brought to you by CORE

1	Steady-state energy balance in animal models of obesity and weight loss
2	
3	Magnus Kringstad Olsen ^{1,+} , Helene Johannessen ^{1,+} , Nikki Cassie ² , Perry Barrett ² , Koji
4	Takeuchi ³ , Bård Kulseng ^{1,4} , Duan Chen ^{1,4} and Chun-Mei Zhao ^{1*}
5	
6	¹ Department of Cancer Research and Molecular Medicine, Norwegian University of Science
7	and Technology, Trondheim, Norway
8	² The Rowett Institute, University of Aberdeen, Aberdeen, Scotland
9	³ Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical
10	University, Kyoto, Japan
11	⁴ Centre for Obesity Research and Innovation, Department of Surgery, St. Olav's University
12	Hospital, Trondheim, Norway
13	
14	⁺ These authors contributed equally to this work.
15	
16	* Corresponding author:
17	Dr. Chun-Mei Zhao, Erling Skjalgssons Gate 1, Eastside 3 rd Floor, Laboratory Centre of St.
18	Olav's Hospital, 7006 Trondheim, Norway. E-mail: chun-mei.zhao@ntnu.no Tel: +47 725
19	73080
20	

21

22 Abstract

23

24 **Objective:** We wanted to exam the steady-state energy balance by using high fat diet-induced 25 obese (DIO) rats and mice as models for positive energy balance, and gastric bypassed (GB) 26 rats and gene knockout of muscarinic acetylcholine M3 receptor (M3KO) mice as models for 27 negative energy balance. *Methods:* 132 rats and mice were used. Energy balance was 28 measured by a comprehensive laboratory animal monitoring system. Gene expression was analysed by in situ hybridization in M3KO mice. Results: DIO rats reached the plateau of 29 30 body weight 28 weeks after starting high-fat diet (25% heavier than controls), whereas DIO 31 mice reached the plateau after 6 weeks (23% heavier than controls). At the plateau, DIO rats 32 had higher calorie intake during light phase but not during dark phase, while mice had the 33 same calorie intake per day as controls. DIO rats and mice had lower energy expenditure (EE) and respiratory exchange ratio (RER) than controls. GB-rats reached the plateau (15% weight 34 35 loss) 2 weeks after surgery and had the same calorie intake as sham-operated controls. EE, but 36 not RER, was higher in GB rats than controls during dark phase. The lean M3KO mice (25% lighter than wild-type (WT) mice at the plateau between 6-15 months of age) had the same 37 calorie intake but higher EE, RER and hypothalamic mRNA expression of NPY, AgRP and 38 39 leptin receptor than WT mice. *Conclusion*: When body weight gain or loss reached a plateau, 40 the steady-state energy balance was mainly maintained by EE and/or RER rather than calorie 41 intake.

42

43 Keywords

44 Eating behaviour, High-fat diet, Gastric bypass, Muscarinic acetylcholine M3 receptor

45 knockout, Mice, Rats

46 Introduction

The number of overweight individuals is increasing, leading to a global obesity 47 48 epidemic [1, 2]. This is of concern because obesity is a major contributor in the development 49 of type 2 diabetes, cardiovascular diseases, certain forms of cancer, overall reduced quality of life and premature mortality [3, 4]. Currently, weight loss treatments include diet control, 50 51 physical training, drug therapies, and bariatric surgery [5]. Weight loss resulting from either 52 dieting or exercise remains usually for a shorter period of time, whereas weight loss after bariatric surgery (such as sleeve gastrectomy or gastric bypass) has much longer effect [6, 7]. 53 54 With intensive lifestyle interventions, a majority of obese participants in clinical trials lose 55 7% to 10% of their initial weight at 1 year, but longer-term weight maintenance is difficult [8, 56 9]. The development of anti-obesity drugs to target energy balance by acting on either appetite control or energy expenditure (EE) is yet without great success [9, 10, 11, 12]. For 57 example, the pharmacological interventions reduce body weight only by 3-9% of initial 58 59 weight on average at 1 year and the proportion of patients achieving clinically meaningful 60 (>5%) weight loss ranges from 37% to 70% depending on different drugs and/or dosages [9]. In order for current lifestyle interventions, drug therapies and bariatric surgeries to be 61 62 maximally effective for body weight control in individual patients as well as in a patient 63 population, better understanding of the energy balance is essential [13, 14].

64 The concept of energy balance for regulating body weight is simple in principle. When 65 energy output equals input, i.e., energy homeostasis, the body is at steady state energy 66 balance. A new set point for steady state balance occurs when energy intake (EI) exceeds EE 67 over a given period of time and weight is gained, or when EE exceeds EI and weight is lost [15]. In this study, we defined the dynamic phase of energy balance as weight gain or loss of 68 more than 5% for at least one week, and steady state as less than 5% change in body weight 69 for at least one week. From the energy balance point of view, it has not been understood why 70 71 it is easier to control the body weight during the dynamic phase of energy balance than to 72 reverse it under the steady state condition [16]. In fact, it is not uncommon that many obese 73 patients seek weight-loss treatments when they are under the steady state in terms of body 74 weight. Thus, a better understanding of steady-state energy balance may help us to better 75 understand why it is difficult to perturb a shift in EE particularly to achieve a long-term body weight loss by either dieting or exercise after obesity is established. 76

Previously, we and others have shown that dynamic development of obesity is
associated with increased calorie per meal [17, 18], and that there are compensatory changes
in hypothalamic gene expression of AgRP and NPY in rodents fed high-fat diet or low-energy

dense diet for a prolonged period of time, which is indicative of defence against changes in
body weight [19, 20, 21, 22]. Gastric bypass-induced weight loss is mainly associated with
increasing EE rather than reducing EI [23, 24, 25, 26, 27], which is in line with the
hypothalamic gene expression of AgRP, NPY and POMC [28]. However, the initial report on
M3KO mice showed a reduced food intake with increased expression of hypothalamic AgRP
mRNA and reduced POMC mRNA [29], which is inconsistent with homeostatic mechanism

of food intake regulation [30].

In the present study, we wanted to explore the steady-state energy balance to defend a change in body weight in response to either positive or negative energy balance. Thus, we used high-fat-diet fed rats and mice as models for positive energy balance displaying an obese phenotype [31], and gastric bypassed (GB) rats and gene knockout of muscarinic

acetylcholine M3 receptor (M3KO) mice as models for negative energy balance [23, 32].

92

93

94 Materials and Methods

95 Experimental design

Four sets of experiments were conducted in rodent models, comprising two sets
examining obesity development in rats and mice, and another two sets examining weight loss
in rats and mice.

99 All animals were housed in groups of three or four together in individually ventilated cages (1500 cm² in size) on wood chip bedding with a 12 h light/dark cycle, room 100 temperature of 21-22°C and 50-60% relative humidity. The standard housing conditions were 101 specific pathogen free and in agreement with FELASA (Federation of European Laboratory 102 Animal Science Association) recommendations. Throughout the experiment, all animals had 103 104 free access to tap water and food regardless of being in metabolic or Makrolon cages. The high fat diet (D12492) was purchased from Research Diets Inc. (New Brunswick, NJ, USA), 105 106 and the normal chow (RM1 811004) was purchased from Scanbur BK AS (Sweden). Animal 107 experiments were performed according to the guidelines for the design and statistical analysis 108 of experiments using laboratory animals after being approved by the Norwegian National 109 Animal Research Authority (Forsøksdyrutvalget, FDU). Diet-induced obese rats: Four weeks old male Sprague-Dawley rats were purchased 110

from Taconic (Ejby, Denmark). The rats were divided into two groups: diet-induced obese
(DIO) (n=12) and controls (n=8). To allow the DIO rats to adapt to high-fat diet, they were

113 put on a mixture of 50% high fat diet and 50% normal chow for two weeks before being fed

high fat diet only (60% fat) [17]. The DIO and control rats received high fat diet or normal 114 115 chow, respectively, throughout the study. Body weight was measured every week from arrival 116 until euthanization. Food intake, eating behaviour, metabolic parameters and body 117 composition were measured when the body weight-plateau was reached (35 weeks of age). To 118 follow the 3R principle, this group of rats were also used in a separated study entitled "Time-119 restricted feeding during weekdays against obesity: a study using high-fat diet-induced obese 120 rat models" (Olsen MK, Choi MH, Kulseng B, Zhao C-M, Chen D. unpublished data). 121 Diet-induced obese mice: Five weeks old male C57BL/6J mice were purchased from Jackson Laboratory (Bar Harbor, ME, USA). The mice were divided into two groups: DIO 122 123 (n=10) and controls (n=10). To allow the DIO mice to adapt to the high-fat diet, they were fed 124 a mixture of 50% high fat diet and 50% normal chow diet for two weeks before being fed 125 high fat diet only (60% fat) for the remainder of the study. The control mice were fed normal chow for the entire study. Body weight was measured every week from arrival until 126 127 euthanization. Food intake, eating behaviour, metabolic parameters and body composition 128 was measured when the body weight-plateau was reached (11 weeks of age).

Gastric bypassed rats: 48 weeks old male Sprague-Dawley rats were purchased from Taconic (Ejby, Denmark) and were divided into two groups: GB (n=14) and sham operation (n=6). The GB was performed according to previous experiments [25] and the rats were fed normal-chow throughout the whole study. Food intake, eating behaviour and metabolic parameters were measured when the body weight-plateau had been reached (3 weeks postsurgery). To follow the 3R principle, the data from this group of rats were taken from our previous study [23] and re-analysed and re-used in the present study.

