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Abstract 

This study investigated salivary testosterone (sal-T) variation across the menstrual cycle in 

female athletes, at different competitive levels, and its association with motivation and 

neuromuscular power.  Six elite and 16 non-elite female athletes were monitored on days 7 

(D7), 14 (D14) and 21 (D21) across three menstrual cycles for basal sal-T concentrations and 

self-appraised motivation to train and compete.  Two further measures were taken on D7, D14 

and D21 across two menstrual cycles; (1) the sal-T response (delta change) to a physical stress 

test and (2) peak power (PP) response to a 6-sec cycle sprint following a post-activation 

potentiation (PAP) stimulus.  Basal sal-T concentrations increased by 17±27% from D7 to 

D14 before decreasing by -25±43% on D21 (p<0.05), but this result was biased by elite 

females with higher sal-T (>102%) who showed larger menstrual changes.  Motivation, sal-T 

reactivity to stress and the PP responses to a PAP stimulus also varied by testing day (p<0.05), 

in parallel to basal sal-T and in favour of the elite group.  Furthermore, stronger within-subject 

relationships (p<0.001) between basal sal-T and motivation emerged in the elites (r = 0.70-

0.75) versus the non-elites (r = 0.41-0.50).  In conclusion, menstrual cycle changes in sal-T 

were more obvious in high-performing female athletes with higher sal-T concentrations.  This 

was accompanied by greater training motivation, a more pronounced sal-T response to a 

physical stressor and greater neuromuscular power in the elite group.  These results support 

observations that female athletes with higher T are more represented at elite levels of 

performance. 

 

Key words: Anabolic; Androgens; Trainability; Recovery; Adaptation 
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Introduction 

There are reports of elite female athletes, particularly those involved in power-speed sports, 

demonstrating elevated free testosterone (T) levels compared to non-elite women.1,2  This was 

first noted across a mixed-athlete cohort when the pooled salivary T (sal-T) profiles of elite 

(87 pg/ml) and non-elite (41 pg/ml) groups were evaluated.1  Likewise, females participating 

in speed-based sports (e.g. sprinting) have presented much higher blood T concentrations than 

individuals from other (e.g. volleyball) sporting disciplines.3  The mechanisms underlying this 

T variance and its influence on performance are not entirely clear; however, some have 

hypothesised that T supports motivated behaviours, such as aggressiveness, risk taking and 

self-efficacy.4-6  Others have linked higher sal-T to increased voluntary training load choice 

among female athletes,7 as a proxy for motivational drive.   

 

The past decade has seen considerable interest in how T changes across female athletic 

competition, often with a focus on theoretical models of gaining and maintaining social 

status.8-10  Acute physiological changes in T might also have functional relevance.  For 

instance, a rise in female T prior to competition was linked to subsequent playing abilities11 

and competitive behaviours.4  Across physical exercise or similar competitive “stressors”, both 

sexes display T increases11-14 and the male T response shows some ability to predict 

subsequent performance,13 particularly when the moderating effects of cortisol (C) are 

considered.12  The induction of a T response using exercise is further interesting in that, when 

allowing for fatigue recovery, it may have a priming effect for further activity later in the same 

day,13,15 and it associates with less circadian decline in T across the day.15 

 

A specific example of short-term priming using an exercise stressor is post-activation 

potentiation (PAP).  The PAP phenomenon refers to an excited neuromuscular state of skeletal 
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muscle following a prior stimulus.16  The induction of a PAP response has been seen in both 

weight-bearing (e.g. sprint running) and non-weight-bearing (e.g. sprint cycling) examples in 

sport.16-18  On a mechanistic level, an increase in T can modify intracellular calcium release 

within muscle cells,19 as one possible contributor to PAP.16  There is further speculation that T 

and C reactivity might work together to ensure that other potentiating mechanisms (e.g. 

myosin phosphorylation, motor unit recruitment) are activated through prior exercise.12  It is 

also possible that performance during short-term intense exercise, which arguably requires a 

high level of motivation, is partly dependent upon T availability.  

 

Overlaying these outcomes in adult females is the menstrual cycle.  It has been debated by 

some20,21 that the T variation across this cycle is small compared to inter-day and circadian 

changes and thus, can be largely ignored.  Others however have reported larger T fluctuations 

at different stages of the menstrual cycle, particularly an elevation in T during the late 

follicular phase and at ovulation.22,23  In healthy (non-athletic) women, this variation maps 

onto reported changes in competitive behaviours and preferences related to perceived social 

status, and perception and preference of facial features around the time of ovulation.24,25  To 

our knowledge, there is no corresponding data on motivation to train or compete among 

female athletes.  Addressing this issue would provide insight into the unique nature of the 

female athlete and the influence of normal T variation across the menstrual cycle.  

