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Abstract

Parkinson’s Disease is a neurological condition distinguished by characteristic

motor symptoms including tremor and slowness of movement. To enable the

frequent assessment of PD patients, this paper introduces the cloudUPDRS app,

a Class I medical device that is an active transient non-invasive instrument, cer-

tified by the Medicines and Healthcare products Regulatory Agency in the UK.

The app follows closely Part III of the Unified Parkinson’s Disease Rating Scale

which is the most commonly used protocol in the clinical study of PD; can be

used by patients and their carers at home or in the community unsupervised;

and, requires the user to perform a sequence of iterated movements which are

recorded by the phone sensors. The cloudUPDRS system addresses two key

challenges towards meeting essential consistency and efficiency requirements,

namely: (i) How to ensure high-quality data collection especially considering

the unsupervised nature of the test, in particular, how to achieve firm user ad-

herence to the prescribed movements; and (ii) How to reduce test duration from

approximately 25 minutes typically required by an experienced patient, to below

4 minutes, a threshold identified as critical to obtain significant improvements

in clinical compliance. To address the former, we combine a bespoke design of

the user experience tailored so as to constrain context, with a deep learning ap-

proach based on Recurrent Convolutional Neural Networks, to identify failures
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to follow the movement protocol. We address the latter by developing a ma-

chine learning approach to personalize assessments by selecting those elements

of the test that most closely match individual symptom profiles and thus offer

the highest inferential power, hence closely estimating the patent’s overall score.

1. Introduction

Parkinson’s Disease (PD) is a degenerative neurological condition associ-

ated with a wide spectrum of motor and cognitive symptoms including tremor,

slowness of movement and freezing, muscular stiffness, poor postural stability,

sleep-related difficulties, depression and psychosis [24]. The underlying cause of

PD is the degeneration of the so-called dopaminergic neurons, that is, a small

group of neurons located in the mid-brain that are the main source of dopamine

in the human central nervous system [11]. Dopaminergic neurons play a cru-

cial role in the control of many brain functions including voluntary movement,

mood, reward, addiction, stress and in particular, in the reward system that

controls learning. Although the cause for the loss of these neurons is unknown,

their selective degeneration leads to PD and its distinctive presentation.

Care for patients with PD involves the management of both motor and non-

motor symptoms as well as palliative care. Since there is no cure, symptom

management is a life-long process that affects not only the patients but also

their families and carers. Clinical care pathways include pharmacological treat-

ment corresponding to the exact stage of the disease, physiotherapy, and surgery

[45]. As a result of medication with L-Dopa, a key element of the typical phar-

macological regime for PD, patients are expected to develop side effects such

as dyskinesias [55]. Since symptoms vary greatly independently of treatment

and PD progresses at different rates in different individuals, treatment requires

regular clinical monitoring and medication adjustment.

There are over 130,000 people with Parkinson’s in the UK and as many as

one million in the US, each individual seen by a specialist doctor or nurse only

once or twice a year, allowing only brief and intermittent assessment of the
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wide range of their motor and non-motor symptoms [48]. This is due to the

fact that the application of clinical measures of disease progression is laborious

and as a consequence costly, because they require the direct involvement of a

member of the clinical team. Moreover, although clinical measure protocols

are detailed and formally structured they nevertheless represent assesement at

relatively coarse-grain granularity, typically not involving the use of specialised

measurement instrumentation. Despite generally good internal consistency in

the application of these measures, they still depend on subjective estimations

of patient performance by the clinician. Collectively, these factors restrict op-

portunities to precisely quantify PD progression and the effectiveness of patient

stratification: the limited availability of data concerning individual variability

and actual symptom trends limits opportunities to adapt care to the needs of a

particular individual at a specific time.

To address this challenge we developed cloudUPDRS, the first smartphone

app to achieve certification as a Class I medical device by the Medicines &

Healthcare products Regulatory Agency in the UK for the clinical assessment

of the motor symptoms of Parkinson’s. cloudUPDRS augments standard clini-

cal care pathways by enabling daily assessments which lead to (i) more consis-

tent and reliable care, (ii) early identification of problems such as medication

side-effects, thus enabling earlier intervention, (iii) monitoring of individualised

patient trends leading to more effective patient stratification, and (v) enabling

patients to take ownership of their own care through non-pharmacological mea-

sures such as improved nutrition and physical therapy.

The cloudUPDRS system is based on the Universal Parkinson’s Disease Rat-

ing Scale [18] and the Parkinson’s Disease Questionnaire [25], and incorporates

a cloud-based Big Data management and analytics service to generate objective

and reliable assessments of motor performance. Patients use the app at home

to record sensor measurements while performing a series of simple actions with

each limb, such as tapping the screen to assess bradykinesia and holding the

phone on their knee to assess resting tremor. The data captured by the phone

is then used to calculate the clinical UPDRS score through the application of
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a biomedical signal processing pipeline. Additional longitudinal analytics are

performed subsequently to enable trend analysis and patient stratification.

In this paper, we extend the work discussed in [57] to present two distinctive

features of cloudUPDRS developed to address specific challenges related with

care for PD patients, namely:

• A deep learning technique employing Recurrent Convolutional Neural Net-

works applied to sensor observations so as to assess compliance with the

actions dictated by the UPDRS protocol. Combined with a bespoke user

experience facilitated by the app, this technique can replace expert super-

vision while maintaining high-quality data collection.

• Personalised tests reducing the time required to carry out an assessment to

less than 4 minutes. These so-called quick tests are created using machine

learning to select a subset of UPDRS observations that closely estimate

the motor performance of a particular patient.

In the following section we review research related to this work and in Section

3 summarise the state-of-the-art in current clinical practice for the assesmenet

of PD. We proceed to report on key factors for patient compliance identified

through user research in Section 4. We present the cloudUPDRS system in

Section 5 and in Section 6 we report on how the process of certification as a

medical device affetcs software development. We then present the details of the

two techniques identified above in Sections 7 and 8 correspondingly.

2. Related Work

During tha past two years, several smartphone apps have been developed to

address the different needs of PD patients including: the mPower app (http:

//parkinsonmpower.org/) developed for iOS by Apple (http://researchkit.

org/) and Sage Bionetworks in the US [53]; the uMotif app developed with NHS

SBRI Healthcare funding in the UK; the Wearable Companion app developed

by the M.J. Fox Foundation and Intel; the mHP app for Parkinsons developed
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by myHealthPal; PD Dr by the Muhammad Ali Parkinson Center at the Bar-

row Neurological Institute inthe US [47]; the Verily app in collaboration with

ParkinsonNet in Holland; and several others. In this list we do not include

apps that rely solely on self-reporting using diaries as they offer no direct way

to conduct objective measurements of performance. In contrast to standard

clinical practice, these apps follow a High-Frequency pattern of assessment; this

terminology reflects the fact that the apps are able to carry out measurements

of most elements of motor and cognitive performance of PD patients multiple

times per day or even continuously when wearables are used in addition to a

smartphone [31]. Nevertheless, none of the above apps has been certified as a

medical device and their stated purpose is to assist research into PD or support

self-quantification as a lifestyle choice for patients. Data collected by these apps

cannot be used for clinical purposes.

In particular, the two major projects by the M. J. Fox Foundation listed

above explore the diversity of PD motor symptoms within a large population

sample. The first employs the mPower app and aims to develop a large data

set of motor performance observations, which can be used as a benchmark for

the experimental evaluation of algorithms providing PD diagnosis. Clearly, long-

term research in PD necessitates the development of such open data sets however

the approach adopted depends solely on self-reporting to discriminate between

patient and non-patient data and confirm compliance with the prescribed data

collection protocol, and as such it is limited by the fact that these cannot be

verified objectively.

The second M.J. Fox Foundation project is carried out in collaboration with

Intel and The Grove Foundation, and employs wearables to provide 24×7 mon-

itoring of PD patients. Specifically, a Pebble watch (https://www.pebble.

com/) is provided to participants to measure wrist tremor relayed via an An-

droid app to a Cloudera-based back end for storage and analysis. The stated

goal of this study is the development of a deep longitudinal data set captur-

ing in minute detail the second-by-second variations of motor symptoms from a

population of tenths of thousands of volunteers. However, battery longevity and
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data transmission issues have set considerable challenges in attempts to capture

complete traces and the project has explored alternative strategies. Moreover,

progress towards the automatic identification of PD-related tremor episodes has

been limited by practical difficulties, such as the problem of accurately interpret-

ing raw acceleration data captured from a single body location especially when

lacking contextual information. Moreover, the ambitious target of harvesting a

complete high-resolution data stream from the wearable sets very considerable

challenges for battery longevity as devices have fewer opportunities to switch to

low-power mode.

