
Meta-Search Through the Space of Representations and Heuristics on a Problem
by Problem Basis

Raquel Fuentetaja1, Michael Barley2, Daniel Borrajo1, Jordan Douglas2,
Santiago Franco3 and Patricia Riddle2

1Departamento de Informática. Universidad Carlos III de Madrid, Spain
2Department of Computer Science. University of Auckland, New Zealand

3School of Computing and Engineering, University of Huddersfield, United Kingdom

Abstract

Two key aspects of problem solving are representation
and search heuristics. Both theoretical and experimen-
tal studies have shown that there is no one best prob-
lem representation nor one best search heuristic. There-
fore, some recent methods, e.g., portfolios, learn a good
combination of problem solvers to be used in a given
domain or set of domains. There are even dynamic
portfolios that select a particular combination of prob-
lem solvers specific to a problem. These approaches:
(1) need to perform a learning step; (2) do not usu-
ally focus on changing the representation of the input
domain/problem; and (3) frequently do not adapt the
portfolio to the specific problem. This paper describes a
meta-reasoning system that searches through the space
of combinations of representations and heuristics to find
one suitable for optimally solving the specific problem.
We show that this approach can be better than selecting
a combination to use for all problems within a domain
and is competitive with state of the art optimal planners.

Introduction
Automated planning now offers a wide range of domain-
independent heuristics and search methods. Theoretical
analysis can shed light on the impact of a single heuris-
tic in different domains (Hoffmann 2005). However, it has
been shown that a combination of heuristics improves the
results over a single one (Helmert 2006). And analysing
a combination of heuristics becomes a much harder task.
Also, there is no known best combination for all prob-
lems within a domain and across domains. This has moti-
vated research into techniques for selecting good combina-
tions. There have been proposals to either manually define
the best combinations (Richter and Westphal 2010), gener-
ate portfolios that combine planners (Cenamor, de la Rosa,
and Fernández 2016; Helmert, Röger, and Karpas 2011;
Gerevini, Saetti, and Vallati 2009; Núñez, Borrajo, and
Linares-López 2015), or auto-tune the parameters of plan-
ners (Fawcett et al. 2011). Many of these techniques require
off-line training and select combinations that depend on the
planning domain but not on the particular problem to solve.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An additional and relevant aspect that has been much
less studied in automated planning is the input representa-
tion. The same problem can be defined in different ways in
PDDL (Planning Domain Description Language) (Ghallab
et al. 1998), the standard language for compactly represent-
ing planning tasks. Each particular definition of a planning
problem may have an impact on the planner performance.
In fact, given the same combination of heuristics and search
methods some representations will make it harder to solve
the problem while others will facilitate its solution (Howe
et al. 1999; Howe and Dahlman 2002; Riddle et al. 2016;
Fuentetaja and de la Rosa 2016). Also, the best represen-
tation may not be the same for different problems within a
domain.

Related to the representation is the fact that most
current planners transform the PDDL representation into
more efficient internal representations such as propositional
logic (Hoffmann and Nebel 2001) or SAS+ (Bäckström and
Nebel 1995). Thus, changes of representation can be per-
formed either at the PDDL level, or in the procedure(s) in-
volved in the transformation. For instance, in Fast Down-
ward (FD) (Helmert 2006), one of the most influential plan-
ning platforms, these procedures are the translation and pre-
processing steps to generate a SAS+ representation. In SAT
planning, the impact of different encodings has been exam-
ined (Kautz and Selman 1992; Rintanen 2012).

In this paper, we present Meta-Search for Planning (MSP),
an approach that, given a problem and domain, searches
through the space of representations and heuristics to find a
good combination to use in solving the problem. We change
the representation using various techniques as black-boxes.
They range from simple ones like changing the order of ac-
tions in the PDDL domain file, à la (Vallati et al. 2015), to
more complex ones like Baggy (Riddle et al. 2016), that re-
formulates problems into a bagged representation. We also
vary the procedure to obtain the internal representation.

We make the following claims: (1) it is seldom the case
that a single representation or heuristic is best over all prob-
lems within a domain; (2) the choice of representations and
heuristics can be modeled as a meta-level search through a
space of combinations of representations and heuristics; and
(3) this meta-level search can be made efficient enough to be
competitive within the IPC constraints.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/143472913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Meta-search
We will use the standard definition of a planning task as Π =
{F,A, I,G}. F is a set of propositions, A is a set of actions,
I ⊆ F defines the initial state and G ⊆ F defines the goals.
A planner takes as input a planning task and returns a plan
π = 〈a1, . . . , an〉 such that if applied to the initial state I ,
it will achieve the goals; that is, it will generate a state sn
after applying actions in π to I such that G ⊆ sn. Actions
have a cost, c(a),∀a ∈ A. The cost of a plan is c(π) =∑
ai∈π c(ai). An optimal plan is one with minimum cost.
MSP can be described in terms of a generic search in a

meta-search space followed by a call to a planner. It can
be formally defined in terms of the meta-search state space
(MS) and meta-search operators (MO), and the problem
solving method: the search algorithm and the heuristics.

