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The Delphinidae is the most diverse family of cetaceans, with 38 species recognized. 22 

Small pelagic delphinids are also the most abundant cetaceans world-wide, yet their 23 

communication and behavior remain poorly understood. Many populations live in relatively 24 

remote habitats, which creates challenges in accessing study animals. Small odontocete species 25 

often face numerous anthropogenic stressors. For example, many pelagic delphinids incur 26 

significant interactions with fisheries (Gerrodette and Forcada 2005, Geijer and Read 2013).  27 

With a wide distribution, many delphinid populations utilize habitats that also are important for 28 

human seagoing activities that produce intense sound, such as seismic surveys or naval sonar 29 

exercises that may disturb or harm them. Many U.S. naval sonar exercises take place on naval 30 

training ranges such as those in in Hawai‘i (Baird et al. 2013), California (Carretta et al. 1995, 31 

Henderson et al. 2014), and the Bahamas (DeRuiter et al. 2013). At least one delphinid stranding 32 

event involving melon-headed whales (Peponocephala electra) was correlated with military 33 

activities (Southall et al. 2006); a mass stranding of melon-headed whales has also been 34 

associated with multi-beam echosounder operations as part of a seismic survey (Southall et al. 35 

2013). Because many of these delphinid groups can number in the 100s to 1,000s, fisheries or 36 

sonar exposures can account for the highest estimates of marine mammal “takes” in related 37 

Environmental Impact Assessments (Department of the Navy 2013). Given the potential for 38 

anthropogenic interactions with large numbers of individual delphinids, improved methods of 39 

studying small delphinids are invaluable to understand, reduce, or mitigate potential human 40 

influences on these animals.  41 

One important tool for studying the acoustic behavior of cetaceans is the digital acoustic 42 

recording tag (DTAG) (Johnson and Tyack 2003). Deployed using noninvasive suction cups, the 43 

DTAG is equipped with two hydrophones for recording environmental noise and sounds 44 
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produced by the tagged animal, nearby conspecifics, as well as various sensors that capture 45 

diving behavior and 3D orientation and movement of the tagged animal. Acoustic data from 46 

DTAGs have been used to gain insight into delphinid vocal behavior, such as the production of 47 

repeated call types in short-finned pilot whales (Globicephala macrorhynchus) and melon-48 

headed whales (Kaplan et al. 2014, Sayigh et al. 2013).  49 

Because they are attached directly to the animal, DTAGs can facilitate distinguishing 50 

focal (tagged animal) vocalizations from those of conspecifics (Johnson et al. 2009). Thus, these 51 

tools potentially offer a way for studying individual vocal behavior, an aspect of communication 52 

that was previously limited to studies involving captive animals, well-known resident 53 

populations, or sound localization methods using arrays (Caldwell and Caldwell 1965, Watkins 54 

and Schevill 1974, Sayigh et al. 1990).  55 

Acoustic recording tags have been used to examine the ecology of various baleen whales, 56 

beaked whales, and larger odontocetes (Miller et al. 2004, Johnson et al. 2009, DeRuiter et al. 57 

2013). Yet, acquiring focal tag data from small odontocetes has long remained a challenge. The 58 

size, speed, high activity, and social contact of many delphinids and some porpoises can limit 59 

tagging opportunities or dislodge tags, and attempts to tag wild, free-swimming small 60 

odontocetes have been relatively unsuccessful with a few exceptions. Hanson and Baird (1998) 61 

tagged free-swimming Dall’s porpoise (Phocoenoides dalli) with suction cup time-depth 62 

recorders (TDRs), but for short periods of time (41 min maximum). Six pantropical spotted 63 

dolphins (Stenella attenuata) were tagged with TDRs for periods ranging from five min to just 64 

over 12 h (Baird et al. 2001), although attempts to tag common bottlenose dolphins (Tursiops 65 

truncatus) with TDRs were unsuccessful (Schneider et al. 1998). Acoustic data loggers (A-tags) 66 

have been successfully deployed on harbor (Phocoena phocoena) and finless (Neophocaena 67 
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phocaenoides) porpoises, but tagging was accomplished during capture-release events 68 

(Akamatsu et al. 2007). Similarly, the latest, smaller version of the DTAG, the DTAG3, has been 69 

deployed on harbor porpoise (DeRuiter et al. 2009) and common bottlenose dolphins (Wells et 70 

al. 2013), but tags were hand-placed on animals in captivity (DeRuiter et al. 2013) or during 71 

brief capture and release events (Wells et al. 2013). Kaplan et al. (2014) recently deployed 72 