In [27], we demonstrated the feasibility of using smartphones as a means to

assess commonly occurring motor symptoms of PD in a clinical setting. Specif-

ically, we design, develop and validate in a clinical study a prototype app on

Android implementing Part III of the mds-updrs [18]. Using the accelerometer

and touch screen sensors commonly available in modern smartphones, we are

able to carry out hand and leg tremor measurements, as well as gait and bradyki-

nesia assessments using finger tapping tasks to replicate the majority of these

tests (cf. Table 1 and Section 5.2). Other research groups have followed a similar

approach focusing on specific symptoms. Most commonly tremor measurements

are considered for example [12], [29], [34] and [35] all provide proof-of-concept

implementations of upper limb tremor estimation.

Recently, the suitability of machine learning has been investigated for the

assessment of PD. Voice samples are processed using standard machine learning

algorithms in [4] to correlate individual performance and mds-updrs score. A

deep learning approach is adopted in [20] to identify patients in ON and OFF

states using Restricted Boltzmann Machines to analyse accelerometre data; and

in [13] for the detection of bradikynesia. Both projects report encouraging

results which merit further investigation but current performance limitations

prevent these techniques from becoming an effective clinical tool.
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3. Motor Performance Assessment in PD

Currently there is no definitive test for the diagnosis of PD and only a

post-mortem examination can confirm that reported Parkinsonian symptoms

were actually caused by PD. Instead, specialists look for common signs of PD

and offer a diagnosis only after other conditions with similar presentation have

been excluded. The basis for the diagnosis is the patient’s medical history

and an examination which typically explores motor performance during various

tasks. Often, a diagnosis is not confirmed until after medication for PD is

prescribed and an improvement is recorded following a few weeks or months of

administration. Often, patients suspect of sufferring from PD will undergo MRI,

CT or SPECT brain scans, however these are used to identify and exclude other

syndromes with similar presentation rather for the diagnosis of PD as such.

During an examination the specialist would typically ask the patient to per-

form various tasks to assess the agility of arms and legs, muscle tone, gait and

balance and record the results into a table, namely the Unified Parkinsons Dis-

ease Rating Scale (UPDRS). UPDRS is a universal scale of PD symptoms and

used to comprehensively assess and document the exam. The purpose of this

record is so that clinicians be able to compare it with the patient’s future follow

up visits, or to communicate about the progression of PD symptoms in each

patient with other neurologists. UPDRS was initially introduced in 1987 and

significantly revised in 2008 as a result of extensive consultation coordinated by

the Movement Disorder Society (MDS) [18]. Although the latter is more accu-

rately referred to as the mds-updrs, the term UPDRS is often used to refer to

either. In this paper we are only considering the mds-updrs variant and for

this reason will use both terms interchangeably.

The mds-updrs is a comprehensive 50-question assessment of both motor

and non-motor symptoms associated with PD. It features four different sections,

referred to as Parts I to IV, that focus on:

I Non-motor experiences of daily living

II Motor experiences of daily living
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Figure 1: Sample questions and scoring sheet for Part III of the MDS-UPDRS.

III Motor examination

IV Motor complications

The protocol also includes the specification of a decision tree process that clini-

cians are required to follow in order to assign a particular score to each question

(each assessment must often be carried out twice, considering the left and right

side separately) after exploring each question during a brief discussion with the

patient or their carer (cf. Figure 1). The purpose of this provision is to ensure

the internal consistency of the rating scale and limit the effects of subjective

judgments by the person performing the assessment. The questions are not pre-

sented directly to the patient as they use medical terminology which may not

be clear to them. The MDS holds the copyright of the scale and its use requires

a ratings scales permissions request form to be completed and submitted to the

MDS as well as the payment of licensing fees where applicable.

Of particular significance is Part III of the mds-updrs as it is considered

the most objective and thus reliable part of the scale. Notably, the European

Medicines Agency (EMA) recognizes Part III as accepted scales to measure the

efficacy of a drug for PD. Specifically, the disease progression marker employed

in clinical trials measures an improvement of PD under a new drug as the

observed Change from Baseline of the Part III score. The score ranges between

0, corresponding to no symptoms, to 56, corresponding to maximum effects
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typically representing full immobility. Although there is no generally accepted

score which in isolation would be adequate to lead to a PD diagnosis, different

patient groups representing different levels of symptom severity would often be

organized along the following boundaries [52]:

1. Mild PD: Part III UPDRS score 20 or below.

2. Moderate PD: Part III UPDRS score from 21 to 35.

3. Severe PD: Part III UPDRS score greater than 35.

In addition to symptoms caused by PD, chronic L-Dopa use often eventu-

ally leads to a brittle response to the medication - sometimes the medication

fails to work and the patient remains frozen and unable to move (the so-called

OFF state), sometimes the effect of the mediation is well-balanced leading to

the so-called ON state, and sometimes the medication effect is quickly overpow-

ering, causing excessive movements called L-Dopa induced dyskinesias (LID).

It is very common for a patient with mid-stage PD to fluctuate wildly between

these extremes throughout the day. Multiple treatment strategies are available

for these complications, including changes to medication, subcutaneous admin-

istration of apomorphine, intra-jejunal administration of L-Dopa or deep brain

stimulation (DBS), a continuous electrical stimulation of a surgically implanted

electrode in the brain.

While Part III of the UPDRS provides a numeric score based on the exami-

nation by a member of the clinical teeam, the 39-item Parkinson’s Disease Ques-

tionnaire (PDQ39) [25] is a self-reported measure of health status and quality

of life. The questionnaire assesses how often people affected by PD experience

difficulties across eight dimensions of daily living namely mobility, activities of

daily living, emotional well-being, stigma, social support, cognition, communi-

cations and bodily discomfort, as well as specific dimensions of functioning and

well-being. Similar to the mds-updrs the PDQ39 is under copyright and its

use requires a license from Oxford University Innovations.

Further, Hoehn & Yahr (H&Y) is a clinical rating scale introduced in 1967

that defines categories of motor function in PD, ranging from minimal or no
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functional disability at level 0 to confinement to bed unless aided at Level 5.

However, the H&Y scale has several problems including the fact that it is not

linear so that its modern use is mainly as a means to describe patients groups

rather than quantify disease progression especially in an epidemiological setting.

For example, the severity of PD symptoms progress rapidly in diagnosed patients

with the median time taken to transit between H&Y stage 2 to 3 and 3 to 5

being 87 and 50 months respectively. Older age at diagnosis and higher mds-

updrs motor scores at baseline (both increasingly prevalent as the result of an

aging population) are associated with faster PD progression.

Finally, we note that cost of care increases manifold as PD progresses with

annual medical costs for the NHS for H&Y Stage 5 patients estimated at £30,000

per person per year at inflation adjusted prices, with average cost of £9,500

across all categories. This represents a total cost for PD of over £1.25 Billion per

annum today, projected to increase to over £1.6 Billion by 2020 (in 2014 prices).

Furthermore, these costs relate only to direct medical care which represents only

7% of the total costs of PD, with the remainder 93% split between direct non-

medical professional care (50%) and indirect informal care (43%).

4. Understanding Patients with PD

The wider adoption of cloudUPDRS by patient communities necessitates

that tests are incorporated as part of their daily routine. To understand how

to best facilitate this we carried out extensive interviews with clinicians, tech-

nologists, patients, carers and patient advocates (22 individuals in total); a web

survey with participants from the research volunteer pool of Parkinson’s UK re-

ceiving 166 unique submissions; and, three audience panels (16 participants in

total). Across all studies we recruited participants with a confirmed diagnosis of

PD and excluded individuals with generic symptoms of Parkinsonism. Patient

participants represent all H&Y levels except for the audience panels in which

participation was limited to Level 3, due to the practicalities of access to the

venue.
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The potentially transformative role of smartphone apps for PD was widely

acknowledged in interviews. The expectation of positive outcomes was closely

related to recent trends enabling the direct involvement of patients in estab-

lishing research priorities, the use of patient expertise in research, and towards

greater transparency. This perspective was often related to opportunities for

patient empowerment as expressed for example in online communities such as

PatientsLikeMe [10], suggesting that evidence-based care must cater for the

translation of evidence into practice in a manner directly accessible to and un-

derstandable by patients.

