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Simulation of hot shape rolling of steel by a meshless method 

 

Abstract 

 

In the presented work, a simulation system for hot shape rolling of steel is 

developed for a continuous rolling mill. During the simulation, temperature, 

displacement, strain and stress fields are calculated. The problem is based on 

strong formulation. The solution procedure of a related thermo-mechanical 

problem is based on novel Local Radial Basis Function Collocation Method 

(LRBFCM). This local meshless method does not require integration and mesh 

generation (polygonisation). For the first time, a simulation of a whole rolling 

schedule is done by a meshless method. The calculations are made based on the 

travelling slice model assumption. The slices are aligned with the rolling 

direction. On each slice the deformation and temperature fields are calculated by 

assuming that there is no strain or heat flow in the rolling direction. By this 

approach large deformations can be calculated through a series of small 

deformation increments on each slice.  

The governing equations and adjacent boundary conditions for thermal and 

mechanical models are in the travelling slice assumption reduced from three to 

two dimensions and adjusted for the application of LRBFCM. The governing 

equations for the mechanical model are separately defined for three types of 

material constitutional relations. These are: elastic, ideal plastic and slightly 

compressible ideal plastic. The governing equations for the thermal model are 

reduced from steady conductive-convective heat transport in three dimensions to 

transient conductive heat transport in two dimensions. 

Through the simulation, every slice is being checked if there exists a contact 

with the roll or not. If the slice has a contact with the roll then first the 

mechanical model and later the thermal model is calculated. If there is no 

contact, only the thermal model is calculated on the slice. In case of a roll 

contact, internal heat generation due to deformation is taken into account. The 

material properties of the mechanical model can be temperature dependent. The 

mass flux through the continuous rolling mill is constant at all slices, therefore 

for each predefined slice position, its corresponding slice time can be calculated.  

The corresponding two-dimensional groove geometry for contact under each roll 

is calculated as a function of position in the rolling direction and roll geometry 

parameters. The rolling parameters considered are: groove width, groove radius, 



 

 

roll gap and roll radius. The first slice is set to 0.5 m away from the first rolling 

stand and the last slice is considered to be 0.3 m after the last rolling stand. The 

initial parameters of the first slice represent process parameters. These are: 

initial temperature distribution, initial shape, initial velocity, material type and 

properties and boundary conditions. 

The computational domain, corresponding with the current slice shape is 

spatially discretized by nodes, positioned in the domain and on its boundary. The 

domain and boundary are arranged in overlapping local influence domains. 

Multiquadric (MQ) Radial Basis Functions (RBF) are used as shape functions on 

each of the influence domains. At least 7 nodes are positioned in every influence 

domain. Explicit time stepping is used for solving the thermal model and large 

deformation in the mechanical model is coped by successive small deformation 

steps. 

A sparse matrix is created as a consequence of simultaneous solution of the 

displacement for all nodes. At each deformation step, small local matrices are 

created for the solution of the thermal model in each node for each time step. 

The non-linear system of equations for plastic deformation is solved by Newton-

Raphson iteration method. The displacement field used for the initial iteration is 

taken from the elastic deformation results. However, during the calculation of 

large deformation cases, when ideal plastic material type is used, the results are 

not satisfactory converging. Therefore, a further research is needed on the 

simulation of a complete rolling schedule by a meshless method, considering 

ideal plastic material properties.  

After a certain number of deformation steps, the collocation nodes at the 

boundary are equidistantly rearranged on the boundary curve and then the rest of 

the nodes in the domain are positioned according to the transfinite interpolation 

and elliptic node generation. The re-noding represents a mandatory step in 

solution procedure to analyze large deformation problems by LRBFCM. The 

calculated values of the thermal and mechanical fields are updated from the old 

node positions to the new node positions through inverse distance (Sheppard) 

interpolation. The final field values and node configuration on each of the slices 

become input values for the next slice, until the last slice in the simulation. The 

described simulation system was coded in C# from the scratch by the author in 

the framework of the research of this dissertation. A user interface for simple 

inclusion of the process parameters, geometry of rolling stands and material 

properties is developed as well. The graphical outputs are based on the ParaView 

software. 



 

 

The thermal and mechanical models are thoroughly verified on spectra of 

various test cases. The thermal model is applied in a convective cooling test case 

and the LRBFCM results are compared with Finite Element Method (FEM). 

Moreover, an internal heat generation during an oval rolling is calculated by 

LRBFCM. The mechanical model is tested for seven different elastic 

deformation examples and LRBFCM results are compared with analytical or 

FEM solutions. These test cases are: tension with prescribed displacement, 

compression with prescribed pressure, tension with prescribed pressure, bending 

of a cantilever beam, expansion of a cylindrical tube, linear compression tension 

and bending of a beam by a uniform load. Furthermore, a flat rolling example 

without friction at the roll contact and considering a slightly compressible ideal 

plastic material (with a compressibility parameter 0.001g  ), based on von 

Mises ideal plastic flow rule, is calculated by LRBFCM and compared with 

FEM. In addition to all previously mentioned test cases, flat and oval rolling 

examples are also calculated by LRBFCM in a stepwise solution procedure and 

compared with FEM when elastic material properties are used. At the roll 

contact, the sticking boundary conditions are applied. Comparisons of the results 

are made in terms of displacement and strain fields. Overall, the models have 

been tested for 11 predefined test cases before applying it to a whole rolling 

simulation. 