DTAG3s on melon-headed whales, although maximum durations were limited to 57 min (largely 73 

due to the behaviors of the tagged animals). Thus, there has been a paucity of focal-individual 74 

bioacoustic data from nonivasively tagged animals, limiting analyses of individual call behaviors 75 

and descriptions of successful attachment. 	76 

Recently, Silva et al. (2016) presented whistle characteristics and daytime dive behavior 77 

recorded during the first successful deployment of DTAG3s on free-swimming pantropical 78 

spotted dolphins (Stenella attenuata). Here, we use these DTAG3 data to further explore the 79 

whistle repertoire of pantropical spotted dolphins, by presenting visual categorizations of whistle 80 

contours, addressing evidence of repeated whistle types, and providing new data on individual 81 

call behaviors. A second goal of this study is to evaluate attachments of DTAG3s to small 82 

delphinids. We compare the pantropical spotted dolphin data described here to that of Kaplan et 83 

al. (2014), who successfully deployed multiple DTAG3s on melon-headed whales off Hawai‘i, 84 

providing a short description of the successful attachment methods. Thus, this work provides 85 

insights into the acoustic behavior of small delphinids and a description and evaluation of 86 

successful tagging methodology and species-specific deployment details.  87 

Tagging was conducted from an 8.2 m Boston Whaler off the west (leeward) side of the 88 

island of Hawai‘i in May 2013. When groups were encountered we recorded location (with a 89 

GPS), predominant group behavior (e.g., travel, feeding, milling), direction and speed 90 
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(categorized as slow travel, travel, or fast travel) of travel, and estimated group size (see 91 

McSweeney et al. (2009) for details of behavioral categorization). In order to deploy a DTAG3, 92 

the boat gradually passed through the group, either allowing animals to approach the boat and 93 

bowride or approaching animals that were generally surfacing frequently and traveling in a 94 

predictable direction. When an animal surfaced near the bow, the DTAG3 was deployed with a 95 

carbon-fiber pole and attached with suction-cups. For each tagging attempt, we recorded: the 96 

age/sex class of the target animal (based on body size, spotting patterns, and the 97 

presence/absence of calves/juveniles in attendance; Perrin et al. 1976), its behavior immediately 98 

before tagging, the reaction to tagging (e.g., fast dive, tail slap), behavior after tagging (if seen 99 

again), tag position on the animal’s body, reason for tag release, and any tag damage. Location, 100 

predominant group behavior and direction of travel were also recorded at the end of the 101 

encounter. When possible, photos of the tagged animal were obtained for individual 102 

identification. After tagging, the tag boat generally moved away from the tagged animal (ca. 103 

several hundred meters) to limit any potential influence on behavior and to reduce vessel noise 104 

on the acoustic tag record. Tag attachment was monitored by listening to the intermittent VHF 105 

pulse of surfacing tagged animals. During this time the research vessel moved with the group 106 

(which could be dispersed over several kilometers) at approximately the speed of the group. This 107 

slow moving through the traveling groups did not appear to influence the behavior of individuals 108 

or the group, as animals did not change observed behaviors (besides a few animals coming to 109 

bowride) or direction of travel. Individual animals that surfaced within 50 m of the tag vessel 110 

were photographed for future photo-identification and population studies.  The research vessel 111 

stayed with the group until tag recovery except for DTAG sa147d. For this deployment, 112 
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researchers left the group 4 h 41 min after tagging, and then returned to the area later that night 113 

to recover the detached tag.  114 

The process of selecting whistles for analyses was described in detail in Silva et al. 115 

(2016).  Briefly, acoustic data were initially analyzed in MATLAB (MathWorks, Natick MA) 116 

using a toolbox designed for DTAG analysis (available at http://soundtags.st-117 

andrews.ac.uk/dtags/dtag-3/). The acoustic recording for each tag was viewed as consecutive ten-118 

second spectrograms (FFT size 1024 samples, Hamming window, 50% overlap), and the entirety 119 

of acoustic files were audited. Times of all whistles with a clear start and end were marked 120 

within this program. For visual categorization, whistles were defined as tonal signals greater than 121 

0.3 s in duration (Driscoll 1995), in an attempt to follow established criteria for whistles from 122 