We employed the web survey to explore current phone usage patterns specif-

ically among patients and to identify potential constraints that may place barri-

ers for the adoption of the cloudUPDRS app. Responses received were primarily

from mobile phone users (96%) with 77% coming from those with a smartphone.

The majority of smartphone owners (87%) use it daily with only 14% reporting

significant difficulties. A relative small proportion of those with smartphones

(20%) use apps to track their symptoms or manage medication. The vast ma-

jority (86%) expects to make regular use of the cloudUPDRS app with 64%

expressing a preference for the test session lasting a maximum of 5 minutes,

27% accepting a test duration of 10 minutes, and 5% even longer. The major-

ity (68%) expect to make use of the app at least once per day to assess their

symptoms.

One aspect of the app design investigated in the survey is the provision of

feedback, especially considering the fact that results would inevitably indicate

a decline in performance over time. Nevertheless, over 87% of respondents

considered receiving direct feedback a key advantage of using the app despite

the expectation of a negative trend. A small number of respondents suggested

that emphasis should be on positive outcomes instead: “I don’t want my decline

to be the focus rather I’d prefer to have something that promotes my wellbeing!

I use the Speech Tool to remind me to speak louder and clearer” (Female, 45-54).

Audience panels combined elements of user experience evaluation and a wider

exploration of perceived costs and benefits of the cloudUPDRS app, which was
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Figure 2: Views of the user interface of the cloudUPDRS app showing session management,

tremor recording and finger tapping activities..

demonstrated during the sessions. Panelists identified specific problems with the

version presented, for example the potential effects of involuntary movements

common to specific patient profiles and suggested improvements. As relates to

the utility of the app and their motivation for regular use, the opportunity to

manage symptoms was an unequivocal benefit for the majority of participants

and strongly motivated their involvement.

However, access to detailed performance data was considered less important

compared against the sense of understanding offered by the experience of using

the app and the associated sense of control over the disease which this experi-

ence afforded. In particular, the set of recorded data was seen as a reminder of

the changes in the patients’ life caused by PD which they viewed as the basis

for the development of an externally validated personal narrative. An exception

to this is a small group of patients who appear committed to self-quantification

and already collected and organised self-tracking data prior to their involvement

with this study. This group valued the ability of the app to make accurate ob-

servations higher than its role as an aide-de-mémoire. All participants identified

with the strong desire to make a contribution towards defeating the disease, and

considered their contribution of personal data and their open availability for re-

search as a means to achieve this goal. As a consequence, no privacy concerns

were expressed.
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5. The cloudUPDRS System and app

The cloudUPDRS app implements a comprehensive workflow (partially de-

picted in Figure 2) that provides audio, video and textual media to guide pa-

tients and their carers to conduct the tests at home and in the community with

no requirement for supervision by a member of the clinical team. To provide

full functionality the app communicates with a data management and process-

ing back-end that enables aggregation and longitudinal analytics. Overall, the

complete cloudUPDRS system consists of:

1. A smartphone app for Android that enables patients to carry out motor

performance tests and complete a wellness self-assessment; conduct session

management; and securely submit data to the cloudUPDRS service.

2. Cloud-based scalable data collection service that ingests data from pa-

tients’ smartphones; ensures secure data management; and applies the

signal processing pipeline.

3. Data-mining toolkit for medical intelligence incorporating quantitative

and semi-structured data, and longitudinal analyses, clustering and clas-

sification; and a clinical user interface incorporating visualisation.

5.1. Presentation and Service Platfrom

The cloudUPDRS app implements a bespoke user interaction design to en-

sure that the data recorded capture the actual motor performance features as

required for the successful application of mds-updrs. Specifically, patients are

guided through a carefully orchestrated sequence of actions while the app records

sensor measurements. By requiring the execution of specific action sequences

the app restricts the degrees of freedom of individual movement and thus im-

poses structure and disambiguates user context by limiting the range of observed

behaviours.1 As a result, the recorded signal can be interpreted accurately us-

ing a small set of heuristics rather than require the use of a full context model

1The action sequences can be seen in video demonstrations available at http://www.updrs.

net/help.
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Figure 3: cloudUPDRS clinician dashboard: The specific view of the dashboard allows the

comparison of motor performance measurements computer directly by cloudUPDRS (left)

against self-reported assessments using PDQ39, which clearly show a significant divergence.

The overlaid red dots on both sides of the dashboard represent the reported times of medication

administration.

and reasoning approach [5]. Finally, the app automatically adapts to match

the specifications of its host device and incorporates a delay tolerant service to

manage data upload.

The full test administered by the cloudUPDRS app consists of 17 individual

observations, specifically kinetic, postural and resting tremor for the left and

right hand; left and right leg agility and resting tremor; single and double target

finger tapping on both sides; and, gait. During each observation period lasting

60 seconds, the patient is required to assume a specific position and perform

the prescribed movement as described in the previous paragraph. Following the

recording of these observations the patient is presented with a questionnaire

incorporating selected questions from PDQ39 and recording the time of the

most recent medication intake.

One of the key diagnostic benefits of the cloudUPDRS app is the ability

to conduct longitudinal studies. To this end, we have developed a clinician

dashboard depicted in Figure 3 which allows the investigation of aggregated

data over time for individual patients as well as over selected patient groups.

For example, a heatmap visualisation is used to show the hour-by-hour changes
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in motor performance over a period of a week with a view to provide an overall

assesement of disease progression.

The cloudUPDRS service is engineered to facilitate scalable performance

by adopting the microservices architecture [44]. This approach is set in con-

trast to traditional monolithic web applications and aims to maximise oppor-

tunities for vertical decomposition and scaling-out, which are critical for high

performance and service resilience in data intensive situations. cloudUPDRS

microservices are implemented as composite Docker containers, are loosely cou-

pled and employ lightweight communication and coordination mechanisms such

as the Consumer-Driven Contract pattern. System componentization is en-

forced via versioning of published RESTful interfaces and sandboxed instances

of the service can be deployed automatically to cater for data isolation between

distinct regulatory domains. cloudUPDRS microservices are deployed as docker

containers (cf. https://www.docker.com/) although internal implementation

details vary to match the specific preferences and expertise of project partners

responsible for their implementation and their suitability for the task in hand.

For example, while the data collection and signal processing APIs are imple-

mented using python and django REST within an nginx/gunicorn container,

semi-structured longitudinal analytics are implemented as Ruby bundles. The

overall service architecture has been designed for scalability so that real-time

streams captured for example during concurrent patient consultations can be

integrated on the fly with archival information from the longitudinal datastore

service. To facilitate this modus operandi, we provide structured workflows im-

plemented through microservices following the lambda architecture [39], which

facilitates the efficient fusion of real-time and archival data on the fly.

5.2. Bio-signal Processing

Precise assessment of tremor, bradykinesia and gait is typically carried out

using laboratory equipment for example tailor-made biomedical data acquisition

systems incorporating transducers such as high-frequency/high-accuracy ac-

celerometers and gyroscopes, signal amplifiers and filters and high-performance
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Table 1: Analytics toolbox signal processing functions and correspondence to the sections of

the mds-updrs.

Analytic Function mds-updrs Section

Rest Tremor 3.17 (rest tremor amplitude)

Postural Tremor 3.15 (postural tremor of the hands)

Action Tremor 3.16 (kinetic tremor of the hands)

Pronation—supination
Movements

3.6 (pronation—supination

movements of the hands)

Leg agility 3.8 (leg agility)

Finger tapping 3.3 (rigidity) & 3.4 (finger tapping)

Gait 3.10 (gait) & 3.11 (freezing of gait)

analog-to-digital converters. The captured signal is analysed subsequently by

specialist commercial software such as Spike 2 by Cambridge Electronic Design

Ltd with the total cost of a complete system rising to tenths of thousands.

