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Abstract. Semig¢onductor alloyshof aluminum gallium arsenide (AlGaAs) exhibit
strong second-order optical nonlinearities. This makes them prime candidates for the
integration of devices for classical nonlinear optical frequency conversion or photon-
pair production, for.example, thirough the parametric down-conversion (PDC) process.
Within this material system, Bragg-reflection waveguides (BRW) are a promising
platform, but/ the specifics of the fabrication process and the peculiar optical properties
of the alloys require careful engineering. Previously, BRW samples have been mostly
derived analyticallyyfrom design equations using a fixed set of aluminum concentrations.
This approach limits the variety and flexibility of the device design. Here, we present
a comprehensive guide to the design and analysis of advanced BRW samples and
shew how to automatize these tasks. Then, nonlinear optimization techniques are
employed to gailor the BRW epitaxial structure towards a specific design goal. As a
demonstration of our approach, we search for the optimal effective nonlinearity and
mode overlap which indicate an improved conversion efficiency or PDC pair production
rate. MHowever, the methodology itself is much more versatile as any parameter
related to the optical properties of the waveguide, for example the phasematching
wavelength or modal dispersion, may be incorporated as design goals. Further, we
use the developed tools to gain a reliable insight in the fabrication tolerances and
challenges of real-world sample imperfections. Omne such example is the common
thickness gradient along the wafer, which strongly influences the photon-pair rate and
spectral properties of the PDC process. Detailed models and a better understanding of
the optical properties of a realistic BRW structure are not only useful for investigating
current samples, but also provide important feedback for the design and fabrication of
potential future turn-key devices.
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1. Introduction

Bragg-reflection waveguides (BRWs) are promising candidates for developing turn-key
devices for a large variety of integrated nonlinear or quantum optical applications.
They are monolithic devices made of multiple, epitaxial layers of aluminum gallium
arsenide (AlGaAs) of different compositions. This material systemspossess a large
optical second-order nonlinearity [1]. Combined with the established semiconductor
process, this makes them a prime choice for the integration of eptoelectromic circuits.
Several important milestones, such as three-wave mixing [2-6], gorrelatéd and entangled
photon-pair production [7-18] or electrically injected lasers, [10,15, 19-21] have been
demonstrated in this system. Recently, engineering of the generated photon-pair state
has come into focus [12,13,16,18].

In this work, we show how to tailor the BRW structure tewards a specific design
goal. We optimize a simplified epitaxial layout fer high eomversion efficiency at an
operating wavelength of choice. The conversionwefficiency is related to the optical
nonlinearity, but waveguide specific effects, like the modal-éverlap, have to be taken into
account. Previous sample designs have often relied on complicated epitaxial layouts to
guarantee high conversion efficiencies. Instead, our proposed waveguides are at least as
bright, but with a greatly reduced complexity in fabrication. We can also show that
the new found structure possesses' faverable properties in terms of state engineering.
While optimizing the entanglement of the state'is not the main focus of this paper, the
concepts presented here also strongly affect this topic

Furthermore, predictability and consistency between a theoretical design and the
experimental implementation is also anmiissue. Though rarely acknowledged, experiments
often rely on large-number sta{istics to achieve progress, even in the broader field of
semiconductor quantum-gptics. Random fluctuations in the samples may or may not
help with reaching the setigoal, but fabricating a large number of devices often turns
out to be beneficial.  This is as also the case with BRWs. Consequently, in order
to follow a more rational approach, we discuss the influence of additional fabrication
issues that make ‘@ real sample deviate from the specifications. We show that some of
these deviationsscan,even be exploited to increase the yield. Regarding the individual
waveguides, (for example, the operating wavelengths and their acceptance bands are
strongly affected by/the details of the fabrication. By incorporating this knowledge
already/at the design stage, more waveguides are usable in the end.

The specifies of BRWs make them prime candidates for such an optimization and
accompanying comprehensive analysis. Since the design relies on the classical second-
order optical nonlinearity, the properties of the waveguide are grounded in classical
electrodynamics. Each epitaxial layer is at least 100 nm thick and the materials and
their_dispersion are well understood. This means that their behaviour is well defined
and should correspond perfectly to the specification.

The design process of a good BRW epitaxial structure is usually based on
simplification, heuristics, experience, but also a great deal of intuition. For certain



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - QST-100274.R1

4

configurations, design equations are readily available [22-25], parts of the gpossible
solution space have been computed [26-28] and alternative design objectives were
studied [29,30]. As an example, one may choose certain aluminum concéntrations; apply
the design equations and iterate on the layer thicknesses until a working sampleis found.
Local optimization is then achieved by choosing two variables, such agithe thicknesses
of the core and its aluminum concentration, and mapping the desired metric. While
this approach has worked well in the past, adding constraints or optimizing directly for
combinations of certain process parameters is either tedious ordinfeasibles By moving
to a largely automated sample design procedure, the time consuming manual trial-and-
error process is shortened significantly.

The algorithm presented here is general and also designed in,a way to search for
potentially unconventional structures. It is based on simulated annealing [31] and an
autonomous BRW analysis procedure, which can automatically find phasematching,
dispersion parameters, overlaps of the interactingtmodes and effective nonlinearities
of a given structure. A great deal of effort i§ required to make the search more
stable, as the numerical optimization procedure may stray?ar from established, working
designs. A heuristic objective function igfintroduced and the influence of the annealing
parameters on the convergence behaviour is discussed. Having a reliable routine enables
a straightforward analysis of other important parameters, like fabrication tolerances.
In that sense, we not only discuss eur'methodology, but are able to present several
candidates for a simpler-yet-better BRWhepitaxial structure.

We emphasize that our approach is not fundamentally restricted to certain tools
or devices. For example, we employ, Wolfram Mathematica [32] for its versatility with
postprocessing the data with the help ofia large existing code base. We have carried out
simpler but similar studiegswith, scriptable industry standard tools like COMSOL [33]
or Lumerical’s Mode Solutions [34]. In these cases, however, engineering the device is
often reduced to parameter 'sweeps. Instead, we aim for searching a complicated, high-
dimensional space derived from a multifactorial fitness function - which is an “objective-
first” approach [35]. Tt can also be adapted to other device types, especially ones relying
on the interaction of the higher order spatial modes.

Similar numerical.optimization techniques have been employed for different optical
systems, such ag'dielectrig filters [36], computer-designed holographic elements [37] or
generic nano-photonic structures [35]. Recently, interest has grown in applying them also
in the design ofiquantum optical photonic devices. For example, one can find nontrivial
poling patterns that shape the spectrum [38,39] of the generated photon-pairs. On a
breader scope, it is also worth mentioning the work of Dolgaleva et al. [40], who report
on their efforts on tailoring four-wave-mixing based frequency converting waveguides
made from AlGaAs.