In the simulation of hot shape rolling, a real rolling schedule as appears in 

Siderimpes constructed Štore Steel rolling mill is considered, which consists of 

five rolling stands with different groove geometries. 13 m long computational 

domain is defined in the rolling direction by considering 1455 slice positions. An 

initial rectangular cross section with dimensions 95 mm   80 mm with 

16MnCr5S steel is considered at uniform temperature 1100 °C and initial rolling 

speed 0.76 m/s. At the end of the rolling, bar with diameter of 60 mm is 

obtained. Temperature depended elastic material properties are considered. They 

are calculated from JmatPro data base for steel.  

The results are calculated considering plane strain assumption and represented in 

terms of displacement, temperature, strain and stress fields for a slice that exits 

each of the five rolling stands. The sensitivity studies with increased roll’s 

temperature, increased heat transfer coefficient to the roll and neglection of 

internal heat generation are performed to demonstrate expected behaviour of 

temperature on the slices. Moreover, constant elastic material properties at 

different temperatures have been considered. Their influence on slice velocities 

is shown. The simulation system is capable of calculating arbitrary rolling 



 

 

schedule which is specified through user defined groove geometries and 

positions. Therefore it is especially useful when designing new rolling schedules 

for new steel grades.  

Keywords 

Computational thermo-mechanics, hot shape rolling, steel, elastic deformation, 

ideal plastic deformation, meshless methods, strong formulation, coupled 

systems, local radial basis function collocation method, simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Simulacija vročega oblikovnega valjanja z brezmrežno metodo 

 

Povzetek 

 

V predstavljenem delu je bil razvit simulacijski sistem za vroče oblikovno 

valjanje jekla na kontinuirni valjarni. Med simulacijo izračunavamo 

temperaturna, deformacijska, raztezna in napetostna polja. Problem temelji na 

močni formulaciji. Rešitveni postopek za tovrstni termo-mehanski problem 

temelji na novi Lokalni Kolokacijski Metodi z Radialnimi Baznimi Funkcijami 

(LRBFCM). Ta lokalna brezmrežna metoda ne potrebuje integracije in 

generacije mreže (poligonizacije). Prvič je narejena simulacija celotnega 

valjarskega razporeda z brezmrežno metodo. Izračuni so narejeni na podlagi 

predpostavk modela potujoče rezine. Rezine so poravnane v smeri valjanja. Na 

vsaki rezini je izračunano deformacijsko in temperaturno polje ob predpostavki, 

da ni raztezka in toplotnega toka v vzdolžni smeri. S to predpostavko lahko 

izračunavamo velike deformacije na podlagi vrste majhnih deformacijskih 

korakov na vsaki rezini. 

Vodilne enačbe in pripadajoči robni pogoji za termični in mehanski model so v 

modelu potujoče rezine reducirani iz treh v dve dimenziji in prilagojeni za 

uporabo LRBFCM. Vodilne enačbe mehanskega modela so posebej definirane 

za tri različne tipe konstitucijskih relacij. Te so elastične, idealne plastične in 

rahlo stisljive idealne plastične. Vodilne enačbe termičnega modela so 

reducirane iz ustaljene kondukcijsko-konvekcijske transportne enačbe v treh 

dimenzijah na neustaljeno enačbo za prevod toplote v dveh dimenzijah. 

Med simulacijo je za vsako rezino preverjano ali obstaja stik z valjčnico ali ne. 

Če ima rezina stik z valjčnico, potem je najprej izračunan mehanski model in 

nato termični. Če ni stika z valjčnico je na rezini izračunan samo termični model. 

V primeru kontakta z valjčnico, je upoštevana notranja generacija toplote zaradi 

deformacije. Snovne lastnosti mehanskega modela so lahko temperaturno 

odvisne. Masni tok skozi kontinuirno valjarno je konstanten za vse rezine, zato 

lahko za vsak vnaprej definiran položaj rezine izračunamo njen vnaprej definiran 

čas. 

Ustrezna dvo-dimenzionalna gemeotrija vtika za stik pod vsako valjčnico je 

izračunana na podlagi položaja v smeri valjanja in geometrijskih parametrov 

valjčnice. Upoštevani geometrijski parametri vtika so: širina vtika, radij vtika, 

vmesna razdalja med valjčnicama in radij valjčnice. Prva rezina je postavljena 

0,5 metra od prvega valjarskega orodja, zadnja pa 0,3 metra po zadnjem 



 

 

valjarskem ogrodju. Začetni pogoji rezine predstavljajo procesne parametre. Ti 

so: začetna porazdelitev temperature, začetna oblika, začetna hitrost, tip 

materiala in snovne lastnosti ter robni pogoji. 

Računska domena, ki sovpada s trenutno obliko rezine, je prostorsko 

diskretizirana z računskimi točkami, postavljenimi na območje in njegov rob. 