Laboratory based clinical rating however is constrained by the requirement

that the patient is present in the clinic, and in practice can only be carried

out as a “snap-shot” assessment. In [27] we show that the sensor, clock and

data acquisition hardware of a low-end smartphone capture data with sufficient

accuracy to precisely quantify the magnitude of PD motor symptoms across the

majority of the tests included in Part III of the mds-updrs by comparing its

performance against results obtained using a biomedical analytics system by

CED. In cloudUPDRS we automate the methodology presented in [27] as a be-

spoke cloud-based data analytics service [15]. For completeness of presentation,

we briefly summarise the main features of this system here.

5.2.1. Tremor

Tremor measurements are recorded for both hands at rest, at posture and in

action as listed in Table 1. For rest tremor measurements, users are asked to re-
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lax their hands on their lap in a supine position while the phone is lying in their

palm. For the postural tremor measurements patients are guided to keep their

arm outstretched directly on their front while holding the smartphone. Finally,

for action tremor measurements they are required to hold the phone and move

it between the chest and the fully outstretched position on their front. In all

cases, acceleration is recorded along three axes in m/s2 at the maximum sup-

ported sampling rate (at least 50 Hz) and timestamped at maximum resolution

(typically microseconds). Tremor is calculated as the cumulative magnitude of

the scalar sum acceleration across three axes for all frequencies between 2 Hz

and 10 Hz. To obtain this power spectrum the signal is first filtered with a But-

terworth high-pass second order filter at 2 Hz and the Fast Fourier Transform

(FFT) is subsequently applied to the filtered waveform data.

5.2.2. Bradykinesia

Mds-updrs assess bradykinesia, or else the slowness of movement, through

three different factors: (i) pronation-supination movements, (ii) leg agility, and

(iii) finger tapping. In the first test patients are asked to hold the phone and

perform alternating pronation-supination movements, that is rotating the palm

of the hand toward the inside so that it is facing downward and then toward the

outside so that the palm is facing upward, as fast and as fully as possible. Leg

agility measurements require the phone to be placed on the thigh of the patient

while seated, holding the phone lightly with the ipsilateral hand, while raising

and stomping the foot on the ground as high and as fast as possible. During

both tests the phone is recording acceleration data in a manner similar to the

tremor tests. The assessment of the pronation-supination movements and leg

agility tests requires the estimation of the frequency and power of movement.

To obtain these, the toolkit first removes DC offset and applies a Butterworth

low-pass second order filter at 4 Hz in order to exclude most of the tremor.

Subsequently, the power of the movement is calculated as the total amplitude

between 0 Hz and 4 Hz and the frequency derived from the power spectrum.

Finger tapping performance is assessed in two tests using single and dual
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targets presented on the screen of the phone at set locations with patients at-

tempting to tap them as fast and as accurately as possible (alternating between

targets in the dual-target case). When tapping accidentally occurs outside the

screen area the test is repeated. The touch-sensitive screen of the smartphone

is used to collect the information used for performance calculations, specifically

the timing of each touch event, its duration, the direction of movement (upwards

or downwards), the coordinates on the phone screen, and the amount of pressure

applied are recorded. For the two-target variant it is necessary that the distance

between targets be at a specific distance irrespective of the size of the screen or

of the device. To estimate finger tapping performance the analytical functions

first identify all touch events and employ the associated timestamps to estimate

tap frequency (taps per second), the mean hand movement time between taps

(in milliseconds), and the actual movement distance between alternative tapings

in the dual-target case (in centimetres).

5.2.3. Gait

Mds-updrs assesses gait by considering multiple behaviours including stride

amplitude and speed, height of foot lift and heel strike, and turning and arm

swing [63]. The cloudUPDRS variant of this test requires the patient to walk

along a straight line for five meters, turn around and return to the point of

departure, while the smartphone is positioned either in their belt or trousers

pocket. Since it is only possible to measure acceleration data from a single

point at the waistline we employ the techniques in [36, 37] to estimate stride

frequency and length, velocity and turning time.

However, in comparisons against assessment by an experience clinician pre-

sented in [27] individual metrics were only weakly correlated to the correspond-

ing Section 3.10 mds-updrs score. Since it is not possible to capture detailed

information about the movement of the leg relative to the foot and the arms,

the metrics calculated simply identify characterises of body types. Although

perhaps not as useful in the context of calculating the mds-updrs score this

data is still of interest for the exploration of new digital biomarkers related for
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example to freezing that can be useful for the development of disease progression

indicators and thus we consider this feature to merit further investigation.

6. Certification

As noted in Section 2, there are several research, wellness and self-tracking

apps for PD available on both major smartphone platforms and many more

released selectively for research. The vast majority of these apps do not conform

to the safety, quality, performance and regulatory requirements set for medical

devices and as such can only be employed either to encourage a healthy lifestyle

or for research purposes correspondingly — but are not tools that can be used to

support medical diagnosis. This fact is often explicitly reflected in their terms

and conditions of use for example, quoting from a popular PD app “we cannot,

and thus we do not, guarantee or promise that you will personally receive any

direct benefits.”

Medical devices are regulated and must conform to rules enforced by re-

gional legislation. Within the European Union, harmonisation of regulations

across member countries is facilitated by the Medical Devices Directive (MDD),

which provide the blueprint for country–specific legislation. Although the MDD

considers situations when software would be treated as a medical device it does

not explicitly examine smartphone apps and so its provisions are open to inter-

pretation, an issue that we address in this section. Further, the MDD requires

that each member state establishes a Competent Authority to provide guidance

and enforce regulation of medical devices and in the UK this responsibility lies

with the Medicines and Healthcare products Regulatory Agency (MHRA).

Under Article 1 Clause 2(a) of the MDD a medical device is defined as “any

instrument, apparatus, appliance, software, material or other article, whether

used alone or in combination, including the software intended by its manufac-

turer to be used specifically for diagnostic and/or therapeutic purposes.” The

current interpretation of this definition by the MHRA as relating to apps implies

that “if the [mobile] application is intended to carry out further calculations,

19



enhancements or interpretations of entered/captured patient data, [· · · ] it will

be a Medical Device. If it carries out complex calculations, which replaces the

clinician’s own calculation and which will therefore be relied upon, then it will

certainly be considered a Medical Device.” Hence, the features of the cloud-

UPDRS app clearly place it within the provisions of the MDD. For certification

purposes, the named publisher of the app on the selected platform store is con-

sidered its manufacturer as defined by the MDD, and thus the party obliged to

ensure conformity with the provisions of the directive.

Hence, according to the MDD the cloudUPDRS app is a Class 1 medical

device that is, an active transient non-invasive instrument. Class 1 devices

are considered lower risk and as such as less closely regulated. In this case,

certification requires that the app meets the Essential Requirements outlined in

Annex I of the MDD including:

i evidence of software development in compliance with ISO/IEC 62304,

ii comprehensive documentation ensuring that it can be used safely and ap-

propriately by patients, and

iii implementation of quality management processes which ensure that the de-

vice can be safely marketed as a consumer product.

Moreover, any software developed under the provisions of the MDD should also

comply with European privacy regulations, which in this case in particular ne-

cessitates the conduct of a Privacy Impact Assessment (PIA) according to the

provisions of the code of practice detailed in the PIA Handbook published by

the Information Commissioner’s Office (ICO). Clearly, these requirements add

considerable complexity, cost and overhead to the development process and in

particular require that when a new version of the app is published a full set

of conformity checks and software tests must be carried out, and updated doc-

umentation produced however small the changes. Certainly, they specifically

exclude testing with users outside a strictly controlled setting for example, as

common with lean development approaches. As a consequence, successful certi-

fication requires the investment of considerable additional effort and resources
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and although we have not precisely audited these effects, in the case of cloud-

UPDRS has clearly resulted in a longer software development period by several

months.

It is interesting to consider each of these requirements in more detail. ISO/IEC

62304 is an international standard which specifies the life-cycle requirements for

the development of medical software in general and software incorporated in

medical devices in particular. The standard describes provisions according to

the potential of the software to create a hazard that can potentially result in in-

jury. cloudUPDRS is classified as Safety Class A, which represents a lower level

of risk to health. Nevertheless, despite the relatively less stringent provisions for

this class, the standard still requires a structured software development process

with distinct phases prescribed for planning, requirements analysis, design and

unit testing, which is often at odds with modern agile software development

processes commonly employed for mobile apps.