136 M₃ receptor knockout (M3KO) mice: M3KO mice were generated [33] and backcrossed 14 generations onto C57BL/6J background at Prof. Takeuchi's laboratory (Kyoto 137 138 Pharmaceutical University, Japan) and imported to Norway by Prof. D. Chen for this study. 139 The M3KO mice were further bred through sibling matings for 2 generations. Age-matched 140 wild-type (WT) mice on the same background (C57BL/6J) were purchased from Taconic 141 (Ejby, Denmark). All the mice including M3KO and WT mice were fed normal chow in-142 house together during the study period. Body weight was measured at 2, 6, 11 and 15 months 143 of age. At 2 months of age there were 7 mice in each group, 3:4 male:female ratio in M3KO 144 group and 4:3 male: female ratio in WT group. At 6, 11 and 15 months of age there were 8 mice in each group, with male:female ratio of 4:4 ratio in the WT group, and 4:4, 5:3 and 6:2 145 146 in the M3KO group, respectively. Brain tissue from 15 months old mice was collected for *in* 147 situ hybridization.

148 Measurements of energy balance by CLAMS

149 The parameters for energy balance were measured by a Comprehensive Laboratory150 Animal Monitoring System.

151 The animals were acclimatized to the Comprehensive Laboratory Animal Monitoring 152 System (CLAMS; Columbus Instruments International, Columbus, OH USA) for 24 h before 153 data collection. At data collection the animals were kept in CLAMS for 48 h and data from 154 the last 24 h were used for analysis. Before CLAMS the animals were habituated to their 155 normal food as powder for three days, as the food in CLAMS is in powder form. The animals 156 were placed in CLAMS when the body weight had reached a plateau. This is defined by less 157 than 5% weight loss or gain over a period of 7 days or more. The DIO rats and mice were 158 placed in CLAMS at 35 and 11 weeks of age, respectively, together with their respective control groups. GB and control rats were placed in CLAMS 3 weeks post-surgery, while 159 M3KO and WT mice were 6, 11 and 15 months old when placed in CLAMS. 160 161 Animals were placed in CLAMS with free access to standard powder food (RM1 162 801002, Scanbur BK AS, Sweden) or to high fat diet, and tap water. This system is composed

163 of a four-chamber open circuit indirect calorimeter designed for continuous monitoring of

164 individual animals. Eating behaviour and metabolic parameters were recorded automatically.

165 High-resolution feeding data was generated by monitoring all feeder balances every 0.5

seconds. The end of an eating event (meal) was determined when the balances were stable for

more than 10 seconds and a minimum of 0.05 g of food were eaten. An air sample was

168 withdrawn every 5 min. The EE (kcal/h) was calculated according to this equation:

169 $(3.815+1.232 \text{ RER}) \times \text{VO}_2$, where RER (respiratory exchange ratio) was the volume of CO₂

produced per volume of O_2 consumed. VO_2 was the volume of O_2 consumed per hour per

171 kilogram of mass of the animal. Parameters that were obtained during light phase (7 am–7

pm) and dark phase (7 pm–7 am) for each individual animal included number of meals, meal

size, meal duration, accumulated food intake, intermeal interval, rate of eating, satiety ratio,

drinking activity, EE and ambulatory activity. The intermeal interval was defined as the
interval in minutes between two meals. Rate of eating was calculated by dividing the average
meal size by the average duration of a meal, and satiety ratio, an index of the non-eating time

produced by each gram of food consumed, was calculated by dividing the average intermealinterval by the average meal size.

179

180

181

182 Measurement of body composition

- Body composition was determined for DIO rats and mice, and respective control groups, using dual energy X-ray absorptiometry (DXA) with small animal software (Hologic QDR 4500A, Hologic Inc., Bedford, MA, USA). Total bone area (cm²), total fat mass (g) and
- total fat-free mass (g) were measured, and total mass (g), lean percentage (%) and fat
- 187 percentage (%) were calculated. DXA was performed under anaesthesia (isoflurane).
- 188

189 In situ hybridization

- Brain samples were taken at euthanization and snap-frozen in isopentane on dry ice
- before being stored at -80°C wrapped in aluminium foil. The frozen brains were cut (14 μ m)
- in the region spanning the hypothalamus between Bregma -0.10 to -2.54 mm according to the
- 193 Mouse Brain Atlas of Franklin & Paxinos 1997 and sections were mounted onto poly-L-
- 194 lysine-coated slides. Primers for the amplification of AgRP spanned were based on Genbank
- sequence U89484 to amplify the sequence between bases 113-341 (forward primer 5'-
- 196 TGTTCCCAGAGTTCCCAGGTC-3', reverse primer 5'-
- 197 GCATTGAAGAAGCGGCAGTAGCAC-3'). Primers for the amplification of POMC were
- based on Genbank sequence J00162 to amplify the sequence between bases 263-665 (forward
- 199 primer 5'-GGGCAAGCGCTCCTACTCCAT-3', reverse primer 5'-
- 200 GCCCTTCTTGTRSRCGTTCTTGA-3'). The DNA sequence for NPY was a full-length
- 201 cloned rat NPY gene sequence. Primers for the amplification of Ob-Rb (leptin receptor) were
- based on Genbank sequence U49107 to amplify the sequence between bases 5'-
- 203 GTGTGAGCATCTCTCCTGGAG-3' (+2829 to +2849) and 5'-
- ACCACCAGACCCTGAAAG-3' (+3362 to +3343)(see MCH information). Integrated
 optical density (IOD) was obtained by reference to the 14C microscale. Values were averaged
- 206 207

208 Statistical analysis

for each animal.

- The results are expressed as means \pm SEM. Statistical comparisons were performed using two-sided independent *t*-test between the groups, and paired *t*-test was used for
- comparisons within groups. If assumption of normal distribution was not met, Mann-Whitney
- U test (denoted as U test when applied) were used. A p-value of <0.05 was considered
- statistically significant. Shapiro-Wilk test was used to test for normal distribution and
- Levine's test for homogeneity was used to test for equal variances between the groups and p-
- values were reported accordingly. A power of >0.80 was set as minimal to ensure sufficient

sample sizes and were calculated using G*Power version 3.1 and a randomization table was

used to assign the animals to different groups. The data analysis was performed in SPSS

218 version 20.0.

219

220

221 **Results**

222 Diet-induced obese rats

The increase of body weight reached the plateau 28 weeks after starting high-fat diet feeding (33 weeks of age). DIO rats were 25% heavier than age-matched and normal diet (ND) controls at the plateau (p=0.001) (Fig. 1a, Supplementary Table S1).

226 At 35 weeks of age, the rats were placed in CLAMS, and we found calorie intake was higher during dark phase than light phase in both ND (p < 0.001) and DIO (p < 0.001) rats 227 indicating a good sensitivity of CLAMS. Calorie intake was slightly higher in DIO rats than 228 229 ND rats during light phase (p=0.039), but not significantly different during the dark phase 230 (p=0.083) (Fig. 1b). EE was higher during dark phase than light phase in ND rats (p<0.001). 231 However, there were no differences between ND and DIO rats during light phase (p=0.917), 232 but there was a trend for lower EE in DIO rats during dark phase (p=0.068) (Fig. 1c). RER was higher during dark phase than light phase in control rats (p < 0.001). In comparison with 233 234 ND rats, DIO rats had a lower RER during both light- and dark-phase (p=0.008 and <0.001, 235 respectively)(Fig. 1d). Body composition analysis showed that total body mass ($p \le 0.001$) and surface area (p < 0.001), fat mass (p < 0.001, U test) and fat percentage (p < 0.001) were higher, 236 whereas the lean percentage (p < 0.001) (but not lean mass (p = 0.657, U test)) was lower in 237 238 DIO than ND rats (Fig. S1).

239

240 Diet-induced obese mice

The increase of body weight reached the plateau 6 weeks after starting high-fat diet feeding (11 weeks of age). DIO mice were 23% heavier than age-matched and normal diet controls at the plateau (p < 0.001) (Fig. 2a, Supplementary Table S2).

At the plateau of body weight, the mice were placed in CLAMS. We found that calorie intake was higher during dark phase than light phase particularly in ND mice (p<0.001). There was no difference in calorie intake between DIO and ND mice neither during light

- phase (p=0.326) nor during dark phase (p=0.943) (Fig. 2b). EE was higher during dark phase
- than light phase in both ND (p < 0.001) and DIO (p < 0.001) mice, suggesting higher active EE.
- There was no difference in the EE during light phase (p=0.274), but DIO had lower EE than

- ND during dark phase (p=0.043) (Fig. 2c). RER was higher during dark phase than light
- phase in both ND (p=0.001) and DIO (p=0.008) mice. In comparison with ND mice, DIO
- mice had a lower RER only during dark phase (p=0.003) (Fig. 2d). Body composition
- analysis showed that total body mass (p < 0.001) and surface (p = 0.004), and fat mass (p < 0.001,
- U test) and percentage (p < 0.001) were higher, whereas the lean mass (p = 0.020) and
- percentage (p < 0.001) were lower in DIO than ND mice (Fig. S2).
- 256

257 *Gastric bypassed rats*

258 GB-induced body weight loss reached the plateau, i.e., 15% weight loss, 2 weeks after 259 surgery (p < 0.001) (Fig. 3a, Supplementary Table S3), and 3 weeks post-surgery, the rats were 260 placed in CLAMS. Calorie intake was higher during dark phase than light phase in both sham-operated and GB rats (p=0.001 and 0.003, respectively). There was no difference in 261 262 calorie intake between the two groups neither during light phase nor during dark phase 263 (p=0.289 and 0.870, respectively) (Fig. 3b). EE was higher in GB rats than sham-operated rats 264 during dark phase (p=0.033) (Fig. 3c). RER was higher during dark phase than light phase in 265 both sham- and GB-operated group (p=0.001 and 0.008, respectively). There was no 266 difference in RER between groups either during dark- or light-phase (p=0.389 and 0.516, 267 respectively) (Fig. 3d).

