
Supplementary Note 1 | Estimating soil loss by USLE/RUSLE 

Erosion-prediction technology is established when a set of mathematical equations is used to 

compute the values of soil erosion variable using input values for climate, soil, topography and 

land use. 

Many mathematical models, categorized as empirical, conceptual, physically-based or process-

oriented are available to estimate soil erosion at different spatial and temporal scales1,2. At present, 

the research community is contemporaneously working on both improving the applicability of 

complex process-oriented models3–5 and updating the existing empirical approaches such as the 

Universal Soil Loss Equation (USLE)6–12 which remains attractive from a practical point of 

view13,14. 

Choosing of the soil erosion model to be applied, it has to be taken into account that it is not always 

necessary to calculate the exact erosion rate for a particular situation15 but rather compare among 

different situations. Choosing which model to apply becomes a matter of data availability and what 

type of information has to be obtained. As an example, Nearing15 noted that most applications of 

WEPP were developed in the US because of the availability of soil, climate and crop information 

for that area. Another example was given by Hann and Morgan16 who adapted USLE to 

indicatively predict ground cover effects on soil loss due to an erosive event with a given return 

period, although USLE is not recommended for the prediction of specific soil loss events17. 

The Universal Soil Loss Equation (USLE) is a good example of grey-type model3,18, in which the 

relationship between soil loss, rainfall erosivity and soil type is corrected using information on 

slope steepness, slope length, crop cover and anti-erosive measures management. Combining 

process-based models, such as WEPP with empirical ones allowed to relate, as an example, sheet 

and rill erodibility to nomograph estimates of the soil erodibility factor of the USLE19. 

The USLE was developed at the National Runoff and Soil Loss Data Center, in cooperation with 

Agricultural Research Service and Purdue University6. It resulted from statistical analysis of more 

than 10,000 plot-years of basic runoff and soil loss data20 carried out in plots having a length less 

than or equal to 122 m and a slope ranging from 3 to 18%. Defining the mathematical structure of 

the USLE a reference condition, named as unit plot, was also used. The unit plot was defined as a 

plot 22.1 m long, with a 9% slope, maintained in a continuous regularly tilled fallow condition 



with up-and-down hill tillage. The unit plot was used to compare soil loss data collected on plots 

that had different slopes, lengths, cropping and management and conservation practices. 

USLE/RUSLE was originally designed to predict long-term average annual soil loss6 associated 

with sheet and rill erosion. For this reason the model tends to over-predict small annual soil losses 

and under-predict large annual soil losses21 although more process-oriented models like WEPP 

have the same performance22,23. 

At present, USLE and RUSLE are by far the most applied soil erosion prediction models. 

According to Risse et al.21 ‘USLE has been used throughout the world for a variety of purposes 

and under many different conditions simply because it seems to meet the need better than any other 

tool available’. By an ISI query (http://isiknowledge.com/) for the period 2003-2014, Auerswald 

et al.24 stated that 844 hits correspond to the keywords ‘Universal Soil Loss Equation’, ‘USLE’, 

‘Revised Universal Soil Loss Equation’ and ‘RUSLE’. Our own ISI query for 2003-2016 resulted 

in 1,118 hits, which indicates a steep increase over the last years (2013: 97, 2016: 129 with 8 

papers highly cited and 3 ‘hot papers’). The most well-known models based on USLE/RUSLE 

technology, such as SWAT25, AGNPS26, Watem/Sedem27, EPIC28 lead to 243 hits in the same 

period (2003-2014). Approaches independent of the USLE technology, such as WEPP29, LISEM30, 

EUROSEM31 and PESERA32 result in 254 hits. 

Stolpe33 applied RUSLE, EPIC and WEPP at the Mediterranean climate of Chile. His results show 

that RUSLE and WEPP models provide the same accuracy in soil loss estimation. 

Furthermore USLE still represents the best compromise between applicability in terms of required 

input data and reliability of obtainable soil loss estimates21. It has become the standard technique 

of soil conservation workers1. 

USLE predicts long-term average annual erosion by water at an acceptable level of reliability34 

also in areas of Western Europe8,9,35.  

Notwithstanding its empirical origin, Ferro36 demonstrated that the original structure of USLE can 

be theoretically obtained applying the dimensional analysis and the self-similarity theory37,38 using 

the same soil erosion representative variables and the reference condition adopted by Wischmeier 

and Smith. In other words, applying the factor scheme and the reference condition adopted by 

Wischmeier and Smith, Ferro36 overcame the empirical origin and limits of the model since he 



stated that ‘USLE is the subsequent logical structure with respect to the variables used to simulate 

the physical soil erosion process’. 

USLE, RUSLE and WEPP (or other process-oriented models) constitute a complementary suite of 

models useful to achieve the specific user need15.  

The choice of a soil erosion-prediction technology is also dependent on the spatial and temporal 

scale of model application. Process-oriented models require an application of the used equations 

at a given spatial scale, ranging from plot to basin, and at event temporal scale. Event and at-point 

or small scale (hillslope) models are not suitable to be applied for simulating soil loss on a wide 

region. 

At a large spatial scale, the area has to be discretized using, for example, a square grid subdivision 

(raster scheme), choosing a mesh size consistent with the scale of the original model deduction. 