Območje in rob sta urejeni v prekrivajoče se lokalne vplivne domene. 

Multikvadrične radialne bazne funkcije so uporabljene kot oblikovne funkcije na 

vsaki izmed vplivnih domen. V vsaki vplivni domeni je najmanj 7 točk. 

Eksplicitno časovno korakanje je uporabljeno za rešitev termičnega modela in 

velike deformacije v mehanskem modelu so upoštevane s soslednimi majhnimi 

deformacijskimi koraki.  

Redka matrika je postavljena kot posledica simultanega reševanja pomikov v 

vseh točkah. V vsakem deformacijskem koraku postavimo majhne lokalne 

matrike za reševanje termičnega modela v vsaki računski točki za vsak časovni 

korak. Nelinearni sistem enačb za plastično deformacijo je rešen z Newton-

Raphsonovo iterativno metodo. Polje pomikov, uporabljeno za začetno iteracijo, 

je izračunano z elastičnim modelom. Vendar med izračunom velikih deformacij, 

ko uporabimo idealni plastični material, rezultati ne konvergirajo zadovoljivo. 

Zato so potrebne nadaljne raziskave za simulacijo celotne valjarske proge z 

brezmrežno metodo, z upoštevanjem idealnih plastičnih snovnih lastnosti. 

Po določenem številu deformacijskih korakov so kolokacijske točke na robu 

ekvidistantno preporazdeljene na robni krivulji in nato je preostanek točk v 

notranjosti preporazdeljen na podlagi transfinitne interpolacije in eliptične 

generacije računskih točk. Preporazdelitev računskih točk predstavlja potreben 

korak za analizo velikih deformacij z LRBFCM. Izračunane vrednosti 

termičnega in mehanskega modela so posodobljene na novi položaj računskih 

točk iz starega položaja računskih točk na podlagi (Sheppard-ove) interpolacije z 

inverzno razdaljo. Končne vrednosti polj in konfiguracija računskih točk na 

vsaki izmed rezin predstavljajo vhodne podatke za naslednjo rezino do zadnje 

rezine simulacije. Opisani simulacijski sistem je bil programiran od začetka v 

programskem jeziku C# v okviru raziskav te disertacije. Razvit je bil tudi 

uporabniški vmesnik za preprosto vključitev procesnih parametrov, geometrije 

valjanja in snovni lastnosti. Grafični izhodi so bili narejeni na podlagi 

programske opreme ParaView. 

Termični in mehanski model sta skrbno preverjena na spektru različnih testnih 

primerov. Termični model je uporabljen v konvekcijskem hlajenju in rezultati na 

podlagi LRBFCM so primerjani z rezultati metode končnih elementov (FEM). 



 

 

Na podlagi LRBFCM je izračunana tudi generacija toplote na primeru ovalnega 

valjanja. Mehanski model je preverjen na sedmih različnih elastičnih 

deformacijskih primerih in rezultati na podlagi LRBFCM so primerjani z 

analitičnimi in FEM rešitvami. Ti testni primeri so: natezanje s predpisanim 

odmikom, stiskanje s predpisanim tlakom, zvijanje vzvodnega nosilca, 

ekspanzija cilindrične cevi, linearno stiskanje/natezanje in zvijanje nosilca na 

podlagi enakomerno porazdeljene obremenitve. Nadalje so bili primerjani 

izračuni ravnega valjanja, brez trenja na valjčnicah in z upoštevanjem malo 

stisljivega plastičnega materiala (s parametrom stisljivosti 0.001g  ) ter von 

Misesovega idealnega plastičnega pravila tečenja, narejeni z LRBFCM, z 

rezultati FEM. Dodatno k vsem predhodno navedenim testnim prmerom so 

izračunani tudi ploski in ovalni primeri valjanja, izračunani na podlagi postopne 

deformacije za plastični material z LRBFCM in primerjani s FEM. Na stiku z 

valjčnico so upoštevani robni pogoji lepljenja. Primerjave rezultatov so narejene 

na podlagi polj striga in deformacije. Skupaj so bili modeli testirani na podlagi 

11 predhodno definiranih testnih primerov, preden so bili uporabljeni na celotni 

valjarski progi.  

Pri simulaciji vročega oblikovnega valjanja smo uporabili realistične parametre 

vtika, kot nastopajo na valjarski progi Siderimpes v podjetju Štore Steel, ki jo 

stestavlja pet orodij z različnimi geometrijami vtika. 13 m dolga računska 

domena je definirana v smeri valjanja ob upoštevanju 1455 pozicij rezin. 

Upoštevan je začetni profil dimenzije 95 mm   80 mm iz jekla 16MnCr5S na 

začetni temperaturi 1100 °C, valjan z začetno hitrostjo 0,76 m/s. Na koncu 

valjanja dobimo okroglo palico s premerom 60 mm. Predpostavljene so 

temperaturno odvisne snovne lastnosti. Izračunane so iz podatkovne baze 

JmatPro za jekla. 