268

269 *M3KO mice*

At the birth, the body weight did not differ between M3KO and WT mice [29]. At 2 270 months of age there was a trend for lower body weight in M3KO than WT mice (p=0.065). 271 272 The mice was placed in CLAMS at 6, 11 and 15 months of age, and M3KO mice weighed significantly less than WT mice at all time-points (p < 0.001, 0.001 and 0.001, respectively). 273 274 There was no significant difference in body weight between 6, 11, and 15 months of age (6 vs. 11: p=0.599, 6 vs. 15: p=0.514 and 11 vs 15: p=0.292)(Fig. 4a). Both M3KO and WT 275 276 mice had a continuous growth throughout the lifespan. (Supplementary Tables S4-6). Calorie 277 intake was higher during dark phase than light phase in WT mice (p=0.002, 0.092 and 0.081, 278 respectively) and more so in M3KO mice (p=0.022, 0.004 and <0.001, respectively). There 279 were no differences in calorie intake between WT and M3KO mice at all time points 280 examined, except light phase at 6 months where calorie intake was lower in M3KO compared 281 to WT, (p=0.010) and dark phase at 15 months of age where calorie intake was unexpectedly 282 higher in M3KO than WT mice (p=0.034) (Fig. 4b). Both EE and RER were higher during 283 light- as well as dark-phase in M3KO than in WT mice at the time points measured (Light:

284 EE: *p*<0.001, =0.005 and =0.005, respectively. RER: *p*<0.001, =0.028 and <0.001,

respectively) (Dark: EE: p < 0.001, < 0.001 and = 0.003, respectively; RER: p < 0.001, 0.001 and

286 0.001, respectively) (Fig.4c, d).

In comparison with age-matched WT mice, the M3KO mice had higher mRNA

- expression of NPY, AgRP and leptin receptor in the arcuate nucleus in the hypothalamus
- 289 (p=0.001, <0.001 and =0.003, respectively) (Fig. 5). Pro-opiomelanocortin (POMC) in the
- 290 ARC and melanin-concentrating hormone (MCH) in ventromedial hypothalamus were
- unchanged in terms of mRNA expression (p=0.356 and 0.200, respectively) (Fig. 5).
- 292
- 293

294 **Discussion**

295 The results of the present study using 4 different animal models have demonstrated a 296 common phenotype, i.e. steady-state energy balance at the plateau of body weight 297 development. EE was measured during light- and dark-phases separately to indicate basal and 298 active metabolic rates, respectively. Interestingly, the basal metabolic rate was unchanged in 299 both obese rats and mice compared to normal chow-fed controls, but the active metabolic rate 300 seemed to be reduced significantly in mice and non-significantly in rats (probably due to the 301 sample size). The results also showed a higher RER in dark phase than light phase during the 302 steady-state energy balance, indicating a higher oxidative capacity of the muscle for the 303 provision of energy in the dark phase [34]. Furthermore, the obese rats had a low RER during 304 both light-and dark- phases, suggesting a lower muscle's oxidative capacity.

These results may help us to explain what we often see in clinic, i.e., the large variability in individual responses to weight loss interventions in patients could be because the differences in the time frame over which a steady-state energy balance establishes between individuals. This is in line with a recent study showing that the longer it took to reach a steady state following GB surgery, the greater the weight loss was. In addition, the majority of patients undergoing GB surgery did not lose significant weight after reaching steady state [35].

Previously it has been reported that NPY and AgRP mediate complementary functions of hyperphagia and reduce EE in leptin receptor deficient mice [36]. In addition, it has been demonstrated that there are compensatory changes in hypothalamus, particularly NPY and AgRP gene expression, in normal rats and mice fed either with high-fat diet or low-energy dense diet for long period, indicative of a compensation to defend the body weight changes 317 [19, 20, 21, 22]. Previously, we and others have shown that GB-induced weight loss in rats

- was not due to decreased calorie intake, but due to an increase in EE [23, 24, 25, 26, 27],
- 319 which is in line with the hypothalamic gene expression of NPY, AgRP, or POMC [28].
- 320 Therefore, we did not analyse the hypothalamic gene expression in obese rats, obese mice and
- GB rats in the present study.

322 However, we further analysed the M3KO mouse model with respect to both energy 323 balance and the hypothalamic gene expression. This was because in the initial publication 324 [29] reported that M3KO mice had reduced food intake with increased expression of 325 hypothalamic AgRP mRNA and decreased expression of POMC mRNA, which appeared to 326 be inconsistent with the homeostatic mechanism of food intake regulation associated with the 327 regulatory neuropeptides encoded by these genes[30]. In contrast to this previous study we 328 found M3KO mice did not have significantly overall reduced calorie intake as measured using a more precise method (the state-of-the-art CLAMS) than one used in the study by Yamada et 329 330 al. [29]. Furthermore, we found that reduced calorie intake during the light phase and 331 increased calorie intake during the dark phase were accompanied by increase EE during both 332 light phase and dark phases throughout all stages of growth and maturity. Additionally, in 333 contrast to this previous study, we found that RER was increased in M3KO mice, implicating 334 use of carbohydrates as the predominant fuel for cellular respiration. This may also suggest 335 high rates of *de novo* lipogenesis in these mice as carbohydrates are partially oxidized and 336 directed towards fatty acid synthesis. This would have a considerable effect on the fat mass of 337 these mice and is highly relevant to their steady state. Similar to EE, RER was higher in both the light and dark phases. Taken together with the findings of equal body weights at birth and 338 339 during the initial post-natal development, we suggest that the lean phenotype of the M3KO 340 mice is not caused by prenatal factors or environment, but develops as the mice grow and is 341 maintained as the mice achieve a new steady-state of energy balance. Since the absence of M3 342 receptor has beneficial effects, which protect mice against obesity, some studies with new classes of M3-receptor selective antagonists have been initiated but still in its preliminary 343 344 phases, and the lack of specific antagonists or agonists for M3 receptors in CNS, make it 345 impossible to validate this anti-obesity target at present [37]. In addition, there are several 346 other possible pharmacological treatments for obesity targeting EE, such as thyroid hormone 347 receptor β agonists (GC-1 and GC-24) and NADPH:quinone reductase 1 (NQO1) activators (MB12066) [38, 39]. Some of these compounds have shown promising results as obesity 348 treatment in animal studies, with MB12066 having completed Phase I clinical trial [40, 41, 349 350 42].

351	The results of the present study suggest that when a body weight plateau is reached
352	following either weight gain or loss, a new steady-state energy homeostasis occurs which is
353	mainly due to alterations in EE and RER. The decreased EE in obese animals and increased
354	EE in lean animal models suggest that interventions for reduction in body weight or for
355	continuation of weight loss should target EE.
356	
357	Disclosure of interest
358	No conflicts of interest, financial or otherwise, are declared by the authors
359	
360	Funding
361	Supported by European Union Seventh Framework Programme (FP7/2007-2013, n°266408
362	(Full4Health)), the Joint Programme of the Medical Faculty of Norwegian University of
363	Science and Technology (NTNU) and St. Olav's University Hospital, the Liaison Committee
364	between the Central Norway Regional Health Authority and NTNU.
365	
366	Author contributions
	Author contributions

368 HJ, NC, PB, DC and C-MZ performed the experiments and analysed the results. KT provided

animal models. MKO, HJ, NC, PB, KT, BK, DC and C-MZ wrote the manuscript. All authors

370 reviewed the manuscript.

371 372	References				
373 374 375 376	1.	WHO. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation presented at: the World Health Organization; June 3-5, 1997; Geneva, Switzerland. Publication WHO/NUT/NCD/98.1.			
377 378 379 380 381 382 383 384	2.	Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating G. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31-40.			
385 386 387	3.	Burton BT, Foster WR. Health implications of obesity: an NIH Consensus Development Conference. J Am Diet Assoc. 1985;85:1117-21. Epub 1985/09/01.			
388 389 390 391	4.	Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. Epub 2009/03/27.			
392 393 394	5.	Tsai AG, Wadden TA. In the clinic: obesity. Ann Intern Med. 2013;159:ITC3-1-ITC3-15; quiz ITC3-6.			
395 396 397	6.	Colquitt J, Picot J, Loveman E, Clegg A. Surgery for obesity COCHRANE DB SYST REV. 2009.			
398 399 400 401 402	7.	Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, Bucher HC, Nordmann AJ. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;22:f5934.			
403 404 405	8.	Carvajal R, Wadden TA, Tsai AG, Peck K, Moran CH. Managing obesity in primary care practice: a narrative review. Ann N Y Acad Sci. 2013;1281:191-206.			
406 407 408	9.	Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: A systematic and clinical review. JAMA. 2014;311:74-86.			
409 410 411	10.	Rodgers RJ, Tschop MH, Wilding JP. Anti-obesity drugs: past, present and future. Dis Model Mech. 2012;5:621-6.			
412 413 414 415	11.	Arch JR. The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from beta3-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:225-40.			
416 417 418	12.	Mund RA, Frishman WH. Brown adipose tissue thermogenesis: beta3-adrenoreceptors as a potential target for the treatment of obesity in humans. Cardiol Rev. 2013;21:265-9.			