Using a raster scheme applied to the USLE model corresponds to hypothesize that each cell is 

independent of the others with respect to soil loss. In other words, at large spatial scale such as a 

region or a global perspective, a simple index-based model able to calculate an average soil loss, 

at annual or mean annual scale, allows to compute the involved factors using spatially distributed 

input values. The cells cannot be assumed to be independent from each other when sediment 

delivery processes have to be modeled such as at basin scale. Even in this case, the USLE scheme 

can be applied by coupling it with a mathematical operator expressing the hillslope transport 

efficiency39,40.  

Obtaining accurate and reliable soil loss estimate using spatially distributed models on wide 

regions depends on both the resolution (vertical and horizontal) of the input topographic 

information and the quality of the land-use input data. 

USLE/RUSLE is a good compromise for wide region application when both a mesh-size 

comparable with the original developed slope-length scale is applied and information on rainfall, 

soil and land-use systems is available. 

Improving interpretation of the soil erosion processes at different spatial and temporal scales and 

testing or developing physically oriented modeling approaches have an obvious scientific 

importance. Simple and physically plausible empirical methods for predicting soil erosion are the 

ones allowing soil erosion prediction by professionals and technicians. Soil loss estimate are 



considered reasonably accurate for most practical purposes, especially for wide spatial scale 

applications, when the errors of the predictions do not exceed a factor of two or three35. 

Improvement of empirical models is committed to simply describe runoff processes since erosion 

is a runoff-driven process11,23. There are many signs that this USLE-based approach is very useful 

for estimating high soil losses41. This is of particular interest for both an effective soil conservation 

design and an accurate prediction of pluri-annual soil loss values since a few large events affect 

total soil loss for an area of interest34. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 2 | Definition of soil erosion 

For the avoidance of doubt, in this study the term soil erosion refers to RUSLE soil loss (i.e., an 

estimate of the soil loss due to sheet and rill erosion processes). The RUSLE ‘Soil loss refers to 

the amount of sediment that reaches the end of a specified area on a hillslope that is experiencing 

net loss of soil by water erosion. It is expressed as a mass of soil lost per unit area and time. There 

are several aspects of erosion that are implied in this definition. First of all soil loss refers to net 

loss, and it does not in any way include areas of the slope that experience net deposition over the 

long term. As such, soil loss does not equate to the sediment yield from a hillslope that exhibits 

toe-slope deposition, which are most cases. It is, rather, the sediment delivered to the bottom of 

the slope area that feeds onto the toe slope.’42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3 | Sensitivity analysis 

Sensitivity analyses (SA) evaluate the influence of parameter estimation on uncertainty and the 

effect of parameters on model output43. Two main branches of SA are Local Sensitivity Analysis 

(LSA) in which the effect of every single factor on model prediction is analyzed, and Global 

Sensitivity Analysis (GSA) where higher order interactions among factors are considered when 

evaluating factor importance and their combined effect on model output44. 

In this study, a modified version of the approach by Harper et al.45 was applied. Random Forests 

(RF) were used in order to estimate variable importance, however RF mapping-function is most 

often high dimensional and therefore difficult to visualize and interpret, so simple variable 

importance ranking is usually computed. A more descriptive summarization of the RF can be 

obtained using Feature Contribution (FC). FC decomposes a RF mapping structure into additive 

components. Plotting FCs against variables values yields plots similar to marginal-effect plots.  

This allows to separate the main effects and identify and quantify interactions. Supplementary Fig. 

5 depicts the effect of each factor on the estimated soil erosion (expressed on logarithmic scale, 

vertical axis) versus each one of the influencing factors; the variables are ranked according to their 

importance, expressed as R^2. The color scale expresses the value variation of the most influent 

variable (cover-management factor (C)) and allows to evaluate the interactions among variables 

(for instance high values of C correlate with lower values of the rainfall-runoff erosivity factor (R) 

and high values of soil erodibility factor (K). The plot was obtained using out-of-bag cross 

validated replicas of the larger dataset, each point in the plot is the averaged out-of-bag value of 

these replicas. 

The second part of the GSA approach by Harper et al.45 consists of using Classification and 

Regression Trees (CART) to analyze and visualize the interactions among variables. In this study, 

the authors constrained the tree to a depth of three nodes (Supplementary Fig. 6), in order to 

maintain the output to a lower level of complexity and to make the output understandable. The tree 

plot shows the influence of the most important parameters (C, LS, R) and how their interaction 

affects the estimated soil erosion (shown as a boxplot at the terminal nodes level). One of the 

advantages of using a partition model as CART is that the node membership can be spatially 

mapped. Supplementary Fig. 7 shows the node membership as a map, where each pixel in the map 

is attributed to the most frequent node class in pixel. It is rather evident that many nodes are 

influenced by vegetation cover (implied by the importance of the C factor), with node five 



representing mostly tropical forests and node four boreal forests. Other nodes are influenced by 

rainfall, with nodes seven and eight differentiating between forest cover with low and high rainfall 

intensity. Nodes eleven and twelve are influenced by topography and climate, with eleven 

corresponding to areas with little rainfall intensity and flat topography, while twelve have similar 

small rainfall intensity, but are characterized by mountainous or hilly topography. Finally, nodes 

fourteen and fifteen express areas of average rainfall intensity, but differentiate between more 

different soil cover. 