Stenella spp. Using criteria defined by Bazua-Duran and Au (2002), 463 of these whistles were 123 

deemed “loud and clear” and thus selected for categorization	124 

A spectrogram of each whistle was printed using uniform settings: y-axis from 0-48 kHz 125 

and x-axis where 1.2 cm = 0.1 s. All spectrogram prints were randomly shuffled to remove any 126 

sequence information. Four judges participated in whistle classification by visual inspection of 127 

the spectrograms. They included one author (TLS) and three independent judges with some 128 

experience visualizing dolphin whistles, but no prior experience with pantropical spotted dolphin 129 

sounds. The three independent judges were instructed to group the whistles into as many 130 

categories as they wanted based on similarities of the fundamental frequency contour, but were 131 

given no further instructions, following Sayigh et al. (2007). 132 

When three out of four judges grouped two whistles together, a category was created. 133 

Whistle categories were assigned arbitrary letter designations. Whistles that were not grouped 134 

together by three judges were not considered further. Tag deployments on the same day often 135 
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overlapped in time (Table 1) resulting in some whistles being recorded on multiple tags. If 136 

duplicate whistles were selected for analysis, only the whistle of highest amplitude (based on 137 

visual inspection of spectrograms) was included in the categorization. To evaluate potential 138 

differences in the fundamental frequency shape and characteristics of categorized whistles, ten 139 

whistles were randomly selected from each major (more than 10 whistles) whistle category and 140 

were used to create whistle contour plots. Using Raven Pro 1.5 beta version build 21 (Charif et 141 

al., 2010; Cornell Lab of Ornithology, Ithaca, New York), a frequency measurement was taken 142 

every 0.05 s along the fundamental frequency for the entire length of the whistle. These 143 

measurements were plotted using Microsoft Excel to produce contour traces.  144 

 The majority of whistles grouped by judges into one category (termed ‘type B’) were 145 

recorded from a single tag (sa147d) deployed on an animal classed as an adult male. Particularly 146 

high amplitudes of these whistles (based on visual inspection) suggested that this whistle 147 

category was potentially produced by the tagged animal. Based on these observations, we chose 148 

to focus on this tag for a more in-depth look at an individual’s whistle repertoire. 149 

To explore the possibility that type B whistles were produced only by the tagged animal, 150 

the received level (RL) and angle of arrival (AOA) were calculated for whistles recorded on 151 

sa147d. The AOA is calculated from the time delay between the two hydrophones, and indicates 152 

the angle from which the sound is arriving. Whistles produced by the tagged animal should have 153 

a relatively high received level and a consistent AOA, while whistles produced by nearby 154 

animals will have varying angles of arrival as these animals move in relation to the tag (Johnson 155 

et al. 2009).  156 

From the 463 whistles analyzed, 136 were recorded on sa147d and were used to address 157 

individual sound production. Whistles from sa147d were extracted using a custom MATLAB 158 
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script and saved as individual sound files with an additional 0.1 s added onto the beginning and 159 

end of each whistle. All selected whistles were individually imported into MATLAB and 160 

amplitude corrected for nominal tag hydrophone sensitivity (-175 dB re 1 V/µPa). Low 161 

frequency flow and boat noise were reduced by applying a user-selectable 6-pole variable 162 

bandpass Butterworth filter (3,000-40,000 Hz) (Jensen et al. 2011). The root mean square (rms) 163 

intensity of the last 0.1 s of each clip was calculated and used as a noise measure. For signal to 164 

noise ratio (SNR) calculation, signal duration was defined as the length of the window 165 

containing 95% of the total energy after subtracting the noise energy (Madsen and Wahlberg 166 

2007) and excluding the additional 0.1 s at the beginning and end of the clip. SNR was 167 

calculated as the difference between rms signal amplitude and rms noise amplitude on a decibel 168 

scale and only calls with SNR greater than 10 dB were analyzed further (Jensen et al. 2011). 169 

Received sound pressure level (rms) was calculated for each remaining whistle.  DTAG 170 

toolbox scripts were used to estimate the AOA of each whistle by cross-correlating time 171 

differences of arrival between the two tag hydrophones (Johnson et al. 2009; 45 mm separation). 172 