420 421 422	13.	Manore MM, Brown K, Houtkooper L, Jakicic J, Peters JC, Smith Edge M, Steiber A, Going S, Gable LG, Krautheim AM. Energy balance at a crossroads: translating the science into action. Med Sci Sports Exerc. 2014;46:1466-73.
423 424 425	14.	Gautron L, Elmquist JK, Williams KW. Neural control of energy balance: translating circuits to therapies. Cell. 2015;161:133-45.
426 427 428	15.	Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126:126-32.
429 430 431	16.	Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev. 2006;27:750-61.
432 433 434 435 426	17.	Furnes MW, Zhao CM, Chen D. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg. 2009;19:1430-8. Epub 2009/06/10.
430 437 438 439	18.	la Fleur SE, Luijendijk MC, van der Zwaal EM, Brans MA, Adan RA. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns. Int J Obes (Lond). 2014;38:643-9.
440 441 442 443 444	19.	Archer ZA, Rayner DV, Duncan JS, Bell LM, Mercer JG. Introduction of a high- energy diet acutely up-regulates hypothalamic cocaine and amphetamine-regulated transcript, Mc4R and brown adipose tissue uncoupling protein-1 gene expression in male Sprague-Dawley rats. J Neuroendocrinol. 2005;17:10-7.
445 446 447 448	20.	Archer ZA, Rayner DV, Mercer JG. Hypothalamic gene expression is altered in underweight but obese juvenile male Sprague-Dawley rats fed a high-energy diet. J Nutr. 2004;134:1369-74.
449 450 451 452	21.	Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology. 2010;151:4745-55.
453 454 455 456 457 458	22.	Archer ZA, Rayner DV, Barrett P, Balik A, Duncan JS, Moar KM, Mercer JG. Hypothalamic energy balance gene responses in the Sprague-Dawley rat to supplementation of high-energy diet with liquid ensure and subsequent transfer to chow. J Neuroendocrinol. 2005;17:711-9.
458 459 460 461 462	23.	Furnes M, Tømmerås K, Arum C-J, Zhao C-M, Chen D. Gastric Bypass Surgery Causes Body Weight Loss Without Reducing Food Intake in Rats. Obes Surg. 2008;18:415-22.
463 464 465 466	24.	Furnes MW, Stenstrom B, Tommeras K, Skoglund T, Dickson SL, Kulseng B, Zhao CM, Chen D. Feeding behavior in rats subjected to gastrectomy or gastric bypass surgery. Eur Surg Res. 2008;40:279-88.
467 468 469	25.	Kodama Y, Johannessen H, Furnes MW, Zhao CM, Johnsen G, Marvik R, Kulseng B, Chen D. Mechanistic comparison between gastric bypass vs. duodenal switch with sleeve gastrectomy in rat models. PLoS One. 2013;8:e72896.

470		
471	26.	Bueter M, Lowenstein C, Olbers T, Wang M, Cluny NL, Bloom SR, Sharkey KA,
472		Lutz TA, le Roux CW. Gastric bypass increases energy expenditure in rats.
473		Gastroenterology. 2010;138:1845-53.
474		
475	27.	Bueter M, le Roux CW. Gastrointestinal hormones, energy balance and bariatric
476		surgery. Int J Obes. 2011;35:S35-S9.
477		
478	28.	Xu Y, Ramos EJ, Middleton F, Romanova I, Quinn R, Chen C, Das U, Inui A, Meguid
479		MM. Gene expression profiles post Roux-en-Y gastric bypass. Surgery. 2004;136:246-
480		52.
481		
482	29.	Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa
483		M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J. Mice lacking the M3
484		muscarinic acetylcholine receptor are hypophagic and lean. Nature. 2001;410:207-12.
485		
486	30.	Schwartz MW, Woods SC, Porte D, Jr., Seeley RJ, Baskin DG. Central nervous
487		system control of food intake. Nature. 2000;404:661-71.
488		
489	31.	Furnes MW, Zhao C-M, Chen D. Development of Obesity is Associated with
490		Increased Calories per Meal Rather than per Day. A Study of High-Fat-Diet-Induced
491		Obesity in Young Rats. Obes Surg. 2009:1430-8.
492		
493	32.	Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J. Beneficial
494		metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab.
495		2006;4:363-75.
496		
497	33.	Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S,
498		Taketo MM. Multiple functional defects in peripheral autonomic organs in mice
499		lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad
500		Sci U S A. 2000;97:9579-84.
501		
502	34.	Ramos-Jimenez A, Hernandez-Torres RP, Torres-Duran PV, Romero-Gonzalez J,
503		Mascher D, Posadas-Romero C, Juarez-Oropeza MA. The Respiratory Exchange Ratio
504		is Associated with Fitness Indicators Both in Trained and Untrained Men: A Possible
505		Application for People with Reduced Exercise Tolerance. Clin Med Circ Respirat
506		Pulm Med. 2008;2:1-9.
507		
508	35.	Kindel T, Lomelin D, McBride C, Kothari V, Thompson J. The Time to Weight-Loss
509		Steady State After Gastric Bypass Predicts Weight-Loss Success. Obes Surg.
510		2016;26:327-31.
511		
512	36.	Luo N, Marcelin G, Liu SM, Schwartz G, Chua S, Jr. Neuropeptide Y and agouti-
513		related peptide mediate complementary functions of hyperphagia and reduced energy
514		expenditure in leptin receptor deficiency. Endocrinology. 2011;152:883-9.
515		
516	37.	Maresca A, Supuran CT. Muscarinic acetylcholine receptors as therapeutic targets for
517		obesity. Expert Opin Ther Targets. 2008;12:1167-75.
518		

519 520 521	38.	Chugh PK, Sharma S. Recent advances in the pathophysiology and pharmacological treatment of obesity. J Clin Pharm Ther. 2012;37:525-35.
522 523 524 525	39.	Amorim BS, Ueta CB, Freitas BC, Nassif RJ, Gouveia CH, Christoffolete MA, Moriscot AS, Lancelloti CL, Llimona F, Barbeiro HV, de Souza HP, Catanozi S, Passarelli M, Aoki MS, Bianco AC, Ribeiro MO. A TRbeta-selective agonist confers resistance to diet-induced obesity. J Endocrinol. 2009;203:291-9
526		resistance to dict-induced obesity. J Endocrinol. 2009,205.291-9.
527 528 529 530 531	40.	Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi HS, Lee SH, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes. 2009;58:965-74.
532 533 534 535 536	41.	Villicev CM, Freitas FR, Aoki MS, Taffarel C, Scanlan TS, Moriscot AS, Ribeiro MO, Bianco AC, Gouveia CH. Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol. 2007;193:21-9.
537 538 539	42.	Corp KGLS. Safety, Tolerability and Pharmacokinetic Study of MB12066 in Healthy Volunteers: ClinicalTrials.gov; 2011. Available from: http://clinicaltrials.gov/ct2/show/record/NCT01444677?term=mb12066&rank=1.
540		
541		
542		

543 **Figures Captions**

544

545 **Figure 1** (a) Body weight of high-fat-diet (HFD) induced obese (DIO) (n=12) rats relative to 546 normal diet (ND) (n=8) rats from 5 to 35 weeks of age. Grey area represents body weight 547 plateau (less than 5% increase or decrease in BW over last couple of weeks). CLAMS was 548 performed at 35 weeks of age for both DIO (n=11) and ND (n=7) rats. (b) Calorie intake 549 (g/100g body weight) during light phase and dark phase of DIO and ND rats. (c) EE 550 (kcal/h/100g body weight) during light phase and dark phase of DIO and ND rats. (d) RER 551 during light phase and dark phase of DIO and ND rats. White background indicates light 552 phase and grey background indicates dark phase. Data is expressed as mean \pm SEM. *, **, ***: p<0.05, 0.01, 0.001 between DIO and ND. Independent t-test was used between groups 553 and paired *t*-test within groups (light vs. dark phase). 554 555

556 Figure 2 | (a) Body weight of high-fat-diet (HFD) induced obese (DIO) (n=10) mice relative 557 to normal diet (ND) (n=10) mice from 5 to 12 weeks of age. Grey area represents body weight 558 plateau (less than 5% increase or decrease in BW over last couple of weeks). CLAMS was performed at 11 weeks of age for both DIO (n=10) and ND (n=10) mice. (b) Calorie intake 559 560 (g/100g body weight) during light phase and dark phase of DIO and ND mice. (c) EE 561 (kcal/h/100g body weight) during light phase and dark phase of DIO and ND mice. (d) RER 562 during light phase and dark phase of DIO and ND mice. White background indicates light phase and grey background indicates dark phase. Data is expressed as mean \pm SEM. **, ***: 563 p < 0.01, 0.001 between DIO and ND. Independent *t*-test was used between groups and paired 564 565 *t*-test within groups (light vs. dark phase).

566

567 **Figure 3** | (a) Body weight of GB-operated (n=14) rats relative to sham-operated (n=6) rats up 568 to 5 weeks post-surgery. Grey area represents body weight plateau (less than 5% increase or 569 decrease in BW over last couple of weeks). CLAMS was performed at 3 weeks after surgery 570 for both GB (n=8) and sham-operated (n=6) rats. (b) Calorie intake (g/100g body weight) 571 during light phase and dark phase of GB and sham rats. (c) EE (kcal/h/100g body weight) 572 during light phase and dark phase of GB and sham rats. (d) RER during light phase and dark 573 phase of GB and sham rats. White background indicates light phase and grey background indicates dark phase. Data is expressed as mean \pm SEM. *, ** p<0.05, 0.01 between GB and 574 575 sham. Independent *t*-test was used between groups and paired *t*-test within groups (light vs. 576 dark phase).

577 578

579

580 than 5% increase or decrease in BW over last couple of weeks). CLAMS was performed at 6, 581 11 and 15 months of age for both M3KO (n=8) and WT (n=8) mice. (b) Calorie intake 582 (g/100g body weight) during light phase and dark phase of WT and M3KO mice at 6, 11 and 583 15 months of age. (c) EE during light phase and dark phase of WT and M3KO mice at 6, 11 and 15 months of age. (d) RER during light phase and dark phase of WT and M3KO mice at 584 585 6, 11 and 15 months of age. 586 587 Figure 5 | mRNA expression (integrated optical density, %IOD) of AgRP, NPY, POMC and leptin receptor (Lepr) in arcuate nucleus and of MCH in ventromedial hypothalamus of WT 588 (n=8) and M3KO (n=8) mice at 15 months of age. Data is expressed as mean \pm SEM. *, **, 589 ***: p<0.05, 0.01, 0.001 between M3KO and WT. Independent *t*-test was used between 590 591 groups. 592 Figure S1 | Body composition of DIO (n=11) and normal diet (ND) (n=8) rats at 35 weeks of 593 age. (a) Total mass (g), (b) Fat mass (g), (c) Fat (%), (d) Surface area of the rats (cm²), (e) 594 Lean mass (g) and (f) Lean (%). Data is expressed as mean \pm SEM. **, ***: p < 0.01, 0.001595 596 between DIO and ND. Independent *t*-test was used for all comparisons except for fat and lean mass where U test was used. 597

Figure 4 | (a) Body weight of M3KO mice relative to wild-type (WT) (n=7) at 2 (n=8), 6

(n=8), 11 (n=8) and 15 (n=8) months of age. Grey area represents body weight plateau (less

598

Figure S2 | Body composition of DIO (n=10) mice and normal diet (ND) (n=10) mice at 11
weeks of age. (a) Total mass (g), (b) Fat mass (g), (c) Fat (%), (d) Surface area of the rats

601 (cm²), (e) Lean mass (g) and (f) Lean (%). Data is expressed as mean \pm SEM. *, **, ***: p <

602 0.05, 0.01, 0.001 between DIO and ND. Independent *t*-test was used for all comparisons

603 except for fat mass where U test was used.

