing center that gives rise to the Lorenz attractor L and the cone that
bounds its region of existence. It is a natural conjecture from Figure 11 that the region of
existence of L is unbounded in (ρ, σ, β)-space. This is corroborated by the work of Barrio
and Serrano in [8, 11, 12], who use numerical integration and the computation of Lyapunov
exponents to identify regions of chaotic dynamics via the computation of Lyapunov exponents.
More specifically, these authors consider where chaotic dynamics exist in the (σ, β)-plane of
the Lorenz system for various values of ρ; they find that the corresponding regions grow as ρ
increases, yielding an overall conical shape of the region of existence of chaotic dynamics in
the (ρ, σ, β)-space. Barrio and Serrano do not distinguish the region of existence of L within
the overall parameter set of chaotic dynamics. Yet for low values of the parameters ρ, σ, and
β, the cone of existence of L in Figure 11 appears to agree well with the parameter region of
chaotic dynamics found in [12].

5.3. Further first foliation tangencies in the (ρ, σ)-plane. The first foliation tangency
created by crossing F1 corresponds to the loss of the foliation condition and provides a bound-
ary to the region of existence of L. However, we find that there are further first foliation
tangencies Fi associated with further T-points Ti. Figure 12 shows a larger region of the (ρ, σ)-
plane with the additional loci F2 and F3 that pass through the T-points T2 and T3, respectively.
As discussed earlier, each T-point Ti comes with associated curves hi of homo/heteroclinic con-
nections and αi of α-flips. We also show the first homoclinic bifurcation hr, the heteroclinic
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Figure 12. Bifurcation diagram in the (ρ, σ)-plane with the first three first foliation tangency curves Fn for
n = 1, . . . , 3 (brown); they contain the T-points (purple) T1 ≈ (30.8680, 10.1673), T2 ≈ (85.0292, 11.8279), and
T3 ≈ (164.1376, 12.9661), respectively, with the associated curves of homo/heteroclinic connections hi (green)
and α-flips αi (teal). Also shown are the curves hr, EtoP, and H, with the same colors and shadings as in
Figure 9(a), and further homoclinic bifurcation curves hrl, hrlr, hrlrr, and hrlrll (black). The curve PD1 bounds
the dark-gray region, where the periodic orbit Γrl is an attractor. The limit of a cascade of period doublings
in the light-gray region is indicated by the curve PD5 of fifth period-doubling bifurcation. The black diamonds
labeled (a)–(c) correspond to columns of Figure 13.

connection EtoP, and the Hopf bifurcations H from Figure 9(a) with the same shading of
the different regions. The periodic orbit Γrl is an attractor in the dark-gray shaded region,
bounded by the curve PD1 of a period-doubling bifurcation, which is part of a cascade of
period-doubling bifurcations; we plot the fifth period-doubling bifurcation curve PD5, which
indicates the limit of this cascade. Finally, we show four further curves of homoclinic bifur-
cations, labeled hrl, hrlr, hrlrr, and hrlrll, indicating the respective symbol sequence of the
associated homoclinic orbit. Notice that hrlrr and hrlrll spiral into T2 and T3, respectively,
while hrl and hrlr pass in between T-points.

A successive crossing of the curves Fi as ρ and/or σ increase corresponds to the onset
of additional tangencies between the intersection curves W̃ u(Γrl) and W̃ s(0) with Σρ. How
this works geometrically is illustrated in Figure 13 with images of the respective invariant
manifolds at the parameter points (black diamonds) labeled (a)–(c) in Figure 12. Specifically,
the top panels of Figure 13 show Γrl with its two-dimensional unstable manifold W u(Γrl),
the one-dimensional unstable manifold W u(0), and the plane Σρ; the bottom panels show the
corresponding intersection curves W̃ u(Γrl) and points W̃ u(0) with Σρ, together with W̃ s(0).
Observe from panels (a2)–(c2) that none of the curves in W̃ u(Γrl) crosses the tangency locus
C. Figure 13(a) is for (ρ, σ) = (50, 15), a parameter pair in between F1 and F2, and panel (a2)
clearly shows that there are tangencies between W̃ u(Γrl) and W̃ s(0) in the central region
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Figure 13. The unstable manifold Wu(Γrl) (red) and the two foliations in Σρ after F1 for (ρ, σ) = (50, 15)
in column (a), after F2 for (ρ, σ) = (100, 20) in column (b), and after F3 for (ρ, σ) = (170, 255) in column (c);
see the correspondingly labeled points (black diamonds) in Figure 12. Panels (a1)–(c1) show Γrl (yellow) with
Wu(Γrl) (red), Wu(0) (brown), and Σρ (green), and panels (a2)–(c2) show W̃u(Γrl) (red), W̃ s(0) (blue), and
the tangency locus C (gray) in Σρ; compare with Figures 3 and 4.