Previous studies dealing with the importance of each RUSLE factor in model uncertainty at plot 

level, observed that the C-factor is the most sensitive model parameter in predicting soil 

erosion21,46,47; followed by the LS-factor. This order of importance of the RUSLE factors is 

confirmed by plot as well regional level applications48. However, sensitivity assessments on model 

run at catchment level highlighted different scenarios, with RUSLE predictions being most 

sensitive to the rainfall-runoff erosivity factor (R-factor)49 and the topographic factor (LS-

factor)50,51. The order of the most important factor driving RUSLE soil erosion predictions seems 

to depend on specific environmental conditions. Sensitivity analysis49 in a subtropical zone 

characterized by very high R-factor52 supports this hypothesis. On the basis of this sensitivity 

analysis, it was observed that the soil erosion predictions of the global RUSLE-based model are 

most sensitive to the C-factor and to a lesser extent to the R-factor and the LS-factor. According 

to previous studies at different scale (plot, catchment and regional), the sensitivity analysis 

confirmed that soil erodibility is by far the least sensitive model component. The order of factor 

interactions obtained from the CART analysis allowed to highlight the local sensitivity conditions 

associated to the global RUSLE-based soil erosion assessment presented in this study 

Supplementary Fig. 7.   

 

 

 

 

 

 

 

 



Supplementary Note 4| Uncertainty analysis 

The RUSLE is a purely deterministic model in which the product of physical measures is used to 

derive the amount of soil loss. As such, a rigorous assessment of uncertainties is not feasible, nor 

would it be meaningful, unless the uncertainties of the input layers and their propagation in the 

model scheme were quantified. Accordingly, the estimation of the uncertainty in the RUSLE 

model outputs remains in most case an unaddressed issue51. A thorough quantification of 

uncertainty associated to the RUSLE model was provided only in a few local-scale studies, mainly 

dealing with a single model factor such as rainfall53, soil type54 and topography55.  

However, in a global scale application most (if not all) of the spatial layers used to derive RUSLE 

variables lack information about the associated uncertainty. For instance the SRTM DEM, used to 

calculate the LS factor, misses the adequate spatial information about the land-cover-, latitude- 

and elevation-depending uncertainty of the data. For this reason, it is impossible to use uncertainty 

propagation techniques to estimate uncertainty. 

Previous RUSLE-based global studies56, proposed a different approach57 based on the introduction 

of random errors in the input layers, with the propagation of this random noise in the final value 

of soil loss is taken as an estimate for uncertainty56. However, this approach may be problematic 

as the noise introduced in the layers is arbitrarily chosen (while constrained by physical 

parameters) in intensity and distribution. Moreover, one could argue that this kind of estimation 

could be performed even in absence of the input layers as one could simply calculate the product 

of the different noises introduced and thus derive uncertainty. Another issue is that this approach 

fails to account for different sources of noise; for instance noise in estimating the texture, could 

come from the uncertainty about the granulometric fraction within a textural class (as used by 

Doetterl et al.56) or from the misprediction of the textural class itself. 

Given previously proposed potential problems associated with the global uncertainty analysis, in 

this study a different approach was followed representing the uncertainty as a probability 

distribution through the use of a Bayesian modling technique. The idea is to use the data 

distribution to estimate the uncertainty in the prediction. Given that the RUSLE is based on the 

product, for simplicity all the layers were log-transformed. Next, each of the input layers was 

treated as a spatial random field. A random field is a stochastic process defined in terms of 

expectation and covariance, once these two parameters are estimated, different simulation of the 



field can be created. Each of the simulation has the same parameters, but differs due to the 

stochasticity of the process. By combining a large number of simulations, one could, in principle, 

estimate how the uncertainty propagates to the model output (soil loss). As deriving spatially 

continuous simulations for each of the layers is impractical, a simulation approach based on Gibbs 

sampling and an additive model was used. 

The model is expressed as: 

z (S0) =  z(R) + z(LS) + z(K) + z(C) + e(s) 

where the z() values are realization of each of the log-transformed model input layers and e(s) is 

the spatial component of the model. 

A Markov Chain Monte Carlo (MCMC) algorithm, was used to derive realizations of z(S0) (soil 

loss) by simulating from the multivariate normal distribution with zero mean and covariance 

matrix Vb, where Vb is the Bayesian covariance matrix of the fitted model. MCMC was applied 

using the JAGS software58 through R interface59. 

The map of uncertainty is presented in Supplementary Fig. 8 as the standard deviation of the 

MCMC simulated values. The map gives an outline of the geographical distribution of the 

prediction variance, and it can be used to compare the potential error in different areas of the world. 

As also observed by Teng et al.60 in a large-scale analysis in Australia, a tendency of the 

uncertainties to be lower in areas with denser vegetation cover was found. By contrast, a tendency 

to higher uncertainty appears in scarcely vegetated area in arid and semiarid regions (e.g., Western 

Sectors of North and South America, Turkestan and central Asia) but also in areas subject to higher 

erosion rates such as agricultural area of US, Ethiopia, China, India and Mediterranean Europe. 

The error of the model estimates associated with the input data assessed with the proposed MCMC 

approach is about 8 Pg yr-1 for the whole world. The value was calculated by calculating sample 

quantiles on the simulated data. It should be noted that the error interval is not symmetric around 

the mean, so the upper error limit (at 0.9 CI) is about 5.6 Pg yr-1, while the lower is narrower at 

2.4 Pg yr-1. Nevertheless, the absolute value of the standard deviation has to be taken with caution 

as the underlying distribution is not normal, the standard deviation cannot be directly used to derive 

information such as confidence intervals.  