Received level was plotted with AOA for all whistles analyzed from sa147d.  173 

We further examined where type B whistles were recorded in time and depth. For this 174 

analysis, all type B whistles recorded on sa147d were included, even if they were not initially 175 

selected for analysis. A dive profile for sa147d was created using DTAG toolbox MATLAB 176 

scripts. The time and depth where each type B whistle was recorded was annotated within the 177 

dive profile. Time intervals between each type B whistle as well as the number of type B 178 

whistles recorded in ten-minute bins and five meter depth bins were quantified. The percent time 179 

spent in five meter depth bins for sa147d was also quantified. A chi-square test was used to 180 

determine if type B whistles were recorded more often than expected in any particular depth bin 181 
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based on the amount of time spent in each depth bin. Counts for the deepest five depth bins were 182 

pooled to meet the sample size requirements of chi-square.  183 

 Whistle categorization resulted in judges grouping 345 of the 463 whistles (75%) into ten 184 

categories. Whistles that were not grouped together by three judges (118/463) were not 185 

considered further.  Five categories had more than 25 whistles each, accounting for 83% (286 out 186 

of 345) of categorized whistles (Table 1). Eight categories had 10 or more whistles (Table 1). 187 

The remaining two categories contained four and nine whistles each. Overlapping deployments 188 

of tags on the same days resulted in many cases where the same whistle was recorded on 189 

multiple tags.  For each whistle category, the number of whistles that were recorded on a 190 

simultaneously deployed tag was also reported (Table 1).  191 

Certain whistle categories dominated several tag records. Over half of type A whistles 192 

were recorded on tag sa147b. Of type B whistles, 74/75 were recorded on sa147d; one was 193 

recorded on sa146a.  Although the type C category only contained nine whistles, all were 194 

recorded on the first day of tagging; eight were recorded on tag sa146a and one on sa146b. For 195 

type H whistles, 32/39 were recorded on sa146b. Whistles within the same category exhibited 196 

similar contour shapes (Fig. 1), with whistle E2 contours being the most similar in shape and 197 

duration (Fig. 1B) and whistle Q showing the most variation in contour shape (Fig. 1H).  198 

Whistle categorization suggests that pantropical spotted dolphins repeat stereotyped 199 

whistles. The recording of whistles in some categories on two days of tagging (Table 1) may be 200 

suggestive of shared whistles across groups or subgroups as found in short-finned pilot whales 201 

(Sayigh et al. 2013) and killer whales, Orcinus orca (Ford 1989). However, pantropical spotted 202 

dolphin group membership is likely fluid, making stable group repertoires unlikely. Given large 203 

group sizes (400 and 140, respectively) and the relative proximity of tagging locations (36 km), 204 
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it is possible that some animals were common to both groups and therefore could have produced 205 

the same whistles recorded on different days. Alternatively, whistles could be shared across 206 

larger sets of groups within an area. Future photo-identification analysis could confirm the 207 

presence of animals common to both groups, although this has yet to be determined.  208 

 Of 136 whistles initially selected from sa147d, 86 had suitable SNR (>10dB) for 209 

computing received level. Of these 86 whistles, 74 were type B whistles, three were type D 210 

whistles, five were type D3 whistles, one was a type A whistle and three were not grouped by 211 

three judges. Type B whistles exhibited significantly higher received levels than other whistles 212 

(Mann-Whitney-Wilcoxon test, W = 0, P<0.0001). The median RL of type B whistles was 141 213 

dB re 1 µPa (IQR: 140 - 142.5). Other whistles (those not categorized as type B) had a median 214 

RL of 114 dB re 1 µPa (IQR: 112.7 - 115.1) (Fig. 2).  Angles of arrival also differed significantly 215 

between type B and other whistles (Mann-Whitney-Wilcoxon test, W = 754, P = 0.0001). For 216 

type B whistles, AOA ranged from -44.7 to -27.1 degrees, whereas AOA for other whistles 217 

varied more substantially, from -43 to +41.9 degrees (Fig. 2).  Based on these data, we conclude 218 

that type B whistles were likely produced by the tagged individual, and that examining 219 

individual whistle production using DTAGs can be done in some cases.  220 

Caldwell et al. (1970) report individually distinctive signature whistles recorded from 221 

five captive Atlantic spotted dolphins (Stenella frontalis) captured in Florida waters and Herzing 222 