2154 JENNIFER L. CREASER, BERND KRAUSKOPF, AND HINKE M. OSINGA

(b1)

p+

p−

Wu(Γrl)

Γrl

Wu(0)

0

Σρ

�
�

�✒
y

❳❳❳③ x

✻
z

(b2)

W̃u(Γrl)

W̃ s(0)
p+p−

⊙ ⊗

⊗ ⊙

Figure 13. (cont.).
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where the flow is down; compare with Figure 4(b). These tangencies are due to the U-shape
of curves in W̃ u(Γrl); there is a single point of tangency with a curve of the stable foliation
on each of the curves in W̃ u(Γrl). When F2 is crossed, the central part of W u(Γrl) appears to
scroll around the z-axis; see Figure 13(b1). Panel (b2) shows that the curves in W̃ u(Γrl) now
make a full turn around the origin of Σρ; hence, each curve in W̃ u(Γrl) now has two points of
tangency with the stable foliation. When F3 is crossed, one finds an additional half scroll of
W u(Γrl) around the z-axis in Figure 13(c1), so that curves in W̃ u(Γrl) now make one and a
half turns around the origin of Σρ and each curve has three points of tangency with the stable
foliation.

We remark that Dellnitz et al. [19] computed the closure of the unstable manifold W u(p+)
of p+, which is a global attractor, for different values of β ∈ [0.4, 8

3 ] and fixed ρ = 28 and σ = 10
to illustrate their box covering method. As β is decreased, their computed attractor shows an
increasing amount of spiraling behavior around the z-axis. With their focus on computation
and visualization, the authors of [19] did not further investigate this phenomenon. Their
global attractor is reminiscent of W u(Γrl), as shown in Figure 13(c1), since decreasing β for
fixed ρ = 28 and σ = 10 is analogous to increasing ρ for fixed β = 8

3 and σ = 10; compare
Figures 9 and 10.

We detected and continued the first foliation tangencies along the loci F2 and F3 with
our multi-segment BVP setup from subsection 4.2 as follows. The computation is started
at fixed θ = 0.3142 on the circle Cη with radius η, shown in Figure 8(a). We continue the
BVP with conditions (8), (9), (11)–(13), and (15) and increase η as a continuation parameter
until we detect further zeros in (6). Each such zero corresponds to the moment of onset of
another foliation tangency. Once it is detected, the new first foliation tangency is continued
in ρ and σ as the solution of the BVP with conditions (8), (9), and (11)–(14). In this way, we
compute the loci F2 and F3 above and up to the T-points T2 and T3, respectively. To detect
and compute the other sides of F2 and F3, we continue the BVP with conditions (8), (9),
(11)–(13), and (15) and increase η until η = 60 and η = 140, respectively. We then fix η at
each of these values and continue the same BVP but now with θ as a decreasing continuation
parameter. In this way, a zero of (6) is detected in each case, and continuation in ρ and σ of
the BVP with conditions (9) and (11)–(14) yields the other sides of F2 and F3, below T2 and
T3. Notice from Figure 12 that the loci F1, F2, and F3 end very near the curve PD5, that is,
near the limit of the period-doubling cascade starting from the periodic orbit Γrl that is used
in our computational setup.