 



Supplementary Note 5 | Model performance evaluation 

To evaluate if our model outcomes comply with the regional findings of former studies, we 

compared the global soil erosion maps of 2001 and 2012 with a set of representative and highly 

advanced regional soil erosion assessments. We selected the cropland areas of the United States 

and Europe for a further model performance assessment because regional crop statistics, accurate 

soil services information and rigorous estimates of rainfall-runoff erosivity exist for these areas 

and were integrated into regional studies that served as adequate comparison groups. The first 

regional comparison was carried out for the cropland of the United States. According to the 

National Resources Inventory (NRI) of the US Department of Agriculture61 the area has undergone 

a soil erosion decrease from 1.59 Pg yr-1 in 1982 to 0.960 Pg yr-1 in 2012. Our model predicts a 

soil erosion of 1.44 Pg yr-1 for the United States in 2001. Knowing that the US cropland decreased 

by 5.9% between 1982 and 2001, we applied our model on the cropland surface in 1982 and 

predicted a soil erosion of about 1.52 Pg yr-1 (considering conservation agriculture covering about 

2.5% of the USA cropland in 1982). The deviation between the statistical data of the USDA and 

our model is only -4.4% which supports our approach. The USDA also reports a decrease of 44% 

in the soil erosion between 1982 and 2012 due to the implementation of soil conservation practices 

as well as an overall reduction of cropland area. For the comparative period, our model suggests a 

decrease of 27.2% driven by land use change. On top of this, we estimated an additional reduction 

of 17.2% in the soil conservation scenario as a result of soil conservation practices. This adds up 

to an overall decrease of 44.4% of our predicted values between 1982 and 2012 and totals an 

erosion of 0.91 Pg yr-1. In fact, this constitutes a difference of only 4.5% compared to the USDA 

data.  We performed further validity assessments comparing the results of our global soil erosion 

estimates with the modelled estimates of the Joint Research Centre (JRC) of the European 

Commission62. This European validity assessment also showed a broad consistency of the soil 

erosion estimates for the European cropland in 2012 (global = 0.304 Pg yr-1; JRC = 0.30 Pgyr-1) 

with a difference of only 1.1%. The soil erosion estimates of our global model are slightly lower 

than the ones of the JRC for Europe (global = 0.28 Pg yr-1; JRC = 0.68 Pg yr-1) which can mainly 

be attributed to the different nature of the land cover maps (CORINE land cover (EEA63)) and the 

approach improvements presented in this study, i.e., the consideration of isolated shrubs and trees.  

Further support for the validity of the model predictions comes from the comparison of our results 

with empirical data. The most extensive collection of soil erosion data was performed and 



published by Montgomery6. Adapting the figure he created (Fig. 6), we can superimpose the results 

from our global analysis for different land covers, to which we have added data on native forests 

and data from other meta-analysis studies. Our modelling results tend to form a lower bound for 

measured values on cropland and the highlands, mid-range for the bare soil areas and forests, and 

an upper bound for cratons. The lower bounds for the cropland and highlands could be due to study 

bias, with erosion measurement studies tending to be reported for areas with erosion problems or 

even on erosion hot spots. In alpine areas it is hard to predict soil erosion as it is easily conflated 

with geological erosion. Moreover, snow is a further complicating factor as this covers the soils 

for a proportion of the year. Estimates for forest and bare soils appear reasonable, while in cratons 

our estimate is at the upper end. Erosion for cratons tends to be based on estimates of river sediment 

flux whereby it is assumed that only ca. 10% of soil eroded is actually transported to the ocean 

from surface water39. Assuming a median erosion rate of 0.001 (mm yr-1) for cratons calculated 

from sediment fluxes and our estimated rate of soil erosion of 0.017 (mm yr-1), the ratio is 6%, 

similar to the 10% estimated by Walling39. The semi-natural vegetation (mainly grassland and 

shrublands) sits between the forests and croplands as we might expect.  

Further insights in support of the validity of the global model estimates were gained by comparing 

its spatial patterns of soil erosion with the ones reported by previous global studies on soil erosion 

and land degradation. The first comparison was conducted with the expert-based Global 

Assessment of Human-induced Soil Degradation (GLASOD)64 (Supplementary Fig. 4a-b). Results 

show a good to fair spatial agreement for the land area located between the 50°S and 50°N. At 

higher latitudes, the global model predicts low erosion rates (<1 Mg ha-1 yr-1) driven by low 

rainfall-runoff erosivity52, while GLASOD reports sizable regions with medium (W2) to high (W3) 

water erosion damages. GLASOD is a 1:10 million-scale map considering the type, extent, degree, 

rate and causes of degradation within physiographic units. GLASOD was obtained from the 

combination of data provided by more than 300 scientists from several countries. Although 

qualitative in nature, and potentially affected by the different conceptualization of the degrees of 

degradation of the contribution scientist65, it is still based on extensive field observations. The 

good agreement between the patterns of the global model and the independent GLASOD map 

provides supportive insights on the predictive capacity of the model. Nevertheless, GLASOD 

refers to observations made during the 1980s. Important global land use changes, however, 

occurred in the following decades66,67 which GLASOD is not able to reflect. A second comparison 



was conducted using the status of land degradation reported by the Global Assessment of Land 