 

The current study monitored female athletes participating at different competitive levels 

(elites, non-elites) on three different days (7, 14 and 21) across their menstrual cycle.  The 

primary outcomes were changes in basal sal-T concentrations and motivational state, the sal-T 

response to a short physical stressor and cycling peak power (PP) following a PAP stimulus.  

The main aims were to determine if: (1) the basal concentrations of sal-T vary across the 
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menstrual cycle; (2) self-reported motivation to train and compete parallel the changes in basal 

T concentrations; (3) the sal-T response to a set physical stressor and cycling power after a 

PAP stimulus also differ across the menstrual cycle; (4) the magnitude of change in any 

outcome differs between elite and non-elite female athletes.     

 

Materials and Methods 

Participants 

Twenty-two healthy female athletes were recruited with a mean (±SD) age, height, and body 

mass of 21.0±1.1 years, 1.69±0.05 m and 66.9±4.7 kg, respectively.  These athletes were 

currently competing in one or more of four sports (i.e. figure shaping n = 6, netball n = 8, 

soccer n = 5, triathlon n = 3).  On average, they reported training 2-5 days a week involving a 

mixture of general and sport-specific sessions, including some endurance components.  Each 

athlete also reported a regular resistance-training history of at least two years before this study.  

Of the 22 athletes recruited, six were competing at a national level (i.e. elites), 13 at a club 

level and three at recreational events (i.e. non-elites).  The participants were healthy and 

without any injuries or medical problems that would limit their ability to complete this study.  

They did not report taking any medications, drugs or doping agents, and all had been 

hormonal-based contraceptive free for a minimum of six months.  The T values for each 

athlete were also within the normal physiological range for healthy women (40-300 pmol/L),26 

further suggesting that no anabolic doping agents were taken.  Each female received a full 

explanation of the protocols and signed an informed consent form before study 

commencement.  A university ethics committee provided ethical approval.   

 

Study design 
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A two-group, longitudinal study design involving a combination of observational, quasi-

experimental and experimental testing was employed.  The athletes self-collected saliva 

samples in the morning (within 15 min after rising and before breakfast) on days 7 (D7), 14 

(D14) and 21 (D21) across three consecutive menstrual cycles to assess basal sal-T 

concentrations.  Day 1 was the self-reported start of menses, recorded 30 minutes after 

awakening.  A short motivational questionnaire was completed after saliva collection.  On two 

occasions per menstrual cycle day (D7, D14 and D21), the athletes also performed a short 

physical stress test in the morning (0900 hours) to assess sal-T reactivity and a strength-based 

PAP stimulus in the afternoon (1500 hours) to examine changes in cycling PP.   All menstrual 

cycle repeats were randomised.  The study protocols and variables are outlined in Table 1.  

The subjects were familiarised with all procedures across two sessions and their 90% one 

repetition maximum (1RM) load for the PAP exercise (leg press) was calculated.    

  

Insert Table 1 here.  

 

Salivary hormones 

Each athlete was provided with labelled tubes with written instructions for the self-collection 

of saliva at home.  The samples were collected using a passive drool method without 

stimulation and stored in a commercial freezer (-20°C) for no more than two days, before 

transference to a -80°C freezer for long-term storage.  The stress-test samples were taken by an 

experienced technician in the laboratory.  All samples were assayed in duplicate using a 

commercial immunoassay kit (Salimetrics LLC, USA), after an initial process of thawing and 

centrifugation (2000 g × 10 minutes).  The sal-T plate had a lower detection range of 6.0 pg/ml 

with inter-assay coefficients of variation below 10%.  To eliminate inter-assay variance, each 

athlete’s samples were tested in the same plate.  Salivary T correlates (r= 0.71, r2=0.50, 
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p<0.001) with blood-free T measurements among women,27,28 as we found during the pilot 

testing of a young athletic cohort (r = 0.69, r2 = 0.48, p<0.001).  These data verify the use of 

sal-T, although the measured values are not directly comparable to blood.28  

 

Motivational testing 

Immediately after saliva collection, brief measurements of motivation to train and compete 

were recorded in a training diary.  Motivation is a complex construct exhibiting elements of 

task, situational and environmental specificity.29  To capture some of these elements, each 

athlete was instructed to rate their current motivational state on a Likert scale, anchored from 1 

(I have no motivation to train / I have no desire to compete) up to 7 (I am extremely motivated 

to train / I feel extremely competitive).  Single-item behavioural ratings are often used to 

assess athletic populations in sport,30-32 due to ease of application and interpretation with low 

intrusiveness, all of which lead to high compliance among athletes.     