‘Fhe paper is organized in the following way: first, we review the relevant theory
in section 2 to introduce the required quantities and notation. Then, in section 3.1,
the peculiarities of the autonomous analysis of a BRW epitaxial structure are discussed.
Section 3.2 focuses on the fine-tuning and behaviour of the numerical optimization
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procedure. Finally, in section 4 we present and analyse the found samples, shile in
section 5 we investigate the effect of the thickness gradient of a real-world sample on
the spectral properties of the photon-pairs.

2. Theoretical background

BRWs rely on modal phasematching to achieve nonlinear interactions, They are
primarily designed to convert light between the near infrared<around 775nm (NIR)
and the telecom C-band around 1550nm. While the primary goaldin this paper is to
the optimize the efficiency of second-harmonic generation, thie results are also beneficial
for the parametric down-conversion (PDC) processes. For this;ywe need to calculate
the optical eigenmodes of the structure, discuss the physiesiof the nonlinear interaction
and define the relevant quantities, like operating wavélengths and modal overlaps. The
latter are used as metric for the optimization in thefollowing section 3.2.

Initially, only two sets of equations are important: First, for optimizing the epitaxial
structure, we only need to take the one-dimensional, vetti¢ally oriented distribution of
the refractive index n(y) into account, as depicted in figure la. This greatly simplifies the
design procedure without sacrificing too muehhaccuracy. After optimization, the second
step involves verifying an etched, two-dimensionabhwaveguide, shown in figure 1b. This
is achieved by solving for the full-vectorial eigenmodes of Maxwell’s equations over the
two-dimensional refractive index distribution n(x,y). Here, z is the coordinate along
the plane, but perpendicular 4o, the waveguide direction, y the vertical coordinate and
etch directionf. The wave is then guided along the ridge in the z direction.

In the one-dimensional case, the wave equations for the TE-like modes, with the
spatial components of the electric fields £, and magnetic fields H,, (@ = z,y, 2), of a
dielectric waveguide are given/by (41]

2

B () + 50 w) Ealy) = BEx(y). 1)
Hy(y) = —%Ex(y) and (2)
.(0) = ——FL(0). 3)

In equations (1)-(3), w is the angular vacuum frequency of the light, 5 = negko is the
propagation constant (eigenvalue) with the vacuum wavenumber kg of the light. The
parameter pglis the vacuum permeability and ¢ the speed of light in vacuum. Writing
£ in terms of the effective mode index neg is convenient, and will be used further on.
Similaglyythe equations for TM-like modes are given by [41]

I @ ismot to be confused with the aluminum concentration x; of the Al,,Ga;_,, As compound in layer
i.
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Figure 1. Illustration of a B
width (b), with the terminology rdinate system convention used in this paper.
All dimensions and values are to s ample 2M-1 from table 1.

n*(y) = 2 H,(y), (4)
mHz(y) and (5)
(y) = —mﬂé(y)- (6)

refractive index distribution n(y). However, in the case
3 active index distribution n(z,y), the full vectorial Maxwell’s
equations are finite element method (FEM) with the help of the Wave
3OL [33] or a mode solver implemented in Matlab [42].

nt ways and the ridge directions are therefore restricted to the 110
order to achieve the highest possible nonlinear couplings. In order to
> coupling of the various field components, we have to take the orientation
tal coordinates with respect to the laboratory frame into account. In the
rame, the mode fields transform as

E = RE, (7)

ere R is the appropriate 3 x 3 rotation matrix. The transformed fields are plugged
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into the standard equation for the second-order nonlinear coupling
PN o« R7'd[E? E} E? 2E,E. 2E,FE, 2EE/|", (8)

with d being the 18-element tensor of the nonlinear coefficient. In 43m &ll d;; axe zero,
with the exceptions of diy = dos = d3g. In our sample, the two frames are rotated 45°
around the y axis via

cos45° 0 sin4b°
R,(45°) = 0 1 0 . - (9)
—sin4b5° 0 cos45°

The nonlinear polarization vector then reads

—2E, B,
PV = ¢ydyy | B 4B2 (10)

W BN

In terms of waveguides, the field profiles are determined by the eigenmodes. Usually,
both horizontally polarized TE, with E = (B, 0,0), and vertically polarized TM, with
E = (0,E,,0), modes can propagate in the near infrared around 800nm (NIR) and
telecom range in the C-band arotinds 1550 nm. For example, if we look at the x-
component of equation (10) we see thatithe horizontally polarized TE-mode in the NIR
range is linked to both TE and TM modesyat telecom wavelengths (type II nonlinear
process). In contrast, the vertically polarized y-component is only converted to a TE
mode (type I). Note that E,, which is aligned in propagation direction, is also involved.
In strongly confined waveguidgs like/ours, all modes can have a non-negligible FE..
This forward field compoenent/results in type 0 processes that have been observed in
BRWs [43]. In order to amalyse such a process, however, a full-vectorial 2D treatment
is necessary. For the purpose of optimization, however, the one-dimensional approach
is usually descriptiveenoughs

Bragg-reflection waveguide slab structures are engineered in a way, so that for
three modes atgwavelengths \,, A\; and )\;, the respective effective mode indices fulfill
the relation Meg(Ay) A= Ner(As)/As + Ner(Ai)/A;. The indices p, s and ¢ denote the
pump, signal and idler modes. Furthermore, we require that the three-mode spatial
overlap {30, 44-46]

€ =1/N; [ [ dudy Bi(e.0) B}, Eule) (1)
as welbasthe effective nonlinearity deg,
dar = 1N [ [ dody d99 0, ) B (o, ) E (0,) B, (12)

are non-zero. They are derived from the two-dimensional distribution of the fields
E, (x,y), with v = (i, j, k) indicating three modes, and the local material nonlinearity
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dLi-3:k) (x,y), which takes the coupling between modes 4, j, k into account. In this way, the
E,, are just the scalar electric fields and may correspond to either TE or TM polarization.
This works well, because the modes are strongly polarized so we can ignore the weak
field component in z-direction.

Note that in the case of unnormalized field profiles F; ; 1, like they 6ften resultfrom
numerical mode solvers, appropriate normalization constants have te'be found. Here,

Ao - ¢ /] dxdyw / dxdyw [ asay it s (3

Ny = // dedyEi(v,y)E (2, y) Ex(zy) (14)

are used [30].

In this work, we optimize the second-harmonic|generation (SHG) [2-6,47] as the
photon-pair production via PDC is the faint counterpart of this bright three-wave
mixing. Effectively, this means maximizing the/ftotal nonlugearity defined as d.g&. This
is motivated by the normalized second harmonic jgeneration efficiency n,orm, which is
the efficiency per unit length. In waveguides,[45, 46],

n . (deﬂrg)2
At

(15)

which takes the spatial mode overlap ¢ interaccount. As the fundamental wavelength \;
is fixed for a certain device designiand the effective mode index n.g usually only varies
in the second digit in practice, the product d.g mainly determines the interaction
efficiency. Note that the choice\of parameter combination of effective nonlinearity and
mode overlap is somewhat arbitrary [46]; For example, the three-mode spatial overlap
is related to the commonly.réported effective mode area via Aoz = 1/£2. In the sense of
optimization, we choose d.g and ¢ as both are to be maximized.