Degradation and Improvement (GLADA)68 (Supplementary Fig. 4c-d). The GLADA assessment, 

is based on remote sensing time series analyses of the normalised difference vegetation index 

(NDVI) for the period 1981-2003. It uses net primary productivity (NPP) as a proxy for describing 

land degradation. Although it does not deal directly with soil erosion, a correlation between land 

degradation and soil erosion exists69. In addition, the time-series used to assess the land status 

chronologically covers the period between GLASOD observations and the model of the study at 

hand. The soil erosion predicted for the global croplands in the scenario for the year 2001 and the 

spatially equivalent GLADA data were classified (both ranked into four classes using the quantile 

classification method) and compared. Lands already reported by GLASOD as damaged by water 

erosion were masked out (grey colour in Supplementary Fig. 4c-d). A remarkable agreement 

between the results of the two independent global assessments was observed, particularly 

noticeable in Central and South America, Sub-Saharan Africa, Oceania, Eastern United States, 

Eastern India, Eastern Europe and Japan. By contrast, discording patterns were observed in 

Southern Canada where GLADA reports major decreases in NPP. 

In a final comparison, the measured soil erosion rates from 2500 locations across the word were 

superimposed to the estimates of the global model (Supplementary Fig. 15). The measured data 

were extracted from García-Ruiz et al.’s70 meta-analysis and processed in GIS. Due to the 

heterogeneous nature of measurements (plot, stream sediment monitoring, reservoir and lake 

silting, hillslope measurements and 137Cs) covering different time periods and time resolutions 

and scale dependency of the soil erosion process71,72, this comparison is presented for the sole 

purpose of indicating the spatial distribution of soil erosion measurements across the globe and the 

relative magnitude of the process. While North America and Europe appear fairly covered by soil 

erosion measurements and experiments the same does not hold for large parts of Africa, Asia and 

South America (see Supplementary Fig. 15). In these regions, the global model identified some 

potential hotspots and areas of concern where according to meta-analysis70 no measurements are 

available, providing insights for a more strategic approach in directing new monitoring/ modelling 

efforts. 

  



Supplementary Methods  

Global RUSLE based model. RUSLE is an empirical model which belongs to the detachment-

limited model type. Although the overland flow may theoretically transport an infinite sediment 

amount, the quantity of sediment available to be moved is actually limited by the soil detachment 

capacity defined by the erosivity of the rainfall. The soil erosion (Mg ha-1 yr-1) resulting from sheet 

and rill erosion processes is given by the following multiplicative equation: 

A = R ∙ L ∙ S ∙ K ∙ C ∙ P  

Equation 1 

where: A (Mg ha-1 yr-1) is the annual average soil erosion, R (MJ mm h-1 ha-1 yr-1) is the rainfall-

runoff erosivity factor, K (Mg h MJ-1 mm-1) is the soil erodibility factor, L (dimensionless) is the 

slope length factor, S (dimensionless) is the slope steepness factor, C (dimensionless) is the land 

cover and management factor, P (dimensionless) is the soil conservation or prevention practices 

factor. 

Model Parameters. The RUSLE model is structured as multiplicative equation counting six 

environmental factors, which were computed as follow. 

Land Cover and Management Factor. The C-factor (Supplementary Fig. 10) measures the 

combined effect of all the interrelated cover and management variables on the soil erosion 

process73. For this global assessment, we followed the path paved in previous national74 and pan-

European62 studies. Accordingly, two different approaches were undertaken to estimate C-factor 

values for agricultural and non-agricultural land.  

C-factor for the agricultural land. We used a twelve-year of crop harvested area to statistically 

describe the crop rotations (2001-2012) of each country, while a set of 170 crops was considered. 

The statistical data were collected at national level from the Food and Agriculture Organization's 

(FAO) FAOSTAT database (http://www.fao.org/faostat/en/#data). In the following stage of data 

processing the 170 crops were categorized into fourteen crop groups according to their soil cover 

effectiveness (Supplementary Data 1). We assigned C-factor values to each of the fourteen crop 

groups according to literature thresholds73,75,76 (Supplementary Table 2) to statistically describe 

typical crop rotations in each country. 



In the following stage of data processing, the C-factor values (CCROP) for each of the considered 

3,252 sub-national administrative unites of the 202 countries76 (Supplementary Fig. 11) were 

estimated as follow: 

CCROP = ∑ CCROPn ∙ [%]Region
CROPn

 

14

n=1

 

Equation 2 

where CCROP represents the C-factor of the n-crop and [%]RegionCROPn represents the share of this 

crop in the agricultural land of the given region. The shares (%) of the regional crops for the 

rescaling operation were assessed through a statistical downscaling of the national crop statistics 

using the harvested areas proposed by Monfreda et al.77 combining national, state, and county level 

census statistics with remote sensing data (for 15,990 administrative units)78. The data, provided 

in grid format by the EarthStat database (http://www.earthstat.org/), reported the global harvested 

areas for each of the 170 FAO crops77 for the year 2000 with a spatial resolution of about 10x10 

km. Afterwards, the regional CCROP values were attributed to the IGBP-12 and IGBP-14 classes of 

the year 2001 and 2012. Accordingly, both maps had the same regional CCROP values but their 

spatial extend differed due to the land use change which occurred within the considered period.  