 

Physical stress-testing and PAP protocols 

Physical stress testing began with a 5-minute warm-up on an air-braked cycle ergometer 

(Wattbike Pro, UK), maintaining a minimum of 50 W.  This was followed by three minutes of 

increasing intensity (to 125-150 W) and then a maximum 10-second effort, followed by 

recovery pedalling to make a total of 10 minutes duration.  Saliva was collected five minutes 

before and after the test for T determination.  The PAP assessment involved a standard 5-

minute warm-up comprising of steady state cycling (on the Wattbike) at no less than 50 W, 

followed by a progressive series of 3 × 6 s sprint trials.  The athletes pedalled slowly for a 

minute between each trial and three minutes after the last trial.  Two minutes after warm-up 

completion, 2 × 6 s maximum sprints were completed with a 1-minute recovery.  As a baseline 

reference, peak power (PP) output was assessed using proprietary software.  After a further 20-
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minute recovery, the subjects completed a PAP stimulus comprising of 3 × 3 repetitions at 

90% 1RM on a 45° leg press machine or the control trial, consisting of slow pedalling at a 

minimum of 50 W for the same time period.  Following 15 minutes of recovery, both groups 

repeated the 2 × 6 s cycle test.  The PP recorded was the best across the two trials. 

 

All testing was standardised in this study.  Verbal encouragement was given, by the same 

research investigator, to ensure maximal effort during stress testing, PAP induction and cycle 

ergometry.  Room temperature was maintained between 20 and 24 �C across all sessions and 

the athletes wore similar items of clothing, socks, and shoes.  Consumption of water (500 ml) 

was allowed during the study procedures, but food and sports drinks were not permitted until 

after the final saliva sample was collected.  The athletes were also permitted to consume food 

and water between the morning and afternoon tests, but they were asked to cease eating one 

hour before the afternoon assessment to remove the effect of food intake.  In the interim 

period, they were also asked not to engage in any additional physical activity.  

 

Statistical analyses 

The study data were analysed with a generalized estimating equation using an exchangeable 

correlational structure.33  Before analysis, the sal-T and PP results were log-transformed to 

approximate normality and reduce non-uniformity bias, but the raw results are shown to aid 

interpretation.  Data were collapsed across all three menstrual cycles after initial testing 

revealed no significant effect (of each repeat) on any variable.  To assess the impact of cycle 

day and competitive level, we assessed basal sal-T and each motivational measure with testing 

day (D7, D14, D21) and competitive status (Elite, Non-elite) as factors, plus their interaction.  

The same approach was used to examine stress-induced T reactivity, based on the delta 

changes (post – pre) in sal-T.  Delta changes in PP were also computed and analysed with 
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treatment (Control, PAP), testing day and competitive status as factors, along with selected 

interactions.  The change scores were compared to a zero baseline using paired T-tests.  Where 

appropriate, post-hoc contrasts were conducted with the sequential Bonferroni test.  Finally, 

we investigated the within-subject relationships (r values with 95% confidence intervals) 

between the sal-T, motivational and PP measures using the R package rmcorr.34  All other data 

were analysed with IBM SPSS 24 with significance set at p<0.05.  

 

Results 

Demographic profiles of the elite and non-elite female athletes 

At study commencement, the elite and non-elite females were of similar age (21.0±1.1 years; 

21.1±1.2 years), height (1.70±0.06 metres; 1.69±0.05 metres) and weight (67.5±6.5 kg; 

66.8±4.3 kg), respectively (all p>0.515).  Athlete strength levels did vary, with 90% 1RM leg 

press loads ranging from 220 kg to 410 kg.  Individual 90% 1RM was not related (p=0.489) to 

basal T during the first week of testing.  Menstrual cycle length was normal across all athletes 

(24 to 33 days) with a mean of 28.7±1.9 days.  The length of each menstrual cycle was not 

related to basal sal-T on any testing day Spearman r = -0.32 to 0.16, p>0.201).   

 

Basal sal-T concentrations 

A main effect of testing day (p<0.001) and competitive status (p<0.001) emerged when 

examining basal sal-T concentrations.  The testing day × competitive status interaction was 

also significant (p<0.001).  Post hoc testing (Figure 1) identified a significant rise in sal-T 

(42±27%) among the elites from D7 to D14, before falling at D21 by -26±30% and -48±38% 

from these respective days (p<0.001).  In the non-elite group, sal-T increased slightly by 

9±22% from D7 to D14 (p=0.022), before declining by -14±29% at D21 (p<0.01).  The elites 

had higher sal-T concentrations than the non-elites at all time points (p<0.01).   
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Insert Figure 1. 

 

Motivational state 

In relation to training motivation, we found an effect of testing day and a day × status 

interaction (p<0.001).  Both athlete groups displayed higher (p<0.01) motivation to train on 

D14 versus D7 and D21 (Figure 2).  The elites on D14 also reported higher motivation than 

the non-elites at all time points (p<0.05), whilst the non-elites on D14 had higher scores than 

the elites on D21 (p<0.01).  A similar menstrual pattern was observed for motivation to 

compete (p<0.001); increasing in all athletes from D7 (3.8±1.0) to D14 (5.0±1.3), before 

decreasing below both days at D21 (3.3±0.9) (p<0.05).  Overall, the elites reported higher 

(p=0.016) motivation to compete (4.4±1.6) than their non-elite counterparts (3.7±0.9).   