The input to MSP is a planning task described in terms
of a domain D, and a problem P , both described in PDDL.
Since MSP performs search in the space of representations
and heuristics, it also receives as inputs the sets of represen-
tation change operators that can be applied, Re and Ri, the
set of heuristics that can be used, H, and the time bound,
T . Re is the set of representation changes that generate a
new PDDL representation, referred to as external represen-
tation changes. Ri are the internal representation changes,
that transform a PDDL representation into an internal one
such as SAS+. The last input is a time bound T , represent-
ing the maximum time to solve the problem.

MSP is given the maximum time it can use to solve a prob-
lem (e.g., 1800s as in the IPC). Within that time limit, it must
use some of that time to select a good combination of rep-
resentation changes and heuristics, and use the remainder to
apply that selection to solve the problem. This means that
MSP must balance the benefits of spending more time in the
meta-search against those of spending more time actually
solving the problem. Picking the right balance is a difficult
decision. Currently, MSP just splits the maximum time, T , in
half. While the planner is guaranteed at least half of the total
time, it will end up with more time whenever the selection
process takes less than half. In other words, the planner will
have a time limit of T - consumedTime, where consumed-
Time is the actual time consumed by the meta search.

Algorithm 1 shows a high level description of MSP that
includes the call to meta-search and a call to the planner
with the output of the meta-search (and the remaining time).
The meta-search requires two time limits: one for the meta-
search and the other as an estimate of the time to be given
later to the planner. We assume T/2 for both.

In the following, end refers to the best meta-search state
found. The output of the meta-search contains: the final se-
lected PDDL representation of the domain and problem,
Dend and P end; and some information related to the se-
lected configuration for the planner, rendi andHend, the pro-
cedures to generate the internal representation and the set of
heuristics that were selected for the best state found. The
output also contains a plan π that will be empty if the prob-
lem is not solved during meta-search. In that case, the plan-
ner is called with the final domain and problem, the selected
configuration and the remaining time. These components
will be explained in detail in the following subsections.

noend 1 MSP(D,P,Re, Ri,H, T)
Require: domain D, problem P , PDDL rep. changes Re, internal

rep. changes Ri, set of heuristicsH, time bound T
Ensure: plan
1: (Dend, P end, rend

i , Hend, π)←
2: META-SEARCH(D,P,Re, Ri,H, T/2, T/2)
3: if π = ∅ then
4: T ← T− consumedTime
5: plan← PLANNER(Dend, P end, rend

i , Hend, T)
6: else
7: plan← π
8: return plan

Representation Changes
The representation changes are of two types: external (Re)
and internal (Ri). Each external representation change oper-
ates at the PDDL level and generates a new PDDL domain,
D, and problem, P . It can be defined as a function that op-
erates in the space of valid PDDL descriptions, P (each ele-
ment of P is a pair (D,P)): ∀re ∈ Re, re : P → P . Given
that they operate over P , the PDDL representation changes
can be applied in sequence. We define the composition of
two changes σ〈r1e ,r2e〉 over a pair (D,P) in the usual way:
σ〈r1e ,r2e〉(D,P) = (r1e ◦ r2e)(D,P) = r2e(r

1
e(D,P)). The

composition of these functions is not necessarily symmet-
ric, so the order in which changes are performed is relevant.

For the internal representation, we are restricted to trans-
formations into SAS+. If S is the space of all SAS+ de-
scriptions, ∀ri ∈ Ri, ri : P → S. In order to define each ri,
there are usually two processes applied consecutively to the
original PDDL representation to generate the internal one
in SAS+. First, there is a translation process that generates
an initial SAS+ representation; and second, there is a pre-
processing step that generates an optimized SAS+. Our set
of internal representation changes Ri contains pairs (t, p), a
translator method t and a pre-processor method p.

States of the Meta-search
The meta-search states contain all the necessary information
regarding problem representation and heuristics for solving
the problem. We define meta-search states as follows:
Definition 1 (meta-search state) A meta-search state s
is a tuple s = (〈r1e , . . . , rne 〉, Dn, Pn, ri, H), where
〈r1e , . . . , rne 〉, rie ∈ Re is a sequence of external represen-
tation changes; Dn and Pn are the resulting domain and
problem generated by applying this sequence to the orig-
inal domain and problem, (Dn, Pn) = σ〈r1e ,...,rne 〉(D,P);
ri ∈ Ri is an internal representation change; and H ⊆ H
is a subset of heuristics. 1

Regarding the PDDL representation, the states contain
both the sequence of representation changes and the ob-
tained domain and problem. As we will explain later, the se-
lected changes can affect the applicability of operators (e.g.,
some representation changes can only be applied once).

With relation to the internal representation, every state of
the meta-search contains one translator and pre-processor

1n refers just to the number of elements in the sequence.

pair ri = (t, p). Therefore, meta-search states define im-
plicitly a SAS+ representation, that can be obtained by ap-
plying the internal representation procedure to the resulting
domain and problem: ri(Dn, Pn). This involves executing
first the translator t and then the pre-processor p on the plan-
ning task defined byDn and Pn. While we could implement
all changes done at the PDDL level (Re) as changes at the
SAS+ representation, we keep both kinds of changes inde-
pendent. On one hand, changes are more easily performed at
the PDDL level than at the SAS+ level. On the other hand,
and more importantly, keeping these changes at the PDDL
level allows us to use other PDDL-based planners that do
not work with SAS+ representations.

The subset of heuristics H ⊆ H represents the selected
heuristic for solving the task, defined as the maximum value
over all the heuristics inH . Since we are doing optimal plan-
ning all heuristics inH should be admissible.