As the PDC and:SHG processes both rely on energy and momentum conservation
in the investigated structure, they depend on the same underlying physical parameters
such as the dispersion or mode properties of the sample. Yang et al [48] derive the
proper equations/and. Hamiltonian for the case of waveguided PDC. The equations are
given in terms.0f unnormalized field profiles, with the Hamiltonian

deff
/DiD,;D;’

where the constant C takes the constant prefactors and phasematching along the

H = C(w;, wj, w, 2) (16)

propagation direction into account, and H can be used to perform an ab-inito calculation
of the quantum-optical state and the pair production rate. Moreover, the normalization
constants D, of a mode are given by

D, = [[ dody (o) Exfo gyt ) Y (1

Page 8 of 31
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which are similar to the individual terms of the spatial overlap normalization ¢onstant
N in equation (13). The main difference to equation (13) is that they takesthe local
refractive index n(x,y) and the local ratio of phase and group velocity v,(z, v) /vg(2:9)
of the material into account. If the structure involves materials with large,group.indices;
like Al,Ga;_,As with low aluminum content values, the normalization niay differ slightly
from equation (14). Nevertheless, the total nonlinearity serves as a diréct indicator for
the pair production rate.

However, we remark that the choice of metric is not completely unambiguous. For
example, even in the well-studied case of SHG, West et al [24] ot Khurgﬁ et al [49] prefer
using just the SHG width, defined as nyiqtn = ne_é’dzﬁ. Sincerit effectively represents a
slightly different weighting of the raw mode overlap, the resultshare nonetheless very
similar.

3. Numerical discovery and optimization of a BRW slab structure

3.1. Autonomous analysis of a BRW slab strudture 4

In order to find suitable BRW slab designs via numerigal optimization, a fitness function
has to be defined. Depending on the desired application, the fitness function requires
knowledge about certain parameters of the slab. This includes - but is not limited to
- the type of the phasematching processes;nthe mode profiles at the phasematching
wavelengths, their dispersion characteristics or the (nonlinear) overlap integrals in
equations (11) and (12). Therefore, for any practical optimization, a candidate BRW
slab needs to be analyzed automatically with respect to these properties. Here, the
challenge lies with making such an analysis as stable and reliable as possible. In this
section, we give a detailed de&'ription of our proposed algorithm, the corresponding
flowchart is shown in figure 2 at the end of the section.

At the core of theanalysisretutine is an eigenmode solver for equation (1) and/or (4).
If these two components are known, the orthogonal components can be derived by scaling
(equations (2) and (5)) or differentiation (equations (3) and (6)). There are numerous
approaches to determine the eigenmodes: either by transfer matrix analysis [23, 50],
finite-differences or FEM, the approach chosen in this work [32]. During analysis, the
set of eigenmodes has to be re-calculated several times, so strict convergence checks are
omitted at first.:Sufficient numerical reliability is ensured by having a maximum finite-
element cell size so that at least five cells make up the thinnest layers. This is usually
enougly to determine the effective mode index ne.g = ko/(, to at least four significant
digits. At this level of accuracy, the uncertainty of the refractive index model is already
dominant [47,51].

Depending on the choice of mode solver, physically irrelevant modes arising from
computational artifacts are excluded at this stage. This reduces the computational
load in the subsequent steps of the algorithm. In our case with FEM, radiative modes
with significant non-zero imaginary propagation constants appear as solutions. The
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imaginary part of the propagation constant is linked to loss and we are expecting ours
to be completely lossless. The threshold for maximum Im(j3) is set to 1070, This value
is chosen by manually classifying the modes of several, typical simulation layouts: Tmeur
setup, the propagation constant of “lossy” modes typically have an imaginary part in the
range of 1 to 1 x 1079, while for “confined” modes, it is usually smallexithan 1 X 1072,
A small but finite value is chosen to account for floating point inaceuracies. These
thresholds are justified for our simulation because of two reasons: the truné¢ation of the
computational grid and the real-valued refractive indices. Firstg'the simple truncation
of the computational grid means that the simulation region is effectivay bounded by a
metal box. Therefore, modes that would be radiative still ‘are perfectly confined. By
choosing a large enough simulation region the metal box will have a negligible effect
on the confined waveguide modes§. Second, since all refractive indices in the model
are real valued, no intrinsic loss is modeled. We know from extensive simulations and
experiments [47] that the sample loss is mostly detérmined by sidewall roughness. For
now, including material loss or even optimizing for it is unmnecessary. Finally, the leakage
through the DBRs into the substrate is mitigated by propgr mirror design with at least
5 pairs [26], enabling us to discard manyfundesired modes.

Aside from the imaginary part, we canpadditionally exclude modes because of
material-imposed constraints on the real part of §. Due to oxidation considerations
for high aluminum concentrations,‘the relevant .material refractive index is restricted to
a lower bound of approximately 2.9. At'low aluminum concentrations, the vicinity of the
bandgap yields an upper boundiof ~ 3.6. Hence, the modes can already be pre-selected
by their effective index. We cheosera reasonable lower bound of n.g > 2.8, to account
for the confinement of the modes.

With these pre-selections; enly afew tens of modes remain for further analysis. In
order to search for phasematching, two sets of modes have to be calculated: one for
NIR wavelengths around 775 nm,{M*}, and one for telecom at 1550 nm, { M?*}. Each
entry in the sets is @ 3=tuple which stores the effective mode index, the polarization
(TE or TM) as well asia, normalized field profile e,(y) for TE or h,(y) for TM modes.
Since the wavelengths are fixed for each set of eigenmodes, it is highly unlikely that a
perfectly phasematched.pair is found at first try; subsequent analysis steps have to be
“fuzzy” in this respect.

For computational efficiency, the telecom mode set {M@M} is ordered by
descending effective mode index first. Then, each telecom mode is consecutively
comparedito potential candidates from the NIR set {M?*}. The intuition behind this
approach is twofold: first, significant nonlinear interaction is usually only observed for
fundamental modes [53]. Second, all materials involved exhibit normal dispersion in
this wavelength rage. Consequently, the most promising candidates are quickly found
if athigh n.s mode in the telecom range can be matched to a NIR mode. The effective

§ If a suitable sample is found with the help of the algorithm, the dielectric confinement is first checked
by varying the simulation region size and then by solving the two-dimensional problem with a perfectly
matched layer (PML) in place [52].