Insert Figure 2 here. 

 

Sal-T responses to the physical stress test  

Preliminary analysis of pre-test sal-T revealed similar trends to the basal results; sal-T was 

higher on D14 (35.8±23.9 pg/ml) versus D7 (26.3±13.4 pg/ml) and D21 (20.5±6.7 pg/ml), 

with a further difference between the elites (36.9±24.1 pg/ml) and non-elites (18.2±9.9 pg/ml) 

(p<0.05).  Stress testing promoted a positive change in sal-T on D7, D14 and D21 in the elite 

(8±6%, 16±6%, 6±5%) and non-elite (6±4%, 7±6%, 5±5%) groups, respectively (Figure 3).  

When comparing the T responses, a main effect for testing day and competitive status 

emerged, along with a significant interaction (all p<0.03).  Contrasting testing revealed that the 

elite sal-T response on D14 exceeded all other days in both groups (p<0.01).     

 

Insert Figure 3 here. 

Cycling PP responses to the PAP stimulus 
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Power testing at baseline mirrored the sal-T results; PP on D14 (383±166 W) exceeded the D7 

(371±169 W) and D21 (369±161 W) results with elites also producing more PP (432±280 W) 

than non-elites (317±170 W) (all p<0.014).  In all PAP trials, positive changes in PP (from 3-

7%) occurred (Figure 4, p<0.01), whereas the control treatments had no significant effect.  

When comparing the PP responses, we identified a main effect by treatment, testing day and 

competitive status (p<0.003).  The first interaction of interest (treatment × testing day) was 

also significant.  Further testing showed that all PAP results were significantly different from 

control data, with the largest increase in PP on D14 (p<0.001).         

 

Insert Figure 4 here.  

 

The second interaction of interest (treatment × competitive status) was marginally significant 

(p=0.051).  Contrast analyses (Figure 5) revealed no changes in PP under the control condition 

in both athlete groups (0±3%, p>0.648).  Conversely, the PAP treatment elicited a positive PP 

response for the elite (7±4%) and non-elite (4±4%) athletes (p<0.001).  The observed changes 

in PP (both groups) differed from the control treatments (p<0.001), and the elite group were 

more responsive to the PAP protocols than the non-elites (p=0.015).   

 

Insert Figure 5 here.  

 

Relationships between sal-T, motivation and cycling PP 

Basal sal-T was positively related (p<0.001) to both measures of motivation among elite and 

non-elite women, but these associations were stronger in the former group (Table 2).  

Additional relationships (p<0.014) were identified in the non-elite group, linking pre-test sal-T 

and the sal-T changes to the corresponding measures of cycling PP, but these were weak 
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associations.  It is also important to note that, apart from basal sal-T and motivation, the paired 

variables were all collected at different times of the day (see Table 1).          

 

Insert Table 2 here. 

 

Discussion 

This study investigated the physiological variance in sal-T concentrations, both basal and in 

response to a set physical stressor, at three different time points across the female menstrual 

cycle.  The effectiveness of a standard PAP stimulus on PP during cycle testing was also 

examined.  Overall, we found that most parameters (i.e. basal sal-T, motivation, sal-T 

responses to stress, PAP-induced PP) peaked on D14 of the menstrual cycle compared to D7 

and D21, though many of our findings were influenced by competitive status in sport.    

 

Across all athletes, basal sal-T concentrations rose from D7 to D14 of the menstrual cycle 

before declining on D21.  This change was biased by elite females who not only possessed 

higher (>102%) waking and early morning sal-T than non-elite women, as others have 

reported,1 but also showed greater T variation.  These differences must be interpreted 

carefully, due to large sal-T variation within the elite group (Figure 1) that could reflect other 

genetic, behavioural or training factors.1,2,32  The two groups did not differ in age, height and 

weight, nor did they present any irregularities in menstrual cycle duration.  Whilst studies 

support menstrual rises in T, particularly near late follicular and early ovulation,22,23,35 there is 

contention as the interpretation of this.  Some have reported little or no T variation that is 

meaningless against a background of daily change.20,21  Others have introduced the concept of 

a “critical difference”,36 whereby a sal-T difference must exceed daily variation and other 

sources of error to claim a biological effect.  While this concept is somewhat contentious, 
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given that daily T changes in themselves may be of some biological value,7,32,37 it is 

noteworthy that the sal-T variation exhibited by the elite women across the menstrual cycle 

exceeded the critical difference of 90% suggested for healthy young men.36     

 

Two simple questions relating to one’s motivation to train and compete were taken.  Both were 

consistently higher in the elite group with elevated sal-T and both increased towards D14 

(from D7) before decreasing on D21.  Coinciding with our results, women often exhibit more 

interest in keeping resources, a higher libido, more energy and competitiveness, as they 

progress towards ovulation (days 13-15).25,38  Conversely, female competitiveness can decline 

during the follicular (days 6-12) and luteal (days 16-23) phases,39 but seldom do we see 

corresponding changes in aggressiveness.  More typically, it is the behaviour of assertiveness, 

the quality of being self-assured and confident without resorting to more aggressive stances.  