Rezultati so izračunani na podlagi predpostavke ravninske deformacije in 

predstavljeni s polji deformacije, temperature, raztezka in napetosti za vsako 

rezino, ki izstopa iz petih orodij. Izdelane so bile občutljivostne študije s 

povišano temperaturo valjčnic, povišanim koeficientom prestopa toplote na 

valjčnice in z zanemarjeno notranjo generacijo toplote, s ciljem pokazati 

pričakovano obnašanje temperature na rezinah. Dodatno so upoštevane 

konstantne elastične snovne lastnosti pri različnih temperaturah. Prikazan je 

njihov vpliv na hitrosti rezin. Simulacijski sistem je zmožen izračuna poljubnega 

razporeda valjanja, ki ga uporabnik specificira z definiranimi geometrijami in 

pozicijami vtikov. Zato je uporaben posebej, ko projektiramo nove plane vtikov 

za nove vrste jekel. 
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1 Introduction 

 

In this introductory chapter, first of all, goals and contents of the dissertation are 

elaborated. A brief history and basic principles of rolling are given afterwards. 

Moreover, a discussion on literature overview on simulation of rolling and 

meshless numerical methods is done. Finally, the objectives of this dissertation 

are postulated.   

1.1 Goals of the dissertation and overview of contents  

Numerical modelling and simulation of real-life thermo-mechanical systems is 

gaining its importance in the last few decades due to the fast development of 

computer hardware and software. Metal forming applications certainly belong to 

this class of systems. They can be found from the craftsman who is forging 

metals in his shop to contemporary large production range steel mills. However, 

the physical background behind it has always been the same. A deep 

understanding and simulation of the process gives us a possibility to create better 

and more effective designs in the future. At the present, simulations play a 

crucial role, since they can predict essential issues of today’s mechanical system 

design tasks. That is why many publications are published each year in the field 

of computational thermo-mechanics [Lenard, 2007] and [Lenard, Pietrzyk and 

Cser, 1999]. 

The present dissertation is focused on development of a computational model 

and subsequent simulation of hot shape rolling of steel and it has two major 

objectives. The first objective stems from the importance of a variety of steel 

products in today’s industrial world, each of them requiring a specific thermo-

mechanical treatment that needs to be determined by simulation, and the second 

objective aims at the development of a novel meshless numerical approach used 

in the related simulations.  

Steel has been and remains one of the most significant materials in the world 

since the industrial revolution. After having enough power to have mass 

production lines, steel was always in the scene either as the material used in the 
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production or the material being produced itself. Therefore, there is a mutual 

relation between the industry and the steel production. The increase in the total 

amount of annual steel production in the world can be seen in Figure 1.1. 

 

Figure 1.1: Anual total steel production around the world in million metric tons. 

[World Steel Association, 2014]. 

As steel gained importance, its applications varied enormously. Therefore, 

different usages of steel in different areas were introduced. New designs are 

needed for new applications. However, different applications of steel require 

specific shapes and dimensions of steel which are achieved through the process 

of casting, rolling, extrusion, etc. Therefore, the simulations of the rolling 

process become very important in order to successfully and effectively sustain 

the new demands of the today’s world. The importance of steel is discussed in 

[Roberts, 1983]. 

Numerical methods in computational solid mechanics date back to 1960s where 

first applications of Finite Element Method (FEM) have been used [Zienkiewicz 

and Taylor, 2000]. Since then, thousands of publications and many user friendly 

commercial programs have been introduced based on FEM. This method still 

dominates the area of computational solid mechanics. However, FEM has 

several shortcomings like difficulty in meshing and re-meshing, low accuracy 

especially for computing stresses, simulation of the dynamic crack growth with 

arbitrary paths that does not coincide with the original mesh lines of the 

elements, handing large deformation cases that lead to an extremely distorted 

mesh, simulating the failure of structures or components with large number of 

fragments, solving dynamic contacts with moving boundaries and solving multi-

physics problems. In the last decades, meshless methods became more and more 
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popular due to their simplicity, stability and straight forward application. 

Meshless methods can save significant amount of time because mesh generation 

is not required. They can easily solve large deformation and strong nonlinear 

problems because the connectivity among the nodes is generated as a part of the 

computation and can be modified over time, high accuracy can be achieved 

easily for example; in the areas where more node refinement is required. Nodes 

can be added easily, they can easily handle the damage of the components such 

as fracture which is very useful to simulate the material failures. They can easily 

solve the problems with requirement of multi domains and multi physics [Li and 

Mulay, 2013]. In this dissertation, development of suitable algorithms for 

simulation of a complete rolling schedule is done for the first time by a fully 

meshless method.  

The contents of the dissertation are as follows: In the first chapter a brief history 

of rolling and basic principles are introduced such as first application of rolling 

to understand the need. Afterwards, a detailed literature overview is given on the 

subject of computational modelling of deformation and rolling. As expected, 

most of them are based on FEM. 3 commercial programs, which can be used for 

simulation of hot shape rolling, are also briefly described.   

In the second chapter, governing equations are derived separately for thermal 

and mechanical models. The coupling of thermal and mechanical models is 

discussed. An overview of the equations can be seen at the end of the chapter.  