Page 10 of 31
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indices of the two modes are allowed to deviate up to 0.05, so only close matc¢hes are
selected. Then, for each matched pair of modes, their overlap according to

o= [ dyecitvies, v (18)

is calculated. Pairs are rejected if o < 1%. The threshold of 1% issufficiently high to
reject numerical artifacts from orthogonal modes, but already allows identification of
potential phasematching. Since the semiconductor material is strongly dispersive, the
mode shape — and so the overlap — may change considerably if the Waveﬁlgth is changed.
During optimization, an intermediate, perturbed design ‘may yield phasematching
wavelengths far from the desired value and thus far from the reference wavelengths
Aretp = 77Hnm and et ; = 1550 nm where the modes have been calculated. By choosing
this low threshold, the algorithm is able to handle these conditions. Depending on the
structure, multiple suitable NIR modes may be found for each telecom mode. The mode
pairs are ranked according to their overlap values

Next, the candidate modes are tracked across several wavelengths to find neg(A).
This effectively means calculating the Set of eigenmodes again for several distinct
wavelengths. Since BRWs operate in a regime where the modal dispersion is mainly
influenced by the materials, the first derivative ng;(\) can be heuristically estimated
by averaging the slope of the local refractive index n'(\) weighted with the squared
normalized field profile €2(y):

7%mw/@w@@w (19)

In this way, the evolution ef'the.effective mode index can be predicted quite accurately
over a large range of wavelengthss even if the dispersion is steep. Note that for highly
confined systems the estimated dispersion may differ significantly. Similar to the mode
selection, the modes that.are closest to the estimated effective mode index are compared
to the reference miode by means of the overlap integral (18). Because of the expected
slow variation ofithe mode shape with the wavelength, a threshold of 90 % is chosen for
equality. Theanodes aredtracked incrementally, starting from the reference wavelengths
Aretp and Agf i

Whilegthis approach seems quite involved, it is very stable for a wide range of
geometries andstracking modes over large wavelength ranges (> 100nm (telecom) or
> 50 nm (NIR)). We require this large range not only because it covers the established
telecom bands, but also to allow for a significant, temporary deviation of candidate
samples during optimization. Usually, the eigenmodes have to be re-calculated only ten
times to reliably track a mode. After tracking, the determined effective mode indices
arerinterpolated via a second-order polynomial. By intersecting the two polynomials,
the phasematching wavelength ., is found. While the polynomial approximation
is valid even slightly outside the range of wavelengths where the eigenmodes have
been calculated, we restrict them to the explicitly specified range. In that sense,
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phasematching wavelengths outside the band of 1500nm to 1600 nm are disregarded,
as they lie far outside the desired telecom band. In the optimization, this éssentially
imposes a heavy penalty for the algorithm to not stray too far from the wavelengths.of
interest.

In the one-dimensional case, we only need to consider type 0 interaction with TE-
like modes. Strictly speaking, we have to consider that TE and TM.amodes are distinct
due to the spatial derivative of the refractive index in equation (4). In practice, however,
the normalized mode profiles of TE, e,(y), and TM, h,(y), modeés of a given order are
extremely similar with overlaps o > 99 %, if the proper symmetry for the nonlinear
couplings is factored in. Moreover, despite the different equations of TE and TM modes,
the effective indices the two modes are equal to within 1073, Taking into account these
small deviations is well outside the scope of the optimization procedure. We note that
in two dimensions the effect of the lateral confinement causes an effective mode index
splitting on the order of 1072 for the two polarizations.

Finally, the eigenmodes at the phasematched wavelength are computed. Then,
the dispersion profile, mode shapes and phasematching Wa?/elength are known. We also
calculate the spatial overlap (11) and effeétive nonlinearity (12), as they are the required
parameters for optimizing the conversion efficiency.

3.2. Random optimization and simulatedrannealing

Even though the BRW epitaxial structure consists of 20 or more distinct layers,
symmetry considerations, such asthe alternating mirror pairs of the DBR or a symmetric
core layout reduce the dimensionality of the optimization problem. The epitaxial
structure is parameterized in terms of layer thicknesses ¢; and aluminum concentration
x;. The material dispersion for each layer is then calculated via the model proposed
by Gehrsitz et al [51]. Theecond-order nonlinearity depends on the local aluminum
concentration and is taken from Ohashi et al [54], and is expressed relative to GaAs.
Other parameters, sueh asithe number of mirror pairs, are usually fixed. Additionally,
there may be strict constraints on certain parameters. For example, the minimum
aluminum concentration must be above 20 % to avoid direct absorption because.

Due to/complicated and convoluted nature of the problem, calculating explicit
gradients for eptimization purposes is next to impossible. Therefore, we use simulated
annealing [31] ‘ast@ black box optimizing technique that requires no gradients. In
simulated annealing the so called neighbor function derives a new sample 5., from
thefurrently-best design Spes;. Samples are defined by an associative array s, which
store a parametrization of the structure. The parameterizations mainly consists of the
layer thicknesses and aluminum concentrations but constraints are also included. The
quality of each sample is judged via the energy function F(3), which is to be minimized.
The simulation progresses with the annealing temperature 7. After each step, T is
gradually reduced via geometric progression given by T;.1 = oI}, where 0 < o < 1 is
the progression factor.
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Candidate designs are accepted based on the probability function p(Spest, Snews L)
defined as

-1

[1 +exp (%’E(gbest) - E(gnewn)} E(gbest) > E(gneW)

! Bshe) < Plone)

P(Sbest Snew, 1) = {

The maximum achievable probability in the first case of equation (20) is limited

to 1/2. In this way, moving away from an already good solufion atpthe end of the

optimization run is penalized. A random number generator decides'with the probability
p whether the new solution is accepted or rejected.

At the end of this section, figure 4 depicts a detailed flowchart of.our implementation
of the simulated annealing algorithm. In our case, the annealing schedule and neighbor
functions are chosen so that there is an extensive initial phase that resembles a random
search. This choice is based on the observation that even a small random change in
the sample layout can instantly lead to a very/different - better or worse - solution.
This essentially increases the coverage of the search space. To improve convergence,
the algorithm is reset to the best solution. of this run after 30 iterations without an
accepted change in the energy function. "If there is no change for 100 iterations, the
algorithm terminates even if the current temperature is still above the final temperature
of Ty = 1073. Starting temperatures are bétween T, = [1, 10] with geometric progression
factors of @ = [0.97,0.99]. These ranges allow fine-tuning of the convergence rate, search
space coverage and run time.

The neighbor function is definedvin a way that it acts mostly local, but occasionally
allows larger jumps. First, a'random integer m between 1 and min(5, dimensionality)
is picked. Then, m randem parameters in the set Sy are selected. The parameter
values are multiplied by a randomffactor sampled from a normal distribution (o = 0.02,
i = 1). At this point constraints are taken into account. In our case, the aluminum
concentrations <20 % and >85 % are simply clamped to the respective limit. Also, the
thicknesses of the DBR mirror pairs ¢; are adjusted automatically to a design wavelength
Ag = 773 nm via [22]

4y/naiGans(Ti, Aa, T)? — nZg
where naj@aas(@Ads T') is the refractive index of Al,, Ga;_,,As at the design wavelength

, (21)

%

and design temperature. Strictly speaking, if we change the mirror layer thicknesses, the
effective mode index n.g will also change slightly. This converges with a straightforward
fixed-pointgiteration, but we have to recalculate the set of eigenmodes multiple times.
According to our experience, this is unnecessary, since the optimization works well if we
simply set neg to 3.15 in 21 to avoid the costly iterations. Because of the BRW geometry
and the requirement of reasonable aluminum concentrations, the effective mode index
1s mostly limited to values between n.s = 3.13 and 3.18. The DBR mirrors will still
guide the mode, as with enough mirror pairs, the stop-band is wide enough to tolerate
a slight mismatch.
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We define the energy function heuristically as

E(defr, & Apm) = 3.75 — 50|degé| 4+ max (0, —0.05 + 2 x 10* pm ™ (A € 1.546 pm)?)