It is interesting to compare the bifurcation diagram in Figure 12 with the figure by Barrio,
Shilnikov and Shilnikov from [13, Figure 8(a)] that illustrates the type of attractor of the
Lorenz system. Specifically, these authors considered a grid of parameter points in the (ρ, σ)-
plane and determined numerically “solid-color regions associated with constant values of the
kneading invariant [that] correspond to simple dynamics dominated by stable equilibria or
stable periodic orbits” [13]. The curves hr and EtoP are readily identified. More importantly,
one can observe changes of color between neighboring regions that appear to lie along curves
associated with T-point bifurcations Ti. These color changes correspond to the addition of a
half twist in the template of the attractor, and they align very well with the loci F2 and F3
in Figure 12.
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6. Conclusions and outlook. We characterized and found the moment of loss of the
foliation condition, when the geometric Lorenz map no longer faithfully describes the dynamics
of the classic Lorenz attractor L. More specifically, we identified and computed the onset
of tangencies between the stable and unstable foliations in the classic Poincaré section Σρ

through the secondary equilibria p±. To this end, we computed the two-dimensional unstable
manifold W u(Γrl) of the symmetric periodic orbit Γrl and its intersection curves W̃ u(Γrl)
with Σρ, which lie in the unstable foliation. We also computed curves of the stable foliation
as the intersection curves W̃ s(0) of the stable manifold W s(0) of the origin 0 with Σρ. To
find the moment of first foliation tangency, we formulated and implemented a multi-segment
boundary value problem to define a regular test function that is zero when the tangent vector
at the end point of a curve in W̃ u(Γrl) is collinear with the direction of the stable foliation.
This allowed us to determine the value of ρ = ρF ≈ 31.01 as the moment when the foliation
condition fails for σ = 10 and β = 8

3 . This value was confirmed as accurate to two decimal
places by independent computations with unstable manifolds W u(Γrll) of Γrll and W u(p+)
of p+. Our approximation of ρF lies outside the interval suggested by Sparrow [60] (from
simulations of how vectors return to Σρ) but matches very well the approximation found in
the work of Bykov and Shilnikov [17].

An advantage of our approach is that the locus F1 of the first foliation tangency can
be continued readily as a curve in two parameters. There is very good agreement between
the curve F1 in the (ρ, σ)-plane with β = 8

3 fixed and the corresponding curve lk found
by Bykov and Shilnikov [17], who identified numerically when flip bifurcations of various
homoclinic orbits occur; we view this agreement as a mutual verification of two complementary
approaches. Our implementation of simply the condition that the foliations in Σρ become
tangent does not require making assumptions about the underlying dynamics, such as the
existence of homoclinic orbits. We were able to continue the locus F1 further in the (ρ, σ)-
plane and show that it intersects the curve of EtoP connections twice; hence, the region of
existence of the Lorenz attractor L is, in fact, bounded. We find that it is bounded for all
sufficiently large values of β as well as in the (ρ, β)-plane and the (σ, β)-plane for sufficiently
large values of σ and ρ, respectively. By computing segments of the respective bifurcation
curves in the (ρ, σ)-plane for 60 values of β ∈ [1, 7], we show that the region of existence of
L has the shape of a slanted cone in the three-dimensional (ρ, σ, β)-parameter space; this is
consistent with the findings of Barrio and Serrano [8, 11, 12] regarding parameter regions with
chaotic dynamics.

In each of the different two-parameter planes, we find that the curve of first foliation tan-
gency has two branches on either side of a point of principal T-point bifurcation, where one
finds a codimension-two heteroclinic cycle between the origin 0 and the equilibria p±. Hence,
in (ρ, σ, β)-space, there exists a curve of principal T-point bifurcation that lies on the surface of
the loss of the foliation condition, and we find that the tip (ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324)
of this cone is a codimension-three T-point-Hopf bifurcation point. The bifurcation structure
near a T-point-Hopf bifurcation in the Lorenz system has recently been studied by Algaba
et al. [5] but is not yet complete. Our results are consistent with their analysis and, fur-
thermore, show that the locus of the loss of the foliation condition and the Lorenz attractor
L are effectively created by this codimension-three point. Determining the exact connection
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between the T-point-Hopf bifurcation and the loss of the foliation condition is an interesting
subject for further research.

There exists a sequence of further T-point bifurcations in the Lorenz system that can
be found systematically by identifying and continuing the phenomenon we refer to as an
α-flip [18]. It is a natural conjecture that a first foliation tangency Fi is associated with
any of the infinitely many T-points Ti. Indeed, we computed the curves F2 and F3 of first
foliation tangencies in the (ρ, σ)-plane that are associated with the T-points T2 and T3, re-
spectively. Each such tangency between the stable and unstable foliations leads to changes of
the observed attractor. Our bifurcation diagram with loci of first foliation tangencies in the
(ρ, σ)-plane is in very good agreement with the numerical images by Barrio, Shilnikov, and
Shilnikov [13] that illustrate the symbolic type of the attractor. The boundary of the quasi-
attractor was also found by Shilnikov et al. in the related Shimizu–Morioka system, again
with the method from [17] of finding and connecting inclination flip points of homoclinic orbits
in a two-parameter plane [56, 58]. A sequence of additional T-points with segments of the
associated “hook formation curves” are shown in [58, Figure 13]. It would be interesting to
compute these loci by continuation as curves of first foliation tangencies and place them in
the context of the wider bifurcation diagram of the Shimizu–Morioka system.