C-factor for the non-agricultural land. For the eleven IGBP classes which reported natural 

vegetation, the C-factor values were defined at pixel-level through a semi-qualitative approach 

combining a constraining range of C-factor values obtained from literature (Supplementary Table 

1) with a sub-pixel-level annual representation of the average surface vegetation cover. 

Accordingly, the impact of the vegetation cover in the C-factor estimations was quantified by a 

proxy vegetation layer obtained from MODIS imagery. The surface vegetation patterns were 

globally described by means of the MOD44B Vegetation Continuous Fields product (VCF). This 

is a ca. 250m spatial resolution biophysical parameter derived from the MODIS satellite. It reports 

annual estimates of the percentages of i) surface vegetation cover, ii) bare soil and iii) tree cover. 

Data were downloaded via the NASA EarthData facility and pre-processed using the MODIS 

Reprojection Tool. Multiple annual data were downloaded and averaged to limit the effects of 

rainfall inter-annual variability on NDVI and the cloudiness variability. For the reference year 

2001, the average VCF values of the years 2000, 2001 and 2002 were considered, whereas for the 

reference year 2012 the years 2011, 2012 and 2013 were used. Subsequently, for the areas where 



no land use changes occurred the average of the 2001 and 2012 images were applied in order to 

further reduce potential bias related to the climate variability of the NDVI. For the area which had 

undergone land use change, the three year average of each reference year was used. 

A preliminary land cover and management C-factor for non-agricultural land (CP) was calculated 

as: 

CP = MINC + ((MAXC - MINC) ∙ NVS) 

Equation 3 

where the MINC and MAXC values were set following the literature e73,75,57,79–83,. NVS (Non 

Vegetated Surface) was normalised to a range from 0 to 1 and described the percentage of ground 

covered by any vegetation type.  

Within a next step, the final land cover and management C-factor for non-agricultural land (CNA) 

was computed including the tree coverage (TC) with was normalised ranging from 0 to 1:  

 

CNA = MINCF + ((MAXCF - MINCF) ∙ TC) 

Equation 4 

where the MINCF and MAXCF values were set according to Wischmeier and Smith73 as 0.0001 

(100% canopy cover) and 0.009 (spare forest vegetation). From this data processing step, the 

forestland class was excluded to avoid redundancy. 

Rainfall-runoff Erosivity. The rainfall-runoff erosivity factor (R) (Supplementary Fig. 3) was 

computed following the USDA RUSLE handbook 7037 using sub-hourly (61%) and hourly 

pluviograph data (39%) of 3,625 meteorological stations spread across 63 countries 

(Supplementary Fig. 12). The stations are part of the global rainfall-runoff erosivity database 

GloREDa52,84 which is the result of a data collection carried out by the European Commission Joint 

Research Centre in collaboration with scientists and national/regional meteorological services 

across 63 countries.  

The R-factor value for each erosive rainstorm was computed using the USDA RIST software 

(Rainfall Intensity Summarisation Tool)85. The following criteria were used to set RIST: i) 

rainstorms with values greater than 12.7 mm calculated in R and ii) break down storms with less 



than 1.27 mm of rain in 6 hours. The average annual rainfall-runoff erosivity value (R) (MJ mm 

ha−1 h−1 yr-1) resulted from the equation: 

R = 
1

n
 ∑  ∑(EI30) k

mj

k=1

n

j=1

 

Equation 5 

where EI30 is the rainfall-runoff erosivity of a single event k, n express the number of years 

observed and mj expresses the erosive events during a given year j. Thus, the rainstorm EI30 is 

given by the storm kinetic energy (E) multiplied by its 30 min maximum intensity (I30):  

EI30 = E ∙ I30 

Equation 6 

where the rainfall kinetic energy (E) of 1 mm of the rain in MJ ha-1 mm-1 is computed based on 

Brown and Foster86: 

E = 0.29 ∙ [1 - 0.72 e(-0.05 Ir)] 

Equation 7 

where Ir as the rainfall intensity expressed in mm h-1. 

In the second stage of data processing, the R-factor values of those points were interpolated using 

the Gaussian Process Regression (GPR), a non-linear regression approach that can model non-

linear relations by projecting the inputs into a higher dimensional space using basis functions, and 

by creating a regression model in said space. As covariates we used global climate provided in the 

WorldClim database (www.worldclim.org), i.e., i) average monthly precipitation, ii) average 

minimum and maximum monthly precipitation, iii) average monthly temperature, iv) precipitation 

of the wettest month, v) precipitation of the driest month, and vi) precipitation seasonality. The 

GPR non-linear regression approach was selected due to the large number of support covariates, 

their potential collinearity, and the demonstrated presence of non-linear relationships between the 

target variable (R-factor) and the covariates. 