The key enabler for cloudUPDRS to satisfy the ISO requirements while not

sacrificing the considerable advantages of agile methods for mobile, is to employ

software development tools that enforce structured workflows. For example, the

permissions and change control elements of our development process enforced

a specific sequence of steps to be taken so that patches are only applied after

they have passed checks successfully. Further, we employed popular software

development tools in such a way so as to automatically generate the required

documentation at every iteration. The overall goal of this practice is to ensure

traceability and transparency throughout the life-cycle of the software especially

in dealing with software faults and before the incorporation of new features.

Although this leads to a more cumbersome process from the developer point of

view, this objective can be achieved through the use of collaborative design tools,

issue trackers, reports, change control and testing workflows enforced through

software automation. In cloudUPDRS we implemented such control, review,

approval and documentation mechanisms using a variety of common industry-

standard tools including Atlassian Jira, Pivotal Tracker, github and Circle CI

which together can provide the required level of auditing and automation.
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The second requirement for certification however cannot be automated as

it relates to the implementation of a risk management process to determine

the safety of the medical device and must be carried out by the manufacturer

throughout the product life-cycle. In the context of the MDD, risk management

would commonly be carried out according to the provisions of ISO 14971. From

the software development perspective, compliance requires regular, typically

weekly, meetings of a risk assessment panel incorporating technical, medical

and administrative representatives. The role of this panel is to consider the

implications of current and planned developments, develop a mitigation strat-

egy and monitor acceptable hazards that cannot be completely eradicated. The

documentation produced automatically from the software development process

described above provides significant input to the discussions among panel mem-

bers but additional issues raised by individual members with responsibility for

specific risk areas are also considered. The work of the panel results into a risk

assessment document that identifies individual risks, the likelihood that they

might occur and an assessment of their potential impact. Measures to alleviate

these risks must also be considered and implemented as appropriate. The final

output of this process is the maintenance of the so-called risk management file

for cloudUPDRS.

Finally, the third requirement for certification is typically interpreted as

meeting the provisions of ISO 13485 which specifies the quality management

system that a manufacturer should meet. Although in the case of cloudUPDRS

this added significantly to the overhead of certification due to the fact that for

the manufacturer this was the first medical device registered, this requirements

does not refer directly to the individual device but rather sets requirements at

the organizational level, specifying specific processes to be in place, identifying

quality assurance roles and commitments.

Last but not least, conducting the PIA has several technical implications

relating to architecture design decisions. In particular, the PIA must clearly

detail the information flows within the system and consider each step from the

point of view of privacy and design mechanisms that address these risks. This
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requires the careful design of security provisions for example from the begin-

ning of the project and their frequent review to follow changing project needs.

In fact, this requirement represents best practice in software development and

the PIA should simply provide an explicit reminder and record of the decisions

made. Where design decisions do not fully address patient needs a mitigation

plan should be developed. In the case of cloudUPDRS, conducting the PIA

upfront paid dividends later in the project as it represents a key document re-

quired to obtain approval for clinical studies. Having said that, in May 2018 the

new General Data Protection Regulation (GDPR) will come into force in the

EU, which has considerable long-term implications for cloudUPDRS. While a

full discussion of the architectural, operational and organizational modifications

required to become GDPR-compliant is beyond the score of this paper, it is nev-

ertheless appropriate to point out that it has far reaching technical implications

for example to support the right to be forgotten and especially data portability.

cloudUPDRS received medical device status in the UK, and thus in the EU,

in May 2016.

7. Learning Test Movements

As noted in Section 3, disease progression assessments in PD are typically

carried out bi-annually under the supervision of a qualified member of clinical

staff who ensures that patients follow closely the actions dictated by Part III

of the mds-updrs protocol. This is also the case in clinical studies where in

addition to providing supervision, clinical and research staff would also operate

the equipment used to carry out performance measurements and subsequently

process the data using specialist software. In Section 5, we discussed how the

cloudUPDRS app extends this practice enabling a patient to carry out precise

measurements of motor performance unsupervised using a smartphone. Indeed,

when conducting self-assessments at home using cloudUPDRS supervision by

an expert is neither readily available nor desirable as it would nullify the cost

benefits of this approach. Nevertheless, in order to ensure accurate symptom
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Figure 4: Typical tremor measurement trace representing a high quality observation.

assessment with cloudUPDRS it is necessary to establish whether the prescribed

movements have been followed closely during data recording.

To address this lack of expert supervision and ascertain the fact that data

has been captured under the appropriate circumstances, cloudUPDRS combines

two methods that operate in tandem. Initially, the patient is guided by the user

experience design presented in Section 5, which provides support in performing

the actions accurately and steers the user through the process. While this ap-

proach has produced positive results, full compliance with the prescribed actions

still cannot be guaranteed or confirmed. Hence, cloudUPDRS supplements this

user interaction design with the development of a mechanism used to verify the

quality of the data collected. Specifically, we introduce a deep learning method-

ology which aims to replace human supervision by providing a means to confirm

that the recordings submitted have been captured while the patient performs

the required actions correctly2. Failure to do so would produce bio-signal mea-

surements that are not representative of the intended tremor type and are likely

to result in erroneous scoring.

To achieve this, we adopt a deep learning methodology [19], in this case Re-

2In the case of the one- and two-finger tapping tests it is relatively straightforward to

identify when the process has been followed accurately directly from the output of the bio-

signal processing of Section 5.2.
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current Convolutional Neural Networks [1], to enable the cloudUPDRS system

to learn movement features associated with a high quality signal (cf. Figure 4 for

a visual representation of the patterns of acceleration typically observed), and

alert the user when an observation has not been captured under satisfactory con-

ditions. Enabled by recent advances in general-purpose computing using graph-

ics processing units and related algorithmic developments, this methodological

approach employs multiple hidden layers to obtain notable results permitting

neural networks to identify preferred features directly from the raw signals. This

aspect of the selected methodology appears especially well-suited to the data

quality issue under consideration.

The data set used to investigate the performance of this approach is taken

from the first cohort of patients enrolled in the cloudUPDRS trials (8 male and

4 female). Specifically, we consider 227 distinct test sessions conducted over a

period of three months (June to August 2016). Signals were collected from 9

different phone models providing acceleration measurements with a minimum

sampling rate of 50 Hz, implemented using the data collection code base of the

cloudUPDRS app (other source code elements not affecting data collection were

modified during this period). Results are reported specifically for pronation-

supination observations of the right hand, without loss of generality for the

purposes of this paper. Data captured by the app are normalised but no other

pre-processing is performed at this stage.

7.1. Rationale and Overview

To formulate an algorithmic solution, we re-frame the problem of captured

data verification as one of binary classification. Specifically, the goal of the ver-

ification task is to discriminate between high-quality observations/signals and

lower-quality sensor recordings captured during movements that do not closely

adhere to the guidance of the mds-updrs protocol. To this end, we employ

a training data set of observations representing both acceptable and unsuit-

able cases with known data quality characteristics, guaranteed by the fact that

they are collected by the app under controlled conditions or inspected manually.
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Figure 5: DMLP neural network architecture employed by [57].

From this data set, features that are distinct within each class are identified al-

gorithmically. Subsequently, the obtained representations are employed to test

new observation data submitted by patients via the app: submissions classified

as offering adequate quality are accepted and forwarded to the appropriate mi-

croservices for data ingestion and signal processing; otherwise they are rejected

and excluded from further consideration.

Our initial experiments with this methodology were presented in [57] where

we employed Deep Multilayer Perceptrons (DMLP), as the one shown in Fig-

ure 5, using the middle segment of the signal (Figure 6) to solve the classification

problem. The work presented in this paper, extends [57] in two significant ways.

First, the software has been re-implemented from first principles using Tensor-

Flow [2] so that it can be fully incorporated into the app running on the mobile

device rather than be applied at the service back-end. This is possible due to

the fact that TesorFlow provides strong support for mobile platforms and be-

cause the classification process has two distinct stages: an initial model training

phase representing the most computationally intensive task followed by a sample

assessment phase which is relatively lightweight for modern smartphone hard-
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Original x, y, z features
512 dataset with the 
artificial feature m
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Figure 6: Inputs to the DMLP neural network architectures employed by [57] consist of signal

segments along the x, y, z acceleration axes together with the acceleration magnitude m.

ware. As such, using TensorFlow the model can be constructed off-line using

archival observation data for training and later incorporated in the app, which

can conduct real-time quality assessments at the time of data recording and in-

teractively request the repeat of specific individual observations as appropriate

to ensure that all submitted tests are usable.