On an individual level, the fluctuations in basal sal-T were also positively related to both 

motivational outputs, but with elite women presenting stronger associations, as seen in a recent 

study on male athletes.32  Speculatively, this linkage might reflect the expression of more 

male-typical competitive behaviours among elite (vs. non-elite) women,40 which might then 

influence T release to reinforce such behaviours and their competitive status.  This is still a 

difficult area to interpret as T may be permissive to certain behaviours, but they are also highly 

individual with some situational and environmental dependency.  

The physical stressor promoted a consistent rise (5-16%) in sal-T, with the largest change 

among elite females at ovulation (D14).  Like basal sal-T, heterogeneity in the T responses to 

stress were also evident (Figure 3).  Testosterone responsiveness to a physical stressor has 

been well documented in both males12-14 and females.11,14  In males, it is somewhat predictive 

of subsequent performance,12,13,15 but it has not been demonstrated if T reactivity can predict 

female performance.  The sal-T measures around the morning stress test (non-elites only) were 
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positively related to baseline PP and/or the PP changes in the afternoon.  While it is tempting 

to link performance directly to T, there are major caveats on doing so.  First, these were weak 

associations and we did not assess if sal-T remained elevated before PAP testing some six 

hours later.  In males C is another, but not the only, essential confounder with moderation 

effects demonstrated12 and, in some cases, C may be a better predictor of performance than 

T.41-44  Cortisol was not measured in this study due to experimental costs.  In addition, both 

estradiol and progesterone will certainly have changed across the menstrual cycle,21-23,39 and 

estrogens will likely mirror T with similar behavioural effects.25,39   

 

Substantial interpretation of our results cannot be reliably made without a more comprehensive 

study on a larger sample of athletes.  Nevertheless, it does appear that elite female athletes 

exhibit more marked changes in sal-T and its responsiveness to a physical stressor across the 

menstrual cycle.  The same group was also more motivated to train, perhaps ensuring greater 

voluntary exertion and consistency in their efforts during exercise testing.  While our numbers 

justify caution, it may be an observation that needs careful consideration in future studies, as 

ignoring it could produce difficulty in replication and considerably increased variability.  

Similarly, at the high end of speculation a more “favourable” response to a physical stressor 

may suggest that the late follicular to ovulatory period of the menstrual cycle is ideally primed 

for intense power – heavy load-type training.  In fact, there is evidence that maximum force 

development is enhanced when strength training is conducted in the follicular phase, relative 

to luteal-phase training.35   

 

Lastly, it is interesting to note that the PAP-induced changes in cycling PP varied across the 

menstrual cycle (highest on D14), in parallel to the sal-T and motivational measures.  This is 

perhaps not surprising given its similarity to the set physical stressor, but nonetheless is 
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noteworthy in terms of acute PP enhancement from the same exercise stimulus.  Testosterone 

might contribute to PAP via several neuromuscular mechanisms (e.g. intracellular calcium 

movement, corticospinal activity)19,45 or as a motivational substrate for exercise6,7,32 and this 

may, in part, account for our group trends or within-subject relationships.  The finding of a 

larger PAP response among the elites is not unexpected, since the induction and utilisation of 

PAP tends to increase with a higher level of physical training.16  Arguably, PAP could be 

viewed as a competitive task with a physical outcome and, if so, would suggest that there may 

be some menstrual cycle-related advantages to athletic competition.  However, despite our 

results, an acute increase in cycling PP may have little transference to those complex physical 

movements that determine most competitive outcomes.  

 

The current findings do need to be balanced against the complexity of undertaking this work 

on athletes, where issues pertaining to sample size, unbalanced groups and environmental 

confounds (i.e. training stressors, competition) exist.  Some of these issues were partly offset 

by the repeated measures design, whereby up to 54 (elites) and 144 (non-elites) data points 

were collected per variable, and data collapsing for analysis.  In addition, D7, D14 and D21 

are somewhat arbitrary divisions and care must be taken to assign them as truly representative 

of follicular, ovulatory and luteal phases.  Still, given the cycle length (~28 days) each day will 

likely have fallen within quite different hormonal phases and close to these natural divisions.  