The Slope Length and Steepness Factor. The LS-factor (Supplementary Fig. 14) is a topographic 

parameter which represents the influence of the terrain on surface runoff and sediment transport 

http://www.worldclim.org/


capacity. Is was calculated using the GIS-based two-dimensional terrain approach proposed by 

Desmet and Govers87:  

Li,j =
(A

i,j-in
 +  D2)

m+1 
-Ai,j-in

m+1
 

Dm+2 * xi,j
m * 22.13

m
 

Equation 8 

where  Ai,j in  is the contributing area at the inlet of grid cell (i,j) measured in m2, D is the grid cell 

size (metres), Xi,j = sin ai,j + cos ai,j, ai,j is the aspect direction of the grid cell (i,j), and m is related 

to the ratio β of the rill to interill erosion: 

m= 
β

β + 1
 

Equation 9 

where 

β = 

sin θ
0.0896

[0.56 + 3*(sin θ)0.8]
 

Equation 10 

where θ is the slope angle in degrees. 

The required topographic parameters such as slope and upslope contributing area were derived 

from hole-filled SRTM 3 arc-seconds (ca. 90m) Digital Elevation Model88 for the land surface 

between 60° North and 56° South and ASTER GDEM v2 data products for the extreme North 

latitudes89. LS values were calculated using the Desmet and Govers87 algorithm implemented in 

the System for the Automated Geoscientific Analyses (SAGA) software. Estimations of LS were 

to a maximum slope angle of 26.6 degrees (50%)90. The flow accumulation was computed using 

the deterministic infinity algorithm91 and a maximum hillslope length set to 122m. The use of a 

90m DEM ensured the computation of the combined LS topographical factor maintaining a scale 

congruent with the one used during the USLE’s experimental measurements with plots having a 

length less than or equal to 122 m. Due to the large number of data to process, the computational 

operations were carried out using the SAGA interface in R (RSAGA, https://cran.r-

project.org/web/packages/RSAGA/index.html). A loop was built up to process the large amount 



of digital elevation data and the LS values were computed overnight. A total of 870 tiles of ca. 500 

by 500 km were created. The flow accumulation was computed with the multiple flow algorithm. 

Finally, the LS-factor grid was i) rescaled to the values of a 25m DEM through a linear relationship 

(R2 = 0.998) and ii) resampled to ca. 250 x 250 m spatial resolution applying the nearest resampling 

method in ArgGIS. 

Soil Erodibility. The soil erosivity factor (K) (Supplementary Fig. 13) is an empirical parameter 

expressing the susceptibility of the soil to be eroded. It can be estimated by means of intrinsic 

topsoil properties, i.e., organic matter, texture, permeability and structure. 

In this study, the topsoil properties of the ISRIC SoilGrids92 database at 1 km spatial resolution 

were used. We thus calculated the global K factor values following Wischmeier and Smith’s73 

textural characteristics (M: percentage of silt plus fine sand fraction content multiplied by 100 

minus clay fraction), organic matter (OM, in percent), soil structure (s) and permeability classes 

(p): 

 

K = 
(2.1 × 10

-4
 M1.14 (12 - OM) + 3.25 (s - 2) + 2.5 (p - 3))  

100
 ∙ 0.137 

Equation 11 

 

 

Detachment of SOC by erosion. The soil erosion rates modelled with the RUSLE model were 

used to compute the soil carbon detached by erosion (𝐶𝑙𝑜𝑠𝑠) in 2012 (baseline scenario): 

Closs = SL · (SOC/100) 

Equation 12 

where SL is the soil erosion estimated by our model (baseline scenario) and the SOC is the soil 

organic carbon content (%) of the surface layer (depth 0-5 cm) (250m spatial resolution) of the 

SoilGrids92. 

 

 

 



 

Supplementary Figure 1 Workflow of the proposed global soil erosion modelling. Schematic 

outline of the main processing steps carried out to a assess the extent, types and spatial distribution 

of the global croplands that are thoroughly defined combining satellite-derived land use and land 

cover information with agricultural inventory data, and b perform the high-resolution global soil 

erosion estimates. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 2 Global soil erosion hot-spots. Illustration of the soil erosion hotspots 

(highlighted in red in the map) across the globe defined as the areas with soil erosion estimates 

above 20 Mg ha-1 yr-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3 Global rainfall erosivity map. a Representation of the global patterns 

of the rainfall erosivity R-factor (spatial resolution 30 arc-seconds, ca. 1 x 1km). b Subset of the 

global rainfall erosivity map for an area of about 45,000 km2 in the West Central Region of Brazil. 

(c) R-factor average value per continent. 

 

 



 

Supplementary Figure 4 Global soil erosion and land degradation assessments. a 

Representation of the average soil erosion rates for the baseline scenario 2001. Values are 

presented only for the areas described experiencing soil water erosion by the UNEP’s project 

Global Assessment of Soil Degradation (GLASOD). b Areas affected by water according to 

GLASOD. The degree of damage is indicated from low (W1) to severe (W4). c Average soil 

erosion rates for the baseline scenario 2001 ranked into four classes using the quantile 

classification method (the colour scale indicates increasing erosion from green to red). d Averaged 

land degradation of the Global Assessment of Land Degradation and Improvement (GLADA) 

ranked into four classes using the quantile classification method (the colour scale shows increasing 

land degradation from green to red). 

 

 

 

 

 

 

 



 

Supplementary Figure 5 Feature contribution decomposition of random forest model for the 

global RUSLE-based model. The model input considered is a the cover and management (C-

factor), b the rainfall-runoff erosivity (R-factor) c the slope length and steepness factor (LS-factor) 

and d soil erodibility (K-factor). The response is expressed in logarithmic (log soil erosion) scale 

on the vertical axis, the independent variable is plotted on the horizontal axis. The colour scale of 

the four plots expresses the value of the most influential independent variable (C-factor) and allows 

to visualize the presence of interactions. 