In the third chapter the physical model used in the rolling simulation is described 

with corresponding boundary conditions, involving the slice model assumptions, 

definition and geometry of the grooves, material behaviour and rolling schedule 

as well. A set of parameters needed for rolling simulation is given as well as the 

flowchart of the simulation.  

In the fourth chapter, a meshless numerical approach is developed and specified 

in details. Collocation points and influence domains are introduced, 

discretization is applied for thermal and mechanical models. Subsequently, a 

sparse system of equations is defined as a consequence of the mechanical solver 

as well as the explicit time stepping for the thermal model.  

In chapter five, some tests are done to prove that the model is performing as 

expected. In elastic cases the results are compared with the analytical solution or 

FEM based commercial code DEFORM [DEFORM, 2009] and in plastic case 

only with FEM.  
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In the sixth chapter, the simulation is put to the rolling test and compared with 

FEM in many aspects of deformation.  

In chapter seven, all the input parameters for a complete rolling schedule are 

given and a simulation of hot shape rolling of steel is done. The results are given 

in terms of temperature field, displacement field, strain field, and stress field.  

Chapter eight includes concluding remarks and future developments followed by 

a list of references.  

1.2 History and basic principles of rolling process 

The first record of any type of true rolling mills was drawn by Leonardo da 

Vinci in 1480, however there is no evidence that his design has ever been built 

and used. The first elements processed by hand driven rolls were mostly gold, 

silver and lead since they are much softer than the other metals and this type of 

rolls dates back as late as 14
th

 century. As discussed by W. L. Roberts [Roberts, 

1978], the rolling of metals was not of big interest for people until the middle of 

16
th

 century. People at that time found many ways of using metal applications 

especially for lead which needed to be rolled into thin sheets. Such examples of 

usage of lead would be roof claddings and organ pipes at that time.  

The first developments of rolling of iron are thought to be taken place in 

Germany, Belgium and Great Britain around 16
th

 century, nevertheless there is 

no clear evidence where and how it started first. During the 17
th

 century the 

exponential growth of rolling of iron was observed. Also in the same century, 

the hot rolling of iron was in operation and until then the rolled product was 

always at ambient temperature. Thin plate rolling of iron was not possible at that 

time with using cold rolling process. Germans were the first ones dominating the 

European market by using hot rolling of iron with the help of water power which 

led them to produce thin sheets of iron which served as a raw material for many 

applications at that time. It took British until the beginning of 18
th

 century to 

take over the tinplate iron production from Germans. According to many 

observers from that time, Great Britain was then leading the way [Roberts, 

1978].  

In 1728, John Payne took the patent of various rolling mill configurations to 

produce different shapes and forms shown in Figure 1.2. This process is now 

called shape rolling. The difference between shape and flat rolling can be seen in 

Figure 1.3.  
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Figure 1.2: First rolling mill to produce various cross sections, patented by John 

Payne in 1728.  

The first continuous hot rolling mills were patented by Sir Henry Bessemer in 

1857 and by Dr. R. V. Leach in 1859 [Roberts, 1978]. 

 

                

Figure 1.3: Example of an oval shape rolling on left and flat rolling on right.   

1.3 Literature overview on simulation of rolling and 

discussion of models used 

The rolling process can take place in two major modes; hot or cold rolling. Cold 

rolling does not require the energy to heat the metal in reheating furnaces, but it 

requires much more power to shape it. Due to high forces, lubricants are more 
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often used in cold rolling then in the hot rolling. In the hot rolling, water sprays 

are used for the roll not to exceed a certain temperature.  

The physical explanation of the rolling process has been shown in many books 

[Lenard 2007], [Roberts 1983], [Lenard, Pietrzyk and Cser 1999], [Ginzburg 

1993] and proceedings [Proceedings of the 4
th

 international steel rolling 

conference, 1987], [Proceedings of the 9
th

 international / 4
th

 European steel 

rolling conference, 2006].   

The first mechanical model was developed by Orowan which is also referred as 

1D rolling model [Orowan, 1943]. He basically applied the equilibrium of forces 

in the rolling direction excluding any sideway impacts. Even before, Hitchcock 

derived a formula for reduction of roll radius during flat rolling [Hitchcock, 

1935].  

Sims additionally made a mechanical model to calculate the roll separating force 

[Sims, 1954]. It serves as one of the simplest models in use because the roll 

separating force can be directly calculated with Sims’s formula. It has been 

widely used in the industry since it gives comparable results to observations and 

also it is quite simple to calculate. 

Schey [Schey, 2000] introduced in his book “Introduction to Manufacturing 

Processes” a simple formula as well to calculate the roll separating force. He 

described the case when the sticking condition occurs and on a graph he related 

the pressure intensification factor, which is needed in his formula, in a system 

with different coefficients of friction.  

Mechanical behaviour of steel can be analyzed at least in three regimes: elastic, 

plastic and elasto-plastic. The concepts with plasticity are the most complex, 

since the material behaviour is non-linear in this concept. The material scientists 

wanted to physically analyze and calculate the plastic deformation phenomena. 