Second, although we obtained good performance using the approach pre-

sented in [57], the specific neural network architecture employed examines only

a segment around the mid-section of the recorded signal (cf. Figure 6). Con-

sidering the significant changes observed in time during a complete observation

trace as detailed in Section 8, notably the considerable drop in the power of the

dominant tremor frequency for example, as depicted in Figure 11, it is clearly

preferable to process the full trace for the duration of the test. To this end

and to take into account the temporal aspect of the input signal, we introduce

in this paper a novel deep learning architecture using Recurrent Convolutional

Neural Networks (RCNN) [41].
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Figure 7: Sliding window of length 256 with 128-overlap applied on the recorded signals along

the three acceleration axes to create the dataset used in this paper. Left side shows the dataset

in a 256 × 3 matrix form to feed the RCNN. Right side shows the same data in a 768 × 1

vector form as required to feed the rest of the architectures.

7.2. Deep Learning Architecture

There are two main observations that guided the development of a new

architecture to replace the work presented in [57]. First, in [57] each individual

axis of acceleration is considered separately; that is four separate DMLPs are

generated and trained for each of the x, y and z coordinates as well as the

derived feature m representing the magnitude of acceleration (cf. Figure 6).

Second, the input vector for each of the four neural networks constructed is a

256 or 512 long segment taken from the middle section of each signal trace rather

than sampling the full signal (cf. Figure 6). As a consequence, the temporal

features of the captured signal are not taken into consideration. At the time,

both were reasonable options and in practice able to provide good performance.

In this paper we adopt an alternative approach, whereby we examine all
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three signal elements at the same time so as to unlock the full spatiotemporal

characteristics of the complete signal. The practical implication of this is that

the generated data takes the form of a matrix rather than vector, which is

the typical formulation to feed a classifier. To reflect this change, we opt to

replace the four DMLP architectures employed previously with one based on

Convolutional Neural Networks (CNN) [68, 19], because they provide better

performance with multidimensional (grid like) inputs. Moreover, to account for

the temporal properties of the signal we employ Recurrent Neural Networks

(RNN) [1], which are eminently suitable for processing temporal sequences. By

using both convolution operations and recurrence relations we aim to exploit

the whole range of information that the data has to offer, including local and

temporal characteristics.

The synergy of CNN and RNN also provides another advantage over Mul-

tilayer Perceptrons (MLP), such as the DMLP used in [57]. It relates to the

capability of MLP related architectures to deal with variations in the input

space. For example, translation invariance relates to small changes in the input

space which, however, require a lot of computation from MLPs to learn. This

is because networks, like MLP and DMLP, have no shared weights or shared

parameters, so small variations in a multidimensional input imply that a DMLP

would have to learn all local features from scratch. In contrast, architectures

that share weights and parameters, such as CNNs, are more robust to such

variations in the input space.

7.2.1. Convolutional Neural Networks (CNN)

CNNs can detect and extract local informative patterns with fewer parame-

ters than MLPs by iteratively traversing a smaller set of weights, called kernels,

on n-dimensional input grids. This means that CNNs really shine when we

have a grid or volume like input, and the features in this input space are locally

correlated. CNNs are a good fit for the binary classification problem we are con-

sidering in this paper due to the fact that they exploit three distinct concepts,

namely sparse interactions, parameter sharing and equivariant representations.

29



Sparse connectivity, or sparse weights, refers to the fact that the kernel

used in convolution operations is much smaller than the input, thus making the

weights w.r.t. the input quite sparse. For example, using a 3 × 3 kernel on a

grid of inputs with size 256× 3 requires only 9 connections for the detection of

patterns and other meaningful features, as opposed to an order of magnitudes

more connections for fully connected layers. By storing less parameters (weights)

for our feature representation not only we optimize storage but we also improve

the efficiency of the representation [19].

Parameter sharing, or tied weights, refers to the fact that CNNs are learning

only one set of parameters for every location in the input, as opposed to MLPs

where one parameter is required for each input part. Parameter sharing brings

considerable improvements in storage as it is only necessary to store a few pa-

rameters corresponding to the weights, instead of a full matrix of parameters for

a fully connected layer. As a consequence of parameter sharing, CNNs achieve

equivariance to translation, essentially a time-line that highlights when specific

features are present in the input. For example, when the same feature appears

at different times in the input, the kernel produces the same representation in

the output at the corresponding times.

7.2.2. Recurrent Neural Networks (RNNs)

RNNs are generally considered the best choice when dealing with sequences

of symbolic, non-symbolic or mixed data, as happens for example in natural

language processing, handwriting recognition and speech processing [1]. RNNs

are more successful than fully connected or convolutional alternatives, because

they operate efficiently over sequences and thus are not constrained by input

size or fixed number of computational steps. Similar to CNNs that scan the

multidimensional grid input and share weights locally, RNNs scan the input

sequences and share the weights in time. Sharing weights across time makes

RNNs sensitive not only to specific input patterns but also specific input se-

quences. Although many RNN variants have been explored in the literature [1],

in this paper we draw inspiration from Recurrent Convolutional Neural Net-
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works (RCNN) [41] to develop our particular architecture.

We follow [41] in our implementation, however our architecture has some

distinct features. First, there is the extra addition of a fully connected layer

before the network output, as depicted in Figure 8. Second, in contrast to [41]

we do not use pooling layers or dropout as our investigation suggests that tremor

appears to be sensitive to this type of stochastic noise injection. Furthermore,

we opt for a modular topological approach, as suggested in [59, 21], which

groups layers into modules so that they can be easily replicated across the whole

network. We have used batch normalization after every convolutional layer, as

seen in Figures 9 and 10, because it has the property to stabilize the gradients;

thus, alleviating both the exploding and the vanishing gradients problems [1].

Lastly, recurrence happens in the convolutional layers according to Figure 10,

where state is shared across convolutional steps and also the original input of

the shared states is added to each of the steps. We have named this recurrence

module Recurrent Convolutional Layer (RCL) and can be identified in Figure 10.

Convolution BatchNorm ReLU (CBR) is also a key ingredient of the RCNN and

can be seen in Figure 9.

To take advantage of the synergy between convolutional and recurrent net-

works we section the input space into equally sized chunks so that the CNN

can fully exploit the local features. Time–order of these chunks is maintained

so that the RNN can exploit the temporal aspect of the slices.

To get our data into the required form, a sliding window of length 256 with

128-overlap is employed on each individual session of observations out of 227.

For the benchmark algorithms we have used a flattened version of the 256 × 3

input, as can be seen in Figure 7, in order to form an input vector. Previous

experimentation on cloudUPDRS suggested that this choice outperforms other

options, such as a length of 512 as reported in [57].

Moreover, our experiments suggest that the RCNN architecture that per-

forms the best has the following structure:

• One input layer of size 256× 3, followed by
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• One CBR layer, followed by

• Two recurrent convolutional layers (RCLs) with a kernel size of 9× 3 and

32 and 64 filters respectively, followed by

• One flattening layer where the layer is vectorized, followed by

• One fully connected layer of size 512 with Batch Normalisation and ReLU,

followed by

• One softmax layer of size 2

Each RCL has 3 time steps with kernels of the same size as their input, as

can be seen in Figure 10. All layers use the same activation function namely

the Rectified Linear Unit (ReLU), which takes any input and produces the

maximum value between the input itself and zero. This form of activation

function is very popular because it helps alleviating the well known vanishing

gradients problem and also creates sparse connections in the hidden layers of

the network, limiting values to zero.

Figure 8: RCNN architecture with the size of each layer at the bottom in square brackets,

where the notation [n×m] denotes the size of the matrix. The internal structure of the CBR

and RCL modules is presented in Figures 9 and 10.

7.3. Classifier Training and Validation

Training the above architecture requires comparing the output ŷ of the con-

structed deep network against the desired output y, which in the cloudUPDRS
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Figure 9: Convolution BatchNormalize and ReLU (CBR)

case represents the appropriate quality class label that the network should pro-

duce, i.e. accept or reject the signal window presented at the input. This

information is used in the so-called cost, or objective, function that the RCNN

aims to minimise. Here we adopt the categorical cross-entropy L as the objective

function, defined as L(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ).