(22)
where A,y is the calculated phasematching wavelength. Choosing the total nonlinearity
|der€| in the energy function is motivated by equation (15). The.absolute is taken
because the FEM solver might flip the sign in the mode profile, which is carried over by
the integrals in equations (12) and (11). For previous samplesgtheitotal monlinearity
|deg€| is typically between 0.01 to 0.05, so the energy according 46 €quation (22) is
larger than 1. Improving the total nonlinearity slightly to 0.07 reduces the energy to
below < 0.3. The energy gradient with respect to the total nonlinearity is steep with
0.5 per 0.01. Furthermore, the function is specified in a way to allow some variation in
the target phasematching wavelength without additional penalty: In equation (22), this
window is approximately 4 nm wide. Outside thissrange, theyquadratic term imposes
a steep penalty of 1 per 7nm of deviation. In that.sense, optimizing the nonlinearity
is prioritized if the phasematching wavelength/is close to%the target wavelength. The
energy function could be even stricter, butyit has proven practical to run the optimization
several times with different annealing schedules and manually select the most suitable
design. This is because one may encounter a good design early in the random search
phase, as well as to avoid getting stucksin one of the countless local optima. The latter
cannot be reasonably avoided because the optimization is still probabilistic.

Typical examples of theteonvergence behaviour for different annealing schedules
are shown in figure 3. The algorithim usually proceeds at a rate of about 150 iterations
per hour on 16 cores of a Xeon E5-2660 workstation, taking around 20 GB of RAM.
Note that only the routines Wii;@n one iteration are parallelized, so one sample will be
optimized per run.

If a suitable structurefis found, 2D simulations in COMSOL [33] and Matlab
[42] are employed for werification. In this way, the effect of the ridge widths and
etch depths can be'studied.<The additional lateral confinement reduces the effective
mode index depending on the mode shape and wavelength. The shift is larger for
higher-order medes;so the real phasematching wavelength will be slightly higher than
expected from slab simulations. As a rule of thumb, a 5pm wide ridge will increase
the phasematehing wavelength by approximately 5nm at telecom wavelengths if the
waveguide 1s etched to the core layer. This effect is enhanced for the narrower
waveguides. For example, waveguides thinner than 3 pm will shift by more than 10 nm.
This is why a’phasematching wavelength between 1544 nm and 1548 nm is targeted in
the cost function (22). Due to the horizontal confinement it will shift to just above
1550 nmpin the real sample.

Additionally, the etch depth not only affects the linear loss coefficient but is also
mode-selective. If the ridge is etched slightly above the core layer, one may find a
regime where the TM-mode is guided but the TE-mode is not. Therefore, a trade-off
has to be found: etching deeper increases the loss due to the additional exposure of the
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Figure 3. Convergence behaviour of four different annealing schedules and /or starting
conditions. The conditions are (a, blue) To = 10, f = 0.99 and FEy = 0.5, (b, green and
¢, orange) Top = 1, f = 0.975, Ey = 1.3 and (d) To =1, f =0.99 with E; = 1.3. Run
(b) and (c) only differ by the initial random seed:While run'(a) shows the best overall
result, it also took the most iterations. The run (d,red) quickly converged to a very
good solution, but still slightly worse than(a),in terms of energy. (b) succeeded in
optimization, but got stuck in a local migimum while (c) yielded a good result similar
to (a) and (b).

mode fields to the sidewall roughness, but alse,assures that both polarizations will be
guided efficiently. Furthermore, higher-order horizontal modes are also sensitive to the
etch depth. Even if the waveguide is just etehed above the core layer, additional modes
may be found. They provide additional'mode combinations for nonlinear interactions,
however, their phasematching wayvelengths are usually several nanometers away [4].

4. Optimization results
N

4.1. Discussion of potential samples

To demonstrate our approach;” we present several designs that optimize the total
nonlinearity |des¢| ofsa matching layer sample [5,55] with the constraint of a reduced
number of differing, discrete aluminum concentrations. We formulate the constraint in a
way that in the molecular beam epitaxy (MBE) process, only two distinct effusion cells
are required /o grow this sample. A third aluminum concentration can then be derived
by summing the two concentrations. A layout with matching layers is chosen because it
provideg‘additional degrees of freedom to fine-tune the sample and eases experimental
characterization due to the larger core dimensions. The expanded fields in the core
result in a mere manageable numerical aperture in vertical direction.

In contrast to previous samples, we search for designs with two matching layers. We
choose the inner layer of the first mirror pair with aluminum fraction x5 as the second
matching layer. The optimization is allowed to modify only the thickness of these layers,
s0 that the final design is still similar to existing structures. The material composition
constraints are formulated as

To =T+ T, and 1=, (23)
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where z., z,, and x; are the concentrations of the core, matching and mirror layers,
respectively. Alternatively, these constraints allow another design where #he outer
matching layer is made of the same material as the core. The reduction in aluminum
concentration increases the effective nonlinearity further, but the effectqs expected to
be small as the fields are still localized close to the center. Since this an unusual layer
structure, we discard this possibility.

It is imperative that the starting conditions are based on a working sample.
Surprisingly, it makes little difference for convergence whether a'very different sample,
like the old design from Ref. [11], or an intermediate result from a prev%us optimization
run is chosen. For the designs presented here, mostly the latter was chosen.

Three candidates in table 1 were accepted for further investigation, while only
sample 2M-1 was fabricated. There are two main reasoms for selecting this design:
First, 2D simulations set the phasematching waveléngthnto =1553nm. Due to the
thickness gradient of the wafer discussed in section, the phasematching wavelengths
shift to lower values the farther the waveguide ig‘from the center. Since the convenient
experimental wavelength range due to equipment péstrictions is 1525 nm-1560 nm (e.g.
for PDC fluorescence [17]), a large portion of the wafer is usable. Thus, a design
wavelength of slightly above 1550 nm is ‘desired (see section 3.2). Second, the inner
matching layer and core thicknesses sit right, between sample 2M-2 and sample 2M-3,
with very similar aluminum concentrationss, This is a good indication that any deviation
towards another sample will yield a sample with a usable phasematching wavelength and
comparable total nonlinearity. \n section 4.2, we present a more detailed study of the
fabrication tolerances for this design.