The meta-search state space is composed of all the pos-
sible combinations of sequences of external representation
changes, an internal representation change, and all subsets
of heuristics. Thus, the size of this space is exponential with
respect to the number of representation changes and heuris-
tics. An estimation of this size can be computed assuming
that the same PDDL representation change re ∈ Re can-
not be applied more than once (which is not necessarily
true for all PDDL representation changes) and that all pairs
ri = (t, p) ∈ Ri are possible (which is also not necessarily
true). In this case, the size of the state space would be:

|Re|∑
k=0

[(|Re|
k

)
× k!

]
× |Ri| × 2|H|

where the first term (in square brackets) is the number of
subsets of external representation changes with k elements,
times the number of sequences (permutations) that can be
generated for each of those subsets. The second and third
terms are the number of internal representation changes and
the number of possible subsets of heuristics respectively.

Given that this meta-search state space can be huge and
that it will be traversed at problem solving time (on-line), the
challenge consists of how to perform search efficiently. The
initial meta-search state is (∅, D, P, ri,H). It contains the
empty sequence, the original domain and problem, a default
value for ri, and all the input heuristics.

Meta-search Operators
Given a state s = (〈r1e , . . . , rne 〉, Dn, Pn, ri, H) of the meta-
search, there are three types of modifications that can be ap-
plied to generate a new state: adding an additional change to
the sequence of external changes; selecting a (possibly dif-
ferent) internal representation change; and selecting a (pos-
sibly different) subset of heuristics. Thus, we define meta-
search operators as follows.
Definition 2 (meta-search operator) A meta-search oper-
ator is a tuple mo = (more ,mori ,moH), where the first
component defines an external representation change re ∈
Re to be added to the sequence, the second component de-
fines an internal representation change ri ∈ Ri to be used,
and the last one defines a selection of heuristics H ⊆ H.

The operator mo = (more = rn+1
e ,mori = r′i,moH =

H ′) applied to the state s generates a new state s′ =
(〈r1e , . . . , rne , rn+1

e 〉, Dn+1, Pn+1, r
′
i, H

′), where Dn+1 and
Pn+1 are the domain and problem generated by the new se-
quence: (Dn+1, Pn+1) = σ〈r1e ,...,rne ,r

n+1
e 〉(D,P). The inter-

nal (SAS+) representation to be used by the planner will be
the result of: r′i(σ〈r1e ,...,rne ,re〉(D,P)). Both r′i and H ′ can
take the same value in consecutive states.

To improve search efficiency, we use a meta-search eval-
uation function that is based on the RIDA∗ planner (Barley,
Franco, and Riddle 2014).2 In this paper, RIDA∗ is used to
perform sampling over the search space in order to gener-
ate three outputs. These outputs are the numerical informa-
tion that we use to evaluate a given representation; a selec-
tion of heuristics appropriate for the planning task with that
representation, and possibly a solution plan if one is found
during the sampling. Since RIDA∗ works on top of FD, a
meta-search state can only be evaluated by RIDA∗ if it has a
SAS+ representation. Hence, the meta-search operators al-
ways consist of one or more external representation changes
and one pair of internal representation changes. The details
on how meta-search states are evaluated are described later.

The call to RIDA∗ to evaluate a meta-search state returns
the associated combination of heuristics, HRIDA∗ . Hence,
the third component of meta-search operators is bound to
that combination: mo = (more ,mori , HRIDA∗).

Regarding the external changes (PDDL representation),
Re, we consider the following ones.3 baggy-all applies bag-
ging to all types in the domain according to the Baggy tech-
nique (Riddle et al. 2016), that consists of replacing by coun-
ters all objects of the same type whose name is not relevant.
alphabetical-inverse-order renames each action in the do-
main file so planners that order actions based on alphabetical
order (e.g. FD (Helmert 2006)) consider the actions in the
reverse order. alphabetical-random-order is similar to the
previous operator, but changing the action names randomly.
inverse-order reverses the order of actions. random-order
changes the order of actions randomly. And neutral makes
no change to the PDDL representation.

So as stated earlier, the order, in which these represen-
tation change operators are applied, matters. As an exam-
ple, FD can obtain different results by applying alphabetical-
inverse-order followed by Baggy, than by applying Baggy
followed by alphabetical-inverse-order, since Baggy gener-
ates actions that have different suffixes.

Regarding the translator and pre-processor pairs (t, p) ∈
Ri we consider the following options. Translator, t: given
that we are using the FD framework, each new PDDL rep-
resentation must be translated into SAS+. There are two
options for the translation. The first one is the standard FD
translator (Helmert 2006). A second option, that we will re-
fer to as FD+, is only available when Baggy is used. In this
case, Baggy generates a list of invariants that are sent to the
FD translator code. The planner uses these invariants in addi-

2RIDA∗ was denoted as RA∗ in its original paper (Barley,
Franco, and Riddle 2014).

3We leave to future work using other representation changes
available for optimal planning.

tion to its own. This can make many fewer SAS+ variables,
which can have a positive or negative effect on the heuris-
tics. Pre-processor, p: again there are two choices. The first
one is the standard FD pre-processor. The second one is the
h2-based one defined in (Alcázar and Torralba 2015), that
we will refer to as h2. For some heuristics, using the latter
pre-processor has an advantage.