The final step in the process is the application of the backpropagation algo-

rithm [62] which enables the network to learn the distribution that generated

the training data. Backpropagation (BP) employs the chain rule to calculate

the derivatives of the objective function with respect to each connection weight

between neurons, and uses this information to update the weights. In this work

we have used a variant of the standard BP: the Stochastic Gradient Descent

(SGD) with momentum [58], as it has been shown by [65] that deep networks

trained with this method are able to provide better generalization than other

methods tested.

Training is carried out on the full signal across the three acceleration axes

at the same time. As the three signal components may be of different lengths,

as mentioned above, we have employed a sliding window of size 256 with 128

overlap ensuring that we have segments of the same length and also preserving

the temporal aspect of the signal; thus making each the input a grid like struc-

ture (cf. Figure 7). As overlapping sliding windows are used, the order of the
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Figure 10: Recurrent Convolutional Layer (RCL)

windows is preserved when training so as to exploit the temporal features of the

signal. Further, the so-called leave-one-out method [3] is combined with early

stopping to asses the true predictive power each learning algorithm has on all

of the data and to reduce the risk of overfitting. The choice of this approach

reflects the fact that the data set under investigation was based on observations

from 227 patient sessions, which is relatively low in this context.

Each iteration of leave-one-(session)-out process involves the exclusion of a

single session from the data set, training the classifier on the remaining ses-
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sions and testing on performance on the omitted. Consequently, the RCNN of

Section 7.2 is trained as many times as the sessions available in the data set,

in this case 227 times. One limitation of this technique is that it can become

biased on the weight initialization. To address this issue the process is repeated

ten times using different initial random weights and the mean is used as the

overall performance metric. Thus, the experiments summarized below are con-

ducted using ten cycles of leave-one-(session)-out cross-validation, so that 2, 270

classifiers have been trained and averaged.

The early stopping heuristic applied ensures that the learning process is ter-

minated when it reaches a certain predefined threshold. Specifically, we employ

three criteria: (i) the categorical cross-entropy falls below 0.001; (ii) training

classification success reaches 100%; or, (iii) the learning process has reached

200 iterations. The benefit of using early stopping is that it prevents the RCNN

classifier from memorizing counter-productive characteristics discovered in cer-

tain samples, especially when these are spurious or irrelevant for the accurate

determination of high versus low quality observations. This technique works

well when used in conjunction to leave-one-out as it ensures that the RCNN is

not over trained [42] on any part of the data set.

To validate the effectiveness of the cloudUPDRS approach we compare its

performance against several well-established alternatives selected for their recent

success in industrial systems or in highly-regarded competitions such as Kaggle.

Full details are provided in Section 7.4 below.

7.4. Experiments and Results

The deep learning approach described in Sections 7.2 and 7.3 is implemented

using the computational graph engine Tensorflow [2]. Training was carried out

on an array of nvidia K40 GPUs achieving a 20-fold speedup against a standard

multi-core CPU. To provide a baseline against which to evaluate our approach

we compare its performance with the following classifiers implemented using

the scikit-learn [49] machine learning library: (i) Gaussian Naive Bayes [46];

(ii) Bernoulli Naive Bayes [46]; (iii) Random Forest Classifier [9] which employs
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Table 2: Classification reports with F1 score and Area Under the Precision-Recall curve

(AUC).

Classifiers Accuracy F1-score AUC

ExtraTrees 0.73 0.79 0.83

BernoulliNB 0.73 0.79 0.83

RandomForest 0.73 0.79 0.83

GradientBoosting 0.72 0.80 0.83

Bagging 0.72 0.78 0.83

AdaBoost 0.66 0.75 0.81

GaussianNB 0.69 0.75 0.83

DMLP 0.75 0.81 0.85

RCNN 0.78 0.82 0.87

an ensemble of random decision trees each selected from a sample drawn with

replacement; (iv) Extra Trees Classifier [17] is a variation of random forest with

thresholds randomly drawn for each candidate feature; (v) AdaBoost Classifier

[70] is a meta-estimator which adjusts classifier weights so as to improve learning

from difficult classes; (vi) Bagging Classifier [8] is also a meta-estimator which

operates on random subsets of the training data to reach a final prediction

by aggregating their results; and (vii) Gradient Boosting Classifier [16] which

performs optimization of arbitrary differentiable loss functions. Furthermore we

are benchmarking against the main algorithm from our previous work [57], the

DMLP, which has been reproduced with the exact same settings as before, the

only difference being the input layer, which is now 786 instead of 256 or 512.

As you can see from Table 2, the proposed RCNN–based approach outper-

forms all other methods on all the metrics used to assess overall classification

success. The F1 score represents the harmonic mean between the precision and

recall and AUC is the area under the precision-recall curve.

Further, the confusion scores from Table 3 shows that the proposed RCNN

outperforms all the rest mostly because it is the only method that can actually
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Table 3: Confusion matrix for the classifiers compared (averaged performance). Labels: T/F

True/False and P/N Positive/Negative.

TP (%) FN (%) TN (%) FP (%)

ExtraTrees 141.52 93 8.98 6 13.36 17 63.14 82

BernoulliNB 146.23 96 4.27 3 6.92 8 69.58 91

RandomForest 138.39 91 12.11 8 16.19 20 60.31 79

GradientBoosting 146.02 96 4.48 3 8.12 10 68.38 89

Bagging 135.58 89 14.92 10 18.03 23 58.47 76

AdaBoost 128.0 84 22.5 15 17.34 22 59.16 77

GaussianNB 116.01 76 34.49 23 35.41 45 41.09 54

DMLP 135.73 89 15.77 10 28.19 37 49.31 63

RCNN 133.22 87 18.28 12 38.38 50 39.12 50

differentiate between positive and negative observations. We have to take into

account that this is quite an unbalanced dataset, we have in total 5691 signal

windows, out of which 3765 are positive and 1926 negative. If you look closely

at the BernoulliNR and GradientBoosting, they have very good True Positive

scores but at the cost of True Negatives. This means that they are very biased

towards predicting positives, classifying low quality recordings as high quality

useful signals.

In contrast, the RCNN produces more balanced performance, recognizing

larger number of low quality recordings than other methods, and producing a

lower value for the false positives compared to other classifiers. This is reflected

in the overall RCNN performance, as shown in Table 2, in terms of its Accuracy,

F1-score and AUC value.

8. The cloudUPDRS Quick Test

In this section, we turn our attention onto the development of methods that

achieve significant reductions in test duration so as to enable patients to use

cloudUPDRS on a daily basis. As suggested by the user studies summarised in
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Section 4, the majority of patients identified a maximum of 5 minutes as the

desirable duration for the test. However, even after the initial familiarisation

period the full implementation of the procedure typically requires 25 minutes, an

estimate that has been confirmed from system logs and independently through

user feedback. The critical influence of test duration on user adoption rates

was further confirmed during the initial three months of field testing. While

the majority of participants carried out tests regularly during the first week

following the commission of the app, compliance rates dropped sharply by the

end of the third week, and only one out of the 12 participants continued to carry

out tests at the end of the three-month testing period.

8.1. Test Duration and Characteristics

Recall from Section 5 that according to the mds-updrs protocol each in-

dividual observation requires 60 seconds of recording and the full test consists

of 17 observations, in addition to the medication and well-being questionnaire.

Clearly, to reduce the overall duration of the test there are two main options

namely to shorten the recording time for individual observations or to reduce the

number of observations carried out by selecting a subgroup of the full 17-item

set. The final questionnaire requires approximately 30 seconds and is always

required because it is used to track medication.

First, consider the option to reduce the length of individual observations

without loss of precision in the estimation of motor performance. Specifically,

we investigate whether the 60 second observation period set by the mds-updrs

protocol is necessary or instead consistent scoring can be still maintained after

significantly reducing its duration. To this end, we conduct observations of

motor performance for alternative recording periods of 20 and 40 seconds and

compare these against measurements carried out for the the full 60 seconds.

Tremor and bradykinesia performance metrics were calculated for all observation

types in our test data set consisting of 133 full tests carried out by 35 different

individuals. In the remainder of this section we report scores calculated for

tremor power at rest for the right hand, without loss of generality and so as to
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Figure 11: Change in recorded tremor power between tests of 60 and 20 seconds.

specifically quantify our findings.