The pioneer of this approach was von Mises who studied the plastic flow of a 

material and made a very useful assumption that connects the plastic flow 

function with the yielding function [von Mises, 1913]. This approach has been 

used by many researchers until now. The practical advantage is that von Mises 

flow rule can not only be used in uniaxial deformation, but also in the multiaxial 

cases. In the present dissertation, the von Mises flow rule assumption is applied 

to the cases with plastic deformation. The actual meaning of this assumption is, 

that the effective stress that causes plastic deformation is always equal to the 

yield stress. This can also be referred to ideal plastic behaviour or linearized 

plasticity. The implementation of deformation concepts is mainly associated 

with the implementation of the stress-strain relations. In the general formulation, 

the stresses are used, however in the simulation, displacements have to be 

calculated as a result. Therefore, writing the stresses in terms of displacements in 
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the framework of meshless discretization is one of the key elements of this 

dissertation.   

When analyzing hot rolling of steel, one cannot cover the subject without 

introducing shape rolling. The steel factories, which have continuous casting 

stations, produce a constant cross sectioned steel. This initial cross sectional size 

is almost never used in any real world applications. Therefore, the rolling 

stations in the industry are positioned right after the continuous casting to reduce 

the cross sectional size to various demanded shapes. Many rolling stations use 

grooves to change the shape of the bloom. The types of these grooves can vary 

excessively. The design of grooves and stands can be very diverse in order to be 

able to produce specific structural shapes such as H or I beams. Many models in 

computational mechanics have been developed for the metal deformation 

problems since 1980s. The first numerical models of rolling were calculated for 

a 3D physical domain. The bloom to be rolled is a 3D object and deformation 

takes place in all three axes. Due to geometrical complexities the calculations 

took several days to complete. Later on some different methodologies have been 

applied to reduce the calculation effort and simplify the problem. These methods 

reduce 3D to a 2D problem by using discontinuous cross sections as physical 

computational domains. The models that are based on a 2D cross sectional 

model, also known as travelling slice model, calculate the new shapes of those 

slices which all together give the final 3D shape. There are two cases of 

commonly used slice models, the plane stress and the plane strain cases. A 

crucial part of this dissertation is the slice model assumption. A slice model was 

used by Glowacki and his co-workers in a plane strain rolling case to analyze a 

multi-pass bar rolling process in small steps [Glowacki, Kedzierski, Kusiak, 

Madej and Pietrzyk, 1992].  

There have been some more advanced mechanical models developed to analyze 

the metal deformation process and also applied to the rolling process. One of the 

first complex models was based on the upper bound theorem, which was first 

described by Avitsur [Avitsur, 1968]. The idea is the balance of powers acting 

over the material during the deformation. The power balance equation can be 

separated into three parts. The first part is the power used for the material 

deformation, the second part is the power used for the surface tractions which 

take place at the contact surface and the third part is the power supplied due to 

the gravitational body forces.    

Around the same time, the first FEM models were developed by [Marcel and 

King, 1967] and [Lee and Kobayashi, 1973]. Accurate results were gained for 

small plastic strains. Many more accurate results have been achieved by using 

FEM as presented by [Glowacki 1996], [Lenard, Pietrzyk and Cser 1999].   
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FEMs have been used many times to simulate the rolling process. They usually 

use the weak formulation of the power balance equation per unit width which 

requires to be integrated through volume and the contact surface. In order to do 

that the FEM requires integration over the polygons of the domain. However, 

this approach is not suitable in meshless methods because the background 

integration requires, even in a meshless method, a background meshing, similar 

to FEM, as discussed by [Liu, 2003]. Good examples of FEM application in 

rolling are presented by [Glowacki, Dyja and Lesik, 1995], [Hsiang and Lin, 

2000], [Lenard, Pietrzyk and Cser, 1999], [Jiang, Tieu, Zhang, Lu and Sun, 

2003] and [Glowacki, 2005]. FEM is also used for simulating shape rolling 

process for compensation of dies as in a PhD thesis by [Belinski, 1999] and for 

sensitivity studies of hot rolling by [Picque, 2004].  

First slightly compressible material concept in solid mechanics is applied by 

[Osakada, Nakano and Mori, 1982]. The main advantage of using slightly 

compressible material is that, the governing equations derived from it are 

functioning to be more accurate than the extension of the simple infinitesimal 

deformation theory when dealing with non steady deformation problems.    