As an example, a meta-search operator can have more =
baggy-all and mori = (t = FD+, p = FD), which applies
Baggy to produce a new PDDL representation and trans-
forms that into SAS+, using the FD+ translator and the stan-
dard FD preprocessor.

Meta-search Search Technique
We have opted for a greedy search with a technique simi-
lar to enforced-hill-climbing (Hoffmann and Nebel 2001).
Algorithm 2 shows a high-level description of the meta-
search. It takes as input a domain D, a problem P , the
PDDL representation changes Re, the internal representa-
tion changes Ri, the set of heuristics H, a meta-search time
bound Tm, which will be the maximum time the whole
meta-search process can take and a planning time bound
TP , which is the minimum time that the meta-search pro-
cess assumes the planner will have to solve the problem. The
META-SEARCH returns the configuration of the best meta-
search state (Dend, P end, rendi , Hend, π). META-SEARCH

noend 2 META-SEARCH(D,P,Re, Ri,H, Tm, TP)
Require: domain D, problem P , PDDL rep. changes Re, internal

rep. changes Ri, set of heuristics H, meta-search time bound
Tm, planning time bound TP

Ensure: configuration, (Dend, P end, rend
i , Hend, π)

1: MO ←GENERATE-OPERATORS(Re, Ri)
2: init← (∅, D, P, (t = FD, p = FD),H)
3: TE ← Tm/3
4: H, f, π ← EVALUATE(init,TP , TE ,H)
5: best← (∅, D, P, (t = FD, p = FD), H)
6: best f ← f
7: succ← SUCCESSORS(init,MO)
8: while Tm not reached and π = ∅ and succ6= ∅ do
9: s = (〈r1e , . . . , rne 〉, Dn, Pn, ri, 0)← pop(succ)

10: H, f, π ← EVALUATE(s, TP , TE ,H)
11: s← (〈r1e , . . . , rne 〉, Dn, Pn, ri, H) sets the value of H
12: if f >best f then
13: best← s
14: best f ← f
15: succ← SUCCESSORS(s,MO)
16: return (Dend, P end, rend

i , Hend, π)← CONFIG(best,π)

first generates the operators, MO, given the possible rep-
resentation changes Re and Ri, and builds the initial state.
We start the search with the original domain and problem, as
well as the FD translator and pre-processor. Thus, the initial
state is (∅, D, P, (t = FD, p = FD),H). After that, the initial
state is evaluated. The EVALUATE function returns a set of
heuristics, an evaluation of the state and a plan π (that will be
empty if no plan is found during evaluation). Then, it gener-
ates its successors (the SUCCESSORS function returns a list
of meta-search states), and starts evaluating each successor
in order. As soon as it finds a state with a better evaluation

than its parent’s, it stops evaluating the current set of suc-
cessors, and continues the search, generating the successors
of that state. MSP finishes the meta-search if: the time bound
is reached; a plan is found while evaluating a meta-search
state; or if the list of successors is empty (it did not find a
better meta-search state than its parent at any level).

An important decision is on the maximum time EVAL-
UATE will be allowed to evaluate a meta-search state, TE .
If EVALUATE has too little time, the quality of its answers
will be poor. If it has too much time, then the meta-search
will not be able to search very many meta-search states in
this space. Currently, we are setting TE to one-third of Tm,
so that in the worst case we sample at least three different
configurations. We show in the Experimental Results section
that MSP usually explores more than three configurations.

In order to avoid visiting some uninteresting or impossi-
ble combinations, we prune any state s when any of the fol-
lowing conditions apply: the same meta-search operator was
applied in any ancestor of s; the last re is Baggy, and any an-
cestor of s has already applied Baggy in any form; the last
re is Baggy, and any previously evaluated state in the search
tree has already tried to apply Baggy and the problem could
not be bagged; or the last re is random, and an ancestor of s
has already applied a random operator.

Meta-Search State Evaluation
To evaluate a meta-search state, s, meta-search calls
EVALUATE(s, TP , TE ,H). Algorithm 3 shows its pseudo-
code. s is the state being evaluated, TP is the estimated plan-
ner’s time limit, TE is the evaluation time limit, andH is the
collection of candidate heuristics. Given s and TE , we would
like EVALUATE to return a reasonable estimate of the “good-
ness” of s within the time bound TE . Ideally, the goodness
measure would be how long FD will take, using A∗, to solve
that problem. However, that is hard to predict. Instead, we
use a goodness measure that allows us to determine whether
one meta-search state configuration makes A∗ more likely
to solve the problem within the TP time limit than another
meta-search state configuration.

noend 3 EVALUATE(s, TP , TE ,H)
Require: meta-search state s, planning time bound TP , evaluation

time bound TE , set of heuristicsH
Ensure: selected heuristics H , evaluation f , plan π
1: (〈r1e , . . . , rne 〉, Dn, Pn, ri,H)← s
2: S ← ri(Dn, Pn)
3: H, b, Tn, π ← RIDA∗(S, TE ,H)
4: f ← logb

TP
Tn

5: return H, f, π

If we knew how far A∗ would go within TP for each
of two given configurations, then the configuration where
A∗ achieves a higher f-limit would be better than one that
reaches a lower f-limit. We use a variation of RIDA∗ (Barley,
Franco, and Riddle 2014) to evaluate configurations. RIDA∗

receives the SAS+ representation of the planning task, the
evaluation time limit and the set of heuristics. The SAS+

representation is generated on line 2 and referred to as S.