Figure 11 summarises the results of this analysis and demonstrates that for

the majority of patients a shorter observation period results in a significant

change of their reported motor performance. Specifically, Figure 11 shows that

when the recording period is reduced from 60 to 20 seconds the power of the

tremor for 60% of the patients is reduced by more than 10%. Similar results

are obtained when the observation length is reduced to 40 seconds with the

same magnitude of change observed for 35% of the participants in this case.

These changes in motor performance for shorter recording periods correspond

to significant changes in the estimated mds-updrs score for a single observation

ranging between 1 and 2.5 points on the mds-updrs scale. This difference in

the actual clinical score corresponds to an average expected disease progression

over a six- and twelve-month period respectively, thus representing a significant

error in precisely assessing motor performance.

These results clearly imply that that it is necessary to maintain the full

60 second recording period for each individual observation. Relevant clinical

literature considering the mds-updrs does not appear to offer explicit justifica-

tion for this performance. However, it seems that this is an observation readily

confirmed by experienced clinicians such as those participating in focus groups

conducted by cloudUPDRS (cf. Section 4). In particular, it was suggested that

the longer duration is required in most cases to cause mild fatigue that reveals
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the true characteristics of motor performance. In any case, the option to de-

velop the quick test by reducing the duration of individual observations does

not appear viable and alternatives must be considered.

8.2. Identifying Clinically Distinct Factors

Clinical investigations of the mds-updrs scale reported in the medical lit-

erature have identified a smaller group of clinically distinct factors, typically

five to six, that provide high correlation to the overall score of the motor ex-

amination of Part III of the mds-updrs [60, 61]. This observation corroborates

the possibility to develop the quick test by reducing the number of individual

observations to a much restricted group, which correlates well with the overall

patient score. Furthermore, note that the mds-updrs protocol was designed

to explore exhaustively the full range of possible motor symptoms caused by

PD, but a specific individual would typically present a smaller number of symp-

toms (especially in earlier stages of PD) that dominate their mds-updrs score

and that remain relatively stable over a time frame of a few months. Indeed,

a common observation is that PD motor symptoms are asymmetric [7, 51] for

example, for a particular patient one side can be significantly affected by tremor

while the opposite side may not be affected at all thus contributing zero units

towards their mds-updrs score.

Motivated by this observation, we develop a methodology using standard

machine learning methods that successfully identify the appropriate subgroup

of observations for a specific patient which offer the highest predictive power

of their overall motor performance. Upon enrolment in cloudUPDRS, patients

are required to carry out the full test at least five times during the first week of

monitoring. At the end of this calibration period we use the data of the full test

to conduct a feature importance analysis. Specifically, following [17] we apply an

ensemble of randomized decision trees on multiple sub-samples of the test data

improving its predictive accuracy through averaging and over-fitting control. We

then rank individual observations according to the relative importance of their

corresponding features (two and three features per tremor and bradykinesia test
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respectively). Finally, we select the subgroup of top performing observations

which account for at least 80% of the variance in the overall UPDRS score.

At the end of this process, the cloudUPDRS system is configured with an

individual user profile detailing the subgroup of observations identifed for inclu-

sion in the quick test. This profile is automatically communicated to the app

at the next start up so that it is reconfigured to enable the quick test feature in

its home screen (cf. Figure 2). The selected settings remain active for a period

of six months after which a new set of full tests is required due to the likelihood

of changes in motor symptoms over this time frame.

8.3. Results

To evaluate the effectiveness of this approach we employed the data set

described in Section 8.1 selecting only patients for which at least five full test

results are available. For each patient we apply the above methodology to create

a personalised quick test profile. We discover that in all cases we are able to

account for the target variance using features associated with only three or less

observations. This result is consistent across all patients examined representing

medium and progressed stages of the disease.

Figure 12 shows the results of this analysis for a typical patient from this

cohort suggesting in this case that just three observations (from which seven

features are calculated) are adequate to account for approximately 90% of the

variation. Specifically, this patient’s quick test profile consists of observations

of left leg agility, right arm rest tremor and single tapping of the left hand

which provide the adequate information to track their overall motor perfor-

mance. System logs confirm that this patient was able to complete the quick

tests consistently in less than 4 minutes over 50 times in the two months fol-

lowing the availability of their profile. Note that this patient is at an advanced

stage of PD presenting significant mobility impairments.
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Figure 12: Predictive power of features associated with individual UPDRS observations.

9. Future Work and Conclusions

The results presented in this paper are promising but for the clinical com-

munity to accept cloudUPDRS as a standard tool for the assessment of PD, it

is necessary to validate its performance against the higher standards required

for medical research and practice. To this end, we are currently undertaking a

full clinical study of the cloudUPDRS app.3 CUSSP is a single-site, open label

study carried out at University College Hospital in London, U.K. comparing the

validity and usability of the cloudUPDRS score for home monitoring of symp-

toms and signs in PD. The primary objective is to validate in a clinical setting

the UPDRS score computed automatically by cloudUPDRS against the clini-

cally defined UPDRS score which is currently recognized as the gold standard.

Participating patients with PD are assessed in the clinic under so-called L-Dopa

challenge conditions, that is after an overnight period of no medication, and sub-

sequently after medication administration thus observing motor performance in

OFF and ON conditions. These assessments are video-recorded at a baseline

visit by an unblinded rater, and the video is further assessed by two blinded

raters, to produce three repeated scores of the clinical gold-standard UPDRS.

During the same hospital visit, the patient performs the UPDRS assessment

3CUSSP: The CloudUPDRS Smartphone Software in Parkinson’s Study cf.

https://clinicaltrials.gov/ct2/show/NCT02937324.
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in the ON and OFF conditions using the cloudUPDRS. The clinical and app

scores are then compared, first using the Bland-Altman agreement between the

score calculated by cloudUPDRS and the average clinical UPDRS rating score.

This is in the form of a mean difference and 95% confidence interval of the limit

of agreement. To assess whether the mean difference varies with UPDRS score,

we also generate the Bland-Altman plot. Second, to determine how the cloud-

UPDRS score compares to the inter-rater agreement, we also assess agreement

between different combinations of gold-standard raters. Finally, to assess the

relative validity of different elements of the cloudUPDRS score, we present their

intra-class correlation coefficients. CUSSP is expected to report its findings at

the end of 2017.

Further to the consideration of questions of clinical validation and the longer-

term improvement of treatment strategies for PD, cloudUPDRS also represents

an attempt to address the challenges created by a global aging population. In-

deed, according to the World Health Organization [67], ageing populations gen-

erate considerable economic effects, notably intensifying pressures on health-care

systems which for many of the more economically developed countries already

represent the largest area of expenditure. In the UK, the cost of caring for PD

patients exceeds 1.25 billion British pounds annually and is rapidly increasing.

In this socioeconomic situation, mobile health apps present a unique opportunity

for the provision of cost effective care at population scale. Yet, to reach their

full potential such apps must offer safety guarantees and facilitate a seamless

user experience.

To this end, cloudUPDRS is the first smartphone app to receive certification

as a medical device for the clinical assessment of Parkinson’s Disease. The design

and development of cloudUPDRS follows the structured process required to

ensure the safety guarantees required by medical devices and at the same time

support an efficient and effective patient experience that facilitates its wider

adoption. A key ingredient to achieve the latter is the introduction of two novel

features developed specifically for cloudUPDRS, supplemented by a bespoke

patient expereince design that provides structure and guidance during use at

43



home. First, a tailored deep learning approach was employed to replace expert

human supervision during the administration of the common motor performance

assessment protocol for PD. In particular, in this paper an improved neural

network architecture was presented, implemented as two-stage approach where

high-performance resources are used to train the model which is subsequently

embedded in the cloudUPDRS app operation on the mobile phone to provide

interactive oversight. Second, recognizing the need for frequent assessments

especially in the period leading to a clinical appointment, a personalised quick

test was developed lasting less than 5 minutes per application to accurately trace

overall motor performance while considerably improving patient compliance. In

our experiments both approaches performed reliably and produce promising

results. We anticipate both techniques to be useful for a wider class of mobile

health-care apps with similar requirements. Further experimentation with a

larger patient population outside the PD context is of course necessary to fully

assess the wider potential of the techniques presented in this paper.
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