A related interesting question is to study further how other global bifurcations of the
Lorenz system relate to the overall bifurcation diagram in the (ρ, σ)-plane presented in this
paper. In particular, many (structurally stable) heteroclinic connections from p+ to 0 were
identified in [23] as part of an infinite sequence. All of these emerge from the first homoclinic
bifurcation hr; when continued in ρ, each of these connecting orbits, except for the basic one,
has a fold for some high value of ρ and, when continued past the fold for decreasing ρ, ends at
a particular secondary homoclinic bifurcation. The many secondary homoclinic bifurcations
found in [23] give rise to curves in the (ρ, σ)-plane in the range 0 ≤ ρ ≤ 200 that accumulate
on the curve EtoP. In the process, these curves cross the loci Fi of first foliation tangency and
therefore, the corresponding homoclinic bifurcations are expected to undergo inclination flip
bifurcations [17]. Inclination flip bifurcations have been linked to emerging stability windows
of stable equilibria and periodic orbits in the Shimizu–Morioka system [67]. These numerous
inclination flip bifurcations, of which there exist several types [40], and their role for the
organization of nearby chaotic dynamics and stability windows can be studied in the spirit of
recent investigations [3, 30]. This is an interesting direction for future work.

The BVP approach presented here allows one to find and investigate systematically (first)
tangencies between invariant manifolds that lead to topological changes of chaotic attractors,
including their creation and destruction. We expect that this will also be relevant for the
study of other systems, especially of other three-dimensional dissipative systems. Examples
are the Rössler system and the Rosenzweig–MacArthur models considered by Barrio, Blesa,
and Serrano [7, 9, 10]. In particular, they [10, Figure 1] identify a boundary curve in a two-
parameter plane that “determines a change in the topological structure of chaotic attractors
[of the Rössler system and a tritrophic food chain] from spiral . . . to screw shaped” [10]. This
curve passes through a central or focal point of a bifurcation structure that is strikingly similar
to that near a T-point of the Lorenz system. The Rössler system [53] has different attractors
for different parameter values, which are referred to in [29] as the simple single-scroll Rössler
attractor and the more complicated funnel. The appearance of additional extrema in the
first-return map corresponds to a topological change in the structure of the attractor via the



FIRST FOLIATION TANGENCIES IN THE LORENZ SYSTEM 2159

creation of additional funnel structures [7, 10]; a transition from scroll to funnel attractor has
also been observed in a Chua circuit experiment in this way [50]. It would be interesting to
find and visualize the stable and unstable manifolds in these systems, to determine how their
interactions organize the observed topological changes, and to compute loci of first foliation
tangencies directly by continuation.

Finally, we mention that it will be an interesting challenge to consider with similar methods
bifurcations of Lorenz-like attractors in higher dimensions. Higher-dimensional geometric
Lorenz attractors have been constructed, for example, by Bamón, Kiwi, and Rivera-Letelier [6]
and Shilnikov and Turaev [62]. The system constructed in [6] is a noninvertible map of the
plane that has been shown to contain a so-called wild Lorenz-like chaotic attractor, which is
a higher-dimensional version of a Lorenz attractor that contains a hyperbolic set with robust
homoclinic tangencies. Bifurcations that generate this type of dynamics in this map were
studied recently in [39]; in particular, tangency bifurcations of stable and unstable manifolds
of different hyperbolic sets were identified as important ingredients. In the vector-field context,
the role of a T-point might be played by a heterodimensional cycle formed by intersections of
the stable and unstable manifolds of saddle periodic orbits with different unstable dimensions.
This type of structure has been shown to imply the robustness of homoclinic tangencies in
higher dimensions [15]. The minimal example of a heteroclinic cycle between two saddle
periodic orbits in a four-dimensional vector field has been identified recently in a model of
intracellular calcium dynamics [68]. The investigation of the bifurcation structure of invariant
manifolds in this vector-field model is ongoing.