(1996) reports stable signature whistles produced by individuals of this species in the wild for 223 

over 10 yr. The recording of a repeated whistle type from a single animal suggests it may be 224 

producing signature whistles, a novel observation for S. attenuata. The identification of type B 225 

whistles as a potential signature whistle was only possible after judges classified them as the 226 

same whistle type, demonstrating the utility of whistle categorization in exploring both group 227 
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and individual whistle repertoires. While the repeated nature and stereotyped contours of the 228 

remaining whistle categories also suggests signature whistle production by this species, we chose 229 

not to conduct a detailed analysis of these categories, as they exhibited high variability in 230 

amplitude and AOA and were likely not produced by tagged animals, but by other animals 231 

nearby. Some slight variation in AOA was also noted for type B whistles and was to be expected 232 

as the tagged animal moves its head with respect to the tag location. In addition, tag placement 233 

on the flank as opposed to more anterior, dorsal locations may cause slight variations in AOA as 234 

the dolphin undulates while swimming.    235 

Janik et al. (2013) found that signature whistles in free-swimming common bottlenose 236 

dolphins could be identified based on a temporal production pattern. Using recordings of animals 237 

whose signature whistles are known, Janik et al. (2013) reported that signature whistles were 238 

characterized by a bout structure in which at least 75% of whistles were produced within 1-10 s 239 

of another whistle of the same type. However, this was a conservative criterion created to avoid 240 

identifying false positives; out of seven potential signature whistles that could have been 241 

identified from recordings of wild animals, only four were identified as such. Thus, not all 242 

bottlenose dolphins in the aforementioned study used the 1-10 s bout production pattern; the 243 

longest inter-whistle interval for a signature whistle was 89.5 min (Janik et al. 2013).  244 

Type B whistles did not follow the 1-10 s bout production pattern (Fig. 3). Intervals 245 

between type B whistles were between 1-10 s only 4.1% of the time, and between 10-20 s 42% 246 

of the time. Given the variability shown by bottlenose dolphins and the fact that we present data 247 

for only one animal from a different species, it is impossible to use bout structure to determine 248 

whether or not the type B whistle is a signature whistle. Additional acoustic recordings and 249 
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tagging of multiple associated animals may provide insights into potential pantropical spotted 250 

dolphin signature whistle production.  251 

Two other whistles recorded on tag sa147d had similar angles of arrival to type B 252 

whistles, but had RLs approximately 30 dB lower (Fig 2). Documented source levels for Atlantic 253 

spotted dolphin whistles range from 115 – 163 dB re 1 µPa (Frankel et al. 2014). Based on the 254 

dynamic range of Atlantic spotted dolphin whistles and the attachment of the tag directly to the 255 

animal, it is possible that the tagged animal (sa147d) produced these lower amplitude whistles, 256 

suggesting that pantropical spotted dolphins may produce different whistle types at different 257 

amplitudes.  Additional tag recordings may help identify instances of production of multiple 258 

whistle types by the tagged animal.  259 

All occurrences of type B whistles on tag sa147d, regardless of whistle quality (n = 97), 260 

were overlaid on a dive plot for this animal to investigate timing and depth information for type 261 

B whistle production. No type B whistles were recorded in the first 10 min of tag deployment 262 

(Fig. 3) although they were generally noted throughout the rest of the tag record. Production of 263 

type B whistles peaked between 10-20 min after tag deployment. Increased whistle rate has been 264 

shown to indicate stress in common bottlenose dolphins (Esch et al. 2009). It is unclear if the 265 

observed pattern indicates a possible response to the tagging, as dolphins also increase whistle 266 

rate during feeding, socializing, and in the presence of vessels (Acevedo-Gutiérrez and 267 

Stienessen 2004, Buckstaff 2004, Quick and Janik 2008). Given that no other whistle types were 268 

attributed to specific tagged animals, we were unable to quantify individual-specific whistle rates 269 

on the other tags. Quantification of whistle production and behavior before, during and after 270 

tagging, as well as a larger sample size could provide insights into whether whistle rates may be 271 

influenced by tagging and if tagging may induce stress.  272 
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Type B whistles were produced at depths ranging from 0-40 m (Fig. 3, Fig. 4). Based on 273 

the time spent in each depth bin, the number of type B whistles produced in each bin did not 274 

differ significantly (χ2 test, P = 0.226), suggesting that type B whistles were produced 275 

independent of depth.  276 

Pantropical spotted dolphin reactions to tagging appeared relatively minor and 277 

attachments were of generally longer duration compared to other small odontocete bioacoustic 278 

tag data. To place these data in a better context, DTAG attachment performance for pantropical 279 

spotted dolphins was compared with that of melon-headed whales (Table 2). For this evaluation, 280 

attachment of the tag to the animal was considered a successful deployment. Seven attempts 281 

were made (Table 2) to tag pantropical spotted dolphins, resulting in six successful deployments. 282 