 

 

 

 

 



 

Supplementary Figure 6 RUSLE factor interactions derived from the Classification and 

Regression Trees (CART). The dataset is represented as a tree plot (upper part), reporting the 

importance of the interactions between factors with a downwards trend. The boxplot at the terminal 

nodes level (lower part) shows how their interaction affects the estimated soil erosion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 7 Spatial representation of the node membership derived from the 

sensitivity analysis. It was conducted to evaluate the influence of parameter estimation on 

uncertainty and the effect of parameters on the global RUSLE-based model output. Each pixel in 

the map is attributed (colour) to the most frequent node class obtained from the Classification and 

Regression Trees (CART) analysis (Supplementary Note 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 8 Uncertainty analysis. The map of uncertainty presented as the standard 

deviation of the Markov Chain Monte Carlo (MCMC) simulated values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 9 Distribution of average eroded SOC for the year 2012. Values refer 

to the baseline scenario and are expressed in Mg ha-1 yr-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 10 Land cover and management factor (C). Figure a and b share the 

same legend. a Representation of the global patterns of the C-factor (spatial resolution ca. 250 x 

250m). b Subset of the global C-factor map for an area of about 45,000 km2 in the West Central 

Region of Brazil. c C-factor average value per continent. 

 

 



 

Supplementary Figure 11 The Global Administrative Unit Layers (GAUL). The data were 

used for the regional downscaling of the C-Factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 12 Global map of the rainfall-runoff erosivity. The map was obtained 

through a Gaussian Process Regression (GPR) geo-statistical model interpolating hourly and sub-

hourly data recorded from 3,625 stations (green dots) spread across all continents. The colour 

gradient from light blue to darker blue indicates the intensity of the rainfall erosivity expressed in 

MJ mm ha−1 h−1 yr-1. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 13 The soil erodibility (K). a Representation of the global patterns of the 

K-factor (original spatial resolution ca. 90 x 90m resample to ca. 250 x 250m). b Subset of the 

global K-factor map for an area of about 45,000 km2 in the West Central Region of Brazil. c K-

factor average value per continent. 

 

 



 

Supplementary Figure 14 The slope length and steepness factor (LS). Figure a and b share the 

same legend. a Representation of the global patterns of the LS-factor (original spatial resolution 

ca. 90 x 90m resample to ca. 250 x 250m). b Subset of the global LS-factor map for an area of 

about 45,000 km2 in the West Central Region of Brazil. c LS-factor average value per continent. 

 

 

 



 

Supplementary Figure 15 Model comparison. Superimposing of measured (blued circles) 

versus modelled soil erosion rates (chromatic range from green to red). The measured data were 

extracted from the meta-analysis of García-Ruiz et al. (2015) based on different sets of 

measurements (plot, stream sediment monitoring, reservoir and lake silting, hillslope 

measurements and 137Cs). Values are all reported in Mg ha-1 yr-1. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 1 Values of C-factor for the non-agricultural land. Values are based on 

land use/ land cover classified according to the MODIS MCD12Q1 Land Cover Type International 

Geosphere Biosphere Programme (IGBP). Class 21 was created after elaborations were made in 

this study (See Supplementary Methods).  

 

Class IGBP Land-cover type CNA 

0 Water No data 

1 Evergreen Needleleaf forest 

0.0001-0.003 

2 Evergreen Broadleaf forest 

3 Deciduous Needleleaf forest 

4 Deciduous Broadleaf forest 

5 Mixed forest 

6 Closed shrublands 0.01-0.15 

7 Open shrublands 0.01-0.15 

8 Woody savannas 0.01-0.15 

9 Savannas 0.01-0.15 

10 Grasslands 0.01-0.15 

11 Permanent wetlands No data 

13 Urban and built-up No data 

15 Snow and ice No data 

16 Barren or sparsely vegetated 0.1-0.5 

21 transitional woodland-shrub 0.01-0.15 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 2 Crop groups and their corresponding base C-factors. The values 

[dimensionless] derived from literature (see Supplementary Methods). 

 

Crop Group C-Factor 

 

1 

 

 

Cereal Grains 

 

Various 0.2 

Maize 0.38 

Rice 0.15 

2 Legume Vegetables Various 0.32 

3 Root and Tuber Vegetables Various 0.34 

4 Fruiting Vegetables Various 0.25 

5 Cucurbit Vegetables Various 0.25 

6 Bulb Vegetable Various 0.3 

7 Leafy Vegetables 
Various 0.25 

Tobacco 0.5 

8 
Forage, Fodder and Straw of Cereal 

Grains Group 

Mixed-legumes 0.15 

Mixed-grasses 0.1 

9 Grapes and Hops 
Grapes 0.35 

Hops 0.42 

10 Oilseed Group 
Various 0.25 

Cotton 0.4 

11 Fibre Crops Fibre Crops 0.28 

12 Berries Group 
Various 0.15 

Strawberries 0.2 

13 Shrubs Herbs and Spices Group 
Shrubs Herbs and Spices 0.15 

Coffee 0.2 

14 Trees/Fruit Tree Various 0.15 
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