Previous studies also indicate that hormone reactivity is influenced by situational and cultural 

factors44,46 that are difficult to control in sport.  Despite these limits, there are some important 

outcomes pertaining to how we view and understand female athletes and the advantages of 

understanding T variation across the menstrual cycle.  One key feature is the presence of large 

sal-T differences across female populations and how they may affect both variability and 

repeatability of a related measure (e.g. muscle power, motivation). 
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Perspective 

In summary, the sal-T concentrations of athletic females varied across the menstrual cycle and 

most markedly in athletes performing at higher levels of competition, who in themselves 

displayed higher sal-T levels irrespective of menstrual cycle timing.  Salivary T 

responsiveness to a physical stressor also showed menstrual cycle changes, as did the increase 

in PP following a PAP stimulus.  It must be cautioned, again, that previous studies have 

suggested strong complexities in these types of hormonal responses that may limit them to the 

athletes, environment and testing situation under which they are obtained.  In other words, they 

may simply be informative case studies.  These intricacies provide progress to explain the 

conflicting reports of T involvement, not only in competitive performance in sport, but also in 

more general behavioural studies.  A key aspect of this is awareness of large differences or 

changes in sal-T across female populations and how they may affect both variability and 

repeatability of associated measures (e.g. motivation to train, power output). 

 

References 

1. Cook CJ, Crewther BT, Smith A. Comparison of baseline free testosterone and cortisol 
concentrations between elite and non-elite female athletes. Am J Hum Biol. 2012;24:856-
858. 

2. Healy ML, Gibney J, Pentecost C, Wheeler MJ, Sonksen PH. Endocrine profiles in 693 
elite athletes in the postcompetition setting. Clin Endocrinol. 2014;81:294-305. 

3. Cardinale M, Stone MH. Is testosterone influencing explosive performance? J Strength 
Cond Res. 2006;20:103-107. 

4. Bateup HS, Booth A, Shirtcliff EA, Granger DA. Testosterone, cortisol, and women’s 
competition. Evol Hum Behav. 2002;23:181-192. 

5. Bermon S, Garnier P-Y. Serum androgen levels and their relation to performance in track 
and field: mass spectrometry results from 2127 observations in male and female elite 
athletes. Brit J Sport Med. 2017:DOI:10.1136/bjsports-2017-097792. 

6. Costa R, Serrano MA, Salvador A. Importance of self-efficacy in psychoendocrine 
responses to competition and performance in women. Psicothema. 2016;28:66-70. 

7. Cook CJ, Beaven MC. Salivary testosterone is related to self-selected training load in elite 
female athletes. Physiol Behav. 2013;116-117:8-12. 



17	
	

8. Crewther BT, Hamilton D, Casto K, Kilduff LP, Cook CJ. Effects of oral contraceptive 
use on the salivary testosterone and cortisol responses to training sessions and 
competitions in elite women athletes. Physiol Behav. 2015;147:84-90. 

9. Casto KV, Edwards DA. Testosterone, cortisol, and human competition. Horm Behav. 
2016;82:21-37. 

10. Edwards DA, Casto KV. Women's intercollegiate athletic competition: Cortisol, 
testosterone, and the dual-hormone hypothesis as it relates to status among teammates. 
Horm Behav. 2013;64:153-160. 

11. Edwards DA, Wetzel K, Wyner DR. Intercollegiate soccer: Saliva cortisol and 
testosterone are elevated during competition, and testosterone is related to status and 
social connectedness with teammates. Physiol Behav. 2006;87:135-143. 

12. Crewther BT, Thomas AG, Stewart-Williams S, Kilduff LP, Cook CJ. Is salivary cortisol 
moderating the relationship between salivary testosterone and hand-grip strength in 
healthy men? . Eur J Sport Sci. 2017;17:188-194. 

13. Cook CJ, Kilduff LP, Crewther BT, Beaven M, West DJ. Morning based strength training 
improves afternoon physical performance in rugby union players. J Sci Med Sport. 
2014;17:317-321. 

14. Crewther BT, Kilduff LP, Finn C, Scott P, Cook CJ. Salivary testosterone responses to a 
physical and psychological stimulus and subsequent effects on physical performance in 
healthy adults. Hormones. 2016. 

15. Russell M, King A, Bracken RM, et al. A comparison of different modes of morning 
priming exercise on afternoon performance. Int J Sports Physiol Perform. 2016;11:763-
767. 

16. Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on 
performance of subsequent explosive activities. Sports Med. 2009;39:147-166. 

17. Munro LA, Stannard SR, Fink PW, Foskett A. Potentiation of sprint cycling performance: 
the effects of a high-inertia ergometer warm-up. J Sports Sci. 2017;35:1442-1450. 

18. Bevan H, Cunningham DJ, Tooley EP, et al. Influence of postactivation potentiation on 
sprinting performance in professional rugby players. J Strength Cond Res. 2010;24:701-
705. 