Appendix A. List of accuracy parameters and AUTO constants. The accuracy of the
computations with our multi-segment BVP continuation setup depends on the number and
distribution of mesh points and the starting distances in the (un)stable eigenspaces from
the equilibrium or periodic orbit [22]. Since we used Auto [20, 21] for the continuation
of the BVPs, we specify the Auto constants along with other accuracy parameters used
in the computations. For each of the figures in this paper, the one-dimensional unstable
manifold W u(0) for fixed ρ, σ, and β was approximated starting at a distance δ0 = 10−7

from 0 and computed up to the tenth intersection with Σρ using NTST = 400, DSMIN = 1.0,
and DSMAX = 10−5; a shorter segment of W u(0) was plotted in Figures 1, 2, and 4. The
intersection points were plotted as W̃ u(0) in Figures 1, 4, 5, 8, and 13.

The values used to compute the manifolds W u(Γrl), W u(Γrll) W u(p+), and W s(0) and
bifurcation curves hr, hrl, hrlr, hrlrr, and hrlrll are summarized in Table 1. The first column
indicates the figure number, and we then specify the following data: the label of the manifold
or bifurcation curve computed; the distance δΓ, δ0 or δp+ of u(0) from periodic orbits Γrl
or Γrll, the origin 0 or the equilibrium p+, respectively; the maximal arclength Lmax of the
orbit segments; the maximal integration time τmax; the number of mesh points NTST; and
the minimal step size DSMIN and the maximal stepsize DSMAX of the Auto computation;
throughout we used NCOL = 4 collocation points per mesh interval. The curves αi and hi
in Figures 8–10 and 12 were computed as in [18]. The EtoP connection in Figures 9–12 was
computed with Lin’s method as described in [45].

Appendix B. Dependence of ρF on chosen κ and V . We briefly discuss how the
accuracy of the approximation of ρF as a zero of (6) depends on the choices for the radius
κ, which determines the approximate tangent at the end point qu of a leaf in the unstable
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Table 1
Accuracy parameters used in the computations for the given figures.

Figure Manifold δΓ, δ0 or δp+ Lmax τmax NTST DSMAX DSMIN

1 Wu(Γrl), W̃u(Γrl) 0.1 700 7.0 400 0.1 10−6

2 Wu(Γrl) 0.1 700 7.0 400 0.1 10−6

Wu(Γrll) 0.1 500 5.0 400 0.1 10−6

Wu(p+) 1.0 700 7.0 400 0.2 10−4

3 W s(0), W̃ s(0) 1.0 −3.0 300 0.2 10−3

W̃u(Γrl) 0.1 700 7.0 400 0.1 10−6

4 Wu(Γrl), W̃u(Γrl) 0.1 12.0 1200 0.1 10−6

W̃ s(0) 1.0 −4.0 1000 0.2 10−3

5 W̃u(Γrl) 1.0 9.0 300 0.1 10−4

W̃ s(0) 1.0 −5.0 300 0.1 10−4

6, 7 Wu(Γrl) 0.1 400 1.0 10−5

8 Wu(Γrl) 0.1 7.0 400 1.0 10−5

9, 10, 12 Wu(Γrl) 0.1 400 1.0 10−5

hr – hrlrll 0.01 400 1.0 10−5

11 Wu(Γrl) 0.1 400 1.0 10−5

13 W̃ s(0) 1.0 −3.0 200 1.0 10−4

(a) Wu(Γrl), W̃u(Γrl) 0.1 5.0 500 0.1 10−5

(b) Wu(Γrl), W̃u(Γrl) 0.1 3.5 500 0.1 10−5

(c) Wu(Γrl), W̃u(Γrl) 0.1 2.5 500 0.1 10−5

foliation, and the direction V , which represents the tangent at qu to the corresponding leaf in
the stable foliation.