RIDA∗ returns the following information about this state’s
representation: 〈H, b, Tn, π〉. H ⊆ H is the recommended
subset of heuristics; b, the average heuristic branching factor
when using H; Tn, the average time-per-node when using
H; and π, the plan that RIDA∗ may have found while eval-
uating this configuration or ∅ otherwise. Using the formula
found on line 4, EVALUATE uses the information returned
by RIDA∗ to calculate the maximum f-limit f that FD is es-
timated to reach while solving the problem with this repre-
sentation and H . This f-limit is our measure of the goodness
of this state. As far as we are aware, this is the first use of
maximum f-limit as a measure of goodness. Previous work
using RIDA∗ used other less accurate measures of goodness.
EVALUATE returns 〈H, f, π〉.

Planner
The meta-search algorithm returns the expected best com-
bination of representation, translation, and pre-processing
techniques, plus selected heuristics and possibly a plan. If
the meta-search finds a solution plan while evaluating any
state, MSP just returns it. Otherwise, the planner uses the
new domain and problem definitions, as well as the selected
translator and pre-processor and the heuristics to be used.
We have selected RIDA∗, which is built upon FD, as the plan-
ner to be used to perform optimal planning using A∗ with
the maximum of the chosen (admissible) heuristicsH . If the
representation chosen was a bagged representation, then the
solution will need to be translated back into the original rep-
resentation as well. Luckily this is a very fast process, linear
in the size of the solution path.

Experimental Results
Our goal with the experiments is to analyze whether the
proposed meta-search algorithm could automatically detect
configurations that work well for a specific problem. Our
experimental setting included solving all problems from the
optimal track of IPC’11 and ’14, except for the domains us-
ing conditional effects from IPC’14 (491 problems in total).
We used the same setting as in the IPC: time limit of 1800s
and memory limit of 4Gb. The meta-search algorithm was
programmed in Common Lisp, while RIDA∗ runs within the
FD framework. We ran the experiments on a cluster with In-
tel XEON 2.93 Ghz nodes using Linux Ubuntu 12.04 LTS.

We ran the meta-search with a maximum time of 900s
to find a good representation and set of heuristics, and we
used the remaining time for solving the problem. We gave a
maximum time of 300s to evaluate each meta-search state.
The main goal of this paper is to study whether MSP can
effectively find a good combination. We believe RIDA∗ al-
ready finds the best subset of heuristics for a given repre-
sentation. Therefore, we used the heuristics in our version
of RIDA∗: 42 ga-PDBs (Edelkamp 2006) (generated by a
genetic algorithm), LMCut (Helmert and Domshlak 2009),
iPDB (Haslum et al. 2007) and hmax (Bonet and Geffner
2001). Including other heuristics or representation changes
is left for future work.

We first compare the performance of MSP against three
baselines that use the same RIDA∗ planner: (1) OFD: original

representation and FD pre-processor; (2) Oh2: original rep-
resentation and h2 pre-processor; and (3) Bh2: bagged rep-
resentation and h2 pre-processor on the problems that can be
bagged. The results can be observed in the first five columns
of Table 1. MSP solves more problems than the base con-
figurations. It solves 323 problems while the two executions
of RIDA∗ on the original representation solved 276 and 315,
respectively. In comparison with OFD, MSP gains 55 more
problems but loses 8 by choosing an incorrect representa-
tion or by running out of time. The comparison is similar
with Oh2 where we gain 21 problems but lose 13. Only 14%
(69 of 491) of all problems failed due to memory after meta-
search finished. Currently, we do not include memory usage
predictions into the decision making process when choosing
a representation.

For further comparison we combined the results of our
three baseline solvers to get a Virtual Best Solver (VBS)
which is represented by “correctly choosing” between the
three baseline solvers on a problem by problem basis. Col-
umn VBS of Table 1 shows the problems solved by any of
the three baselines. Since this is done on each problem it
can have a higher number than any of its baselines in the do-
main row, which happens in Woodworking11, Hiking14 and
Tetris14. The VBS gives us an upper bound on how well
MSP might perform, solving 343 problems. It is a lower up-
per bound, because we did not use all the other represen-
tation changes as baselines (such as alphabetical inverse).
This shows we have room for improvement, and might be
able to solve another 20 problems with further fine-tuning.

The average number of meta-search states evaluated by
the meta-search across all problems is 5.8 (σ2 = 3.8). In
MSP almost all the time is spent on the evaluation of meta-
search states by RIDA∗. The average number of generated
meta-search states is 11.2 (σ2 = 10.26). The average time
spent on meta-search is 642s (σ2 = 382.5).4 In 55% of the
problems, meta-search did not use all of the 900s time limit.

Table 1 also shows comparisons to other state-of-the-art
planners, such as FD with LMCut (LMh2) and SYMBA∗
(Sy), the winner of IPC 2014 optimal track. Given that
SYMBA∗ was the winner of IPC’14, we could have
used SYMBA∗ within MSP. However, in its current form
SYMBA∗ can only use one form of heuristic based on
abstractions. Also, we have not determined how to use
SYMBA∗ to compute estimations when using different rep-
resentation changes. If we use RIDA∗ to make the estima-
tions and SYMBA∗ as planner, MSP might frequently make
poor estimations since the estimates are tightly linked to the
planner. Thus, the use of SYMBA∗ is left for future work.