19. Estrada M, Espinosa A, Müller M, Jaimovich E. Testosterone stimulates intracellular 
calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in 
skeletal muscle cells. Endocrinology. 2003;144:3586-3597. 

20. Dabbs JM, de La Rue D. Salivary testosterone measurements among women: Relative 
magnitude of circadian and menstrual cycles. Horm Res. 1991;35:182-184. 

21. Liening SH, Stanton SJ, Saini EK, Schultheiss OC. Salivary testosterone, cortisol, and 
progesterone: two-week stability, interhormone correlations, and effects of time of day, 
menstrual cycle, and oral contraceptive use on steroid hormone levels. Physiol Behav. 
2010;99:8-16. 

22. Rothman MS, Carlson NE, Xu M, et al. Reexamination of testosterone, 
dihydrotestosterone, estradiol and estrone levels across the menstrual cycle and in 
postmenopausal women measured by liquid chromatography-tandem mass spectrometry. 
Steroids. 2011;76:177-182. 

23. Bell DR, Blackburn JT, Ondrak KS, et al. The effects of oral contraceptve use on muscle 
stiffness across the menstrual cycle. Clin J Sport Med. 2011;21:467-473. 

24. Welling LL, Jones BC, DeBruine LM, et al. Raised salivary testosterone in women is 
associated with increased attraction to masculine faces. Horm Behav. 2007;52:156-161. 

25. Durante KM, Griskevicius V, Cantu SM, Simpson JA. Money, status, and the ovulatory 
cycle. J Marketing Res. 2014;51:27-39. 



18	
	

26. Al-Dujaili EAS, Sharp MA. Female Salivary Testosterone: Measurement, Challenges and 
Applications In: Ostojic S, ed. Steroids - From Physiology to Clinical Medicine, 
2012:129-167. 

27. Khan-Dawood FS, Choe JK, Dawood MY. Salivary and plasma bound and "free" 
testosterone in men and women. Am J Obstet Gynecol. 1984;148:441-445. 

28. Fiers T, Delanghe J, T'Sjoen G, et al. A critical evaluation of salivary testosterone as a 
method for the assessment of serum testosterone. Steroids. 2014;86:5-9. 

29. Vallerand RJ. Intrinsic and extrinsic motivation in sport. In: Spielberger C, ed. 
Encyclopedia of Applied Psychology. Florida: Elsevier, 2004:427-435. 

30. Suay F, Salvador A, González-Bono E, et al. Effects of competition and its outcome on 
serum testosterone, cortisol and prolactin. Psychoneuroendocrinology. 1999;24:551-566. 

31. Salvador A, Suay F, González-Bono E, Serrano MA. Anticipatory cortisol, testosterone 
and psychological responses to judo competition in young men. 
Psychoneuroendocrinology. 2003;28:364-375. 

32. Crewther BT, Carruthers J, Kilduff LP, Sanctuary CE, Cook CJ. Temporal associations 
between individual changes in hormones, training motivation and physical performance in 
elite and non-elite trained men. Biol Sport. 2016;33:215-221. 

33. Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. 
Biometrika. 1986;73:13-22. 

34. Bakdash JZ, Marusich LR. Repeated measures correlation. Front Psychol. 2017;8:1-13. 
35. Sung E, Han A, Hinrichs T, et al. Effects of follicular versus luteal phase-based strength 

training in young women. Springerplus. 2014;3:1-10. 
36. Hayes LD, Sculthorpe N, Young JD, Baker JS, Grace FM. Critical difference applied to 

exercise-induced salivary testosterone and cortisol using enzyme-linked immunosorbent 
assay (ELISA): distinguishing biological from statistical change. J Physiol Biochem. 
2014;70:991-996. 

37. Cook CJ, Crewther BT, Kilduff LP. Are free testosterone and cortisol concentrations 
associated with training motivation in elite male athletes? Psychol Sport Exerc. 
2013;14:882-885. 

38. Necka EA, Puts DA, Dimitroff SJ, Norman GJ. Other women's fertility moderates female 
resource distribution across the menstrua cycle. Evol Hum Behav. 2016;37:387-391. 

39. Buser T. The impact of the menstrual cycle and hormonal contraceptives on 
competitiveness. J Econ Behav Organ. 2012;83:1-10. 

40. Casto KV, Prasad S. Recommendations for the study of women in hormones and 
competition research. Horm Behav. 2017;92:190-194. 

41. Passelergue P, Robert A, Lac G. Salivary cortisol and testosterone variations during an 
official and a simulated weight-lifting competition. Int J Sports Med. 1995;16:298-303. 

42. Balthazar CH, Garcia MC, Spadari-Bratfisch RC. Salivary concentrations of cortisol and 
testosterone and prediction of performance in a professional triathlon competition. Stress. 
2012;15:495-502. 