604

С

D

С

Time After Surgery (Weeks)

Α

F

С

Supplementary Table S1 | Energy balance in normal diet (ND) and diet-induced obese (DIO) rats at 35 weeks of age. Data expressed as mean±SEM. Independent *t*-test was used for all comparisons. U –test were used if normality assumptions were not met (denoted U).

	Parameters	ND (n=7)	DIO (n=11)	p-value (two-tailed)
	Food Intake (g)	15.05±1.05	12.84±0.97	0.155
	Food Intake (g/100g body weight)	2.49 ± 0.18	1.73 ± 0.13	0.004 ^u
	Calories intake (kcal)	38.67±2.71	67.3±5.07	0.001
	Calories intake (kcal/100g body weight)	6.41±0.45	9.05±0.69	0.008
	Number of meals Meel size (g/meel)	64.29 ± 7.61	24.64 ± 1.92	0.002
	Meal size (g/ilical)	0.23 ± 0.03 0.64+0.07	0.34 ± 0.03 2 85+0 27	0.000
	Meal duration (min)	82 22+5 1	2.05 ± 0.27 33 72+1 85	0.000
	Meal duration (min/meal)	1.39 ± 0.16	1.44 ± 0.12	0.771
	Intermeal interval (min)	22.84±3.08	58.31±4.73	0.000
24 Harres	Satiety ratio (min/g)	91.27±6.15	115.6±14.95	0.246 ^u
24 Hours	Rate of eating (g/min)	0.19±0.02	0.38±0.02	0.000
	Water intake (mL)	14.86±0.65	11.56±0.77	0.009
	Water intake (ml/100g body weight)	2.47 ± 0.14	1.54 ± 0.1	0.000
	Water intake during one interval (ml/time)	0.96 ± 0.14	0.96 ± 0.11	0.988
	Energy expenditure (kcal/h)	2.19 ± 0.13	2.53 ± 0.12	0.084
	Energy expenditure (kcal/n/100g body weight)	0.36 ± 0.01	0.34 ± 0.01	0.219
	REP	0.004 ± 0 0.89+0.01	0.004 ± 0 0.78+0.01	0.970
	VO2	733 04+25 46	702 51+25 88	0.438
	VCO2	653 15±29 62	549.67 ± 21.47	0.011
	Ambulatory activity	8059.8±225.77	5736 ± 257.01	0.104 ^u
	Parameters	ND (n=7)	DIO (n=11)	p-value (two-tailed)
	Food Intake (g)	1.26 ± 0.49	2.23 ± 0.52	0.328 ^u
	Food Intake (g/100g body weight)	0.21±0.08	0.3 ± 0.07	0.423
	Calories intake (kcal)	3.23±1.27	$11.6/\pm 2.75$	0.035"
	Calories intake (kcal/100g body weight)	0.55 ± 0.2	1.52 ± 0.38	0.039
	Number of means Meel size (g/meel)	0.37 ± 1.83 0.17+0.04	5.09 ± 0.96	0.445
	Meal size (g/ilical)	0.17 ± 0.04 0.45+0.09	2.04 ± 0.07	0.0033
	Meal duration (min)	6.08 ± 1.93	61 ± 152	0.996
	Meal duration (min/meal)	0.89 ± 0.13	1.08 ± 0.12	0.322
	Intermeal interval (min)	141.98 ± 40.4	155.39±27.7	0.780
Light Phase	Satiety ratio (min/g)	1265.18±653.95	3650.66±3232.5	0.285 ^u
Light I hase	Rate of eating (g/min)	0.19 ± 0.02	0.36±0.04	0.004
	Water intake (mL)	0.15 ± 0.08	0.9 ± 0.28	0.044 ^u
	Water intake (ml/100g body weight)	0.03 ± 0.01	0.11±0.03	0.085 ^u
	Water intake during one interval (ml/time)	$0.0/\pm 0.04$	0.4 ± 0.11	0.0274
	Energy expenditure (kcal/n)	1.99 ± 0.11 0.22 ±0.01	2.45 ± 0.1	0.009
	Energy expenditure (kcal/h/100g body weight)	0.03 ± 0.01	0.33 ± 0.01 0.003+0	0.917
	RFR	0.005 ± 0 0.85+0.02	0.005 ± 0 0.78+0.01	0.008
	VO2	67328 ± 1997	681.08 ± 21.43	0.807
	VCO2	572.11±26.3	531.86 ± 18.05	0.210
	Ambulatory activity	1486.4±94.14	1516.89±88.74	0.596 ^u
	Parameters	ND (n=7)	DIO (n=11)	<i>p</i> -value (two-tailed)
	Food Intake (g)	13.79±0.95	10.62 ± 0.9	0.033
	Colorias inteks (keel)	2.28 ± 0.15	1.43 ± 0.12	0.000
	Calories intake (kcal/100g body weight)	5 86+0 4	7.47 ± 0.64	0.002
	Number of meals	57 71+6 75	19 55+2 23	0.001
	Meal size (g/meal)	0.26 ± 0.03	0.6 ± 0.07	0.000
	Meal size (kcal/meal)	0.66±0.07	3.14±0.35	0.000
	Meal duration (min)	76.13±4.81	27.62±1.5	0.000
	Meal duration (min/meal)	1.43±0.17	1.6±0.18	0.536
	Intermeal interval (min)	12.04±1.66	38.94±5.23	$0.000^{\rm u}$
Dark Phase	Satiety ratio (min/g)	47.09±3.15	67.18±7.04	0.020 ^u
	Rate of eating (g/min)	0.19 ± 0.02	0.38 ± 0.02	0.000
	Water intake (mL)	$14./1\pm0.01$	$10.0/\pm0.02$	0.001
	Water intake (ml/100g body weight)	2.44 ± 0.13 1.05±0.16	1.43 ± 0.09 1.08±0.13	0.000
	Fnerov expenditure (kcal/b)	239+0.16	261+0.13	0.345
	Energy expenditure (kcal/h/100g hody weight)	0.39 ± 0.02	0.35 ± 0.02	0.068
	Energy expenditure (kcal/h/cm2 body surface)	0.004±0	0.004±0	0.429
	RER	0.92±0.01	0.78±0.01	0.000
	VO2	792.8±32.26	723.93±32.88	0.177
	VCO2	734.19±34.67	567.49±26.79	0.001
	Ambulatory activity	6573.4±296.45	4219.11±267.14	0.104 ^u

Supplementary Table S2 | Energy balance in normal diet (ND) and diet-induced obese (DIO) mice at 11 weeks of age. Data expressed as mean±SEM. Independent *t*-test was used for all comparisons. U –test were used if normality assumptions were not met (denoted U).