MSP solved 323 problems while LMCut only solved 264,
a substantial difference, especially in the case of optimal
planning. The biggest gains are in Barman, Childsnack, Hik-
ing, and Visitall. Barman and Childsnack are solved be-
cause MSP selected Baggy which makes a big difference in
these domains. Besides, MSP solves some Hiking and Visi-
tall problems in the original representation that LMCut can-
not. So RIDA∗’s broader choice of heuristics is also a fac-

4The meta-search time limit is not strictly observed, but the total
time limit for MSP is strictly controlled.

Table 1: The first seven columns present: coverage results comparing MSP, original representation with the FD pre-processor,
OFD, and the h2 pre-processor, Oh2, Baggy with the h2 pre-processor, Bh2, the Virtual Best Solver, VBS, FD with LMCut
and h2 pre-processor, LMh2, and SYMBA∗, Sy. The remainder of the columns: selections made by MSP on the most relevant
heuristics, internal and external representation changes (Original, O, Bagging, B, and Alphabetical-Inverse, AI). Each cell
represents 〈number of times selected and the problem was solved/number of times selected〉.

RIDA∗ Heuristics Ri Re

Translator Preprocessor
Domain MSP OFD Oh2 Bh2 VBS LMh2 Sy LM ipdb gapdb FD FD+ FD h2 O B AI
Barman11 7 4 4 12 12 4 12 1/12 5/8 1/1 5/5 2/2 3/3 4/4 0/10 7/7 1/1
Elevators11 19 19 19 12 19 18 19 4/4 5/6 7/8 17/18 2/2 13/13 6/7 9/9 7/8 4/4
Floortile11 14 5 14 13 14 14 14 10/16 0/0 1/1 12/17 2/3 3/3 11/17 3/3 11/17 3/5
NoMystery11 17 20 17 17 20 14 16 0/0 2/5 2/5 17/19 0/1 15/16 2/4 15/15 2/5 0/0
Openstacks11 15 16 16 16 16 20 11/16 0/0 0/0 15/20 0/0 15/20 0/0 15/21 0/0 0/0
ParcPrinter11 17 13 17 17 17 17 0/3 0/0 0/0 17/20 0/0 11/14 6/6 17/20 0/0 0/0
Parking11 7 7 7 7 3 2 0/1 7/19 0/0 7/20 0/0 7/19 0¡/1 1/7 0/0 6/14
Pegsol11 17 18 18 18 18 20 0/3 0/0 14/14 17/20 0/0 7/10 10/10 8/11 0/0 9/9
Scanalyzer11 13 13 13 13 12 9 1/8 1/1 3/3 13/20 0/0 11/18 2/2 12/19 0/0 1/1
Sobokan11 20 20 20 20 20 20 0/0 9/9 4/4 20/20 0/0 10/10 10/10 12/12 0/0 6/6
Tidybot11 16 14 17 17 17 17 7/11 5/5 0/0 16/20 0/0 7/9 9/11 8/10 0/0 8/10
Transport11 10 10 10 6 10 6 11 0/4 0/0 5/9 10/16 0/4 10/12 0/8 9/11 1/9 0/0
Woodwork.11 14 11 15 16 15 20 2/7 0/0 3/5 14/20 0/0 7/13 7/7 12/16 0/0 2/4
Visitall11 18 18 16 18 10 12 0/0 0/0 2/4 18/20 0/0 17/18 1/2 16/17 0/0 2/3
Barman14 6 0 0 6 6 0 6 0/0 6/14 1/1 3/4 3/10 1/1 5/13 0/0 6/14 0/0
Childsnack14 8 0 0 8 8 0 4 0/8 0/0 8/12 5/14 3/6 0/8 8/12 0/8 8/12 0/0
Floortile14 18 4 17 20 20 17 20 16/18 0/0 0/0 16/18 2/2 0/0 18/20 0/0 18/20 5/7
GED14 19 19 19 19 15 20 0/0 10/11 7/8 19/20 0/0 13/14 6/6 11/12 0/0 6/6
Hiking14 16 16 16 16 17 9 19 0/0 8/12 7/7 14/17 2/3 6/8 10/12 9/9 7/11 1/1
Openstacks14 3 3 3 3 3 20 3/16 0/0 0/4 3/20 0/0 3/18 0/2 3/18 0/0 0/2
Parking14 6 6 6 6 3 4 0/1 6/19 0/0 6/20 0/0 6/19 0/1 3/9 0/0 3/11
Tetris14 10 8 9 8 10 9 10 0/4 7/10 0/1 7/13 3/4 4/5 6/12 2/3 7/13 2/3
Tidybot14 11 9 13 13 13 10 9/19 1/1 0/0 11/20 0/0 4/7 7/13 5/9 0/0 6/10
Transport14 7 9 9 5 9 6 9 1/8 0/0 3/8 6/19 1/1 6/15 1/5 6/13 1/4 0/3
Visitall14 15 14 15 15 5 8 0/5 0/0 2/2 15/20 0/0 15/20 0/0 14/19 0/0 1/1
Total (491) 323 276 315 123 343 264 339 164 120 97 452 39 302 189 281 123 101
% selected 23% 25% 20% 92% 8% 61% 39% 57% 25% 20%
Ratio solved when selected 0.56 0.6 0.75 0.66 0.5 0.65 0.66 0.68 0.64 0.7

tor. SYMBA∗ solves more problems than MSP, but most of
this difference is caused by Openstacks14 where no good
heuristic is known so that SYMBA∗’s bidirectional search
has a clear advantage. Without it MSP and SYMBA∗ would
have solved 320 and 319 problems respectively. This is fairly
amazing since SYMBA∗ has access to bidirectional search.