In addition, 2D simulations predictrthat the group delay difference of the telecom
TE and TM modes of sample 2M-1 is significantly smaller than for previous samples.
We expect a value of about 6 fs/mm compared to 19fs/mm of the old sample from
Ref. [11]. The experimental value may even be smaller, as measurements show that
the real delay of the old sample is closer to 11fs/mm [17,18]. The difference results
from inaccuracies/in the refractive index models, which strongly affect the predictions
of the group indices [17,47]. Having a group delay difference as small as possible is
important forsthe state.engineering of polarization entangled photons in schemes based
on routing non-degederate photon via dichroic mirrors [8, 18] and wavelength-division
multiplexers [12, 16}

In dine with previous work (e.g. [24]), the optimization landscape of the core and
inner_matching /thickness of sample 2M-1 is plotted in figure 5. The solution space has
beén sampled 8 x 10* times, which required a computation time of approximately 60
hours on the workstation used. In principle, such plots can be used to fine-tune the
design of certain parameters, but it is a very time-consuming task if more dimensions
arerinvolved.

Furthermore, table 2 shows candidates with a three-matching-layer structure. The
total nonlinearity is slightly, but significantly, increased, with stable phasematching
wavelengths at 1545nm. Sample 3-3 is particularly interesting: it converged to two
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Figure 5. Optimization landscape of sample 2M-1 with respect to the core and
inner matching layer thicknesses. Thelshading indicates the total nonlinearity, while
the red contours shows the corresponding/ phasematching wavelength in nanometers.
Furthermore, the approximate minimum-energy region according to equation (22) is
bounded by the dashed black lines, withithe absolute minimum indicated by the solid
black line. Due to the very similar parameters of the samples in table 1, all samples
can be located in the plot.. The finite numerical resolution of the analysis routine as
well as the limited granularitynof the sampling cause artifacts in the contours. The
fine-scale structurerin the total nonlinearity is a result of effective nonlinearity integral
from equation (12), theyoverall trend is dominated by equation (11).

matching layers, but with asbetter total nonlinearity than the comparable sample 2M-2
from table 1. It is convenient, if@ shorter phasematching wavelength is desired. We
conclude that three matching layers do not show a significant advantage in terms of total
nonlinearity. It can belinferred, however, that a total nonlinearity of about 7.2 x 1072
presents a practically achievable limit for our design goals. Such samples might be of
interest, if certain other ‘optimization goals, for example a further reduction in group
index differenceof the telecom TE and TM modes, have to be met. In this case, it would
also be advantageousto evaluate other aluminum concentrations for the matching layers.

Finally, we compare our results with samples from the literature, the corresponding
values are given,in table 3. Further, we discuss samples derived during the fabrication
toleranceranalysis next in section 4.2 and present them in table 4.

4.2 Fabrication Tolerance and Further Samples

In any realistic fabrication process, there is discrepancy between the design specification
and the produced sample. In our case, with MBE process, the sample is very uniform
across the wafer. Usually, there is only a small thickness gradient radially from the
center, which affects all layers proportionally and is discussed in section 5. However,
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Table 1. Overview of some adiabatic slab designs with fwo matching layers and a
reduced number of distinct aluminum content values. Tuples consist of layer thickness
t and aluminum content = of the Al,Ga;_,As material. The layout of sample 2M-1s

also shown in figure 1.

Parameter

Sample 2M-1

Sample 2M-2

Sample 2M-3

DBR Layer 2
DBR Layer 1
Mirror Pairs (top/bot.)

(443 nm, 62.8 %)
(127 nm, 20.0 %)
5.5/5.5

(437 nm, 62.8%)
(129 nm, 20.0%)
5.5/5

(445nm, 63.0 %)
(128nm, 20.0 %)
5.5/5.5

Outer Matching Layer
Inner Matching Layer

(356 nm, 62.8 %)
(398 nm, 20.0 %)

(343nm, 62.8%)
(3824m, 20.0 %)

S

(330 um, 63.0%)
(428 nm, 20.0 %)

Core Layer (365nm, 42.8%) (380nm, 42.8%) (322nm, 43.0%)
Phasematching (PM-WL) 1548 nm 1543 nm 1546 nm
neg at PM-WL 3.190 3.187 3.195
Total nonlin. |degé| x 102 7.04 7.05 6.92
Energy E 0.26 0.36 0.29

L

Table 2. Overview of some adiabatic slab designs with three matching layers and a
reduced number of distinct aluminum, content values. Tuples consist of layer thickness

t and aluminum content x of the Al,Gaje,As material.

Parameter

Sample 3M-1

Sample 3M-2

[Sample 3M-3]

DBR Layer 1
DBR Layer 2
Mirror Pairs (top/bot.)

(128 nm, 20.0 %)
(477nm, 63.6 %)
5/5

(128 nm, 20.0 %)
(540 nm, 64.5 %)
5/5

(128 nm, 20.0 %)
(493nm, 63.5 %)
5/5

Outer Matching Layer
Middle Matching Layer
Inner Matching Layer
Core Layer

(143 nm, 20.0 %)
(377nm, 63.6 %)
(392 nm, 20.0 %)
(371 nm, 43.6 %)

(146 nm, 20.0 %)
(359 nm, 64.5 %)
(396 nm, 20.0 %)
(371 nm, 44.5 %)

(129 nm, 20.0 %)
(336 nm, 63.5 %)
(394 nm, 20.0 %)
(372nm, 43.5%)

Phasematching (PM=WL)
neg at PM-WL

Total nonlin., |degé| x 1072
Energy F

1545 nm
3.188
7.19
0.16

1545 nm
3.187
7.19
0.16

1544 nm
3.187
7.14
0.21

the initial set points for the thickness and aluminum concentration of an individual layer
may be/slightly different from the specification. By performing a Monte-Carlo analysis
of randomly varied design parameters, we can estimate the effect of the fabrication

tolerances on; for example, the phasematching wavelength and total nonlinearity.

The autonomous analysis of a BRW structure presented in section 3.1 is well suited
to perform such a task, as a large number of samples can be analyzed without manual
intervention. Here, the errors of the layer thickness and aluminum concentrations are
modelled with a uniform distribution (a,b) in the interval [a,b]. In contrast to the
simulated annealing optimization, the sample layout is not necessarily symmetric around
the core but each layer thickness can change individually. The error of the aluminum
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Table 3. Comparison of various samples from the literature. Samples P-2 and P-3
could not be fully reproduced with the information given solely in the reférences.

Parameter Sample P-1 Sample P-2 Sample P-3
References [5,7] 2] [20]

DBR Layer 1 (129nm, 25.0%) (118 nm, 20.0 %) (n/a, 20.0 %)
DBR Layer 2 (461nm, 70.0%) (278 nm, 60.0%) " (n/a, 63.5%)
Mirror Pairs (top/bot.) 6/6 6/6 6/6
Matching Layer (375 nm, 20.0 %) - o -

Core Layer (500nm, 61.0%) (328 nm, 40.0%) " (372nm, 43.5%)
Phasematching (PM-WL) 1538 nm ~1550 nm n/a

neg at PM-WL 3.153 ~3.11 ~3.08
Total nonlin. |degé&| x 1072 5.61 ~5.7 <6.2

concentration is assumed to be an error of the setspointiof the individual effusion cells.
Therefore, all layers of the same type share the same perturbed aluminum concentration.