	Parameters	ND (n=10)	DIO (n=10)	p-value (two-tailed)
	Food Intake (g)	4.22±0.61	3.07±1.13	0.063 ^u
	Food Intake (g/100g body weight)	15.25 ± 2.27	8.91±3.18	0.035 ^u
	Calories intake (kcal)	10.84 ± 1.56	16.07 ± 5.91	0.353 ^u
	Calories intake (kcal/100g body weight)	39.19±5.83	46.69±16.67	0.280 ^u
	Number of meals	85.3±7.71	61.7±8.45	0.054
	Meal size (g/meal)	0.05±0	0.04 ± 0.012	0.105
	Meal size (kcal/meal)	0.13±0.01	0.11 ± 0.03	0.105
	Meal duration (min/meal)	$103.2/\pm11.07$ 1.24 ± 0.07	52.25 ± 3.00 0.51 ± 0.044	0.000
	Intermed interval (min)	1.24 ± 0.07 16 54 ±1.4	0.31 ± 0.044 27 7 \pm 4 78	0.000
	Satisty ratio (\min/α)	3618 ± 4288	27.7±4.78 970 82±208 87	0.048
24 Hours	Bate of eating (g/min)	0.04+0.01	0.09 ± 0.022	0.017
	Water intake (mL)	221 ± 0.01	1.68 ± 0.18	0.029
	Water intake (ml/100g body weight)	7 99+0 26	5 15+0 72	0.002
	Water intake during one interval (ml/time)	0.05±0	0.07 ± 0.021	0.280 ^u
	Energy expenditure (kcal/h)	0.4 ± 0.01	0.44 ± 0.026	0.023 ^u
	Energy expenditure (kcal/h/100g body weight)	1.45 ± 0.04	1.31 ± 0.085	0.165 ^u
	Energy expenditure (kcal/h/cm2 body surface)	0 ± 0	0.05±0	0.796 ^u
	RER	0.91±0.03	0.81±0.031	0.016
	VO2	2941.72±89.33	2718.82±170.02	0.529 ^u
	VCO2	2702.743±92.59	2210.76±182.3	0.027
	Ambulatory activity	11262.8±2522.14	10998.4±1933.35	0.436 ^u
			DTO (10)	
	Parameters Each Intelse (a)	<u>ND (n=10)</u>	DIO (n=10)	<i>p</i> -value (two-tailed)
	Food Intake (g) Food Intake (g/100g body weight)	1.14 ± 0.2	1.13 ± 0.42 2 20 ±1.18	0.105 0.075 ^u
	Calories intake (kcal)	2.94 ± 0.52	6+2.21	0.684 ^u
	Calories intake (kcal/100g body weight)	1059+193	1725+617	1 000 ^u
	Number of meals	281 ± 303	17.25 ± 0.17 17.4±2.32	0.012
	Meal size (g/meal)	0.04±0	0.06 ± 0.02	$0.739^{\rm u}$
	Meal size (kcal/meal)	0.1 ± 0.01	0.15 ± 0.05	0.739 ^u
	Meal duration (min)	31.15±2.92	6.87±1.37	0.000 ^u
	Meal duration (min/meal)	1.15 ± 0.1	0.38±0.04	0.000
	Intermeal interval (min)	25.83±2.49	43.87±4.7	0.005
Light Dhogo	Satiety ratio (min/g)	685.11±73.44	1420.31±335.79	0.059
Light Fliase	Rate of eating (g/min)	0.04 ± 0.01	0.19±0.08	0.001 ^u
	Water intake (mL)	0.67 ± 0.04	0.62 ± 0.11	0.692
	Water intake (ml/100g body weight)	2.41±0.15	1.93±0.39	0.264
	Water intake during one interval (ml/time)	0.05±0	0.05 ± 0.01	0.436 ^u
	Energy expenditure (kcal/h)	0.36±0.01	0.41±0.02	0.140
	Energy expenditure (kcal/h/100g body weight)	1.31±0.04	1.21 ± 0.08	0.274
	Energy expenditure (kcal/h/cm2 body surface)	0±0	0 ± 0	0.684
	KEK VO2	0.85±0.03	$0./9\pm0.03$	0.190*
	V02 VC02	$2/01.94\pm8/.25$	2521.09 ± 101.52	0.338
	Ambulatory activity	2303.14±90.38	1994.40 ± 101.02 2022 8 ±570.81	0.105
	Amounatory activity	2780.08±039.00	5022.8±570.81	0.785
	Parameters	ND (n=10)	DIO (n=10)	p-value (two-tailed)
	Food Intake (g)	3.07±0.45	1.92±0.72	0.035 ^u
	Food Intake (g/100g body weight)	11.13 ± 1.68	5.62 ± 2.06	0.007 ^u
	Calories intake (kcal)	7.9±1.16	10.07±3.8	0.315 ^u
	Calories intake (kcal/100g body weight)	28.59 ± 4.31	29.44±10.78	0.280"
	Number of meals	57.2±5.44	44.3±6.67	0.151
	Meal size (g/meal)	0.05 ± 0.01	0.04 ± 0.01	0.052
	Meal size (kcal/meal)	0.14 ± 0.01	0.1 ± 0.03	0.052
	Meal duration (min)	74.12 ± 10.46	25.30±5	0.001
	Intermed interval (min)	1.20 ± 0.1	0.33 ± 0.03	0.000
	Sotiety ratio (min/g)	12.24 ± 1.45 252 22 ±42.66	20.42 ± 4.45 741 80±156 87	0.247
Dark Phase	Rate of eating (g/min)	0.05+0.01	0.07 ± 0.02	0.165 ^u
	Water intake (mL)	1.54 ± 0.05	1.06 ± 0.02	0.000 ^u
	Water intake (ml/100g body weight)	5 58+0 24	3 23+0 36	0.000 ^u
	Water intake during one interval (ml/time)	0.06±0	0.08 ± 0.03	0.190 ^u
	Energy expenditure (kcal/h)	0.44±0.02	0.48±0.03	0.075 ^u
	Energy expenditure (kcal/h/100g body weight)	1.59±0.05	1.42 ± 0.09	0.043 ^u
	Energy expenditure (kcal/h/cm2 body surface)	0.01±0	0.01±0	$0.796^{\rm u}$
	RER	0.97±0.03	0.83 ± 0.04	0.003
	VO2	3181.38±94.72	2916.54±186.14	$0.579^{\rm u}$
	VCO2	3102.16±108.17	2427.04±207.7	0.010
	Ambulatory activity	8482±1911.33	7975.6±1433.72	0436 ^u

Supplementary Table S3 | Energy balance in sham- and gastric bypass (GB)-operated rats 3 weeks post-surgery. Data expressed as mean±SEM. Independent *t*-test was used for all comparisons. U –test were used if normality assumptions were not met (denoted U).

	Parameters	Sham (n=6)	GB (n=8)	p-value (two-tailed)
	Food Intake (g)	20.51±1.17	18.63±3.09	0.852 ^u
	Food Intake (g/100g body weight)	3.57±0.24	3.72±0.6	0.345 ^u
	Calories intake (kcal)	52.72±3	47.88±7.94	0.852
	Calories intake (kcal/100g body weight)	9.18±0.63	9.56±1.53	0.345"
	Number of meals Meal size (g/meal)	44.83 ± 4.48 0.48 \pm 0.4	44±0.95 0.30±0.06	0.928
	Meal size (g/iiical) Meal size (kcal/meal)	1.22 ± 0.04	1+0.16	0.323
	Meal duration (min)	58 43+7 37	65 15+11 08	0.525
	Meal duration (min/meal)	13 ± 01	141 ± 011	0 505
	Intermeal interval (min)	31.64±3.15	84.44±56.47	0.755 ^u
24 Hauna	Satiety ratio (min/g)	66.85±3.71	914.52±847.79	0.852 ^u
24 Hours	Rate of eating (g/min)	0.37±0.03	0.28±0.05	0.184
	Water intake (mL)	20.22±1.83	17.85 ± 2.38	0.472
	Water intake (ml/100g body weight)	3.5±0.31	3.61±0.49	0.865
	Water intake during one interval (ml/time)	2.09±0.2	1.32 ± 0.17	0.013
	Energy expenditure (kcal/h)	1.92±0.07	1.86±0.05	0.852
	Energy expenditure (kcal/h/100g body weight)	0.33 ± 0.01	0.38 ± 0.01	0.003
	REP	0.003 ± 0 0.97+0.01	0.003 ± 0 0.94 ±0.04	0.055 0.852 ^u
	VO2	663 32+16 09	75531+1533	0.005 ^u
	VCO2	638.31 ± 17.4	707.19 ± 27.26	$0.020^{\rm u}$
	Ambulatory activity	6423.33±375.13	6186±623.55	0.770
	Parameters	Sham (n=6)	GB (n=8)	<i>p</i> -value (two-tailed)
	Food Intake (g)	4.35±0.54	4.99±0.91	0.593
	Food Intake (g/100g body weight)	0.75±0.09	1±0.18	0.289
	Calories intake (kcal)	11.18±1.39	12.82 ± 2.35	0.593
	Number of meals	1.93 ± 0.23 12.67 ±1.8	2.5 ± 0.46 16 12 ± 2.04	0.289
	Meal size (g/meal)	12.07 ± 1.0 0.37±0.07	0.13 ± 3.04 0.20 ± 0.02	0.389
	Meal size (g/meal)	0.97 ± 0.07 0.96+0.17	0.29 ± 0.03 0.74+0.09	0.200
	Meal duration (min)	12.3 ± 2.07	15.76 ± 3.29	0.429
	Meal duration (min/meal)	1.02 ± 0.19	0.9±0.1	0.552
	Intermeal interval (min)	57.05±8.2	80.3±40.2	0.414 ^u
	Satiety ratio (min/g)	168.48±31.65	674.16±546.43	0.573 ^u
Light Phase	Rate of eating (g/min)	0.38 ± 0.04	0.32 ± 0.02	0.172
Light I hase	Water intake (mL)	0.36 ± 0.26	1.67 ± 0.81	0.081 ^u
	Water intake (ml/100g body weight)	0.06 ± 0.04	0.34 ± 0.16	0.008
	Water intake during one interval (ml/time)	0.21 ± 0.12	0.6 ± 0.23	0.491
	Energy expenditure (kcal/n) Energy expenditure (kcal/h/100g hody weight)	2.08 ± 0.03 0.36±0.01	1.9 ± 0.00 0.38±0.01	0.029
	Energy expenditure (kcal/h/roog body weight) Energy expenditure (kcal/h/cm2 body surface)	0.003+0	0.03 ± 0.01	0.120
	RER	0.94 ± 0.01	0.91 ± 0.03	0.389
	VO2	726.68 ± 15.56	776.37±20.45	0.094
	VCO2	682.5±12.08	705.98±29.9	0.531
	Ambulatory activity	1636.17±103.11	1591.63±86.9	0.746
	_			
	Parameters	<u>Sham (n=6)</u>	GB (n=8)	<i>p</i> -value (two-tailed)
	Food Intake (g)	16.16 ± 1.3	13.64 ± 2.44	0.426
	Calories intake (kcal)	2.82 ± 0.20	2.72 ± 0.47 35.06+6.28	0.870
	Calories intake (kcal/100g body weight)	7 24+0 67	6.99 ± 1.23	0.420
	Number of meals	32.17±4.17	27.88 ± 4.64	0.521
	Meal size (g/meal)	0.53 ± 0.04	0.45±0.08	0.464
	Meal size (kcal/meal)	1.35 ± 0.11	1.16±0.2	0.464
	Meal duration (min)	46.13±6.52	49.39±8.17	0.772
	Meal duration (min/meal)	1.43 ± 0.06	1.77±0.16	0.086
	Intermeal interval (min)	22.2 ± 3.06	63.6±42.28	0.852 ^u
Dark Phase	Satiety ratio (min/g)	41.7±3.46	787.62±742.99	0.662
	Kate of eating (g/min)	0.37 ± 0.03	$0.2/\pm0.06$	0.043"
	water intake (mL) Water intake (ml/100g he downsight)	19.80±1.//	10.18±1.80	0.108"
	Water intake (IIII/100g body Weight)	3.44 ± 0.31 2.42 ± 0.22	5.27±0.39 1.40±0.2	0.750 0.012 ^u
	Energy expenditure (kcal/h)	2.45 ± 0.52 1 75+0 14	1.49 ± 0.2 1.82+0.1	0.015 0.414 ^u
	Energy expenditure (kcal/h/100g hody weight)	0.3 ± 0.02	0.37 ± 0.02	0.033
	Energy expenditure (kcal/h/cm2 body surface)	0.003±0	0.003±0	0.113
	RER	1±0.01	0.97±0.04	0.516
	VO2	600.02±36.7	734.01±37.61	0.029
	VCO2	594.19±37.54	708.2±40.76	0.070
	Ambulatory activity	4787.17±284.06	4594.38±555.18	0.785

Supplementary Table S4 | Energy balance in wild-type (WT) and M3KO mice at 6 months of age. Data expressed as mean \pm SEM. Independent *t*-test was used for all comparisons. U – test were used if normality assumptions were not met (denoted U).