While the tag made contact with the focal animal in all seven attempts, one deployment only 283 

lasted 29 s and was not analyzed, and in one attempt, the tag did not stick. Spotted dolphin 284 

reactions to tagging ranged from a flinch to fast dives and accelerated swimming speeds. Eleven 285 

deployment attempts on melon-headed whale resulted in nine successful deployments, one 286 

missed attempt, and one tag that did not stick. Melon-headed whales exhibited slightly stronger 287 

reactions to tagging including barrel rolls, tail flicks, and tail slaps (Fig. 5, Table 2). 288 

Additionally, tag deployment durations for the two species differed substantially. Spotted 289 

dolphin tag deployments averaged ~2.9 h and ranged from ~29 s to ~6 h.  All but one of the 290 

spotted dolphin tags stayed on for more than one hour. For three of six pantropical spotted 291 

dolphin deployments, the reason for tag release is unknown. Of the other three tags, one was 292 

dislodged following a breach, and two ended at the programmed time for tag release (Fig. 5, 293 

Table 2).  294 



14 
 

For melon-headed whales, tag attachment durations averaged ~0.25 h and ranged from ~ 295 

2 s to ~ 58 min (Table 2). Five out of nine deployments lasted 2 min or less. Less adverse 296 

reactions to tagging in spotted dolphins likely resulted in longer tag durations compared with 297 

melon-headed whales. Melon-headed whales seemed to engage in active behaviors to 298 

intentionally dislodge the tag. No melon-headed whale tag deployment resulted in a tag releasing 299 

at the programmed time. Reasons for tag release included animals breaching (two deployments), 300 

barrel-rolling away from the tag pole during the deployment (potentially impacting attachment; 301 

one deployment), accelerating and burst swimming (two deployments), and pre-existing tag 302 

damage (one deployment) (Fig. 5, Table 2); the reason for release was unknown for three 303 

deployments.  304 

Observations after the initial tagging event occurred for three of seven pantropical spotted 305 

dolphins and five of eleven melon-headed whales. The remaining animals were not seen after 306 

tagging and no behavioral observations could be recorded.  While initial reactions to tagging 307 

were variable and generally indicative of some response, most animals of both species resumed 308 

pretagging behavior within ca. 5 s after a tagging attempt was made, regardless of whether the 309 

attempt was successful or not.  310 

Deployments on melon-headed whales resulted in damage (loss of suction cups and 311 

broken brackets) to the tag in five out of eleven tagging attempts.  No tag damage was noted 312 

after any attempts or deployments with pantropical spotted dolphins. While these differences in 313 

tag damage may be a result of variations in species behavior this notion is confounded by 314 

improvements to the tag (as a result of these experiences with melon-headed whales). The 315 

structure of the DTAG3 and the suction-cup mechanism were updated between the studies of 316 

these two species. Improvements included a thicker and more robust bracket that held the suction 317 
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cups (to reduce bracket tearing) and a denser suction cup stem, to prevent it from slipping out of 318 

the bracket under high speeds. While the stronger reactions of melon-headed whales may have 319 

been more likely to cause tag damage and early release, it is possible that the longer deployment 320 

times and lack of tag damage seen with pantropical spotted dolphins was due at least in part to 321 

improvements in the tag. Thus, future deployments on melon-headed whales may benefit from 322 

these tag improvements, suggesting the need for follow-up studies. 323 

While reactions to tagging and the resulting deployment durations may be species-324 

dependent, the behavior of animals prior to tagging could play a role in successful deployments. 325 

Melon-headed whales typically engage in resting and slow travel during daytime hours 326 