In figure 6, the probability distributions of the phasematching wavelengths and
nonlinearities for different error magnitudes are plotted. The thickness error is given in
terms of a scaling error tyey = toald (1 — Ay L+ Ay), while the aluminum concentration
error is given in percentage points . €m@new = Tola + U(—A4, A,). With ~10 pm above
the substrate, the BRW epitaxial strueture is rather thick for the MBE growth process.
Reasonable errors are on the éxder of 5% for,the thickness, and maximum 2 percentage
points (p.p.) for the aluminum concentration.

As far as the average phasematching wavelengths of the probability distributions are
concerned, figures 6(a) and (e) show that they are very stable. However, the full-width-
at-half-maximum (FWHM) of‘the distribution increases with 3.1 nm in wavelength for
each percentage point of ‘thickness error and 2.1nm/p.p. of concentration error. The
observed broadening issmainly an effect of the thickness error. Since the magnitude
of the coefficient ig'similary the larger experimentally expected error values cause it
to dominate in practice. The total nonlinearity in figures 6(b) and (d) behaves slightly
differently, as the distribution is skewed towards low nonlinearities. Therefore, the mean
is also shifted to lower values. Here, the error of the aluminum concentration dominates
with a coefficient of 22 x 1072 /p.p. compared to 7 x 1072 /p.p. for the thickness.

This study.shows that reducing the thickness error to less than 5% results in a
disproportionate increase in fabrication accuracy. The constraints on the aluminum
concentrations help to achieve this goal, as the complexity of the growth process is
greatly reduced.

Sinee the Monte Carlo analysis investigates random samples similar to the given
layout, it may be utilized to optimize the design further. Note that the histograms of
the nonlinearity in figure 6 do not have a sharp cut-off at values similar to tables 1
or 2, but show values up to ~ 9 x 10~2. However, most of these samples are unusable in
practice due to either a wrong phasematching wavelength, unsuitable/unmatched Bragg
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mirrors or unpractical material compositions.

Nevertheless, one can still try to derive useful samples from the datasét.. While
the wrong phasematching wavelength is non-trivial to correct, we can use equationy(24)
to find the proper layer thicknesses of the mirror pairs. It turns out that almost all
samples will either shift the phasematching wavelength to an undesired ¥alue or thetotal
nonlinearity is reduced to numbers similar to tables 1 or 2. Moreover «for phasematching
wavelengths below 1550 nm and a total nonlinearity > 5 x 1072, the total@onlinearity
is slightly anticorrelated (r = —0.12) with the wavelength.

High nonlinearity samples, which have a proper mirror désign and phasematching
wavelength, are exclusively ones with aluminum concentrations lewer than 20 %.
Samples with nonlinearities up to 8.5 x 1072 have been found and are presented in
table 4. They show an slightly asymmetric layout which is'most likely an artifact of the
random search. However, as the etched ridges are also asymmetric with respect to the
core, they warrant further investigation. If a phasématching wavelength of 1550 nm is
targeted, aluminum concentrations of ~18 % leaye little margin of error in fabrication.
In this case, the room temperature bandgap [56] alfeadyshifts from 717 nm (1.719¢eV)
at 20% to 729nm (1.693eV). At a reasonable lower limit of 16 %, the bandgap is
already at 746 nm (1.653eV). With a design wavelength of 775nm (1.592¢V), there is a
120 meV separation from the bandgap. Below. 100meV, impurities in the semiconductor
may also be excited [57]. Therefore, a réduction of the aluminum concentration is only
a viable option if samples with phasematching wavelengths greater than 1560 nm are
desired.

Table 4. Sample designs derived from fabrication tolerance analysis data.

Parameter N Sample A-1 Sample A-2 Sample A-3
DBR Layer 2 (464nm, 61.7%) (423nm, 61.7%) (445nm, 62.7%)
DBR Layer 1 (124nm, 18.2%) (124nm, 18.2%) (128 nm, 18.1%)

Mirror Pairgi(top/bot.)

5/5

5/5

5/5

Upper Outer-ML
Upper Inner ML
Core Layer

Lower InnersML
Lower Quter ML

(340nm, 61.7 %)
(410nm, 18.2%)
(360 nm, 43.5 %)
(385 nm, 18.2 %)
(358 nm, 61.7 %)

(343nm, 61.7 %)
(410nm, 18.2%)
(352 nm, 43.5 %)
(390 nm, 18.2%)
(350 nm, 61.7 %)

(353nm, 62.7%)
(395 nm, 18.1%)
(363 nm, 44.6 %)
(399 nm, 18.1%)
(353 nm, 62.7%)

Phasematching (PM-WL)
neg at PM-WL

Total nonlin. |degé&| x 1072
Energy E

1548 nm
3.196
8.50
-0.47

1546 nm
3.196
8.55
-0.53

1547 nm
3.194
8.45
-0.48
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2;" 5. Fine-Tuni wafer layout

46

47 gradient on the phasematching

22 sample, the thicknesses of the layers are not uniform across the wafer.
50 on the exact geometrical layout of the MBE machine and the filling status
g; cells, the flux slightly differs with the location. Thus different flux which
53 portional scaling of the layer thicknesses [58]. This fact is well-known, for
54 vertical cavity structures, where the location on the wafer defines the local
22 e wavelength [59].

57 In our sample, the thickness of all layers reduce radially from the wafer center. This
58 an be modeled by assigning a scaling factor to each location on the wafer, relative to the
59

minal thickness value at the center. As our waveguides are up to several millimeters
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long, the scaling factor changes continuously along the propagation direction. The
dispersion of the modes changes with the scaling factor, as seen in figure 7(a). Depending
on the location and orientation of the waveguide, this can have a significant effect on.the
phasematching function and spectral properties of the down-converted photen-pairs.

In a broader context, modulating the dispersion profile is equivalent to modulating
the nonlinearity along the propagation direction, like in the case of quasi=phase-matching
(QPM) with periodic poling. Advanced QPM schemes, like Gaussian modulation [60],
random patterning [61] or numerically optimized poling periods«[38] show similar, non-
trivial phasematching functions. Similar to the unintended thickness gr;dient, dedicated
dispersion engineering of a waveguide has been investigatedypreviously for four-wave
mixing [62], stimulated Brillouin scattering [63], second-harmonie, generation [64] and
pair production [39,65].