After countless FEM applications in solid mechanics have been made, more and 

more deformation problems started to be solved by meshless methods. One of 

the first attempts is made by Chen et al. [Chen, Roque, Pan and Button, 1998] by 

using the reproduction kernel particle method (RKPM) [Liu, Jun and Zhang, 

1995]. Since 1990s, several publications can be found on deformation problems 

by using meshless methods, particularly in terms of Point Interpolation Method 

(PIM). A two-dimensional deformed incompressible bubble in potential flow is 

calculated by Method of Fundamental Solutions (MFS) by [Šarler, 2006]. A 

Nodal Integration Radial Point Interpolation Method (NI-RPIM) has been 

applied to solve deformation problems by [Liu, Zhang, Wang, Zhong, Li and 

Han, 2007] and Radial point Interpolation Method (RPIM) by [Liu and Gu, 

2005]. Local Radial Point Interpolation Method (LRPIM) has also been studied 

by [Liu and Gu, 2001a] and Local Point Interpolation Method (LPIM) by [Gu 

and Liu, 2001] and [Liu, and Gu, 2001b]. PIM method has also been studied in 

details in many publications by [Liu and Gu, 2001c], [Oñate, Idelsohn, 

Zienkiewicz and Taylor, 1996] and [Pozo, Perrazzo and Angulo, 2009]. The 

method includes collocation with using radial, polynomial or both of them as 

basis functions. The discussion of using different radial basis functions and 

adding polynomial functions has been done by [Liu and Gu, 2002] and by [Hu 

and Hua, 2006]. They all used the general definition of the deformation theory, 

however their solution procedure always relies on the weak formulation. Many 

application and test cases have been presented by them. A comparison between 

weak and strong formulation is also made by Batra and Zhang [Batra and Zhang, 
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2007] with using PIM. In their test cases weak formulation was shown to be 

more accurate than the strong formulation. Weak formulation requires 

integration, whereas the strong formulation does not need any integration and is 

thus completely meshless.   

Several strong form meshless publications in the field of solid mechanics 

appeared recently. Most of them are based on Point Collocation Method (PCM) 

[Guo, Nakanishi and Yokouchi, 2005], Finite Points Method (FPM) [Oñate, 

Perazzo and Miquel, 2001], Radial Point Interpolation Collocation Method 

(RPICM) [Liu, Liu, Tai and Lam, 2005], Radial Point Collocation Method 

(RPCM) [Kee, Liu and Lu, 2008], Least-square Radial Point Collocation 

Method (LS-RPCM) [Kee, Liu and Lu, 2007]. In some publications, the use of 

strong form with RBFs is shown as a successful method [Kee, Liu, Zhang and 

Lu, 2008] as well as using RBF with polynomial functions [Liu, Kee, Zhong, Li 

and Han, 2007]. A rigid-plastic deformation case with strong formulation has 

also been calculated by [Guo, Nakanishi, 2003] with using MLS. The strong and 

weak formulation of mechanical deformation problem, such as in the case of 

rolling, is explained by [Liu, 2003]. The application of the weak form was made 

by [Atluri, 2004] and solved by Meshless Local Petrov Galerkin Method 

(MLPGM) for a 3D elastic material.  

A 3D rolling analysis with FEM was also simulated by Hsiang and Lin [Hsiang 

and Lin, 2000]. However, in order to overcome the immense amount of 

computational power needed for a 3D FEM shape rolling, slice model is used. 

The computational framework can be chosen either Eulerian or Lagrangian in 

rolling. Eulerian analysis looks at the same frame and assumes a continuous flow 

at the inlet and the outlet of the mill. In such framework the calculation belongs 

to the specific position, not to the material, since the material is always changing 

at the same point. On the other hand, in a Lagrangian frame, the domain directly 

belongs to the same material throughout the deformation. Therefore all the slice 

models, regardless of the numerical method used, are based on Lagrangian 

frame. The examples of FEM based rolling simulations in Lagrangian 

description are discussed by [Lenard, Pietrzyk and Cser, 1999]. Moreover, also a 

mixed Lagrangian-Eulerian coordinate system could be used for rolling. In the 

rolling direction Eulerian coordinate system can be chosen, since the material 

has inflow and outflow in the longitudinal direction. For the vertical and lateral 

direction, Lagrangian coordinate system can be used, since temperature and 

deformation are calculated for a slice representing billet or bloom. The travelling 

slice always describes the same portion of the material at each step. The details 

of this system are explained and applied by [Synka and Kainz, 2003] and also by 

[Glowacki, 1996]. Within the content of the present dissertation, a mixed 

Lagrangian-Eulerian description will be used. 
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Commercial codes for rolling are also available in the market and some of them 

are also used as a reference in the present research. The program called Wicon 

[Wicon, 2004] is used to create and test the whole rolling schedule of shape 

rolling, including the creation of the custom rolling sequence and pass design. 

The grooves can be specifically designed for each pass. The main advantage of 

the program is that it calculates and shows the cross sectional appearance of the 

bloom after each pass. The snapshot of the program interface can be seen in 

Figure 1.5. Hot Strip Mill Modeling (HSMM) [HSMM, 2008] is another 

commercial program to analyze the hot rolling just, limited to flat rolling mills. 

It also calculates the width spread and analyzes the temperature changes, with 

being able to include the effects of the water sprays to cool down the rolls. The 

snapshot of the program interface can be seen in Figure 1.6.   

Computational methods created a step forward in terms of various applications 

of thermo-mechanics. A user can define his own specific problem and get 

solution by using a computational method such as shown in this dissertation.   

 

 
Figure 1.4: Screenshot of the commercial program Wicon. 
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Figure 1.5: Screenshot of the commercial program HSMM  

In some cases of flat rolling, the deformation of the bloom at the edges may be 

neglected. However, for the shape rolling, the edge deformation usually 

represents a major part of the solution. In order to know the final shape of the 

bloom after shape rolling, the spread of the width has to be calculated as well. 