There was no heuristic nor representation change that was
selected for every problem in every domain. Roughly 27%
of the problems (87 problems) were solved during meta-
search state evaluation. However, if a problem is solved dur-
ing meta-search state evaluation, we say that the meta-search
state’s representation changes were selected. As far as which
heuristics were included in the selected combination on a
problem basis: ga-PDBs was chosen 20%; iPDB 20%; LM-
Cut, 10% and assigned another 13%;5 and hmax, 1%. Re-
garding internal representation changes, FD+ was chosen as
translator on 8% of the problems, and h2 as pre-processor on
39%. FD standard was chosen in the rest of cases as transla-
tor and pre-processor respectively. With relation to external
representation changes (PDDL): Baggy was chosen in 25%

5Because RIDA∗ could not return an evaluation in time, and in
that case LMCut is selected as the default heuristic.

of the problems; Alphabetical-Inverse, 20%; Inverse, 5%;
and Random and Alphabetical Random, around 1% each.
For each problem, more than one heuristic and external rep-
resentation change could have been chosen, so these num-
bers do not need to add to 100%. The specific number of
selections made per domain for the most relevant heuristics,
internal and external representation changes are shown in
Table 1. Each cell represents 〈number of times selected and
the problem was solved/number of times selected〉. The row
Total contains the total number of times the alternative was
selected.6 The last two rows represent the total percentage
of times the alternative was selected and the ratio of solved
problems when selected, respectively. In all domains, except
Openstacks11, there is diversity in the selections. This jus-
tifies working on a problem by problem basis. The ratio of
solved problems varies between 0.5 and 0.75.

Non-alphabetical reordering of the operators in the do-
main file makes no difference to the FD planner, as FD re-
sorts the actions into alphabetical order. MSP discovers that
the non-alphabetical reordering representation change does

6Note that two or more heuristics and/or representation changes
can be selected for a single problem.

not affect the results. However, non-alphabetical orderings
might be relevant to other planners. Reordering of the oper-
ators using “alphabetical” does change the order in which al-
ternatives are chosen by FD. These changes are chosen more
frequently by MSP. Analysis of the results shows that chang-
ing the order of the operators alphabetically does affect the
behavior of a number of the heuristics, including LMCut.
So alphabetical-inverse-order can make a difference for op-
timal planning, which was discovered by MSP and was not
what we expected.

For all the representation changes there are problems for
which that change is a bad decision. MSP has the advantage
of deciding when and when NOT to use them. In addition,
these results were not tuned in any way for the paper. If we
were competing in the IPC, with the FD planner, we would
not use inverse, or random since they have little effect, and
we would fine tune the time split between the meta-search
and the actual problem solving. So it is very surprising that
we can already get results that almost equal SYMBA∗.

In order to analyze how good the selected MSP combi-
nation is compared to VBS, we assumed that the meta-
search computation time is negligible. Thus, we compared
MSP against the base configurations where their time limit is
900s (i.e., T/2). In this case MSP solves 321 problems and
VBS solves 331, only 10 problems more than MSP. OFD-T/2
solves 267, Oh2 solves 306 and Bh2 solves 118. While MSP
only solves two problems less than with 1800s, the other
configurations solve up to 12 problems less.

In the MSP results we used a specific order of meta-search
operators: Baggy options are preferred over the others, FD+

is preferred over FD for the translator (though FD+ can only
be applied after Baggy), and h2 is preferred over FD for the
pre-processor. However, we ran an additional experiment us-
ing random operator orderings resulting in very similar num-
bers (MSP solved 324 problems with a random ordering).

Finally, in order to evaluate the impact of performing the
meta-search and the goodness of the evaluation function, we
carried out another experiment. MSP chose a combination by
using a random walk over the same meta-search space. The
number of solved problems is 256, considerably less than
323. This result confirms that our meta-search scheme and
evaluation function are an improvement over using random
decisions.

Related Work
The work reported in the paper relates to several oth-
ers in at least two different aspects: change of repre-
sentation or reformulation; and generating good combina-
tions of solvers/heuristics. Examples of reformulation tech-
niques at the PDDL level are the generation of macro-
operators (Fikes, Hart, and Nilsson 1972), bagging simi-
lar objects (Riddle et al. 2016; Fuentetaja and de la Rosa
2016), action splitting (Areces et al. 2014), or just chang-
ing the order of domain elements in the PDDL file (Vallati
et al. 2015). Most work on reformulation in planning has
been at the domain level, looking for the best representa-
tion for all problems within a domain. However, finding the
best reformulation for all problems in the same domain does
not always work, especially when the problems’ distribution

varies on two or more dimensions (Riddle, Holte, and Bar-
ley 2011). Also, there has been little work on changing rep-
resentation for each problem, except for systems that learn
macro-operators on-line in the satisficing planning (Coles
and Smith 2007).