(Aschettino et al. 2011, Brownell et al. 2009), while pantropical spotted dolphins tend to exhibit 327 

more steady movement during the day (Baird et al. 2001). This typical daytime behavior of each 328 

species was observed in these data sets; nine of eleven melon-headed whales exhibited milling 329 

behavior or slow travel prior to tagging, while five of seven pantropical spotted dolphins 330 

exhibited bow-riding or travel. It is possible that differences in behavior states between the two 331 

species influenced tagging reactions and resulting deployment durations. Animals in a more 332 

active behavior mode, regardless of species, may be more receptive to tagging than animals in a 333 

resting mode. Future tagging studies of small delphinids may consider daily activity patterns of a 334 

particular species when planning deployments.  335 

 This work represents one of the first successful tagging studies of a small delphinid 336 

species. Here, we highlight the benefits of DTAGs in studying delphinid vocal behavior by 337 

documenting repeated, stereotyped whistles and providing preliminary support for signature 338 

whistle production in pantropical spotted dolphins. Until the development of the DTAG3, data 339 

collection opportunities on small delphinids were limited by their active behavior and the 340 
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comparatively large size of acoustic logging tags. We consider spotted dolphin deployment 341 

durations of multiple hours and 33% success in tags remaining attached for planned lengths of 342 

time to be important achievements and advancements in tagging of small pelagic delphinids. Tag 343 

data are extremely useful for establishing natural acoustic and behavioral patterns as well as for 344 

evaluating impacts of noise or other anthropogenic activities on delphinids. This study 345 

demonstrates success in using tags to evaluate communication and behavior of these small, 346 

abundant animals and shows promise for future studies focusing on small cetaceans. 347 
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Table 1. Number of whistles in each whistle category that were grouped by three judges. The top three rows 

represent day 1 of tagging. The bottom five rows represent day 2 of tagging. The number of whistles from a tag 

that were grouped by three judges into a given whistle category is listed. The number of whistles in each 

category that were recorded on multiple tags is also listed. Tag IDs correspond to the following information: sa 

– species, Stenella attenuata, 146, 147 - day of tagging (Julian day), a-d – the order animals were tagged. 

    

Whistle category 

    Tag A B D E2 H D3 G Q C BB 

sa146a 11 1 4 13 4 0 6 0 8 2 

sa146b 8 0 1 23 32 0 2 1 1 1 

sa146a and sa146b 5 1 2 31 29 0 1 1 2 1 

           sa147b 47 0 0 0 0 0 0 0 0 0 

sa147c 6 0 28 0 3 8 6 9 0 0 

sa147d 8 74 23 0 0 10 3 1 0 1 

sa147b and sa147c 10 0 0 0 0 0 0 0 0 0 

sa147c and sa147d 5 45 32 0 0 13 8 3 0 1 

Total 80 75 56 36 39 18 17 11 9 4 
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Table 2. DTAG3 deployment summary for pantropical spotted dolphins and melon-headed whales. 
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Figure 1. Contour traces for 10 randomly selected whistles from eight whistle categories. A representative 

whistle from each category is also shown as a spectrogram. All whistles are from pantropical spotted dolphins. 

Letters assigned to whistle categories are arbitrary designations. A. type A.  B. type E2.  C. type B.  D. type G.  

E. type D.  F. type H.  G. type D3.  H. type Q.  

Fr
eq

ue
nc

y 
(k

H
z)

0

20000

40000

Fr
eq

ue
nc

y 
(k

H
z)

0

20000

40000

Fr
eq

ue
nc

y 
(k

H
z)

0

20000

40000

0 0.5 1 1.5 2

Fr
eq

ue
nc

y 
(k

H
z)

0

0

20000

40000

0

20000

40000

0
0 0.5 1 1.5 2

Fr
eq

ue
nc

y 
(k

H
z)

0

20000

40000

Time (s)

Time (s)

40

0

40

0

40

0

40

0

40

0

40

0

40

0

30
20
10
0

A

C

G

E

B

D

F

0 1

48

0

48

0.9

0

48

1.8

0 1.4

48

0

48

1.6

1.2

48

0 1.2

48

0

20000

40000

0 0.5 1 1.5 2

40

0

H

0 1.2

Time (s)

48



26 
 

 

Figure 2. Received level vs. angle of arrival for type B whistles (n = 74) and other whistles (n = 12) recorded on 

sa147d.  
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Figure 3. A. Dive plot for sa147d with concurrent type B whistle production. Circles indicate depth and time of 

type B whistles recorded on sa147d. B. Number of type B whistles produced every 10 min over the tag duration.   
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Figure 4. Percent time spent in five meter depth bins for tagged animal sa147d and the number of type B 

whistles produced in the same five meter depth bins.  
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Figure 5. Reactions to tagging and reasons for tag release for pantropical spotted dolphins (Stenella attenuata) 

and melon-headed whales (Peponocephala electra).   
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