43. Papacosta E, Nassis GP, Gleeson M. Salivary hormones and anxiety in winners and losers 
of an international judo competition. J Sports Sci. 2016;34:1281-1287. 

44. Crewther BT, Potts N, Kilduff LP, Drawer S, Cook CJ. Can salivary testosterone and 
cortisol reactivity to a mid-week stress test discriminate a match outcome during 
international rugby union competition? J Sci Med Sport. 
2017;DOI:10.1016/j.jsams.2017.05.021. 

45. Bonifazi M, Ginanneschi F, della Volpe R, Rossi A. Effects of gonadal steroids on the 
input-output relationship of the corticospinal pathway in humans. Brain Res. 
2004;1011:187-194. 



19	
	

46. Gaviglio CM, Crewther BT, Kilduff LP, Stokes KA, Cook CJ. Relationship between 
pregame concentrations of free testosterone and outcome in rugby union. Int J Sports 
Physiol Perform. 2014;9:324-331. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Overview of the study protocols and measured variables.   
 
Repeat Time of day Menstrual cycle day Measured 
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testing Day 7 (D7) Day 14 (D14) Day 21 (D21) variables 

1st cycle* Waking1 
 
0900 hours 
 
1500 hours 

Morning 
 
Stress test 
 
Cycle test 
PAP / control 
Cycle retest 

Morning 
 
Stress test 
 
Cycle test 
PAP / control 
Cycle retest 

Morning 
 
Stress test 
 
Cycle test 
PAP / control 
Cycle retest 

Sal-T, motivation 
 
Pre and post Sal-T  
 
Pre-treatment PP 
 
Post-treatment PP 

2nd cycle* See above Repeat as 
above 

Repeat as 
above 

Repeat as 
above 

See above 

3rd cycle* Waking1 Morning Morning Morning 
 

Sal-T, motivation 

Key: PAP = post-activation potentiation, PP = peak power, sal-T = salivary testosterone.  
*Menstrual cycle repeats were randomised, 1Testing within 15 min of rising. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Within-subject relationships between the salivary testosterone (sal-T) measures and 
the outcomes of motivation and cycling peak power (PP).  Correlations are presented with 
95% confidence intervals in brackets.       
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Measure Response variable Elite women Non-elite women 
Basal sal-T 
 
Pre-test sal-T 
 
Sal-T change 

Motivation to train 
Motivation to compete 
Pre-treatment PP 
PP change 
Pre-treatment PP 
PP change 

0.75 (0.60, 0.86)** 
0.70 (0.52, 0.82)** 
0.23 (-0.15, 0.55) 
0.10 (-0.28, 0.45) 
0.16 (-0.22, 0.50) 
0.11 (0.27, 0.46) 

0.50 (0.35, 0.62)** 
0.41 (0.25, 0.54)** 
0.27 (0.06, 0.47)* 
0.04 (-0.18, 0.26) 
0.30 (0.08, 0.49)* 
0.31 (0.09, 0.49)* 

Significant correlations *p<0.05, **p<0.001 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Legends  
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Figure 1. Basal salivary testosterone concentrations at days 7, 14 and 21 of the menstrual 
cycle in elite and non-elite women athletes.  Group means (±SD) are presented with individual 
data at each time point.  *Significant from elites on D7 and D21, and non-elites on D7, D14 
and D21, #Significant from elites on D21 and non-elites on D7, D14 and D21, †Significant 
from non-elites on D7, D14 and D21, αSignificant from non-elites on D7 and D21 all p<0.05.  
 
 
Figure 2. Motivation to train at days 7, 14 and 21 of the menstrual cycle in elite and non-elite 
women athletes.  Group means (±SD) are presented.  *Significant from elites on D7 and D21, 
and non-elites on D7, D14 and D21, #Significant from elites on D21 and non-elites on D7 and 
D21 all p<0.05. 
 
 
Figure 3. Stress-induced changes in salivary testosterone concentrations at days 7, 14 and 21 
of the menstrual cycle in elite and non-elite women athletes.  Group means (±SD) are 
presented with individual data at each time point.  *Significant change from baseline, 
#Significant change from elites on D7 and D21, and non-elites on D7, D14 and D21 all p<0.05. 
 
 
Figure 4.  Changes in cycling peak power (PP) under the control and post-activation 
potentiation (PAP) treatments on days 7, 14 and 21 of the menstrual cycle.  Group means 
(±SD) are presented.  *Significant change from baseline, †Significant change from control data 
on D7, D14 and D21, #Significant change from PAP data on D7 and D14 all p<0.05. 
 
 
Figure 5.  Changes in cycling peak power (PP) across the control and post-activation 
potentiation (PAP) treatments in the elite and non-elite groups.  Group means (±SD) are 
presented.  *Significant change from baseline, †Significant change from elite and non-elite 
control data, #Significant from non-elite PAP data all p<0.05. 
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