NIR wavelength (um)

0.75 0.76 0.77 0.78 0.79 0.8
T T T T T T T T T T T T T T T T T T T T T
L 5 /1.00
3241 5098} ]
. 5 096
322 NIR T 094} ]
i ¥ 092t
r 0246 8101214
3.20 ._\ 2 Radial position (mm) ]

3.18 L Telecom

Effective mode refractive index ngff

316 [ ]

3.14 — Scale factor 0.93 B
r @ ~N ]

312 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.50 1.52 1.54 1.56 1.58 1.60

Telecom wavelength (pm)

Figure 7. Dispersion of the two involved modes in the NIR and telecom range for
different scales of sample 2M-1 in table 1. The scaling factor of 1.03 is included to
show that the dispersion is well-behaved if the structure is proportionally enlarged.
Inset (b) shows the scaling factor from equation (26).

The most prominent consequence of the scale-dependent dispersion is a change in
the phasematching function of the second-order nonlinear processes. The phasematching
function is given by [44,66,67]

d(ws, w;) = /0 dz exp [1zAk(ws, w;)], (24)

which reduces to the well known sinc(AkL) for a constant phase mismatch Ak and

arystal length L. This condition is not fulfilled if the scaling factor changes along the

propagation direction. Instead, Ak(S,ws,w;) is defined as

Ws + W
c

Wi

np(ws + wi, S(r)) — %ns(ws, S(r) = Zmifwi, S(r),  (25)

AE(S(r), ws,w;) =

Page 24 of 31



Page 25 of 31

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - QST-100274.R1

25

with n,, n, and n; being the effective mode indices of pump, signal and idler modes at
the signal/idler frequencies ws, w; and the scaling factor S at the appropriat@ position
r.

The radial dependence of the scaling factor is shown in figure 7 andsgiven, by

S(r)=1-5x10""mm ?? +8 x 10" mm™3* (26)

for our MBE-machine. With this profile, the gradient is almost nonexistent within 1 mm
of the center, but drops quickly by 5% within 10 mm. BRWSs are typically longer than
I mm, so an effect is certainly noticeable. Note that equation'(26) has been measured
with the help of a scanning electron microscope (SEM) and isusable,to a radial distance
of up to 18 mm (see inset figure 7(b)). Next, the autenomous analysis described in
section 3.1 is used to tabulate and interpolate the dispersion of the phasematched
modes for different scaled versions of the epitaxial structure. The dispersion of the
effective mode indices is determined by second-order polynomials. In the autonomous
analysis, the dispersion polynomials are calculated at an germediate step to determine
the exact phasematching wavelength, but are stored for further use. Interpolation of the
dispersion polynomials is achieved via a 8econd-order;two-dimensional series expansion
in wavelength and scaling factor,

Nefr,i (S, A) = o + 1A + A” H8 (@A + csA\%) + S (c6 + cr ) + csA?) (27)
around 775 nm or 1550 nm andia nominal sealing factor S = 1. The resulting coefficients

given in table 5.

Table 5. Dispersion coefficients of sample 2M-1 for equation (27), derived with the
methods of the autonomous analysis in section 3.1. The fit is valid for scale factors
1.03 > S > 0.95.and NIR wavelengths 750 nm to 800 nm (telecom x2).

i €o c1 Co c3 Cy cs Cg cr cs

NIR, 381 -97.0 65.6 -52.1 150 -105 229 -66.5 47.0
Telecom x1072 347 -42.3 9.52 174 6.28 -10.2 -6.08 -4.06 0.88

As a first indication, figure 7(a) already shows that due to the pronounced impact of
the scalingfactor,on'the effective mode index in the NIR, the phasematching wavelength
can belstrongly influenced even by small changes in layer scaling. In our case, the
phasematching/wavelength is directly proportional to the scaling factor with a gradient
of lapproximately 5nm per percentage point. This is well applicable if the waveguide
is oriented/perpendicularly and symmetrically to the gradient. The total nonlinearity
slightly increases by ~1 x 1073 per decreasing percentage point of the scaling factor.
The increase is consistent with the anticorrelation of the phasematching wavelength
with the total nonlinearity, as mentioned in section 4.2.

In general, however, the integral in equation (24) has to be calculated. We note that
this is essentially a line integral across the scalar scaling field S(r), with the waveguide
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parametrization r over ¢ € [0, 1] being

= 20-03) () + o (527 2

(ro,¢) are the polar coordinates of the waveguide midpoint measured from the wafer
center and € is the waveguide orientation. Both are given with/respect to»the 110
direction. The phasematching function then reads

~

o(t, ws, w;) _/0 dt exp [t t LAK(S(|r(t)]), ws,wi)], (29)

which has to be solved numerically.

In figure 8 the scale-corrected phasematching funetions, calculated according to
equation (29) are compared to the equivalent constant-Ak, sinc-function for several
waveguide positions, orientations and lengths. The, previously mentioned shift in
phasematching wavelength is clearly visible. The'phasematghing function quickly widens
if the waveguide orientation is non-perpendicular to the direction of the thickness
gradient. With respect to the sinc at the midpoint scale, the widening is almost
exclusively towards longer wavelengths. An exeeption are the waveguides which are
perpendicular to the gradient: herey.the sinc-like side-lobes are suppressed on the long
and amplified on the short wavelength,side.“This is because the local thickness scaling
along the waveguide is symmetric with respect to the midpoint.

While the main goal of thisiinvestigation is to better understand the predicted and
experimental nonlinear process parameters, the results can be utilized to increase the
yield of future samples. Fortexample, if it is desired to integrate a laser or passive
components with a limited Wa\klength acceptance band, the thickness gradient can be
exploited to design a fitting' waveguide. A widening of the phasematching function,
however, comes at the expensesof conversion efficiency. From running this analysis on a
variety of other BRW. samples,we conclude that he results are quantitatively applicable
to other BRW structures:

6. Conclusion

We showed 'howstodmprove an existing multilayer BRW sample to yield an increased
total nonlinearity with the help of numerical optimization techniques. The approach is
general and allows a quick remodeling of a BRW structure towards different specific
design goals, such as a certain phasematching wavelength and higher conversion
efficiency. At further enables the autonomous exploration of a wide variety of different
BRW layouts. Especially, we have demonstrated all the necessary numerical, algorithmic
and physical concepts to simplify epitaxial structure.

Despite the simplification, we can present a design that has a 15% to 25 % higher
total nonlinearity than in previous work. Additionally, we have carried out a rigorous,
statistical analysis of the fabrication tolerances encountered in advanced BRW samples.
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We found that controlling the layer thicknesses is imperative, if tight tolerances on the
operating wavelengths are required. A layer thickness error of 5 % results in a widening in
the distribution of the phasematching wavelengths of 20 nm FWHM. This error already
makes it difficult to fabricate samples with reproducible optical properties. Imcontrast,
even a comparatively large aluminum concentration error of 2 % turns éut to be almost
negligible. However, the simplified structure paves the way to redueing all fabrication
errors further through a targeted optimization of the growth process.

Furthermore, understanding the impact of wafer layout makes waveguides far from
the wafer center more predictable. Thus, using smart, application—driv\en patterning, a
larger area of the wafer is useful in practice. New samples based on the design methods
presented here have been fabricated. If the higher nonlinearity e¢an be verified in the
experiment, one may optimize for pair production directly.
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