	Parameters	WT (n=8)	M3KO (n=8)	p-value (two-tailed)
	Food Intake (g)	4±0.24	3.49±0.51	0.380
	Food Intake (g/100g body weight)	12.33±0.8	14.69 ± 1.79	0.249
	Calories intake (kcal)	10.28±0.62	8.97±1.31	0.380
	Calories intake (kcal/100g body weight)	31.68±2.06	37.75±4.61	0.249
	Number of meals	80.25±8.76	$24\pm6.1/$ 0.10+0.04	0.000
	Meal size (g/ilical) Meal size (kcal/meal)	0.03 ± 0.01 0.14+0.02	0.19 ± 0.04 0.5+0.09	0.005
	Meal duration (min)	69 29+11 55	2351+471	0.005
	Meal duration (min/meal)	0.86 ± 0.09	1.5 ± 0.51	0.130 ^u
	Intermeal interval (min)	18.28 ± 1.92	86.49±18.76	0.008
24 Harres	Satiety ratio (min/g)	346.19±19.64	430.65±51.52	0.160
24 Hours	Rate of eating (g/min)	0.07±0.01	0.18±0.03	0.002
	Water intake (mL)	2.61±0.2	3.46 ± 0.68	0.267
	Water intake (ml/100g body weight)	8.03±0.63	14.94 ± 2.9	0.050
	Water intake during one interval (ml/time)	0.07 ± 0.01	0.06 ± 0.01	0.539
	Energy expenditure (kcal/h)	0.44 ± 0.01	0.4 ± 0.01	0.028
	Energy expenditure (kcal/h/100g body weight)	1.34 ± 0.03	1.71 ± 0.04	0.000
	REP	0.89+0.01	1+0.01	0.000
	VO2	2742+67 57	3370 29+96 59	0.000
	VCO2	2440 ± 57.88	3417.59 ± 84.93	0.000
	Ambulatory activity	14323.75±3489.96	16439.88±4172.16	0.703
	5 5			
	Parameters	WT (n=8)	M3KO (n=8)	p-value (two-tailed)
	Food Intake (g)	1.55 ± 0.11	0.93 ± 0.27	0.005 ^u
	Food Intake (g/100g body weight)	4.78±0.37	3.9±1.08	0.010 ^u
	Calories intake (kcal)	3.98±0.28	2.38 ± 0.71	0.005"
	Calories intake (kcal/100g body weight)	12.28 ± 0.96	10.02 ± 2.79 7.25±2.06	0.010"
	Meal size (g/meal)	28.23 ± 4.14	7.23 ± 2.90 0.31 ± 0.1	0.001
	Meal size (g/meal)	0.16+0.02	0.51 ± 0.1 0.8+0.26	0.039
	Meal duration (min)	17.94 ± 3.24	6.48 ± 2.07	0.010
	Meal duration (min/meal)	0.65±0.09	2.57±1.4	$0.878^{\rm u}$
	Intermeal interval (min)	27.23±3.64	196.09±51.27	0.013
Light Phase	Satiety ratio (min/g)	448.53±25.91	717.32±100.33	0.032
Light I hase	Rate of eating (g/min)	0.11±0.03	0.35±0.12	0.084
	Water intake (mL)	0.65 ± 0.09	0.62 ± 0.1	0.859
	Water intake (ml/100g body weight)	2.01±0.31	2.71 ± 0.43	0.212
	Water intake during one interval (ml/time)	0.06 ± 0.01	0.05 ± 0.01	0.431
	Energy expenditure (kcal/n) Energy expenditure (kcal/h/100g body weight)	0.38 ± 0.01 1.18+0.04	0.36 ± 0.01 1.53 ±0.04	0.045
	Energy expenditure (kcal/h/roog body weight) Energy expenditure (kcal/h/cm2 body surface)	0.004 ± 0	1.53 ± 0.04 0.005+0	0.000
	RER	0.84 ± 0.01	0.005 ± 0 0.94 ±0.01	0.000
	VO2	2457.6±77.21	3073.19 ± 99.3	0.000
	VCO2	2059.68±72.3	2903.66±61	0.000
	Ambulatory activity	3964.83±401.03	4951.83±617.33	0.210
	_			
	Parameters	WT (n=8)	M3KO (n=8)	<i>p</i> -value (two-tailed)
	Food Intake (g) Food Intake (g/100g body weight)	2.45 ± 0.25 7.55±0.76	2.56 ± 0.49 10.70±1.78	0.843
	Calories intake (kcal)	6 3+0 63	10.79 ± 1.78 6 50+1 27	0.843
	Calories intake (kcal/100g body weight)	19 4+1 96	2773+458	0.117
	Number of meals	52±5.69	1675 ± 344	0.000
	Meal size (g/meal)	0.05±0.01	0.18±0.03	0.003
	Meal size (kcal/meal)	0.13±0.02	0.47 ± 0.08	0.003
	Meal duration (min)	51.35±8.6	17.03±3.25	0.005
	Meal duration (min/meal)	0.99±0.12	1.39 ± 0.45	0.402
	Intermeal interval (min)	13.75 ± 1.54	52.23±9.71	0.005
Dark Phase	Satiety ratio (min/g)	287.66±30.5	303.25±40.23	0.762
	Rate of eating (g/min)	0.06 ± 0.01	0.18 ± 0.03	0.005
	water intake (IIIL) Water intake (ml/100g body weight)	1.90±0.17	∠.84±0.0 12 23±2 52	0.198
	Water intake (III/100g body weight) Water intake during one interval (ml/time)	0.02 ± 0.32 0.07+0.01	12.25 ± 2.55 0.07+0.01	0.582
	Energy expenditure (kcal/h)	0.49 ± 0.01	0.44 ± 0.02	0.034
	Energy expenditure (kcal/h/100g body weight)	1.5 ± 0.03	1.88 ± 0.05	0.000
	Energy expenditure (kcal/h/cm2 body surface)	0.005±0	0.006±0	0.002
	RER	0.93 ± 0.02	1.07 ± 0.02	0.000
	VO2	3026.41±63.52	3667.4±102.96	0.000
	VCO2	2820.32±65.79	3931.53±129.81	0.000
	Ambulatory activity	15133.5±1779.52	16968±2483.48	0.562

Supplementary Table S5 | Energy balance in wild-type (WT) and M3KO mice at 11 months of age. Data expressed as mean \pm SEM. Independent *t*-test was used for all comparisons. U – test were used if normality assumptions were not met (denoted U).