The second type of relevant related work gener-
ates good combinations of different problem-solving el-
ements. Some work tunes parameters of solvers, as FD-
AUTOTUNE (Fawcett et al. 2011). Others combine heuristics
in different queues (Richter and Westphal 2010), compute
the sum or maximum of several heuristics (Haslum, Bonet,
and Geffner 2005; Domshlak, Karpas, and Markovitch
2010; Haslum et al. 2007), or search in the space of sets
of heuristics (Barley, Franco, and Riddle 2014). Finally,
other works combine different solvers by generating port-
folios that are configured for all domains (Helmert, Röger,
and Karpas 2011; Núñez, Borrajo, and Linares-López 2015),
for a specific domain (Gerevini, Saetti, and Vallati 2009),
or even for a specific problem (Cenamor, de la Rosa, and
Fernández 2016). PBP (Gerevini, Saetti, and Vallati 2009)
is one of the few works that have proposed a domain-
dependent configuration that mixed representation changes
(as macro-operators) and problem solvers. As with most
portfolio approaches, it requires some training steps before
problem solving. Dynamic portfolios (Cenamor, de la Rosa,
and Fernández 2016), usually mix off-line meta-reasoning,
by learning a predictive model, that they then apply to a
problem on-line to decide which combination is appropriate
for it. In summary, to our knowledge, no previous approach
has attempted to generate on-line (on a problem basis) good
combinations of both representation and heuristics.

Concluding Remarks
We have presented MSP, an automated technique that solves
optimal planning tasks by performing an on-line meta-
search for a good combination of representation and heuris-
tics. It represents a new way to solve problem solving tasks
by automatically generating a good combination of repre-
sentation and heuristics. MSP avoids the expensive learning
processes used by other approaches, such as portfolios. Re-
sults show that it is competitive with state-of-the-art plan-
ners in terms of coverage in many IPC domains.

As future work, we would like to extend this work to sat-
isficing planning, include some estimations based on mem-
ory consumption, include other kinds of base search mech-
anisms (as symbolic planning), add more meta-search op-
erators that implement other representation changes and/or
heuristics, and make states’ evaluation more efficient.

Acknowledgements
M. Barley was supported by the Air Force Office of Sci-
entific Research, Asian Office of Aerospace Research and
Development (AOARD) under award number FA2386-15-
1-4069. This work has been partially supported by spanish
MICINN project TIN2014-55637-C2-1-R.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS).
Areces, C.; Bustos, F.; Dominguez, M.; and Hoffmann,
J. 2014. Optimizing planning domains by automatic ac-
tion schema splitting. In Proceedings of the 24th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Barley, M.; Franco, S.; and Riddle, P. 2014. Overcoming
the utility problem in heuristic generation: Why time mat-
ters. In Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS).
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Cenamor, I.; de la Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured port-
folios. Journal of Artificial Intelligence Research (JAIR)
56:657–691.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Journal of Arti-
ficial Intelligence Research (JAIR) 28:119–156.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, 1071–1076.
Edelkamp, S. 2006. Automated pattern database design. In
Model Checking and Artificial Intelligence.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Röger, G.;
and Seipp, J. 2011. Fd-autotune: Domain-specific configu-
ration using fast downward. In Proceedings of the ICAPS-
2011 Workshop on Planning and Learning (PAL), 13–20.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and executing generalized robot plans. Artificial Intelligence
3:251–288.
Fuentetaja, R., and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. special case of creation planning. AI
Communications 29(3):435–467.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS).
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence,
1007–1012.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. In Proceed-
ings of the 20th AAAI Conference on Artificial Intelligence,
1343–1348.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS).
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast down-
ward stone soup: A baseline for building planner portfolios.
In ICAPS Workshop on Planning and Learning (PAL), 28–
35.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2005. Where ignoring delete lists works: local
search topology in planning benchmarks. Journal of Artifi-
cial Intelligence Research (JAIR) 24:685–758.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. Journal of Artificial
Intelligence Research (JAIR) 17:1–33.
Howe, A. E.; Dahlman, E.; Hansen, C.; Scheetz, M.; and
von Mayrhauser, A. 1999. Recent advances in ai planning.
In Proceedings of the 5th European Conference on Plan-
ning (ECP), Lecture Notes in Artificial Intelligence, 62–72.
Springer-Verlag.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proceedings of the 10th Europan Conference on Artificial
Intelligence, 359–363. New York, NY, USA: John Wiley &
Sons, Inc.
Núñez, S.; Borrajo, D.; and Linares-López, C. 2015. Auto-
matic construction of optimal static sequential portfolios for
AI planning and beyond. Artificial Intelligence 226:75–101.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Riddle, P.; ; Douglas, J.; Barley, M.; and Franco, S. 2016.
Improving performance by reformulating PDDL into a
bagged representation. In ICAPS Workshop on Heuristics
and Search for Domain-Independent Planning (HDIP).
Riddle, P.; Holte, R.; and Barley, M. 2011. Does representa-
tion matter in the planning competition? In Proceedings of
the 9th Symposium on Abstraction, Reformulation and Ap-
proximation (SARA).
Rintanen, J. 2012. Planning as satisfiability: Heuristics. Ar-
tificial Intelligence 193(Supplement C):45 – 86.
Vallati, M.; Hutter, F.; Chrpa, L.; and McCluskey, T. 2015.
On the effective configuration of planning domain models.
In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI). AAAI press.