Leaves of the unstable foliation can be approximated by using the unstable manifolds of
periodic orbits or of p±. We computed ρF with three different unstable manifolds, namely,
W u(Γrl), W u(Γrll), and W u(p+), and increasingly smaller values of κ. The results are shown
in Table 2. The computations were performed with other accuracy parameters as listed in
Table 1. We approximated ρF for κ = 10−k, where k = 1, . . . , 5, except for W u(Γrll), for
which we only got κ down to 10−4; as mentioned in subsection 4.2, smaller values of κ are
impractical due to the associated very close passage near the origin of the orbit segment uΓ.
Table 2 suggests that the relative error appears to decrease quadratically with κ for each of the
three manifolds. This is in line with the theoretical expectation because we are approximating
a tangent of a generically quadratic curve with a secant through points at distance κ. We
checked that an increase in the number of mesh points along each orbit segment affects the
values of ρF in Table 2 only in the fourth decimal place. Overall, Table 2 provides the evidence
that estimates for ρF are accurate to two decimal places when using κ = 10−4.

As discussed in section 4, we use the line V , given as the direction of W s(p+) projected
onto Σρ, as a convenient local approximation of the tangent to the stable foliation W̃ s(0)
at the point qu near p+. To check the influence of the choice of V on the accuracy of the
computed value of ρF , we proceed in the following way. For fixed ρ = 31.0, we compute the
curves in W̃ s(0) up to total integration time τmax = −5 and consider the curve nearest p+ in
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Table 2
Estimates of ρF computed with each of the unstable manifolds Wu(Γrl), Wu(Γrll), and Wu(p+) and various

choices of κ.

κ ρF using Wu(Γrl) ρF using Wu(Γrll) ρF using Wu(p+)
10−1 32.67338078 32.67348098 32.67337765
10−2 31.08704778 31.08707035 31.08704696
10−3 31.01406849 31.01410824 31.01406675
10−4 31.00714539 31.00740473 31.00713356
10−5 31.00653795 31.00642548

Table 3
Estimates of ρF computed with the vectors V , Vint, and VF , together with the associated angular difference

from V , in both radians and degrees.

Using V Using Vint Using VF
ρF 31.007145 31.007306 31.008982
angle (rad) 0 0.003453 0.039461
angle (deg) 0 0.197854 2.260963

the central region of the Poincaré section, where the flow points downward. The normalized
tangent vector to this curve at its intersection point (x, y) ≈ (6.83797910, 4.87689754) with
W̃ u
F (Γrl) is the vector

VF =
(
−0.94203910

0.33550312

)
.

The normalized vector V at p+ ≈ (8.94427191, 8.94427191), on the other hand, is

V =
(

0.85008957
−0.34111521

)
.

Since the stable direction changes linearly along W̃ u
F (Γrl), to first approximation, we interpo-

late linearly between VF and V to find the improved vector

Vint =
(
−0.85751589

0.34066195

)

at qu ≈ (8.8294691, 8.75783413). Instead of V , we then use Vint, as well as the arguably less
accurate vector VF in our computation of ρF , as described in subsection 4.1. The first row in
Table 3 summarizes the estimates of ρF for each of these vectors. The next two rows are the
angle difference from V in both radians and degrees. We find that both Vint and VF lead to
the same approximation of ρF to two decimal places in spite of an angle difference at ρ = 31
of up to about 2.26 degrees. This suggests that our BVP setup is quite insensitive to the exact
choice of direction vector for the stable foliation at qu.
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limit cycles and chaotic attractors, Physica D, 238 (2009), pp. 1087–1100.
[11] R. Barrio and S. Serrano, A three-parametric study of the Lorenz model, Physica D, 229 (2007),

pp. 43–51.
[12] R. Barrio and S. Serrano, Bounds for the chaotic region in the Lorenz model, Physica D, 238 (2009),

pp. 1615–1624.
[13] R. Barrio, A. L. Shilnikov, and L. P. Shilnikov, Kneadings, symbolic dynamics and painting Lorenz

chaos, Int. J. Bifurcat. Chaos, 22 (2012), p. 1230016.
[14] R. Barrio, A. Dena, and W. Tucker, A database of rigorous and high-precision periodic orbits of the

Lorenz model, Comput. Phys. Commun., 194 (2015), pp. 76–83.
[15] C. Bonatti, L. J. D́ıaz, and M. Viana, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric

and Probabilistic Perspective, Vol. 102, Springer Science & Business Media, 2006.
[16] V. V. Bykov and A. L. Shilnikov, On the boundaries of the domain of existence of the Lorenz attractor,

Metody Kachestvennoi Teorii i Teorii Bifurkatsǐı, (1989), pp. 151–159 (in Russian).
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