	Parameters	WT (n=8)	M3KO (n=8)	p-value (two-tailed)
	Food Intake (g)	3.04±0.56	3.1±0.25	0.003 ^u
	Food Intake (g/100g body weight)	8.78±1.99	12.03±0.73	$0.000^{\rm u}$
	Calories intake (kcal)	7.82±1.43	7.97±0.64	0.003 ^u
	Calories intake (kcal/100g body weight)	22.56±5.12	30.91±1.87	0.000^{u}
	Number of meals	72.63±9.47	46.38±16.07	0.181
	Meal size (g/meal)	0.04 ± 0.01	0.32 ± 0.18	0.328 ^u
	Meal size (kcal/meal)	0.11 ± 0.02	0.83 ± 0.47	0.328 ^u
	Meal duration (min)	38.1±3.65	36.63±13.44	0.918
	Meal duration (min/meal)	0.61±0.1	1.09 ± 0.34	0.442 ^u
	Intermeal interval (min)	21.91±3.23	112.61 ± 56.13	0.505 ^u
24 Hours	Satiety ratio (min/g)	529.99±62.39	438.87±46.99	0.263
21110415	Rate of eating (g/min)	0.08 ± 0.01	0.4 ± 0.22	0.574 ^u
	Water intake (mL)	2.28±0.27	3.74 ± 0.41	0.010
	Water intake (ml/100g body weight)	6.48±1	14.62 ± 1.71	0.001
	Water intake during one interval (ml/time)	0.06±0.01	0.06±0	0.515
	Energy expenditure (kcal/h)	0.42 ± 0.04	0.42 ± 0.02	0.970
	Energy expenditure (kcal/h/100g body weight)	1.15±0.11	1.64±0.03	0.003
	Energy expenditure (kcal/h/cm2 body surface)	0.004±0	0.005±0	0.023
	KER VO2	0.85 ± 0.02	1.04 ± 0.02	0.000
	V02	2363.1/±228.09	3199.54 ± 01.23	0.008
	VCO2	2021.22±198.3	3357.79±66.95	0.000
	Ambulatory activity	1/856.83±9/6.98	1/046.83±2190.65	0.743
	Parameters	WT (n=8)	M3KO(n=8)	<i>n</i> -value (two-tailed)
	Food Intake (g)	1 19±0 31	0 77±0 17	0 263
	Food Intake (g/100g body weight)	3.48 ± 1.06	3.02 ± 0.7	0.723
	Calories intake (kcal)	3.06±0.81	1.99 ± 0.45	0.263
	Calories intake (kcal/100g body weight)	8.95±2.72	7.77±1.81	0.723
	Number of meals	26.5±5.95	22.25±7.98	0.676
	Meal size (g/meal)	0.05 ± 0.01	0.18 ± 0.09	0.199
	Meal size (kcal/meal)	0.13 ± 0.02	0.45±0.23	0.199
	Meal duration (min)	12.07±1.84	14.7±7.58	$0.028^{\rm u}$
	Meal duration (min/meal)	0.64±0.13	0.73±0.25	0.753
	Intermeal interval (min)	39.93±10.26	151.88±61.13	$0.028^{\rm u}$
Light Dhose	Satiety ratio (min/g)	774.76±132	1399.58±662.91	$0.007^{\rm u}$
Light I hase	Rate of eating (g/min)	0.1±0.03	0.34±0.17	0.219
	Water intake (mL)	0.76±0.14	0.78±0.2	0.950
	Water intake (ml/100g body weight)	2.14±0.42	2.97 ± 0.72	0.340
	Water intake during one interval (ml/time)	0.05 ± 0.01	0.05 ± 0.01	0.717
	Energy expenditure (kcal/h)	0.38±0.03	0.37 ± 0.02	0.737
	Energy expenditure (kcal/h/100g body weight)	1.05 ± 0.1	1.43 ± 0.04	0.005
	Energy expenditure (kcal/h/cm2 body surface)	0.004 ± 0	0.005 ± 0	0.328 ^u
	RER	0.83 ± 0.02	0.97 ± 0.03	$0.028^{\rm u}$
	VO2	2167.93±221.84	2841.45±79.9	0.013
	VCO2	1794.32 ± 182.51	2755.23±105.23	0.000
	Ambulatory activity	3857.33±425.65	4110.5±656.7	0.753
	Donomotors	WT(n-9)	$M_{2}KO(n-9)$	n value (two tailed)
	Food Intake (g)	1 85+0 27	2 33+0 24	0.645 ^u
	Food Intake (g/100g body weight)	53 ± 0.99	9±0.88	$0.043^{\rm u}$
	Calories intake (kcal)	4.75 ± 0.69	5.98 ± 0.63	0.645 ^u
	Calories intake (kcal/100g body weight)	13.61 ± 2.54	23.14 ± 2.26	$0.442^{\rm u}$
	Number of meals	46.13±5.85	24.13 ± 8.36	0.049
	Meal size (g/meal)	0.05 ± 0.01	0.52±0.36	0.083 ^u
	Meal size (kcal/meal)	0.12 ± 0.02	1.33±0.92	0.083 ^u
	Meal duration (min)	26.03±3.47	21.93±6.37	0.581
	Meal duration (min/meal)	0.65±0.12	1.33 ± 0.45	0.328 ^u
	Intermeal interval (min)	16.26±1.8	82.67±40.89	0.195 ^u
Dorle Dhogo	Satiety ratio (min/g)	424.69±65.51	298.51±48.29	0.143
Dark Phase	Rate of eating (g/min)	0.07±0.01	0.49±0.29	0.328 ^u
	Water intake (mL)	1.52±0.17	2.97±0.42	0.007
	Water intake (ml/100g body weight)	4.34±0.67	11.65±1.9	$0.028^{\rm u}$
	Water intake during one interval (ml/time)	0.06±0	0.06 ± 0	0.366
	Energy expenditure (kcal/h)	0.46 ± 0.05	0.48±0.03	0.745
	Energy expenditure (kcal/h/100g body weight)	1.25 ± 0.12	1.85 ± 0.06	0.000^{u}
	Energy expenditure (kcal/h/cm2 body surface)	0.005 ± 0	0.006±0	0.009
	RER	0.88±0.02	1.11 ± 0.02	$0.000^{\rm u}$
	VO2	2558.41±238.86	3557.62±107.81	$0.000^{\rm u}$
	VCO2	2248.11±216.3	3960.36±137.2	0.000
	Ambulatory activity	13999.5±762.25	12936.33±1838.05	0.610

Supplementary Table S6 | Energy balance in wild-type (WT) and M3KO mice at 15 months of age. Data expressed as mean \pm SEM. Independent *t*-test was used for all comparisons. U – test were used if normality assumptions were not met (denoted U).

	Parameters	WT (n=8)	M3KO (n=8)	p-value (two-tailed)
	Food Intake (g)	2.98±0.51	3.73±0.5	0.304
	Food Intake (g/100g body weight)	8.25±1.85	13.41 ± 2.17	0.092
	Calories intake (kcal)	7.65 ± 1.3	9.59 ± 1.28	0.304
	Calories intake (kcal/100g body weight)	21.2±4.75	34.46±5.57	0.092
	Number of meals	93±21.96	42.88±13.88	0.959 ^u
	Meal size (g/meal)	0.04 ± 0.01	0.22±0.1	0.015"
	Meal size (kcal/meal)	0.1±0.02	0.57±0.26	0.015"
	Meal duration (min)	53.23±12.81	58.31±20.9	0.015"
	Meal duration (min/meal)	0.76 ± 0.2	2.48 ± 0.88	0.092
	Intermeal interval (min)	20.42±4.11	82.2±32.6	0.234"
24 Hours	Satiety ratio (min/g)	611.73±149.57	413.72±82.69	0.021"
	Rate of eating (g/min)	$0.0/\pm 0.02$	0.11 ± 0.03	1.000
	Water intake (mL)	$2.3/\pm0.38$	4.6/±0.94	0.040
	Water intake (ml/100g body weight)	6.49 ± 1.35	16.83 ± 3.84	0.000
	Energy expenditure (keel/h)	0.08 ± 0.02 0.42+0.04	0.08 ± 0.02 0.44 ±0.02	0.903
	Energy experiation (kcal/ll)	1.00 ± 0.1	0.44 ± 0.02 1.54±0.08	0.079
	Energy experiature (kcal/l/100g body weight)	1.09 ± 0.1	1.34 ± 0.08 0.005±0	0.003
	REP	0.004 ± 0 0.82+0.03	1.01+0.02	0.000 u
	VO2	226356+21394	3041.98 ± 161.91	0.012
	VCO2	1837 37+157 2	311474+18056	0.000
	Ambulatory activity	18779+3267 54	14149 83+3576 57	0.362
	Amountory activity	10////////////////	14147.05±5570.57	0.302
	Parameters	WT (n=8)	M3KO (n=8)	<i>p</i> -value (two-tailed)
-	Food Intake (g)	1.09±0.15	0.66±0.12	0.043
	Food Intake (g/100g body weight)	2.9±0.45	2.39 ± 0.46	0.440
	Calories intake (kcal)	2.8±0.39	1.7±0.31	0.043
	Calories intake (kcal/100g body weight)	7.47±1.16	6.15±1.19	0.440
	Number of meals	35.75±10.68	19.38±6.89	0.219
	Meal size (g/meal)	0.04 ± 0.01	0.12±0.05	0.180
	Meal size (kcal/meal)	0.11±0.02	0.3±0.13	0.180
	Meal duration (min)	15.11±5	16.64±6.38	0.021 ^u
	Meal duration (min/meal)	0.74±0.23	2.33±1.02	0.166
	Intermeal interval (min)	30.78±7.92	118.35 ± 45.17	0.095
Light Phase	Satiety ratio (min/g)	733.59±130.19	1281.43 ± 340.48	0.050 ^u
Eight I have	Rate of eating (g/min)	0.15±0.05	0.07 ± 0.01	0.328 ^u
	Water intake (mL)	0.82 ± 0.16	0.78 ± 0.28	0.908
	Water intake (ml/100g body weight)	2.24 ± 0.51	2.83 ± 1.06	0.626
	Water intake during one interval (ml/time)	0.08 ± 0.02	0.05 ± 0.01	0.279 ^u
	Energy expenditure (kcal/h)	0.38 ± 0.04	0.39 ± 0.02	0.946
	Energy expenditure (kcal/h/100g body weight)	0.99±0.08	1.36±0.07	0.005
	Energy expenditure (kcal/h/cm2 body surface)	0.004±0	0.005±0	0.034
	RER	0.82±0.02	0.96±0.02	0.000
	V02	2056±180.32	2/16.36±141.6	0.012
	VCO2	1664.28±131.51	2608.84±144.57	0.000
	Ambulatory activity	4753±486.8	4258±1153.65	0.701
	Parameters	WT (n=8)	M3KO(n=8)	<i>n</i> -value (two_tailed)
	Food Intake (g)	1.88±0.46	3 07±0 4	0.072
	Food Intake (g/100g body weight)	5.34±1.64	11.02 ± 1.77	0.034
	Calories intake (kcal)	4.84 ± 1.18	7.89±1.03	0.072
	Calories intake (kcal/100g body weight)	13.74±4.22	28.32±4.55	0.034
	Number of meals	57.25±11.66	23.5±8.4	0.034
	Meal size (g/meal)	0.03 ± 0.01	0.32±0.15	0.001 ^u
	Meal size (kcal/meal)	0.09 ± 0.02	0.83±0.39	0.001 ^u
	Meal duration (min)	38.12±9.03	41.68±15.35	0.845
	Meal duration (min/meal)	0.79±0.19	2.62 ± 0.8	0.057
	Intermeal interval (min)	15.16±2.79	69.65±27.16	0.105 ^u
Dark Phase	Satiety ratio (min/g)	586.3±170.24	231.18±42.9	$0.002^{\rm u}$
Dark I hase	Rate of eating (g/min)	0.06 ± 0.02	0.14 ± 0.03	0.105 ^u
	Water intake (mL)	1.56 ± 0.28	3.89 ± 0.72	0.014
	Water intake (ml/100g body weight)	4.24 ± 0.95	14 ± 2.99	0.028 ^u
	Water intake during one interval (ml/time)	0.08 ± 0.02	0.09 ± 0.02	0.955
	Energy expenditure (kcal/h)	0.46 ± 0.04	0.49 ± 0.02	0.500
	Energy expenditure (kcal/h/100g body weight)	1.19±0.12	1.73±0.1	0.003
	Energy expenditure (kcal/h/cm2 body surface)	0.005±0	0.006±0	0.015
	KEK VO2	0.82±0.03	$1.0/\pm0.02$	0.000
	V02 VC02	$24/1.12\pm250.41$	330/.01±183.81	0.012
	VUU2 Ambulatary activity	2010.4/±185	3020.04±222.33	0.000
	Amounatory activity	14020±2998.34	9891.83±2433.21	0.310