There are many formulas developed by the researchers to calculate the width 

spread. These formulas were created by using many experimental data. 

Depending on the configuration, one may work better than the other. The spread 

calculation formulas were given by [Beese, 1980], [El-Kalay and Sparling, 

1968], [Helmi and Alexander, 1968], [McCrum 1956], [Wusatovski, 1955] and 

[Shibahara, 1981]. Wusatowski’s spread calculation formula was used by the 

commercial program Wicon with some further adjustments. Some of the 

researchers who analyzed the hot rolling have also made their own simulators 

which are mostly based on FEM. There exist also some rare models developed 

to analyze rolling by using meshless methods in the solution procedure. These 

attempts are explained in the next subchapter.  

1.4 Meshless numerical methods for thermo-mechanics 

There is a growing interest in developing new numerical methods in order to 

calculate and analyze complex mechanical systems such as rolling. The class of 

the numerical methods that are rising in its importance in the last decades are the 
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meshless methods. The literature survey of shape rolling analysis with meshless 

methods is described below. 

Various applications of meshless methods on solid mechanics can be found in 

the books by [Atluri, Shen, 2002], [Li and Mulay, 2013], [Chen, Lee and 

Eskandarian, 2006] and [Li and Liu, 2004].  

The Point Interpolation Method (PIM) was first proposed by [Liu and Gu, 2001] 

and later on used by [Hu, Yao and Hua, 2006]. Hu, Yao and Hua used PIM with 

the polynomial and radial basis functions (RBF) together and concluded that 

adding polynomial terms increases the stability. The results have been shown on 

the case of back extrusion process. The numerical applications of RBF 

interpolation are detailed in books by [Fasshauer, 2007], [Buhmann, 2003], 

[Chen, Fu and Chen, 2013] and [Wendland, 2010]. 

Smoothed Particle Hydrodynamics (SPH) is a meshfree solution procedure 

which was originally proposed by [Lucy, 1977] and applied to astrophysical 

problems. This method was first applied to solid mechanics by [Libersky and 

Petschek, 1991]. A further testing is done by [Batra and Zhang, 2007] for solid 

mechanics and also a comparison between strong and weak formulations has 

been made. Batra and Zhang have concluded that as the deformation increases 

the error of the strong formulation becomes larger than the error of the weak 

formulation. The stiffness matrix needed to solve the deformation problem is 

also clearly expressed here. A least squares meshfree method for rigid-plastic is 

also applied by [Kwon and Youn, 2006] using weak form, and an Element Free 

Galerkin Method (EFGM) for elasto-plastic deformation problems is applied by 

[Ullah and Augarde, 2013].  

Oñate, Idelsohn, Zienkiewicz and Taylor first proposed and applied Finite Point 

Method (FPM) in computational mechanics [Oñate, Idelsohn, Zienkiewicz and 

Taylor, 1996]. Pozo, Perrazzo and Angulo have also used FPM to solve the 

nonlinear material behavior in the deformation theory [Pozo, Perrazzo and 

Angulo, 2009]. They have expressed their own effective Young’s modulus to 

approximate the nonlinear plastic behavior. There are also many more meshless 

methods that can be applied as well, such as Meshless Local Petrov-Galerkin 

(MLPG) and Element Free Galerkin method (EFG).  

Eventhough some meshless methods have been used to analyze the rolling 

process, the main approach to the solution in these cases are usually based on 

(weak formulation along with the integration polygons of the elements) as PIM 

used by [Hu, Yao and Hua, 2007] and EFG is applied by [Xiong, Rodrigues and 

Martins, 2004] and by [Gan, Zhao, Wu and Lu, 2007]. However, the meshless 

methods have been widely increasing its range of application. These lead many 

people to try different formulation of meshless methods in order to solve partial 

differential equations (PDEs) arising from the physical applications. Although 
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FEM is a very widely known procedure, it might run into difficulties on metal 

deformation analysis due to generation of meshes on complex geometries and 

the distortion of those generated meshes during deformation. This might 

substantially alter the accuracy and reliability of the simulation. Because of the 

truly meshless character, the local radial basis function collocation method 

(LRBFCM) offers a good alternative to FEM in simulations of large 

deformations. LRBFCM has been recently used in highly sophisticated 

simulations like multi-scale solidification modelling [Šarler, Kosec, Lorbiecka 

and Vertnik, 2010], convection driven melting of anisotropic metals [Kosec and 

Šarler, 2009], macrosegregation [Kosec and Šarler, 2014], continuous casting of 

steel [Vertnik and Šarler, 2009], [Vertnik and Šarler, 2014] and laminar flow 

under magnetic field [Mramor, Vertnik and Šarler, 2014]. Therefore LRBFCM 

is developed and shown in this dissertation to be capable of solving thermo-

mechanical model of hot shape rolling without the need of any kind of meshing.  

 

1.5 Objectives 

The main aim of this dissertation is to develop LRBFCM for large deformation 

problems and to solve the hot shape rolling process by using this meshless 

numerical method. It is important to mention that the solution embraces coupled 

results from the thermal and the mechanical models which are strongly coupled.  

The purpose of related simulations is for pre-testing different roll pass designs as 

well as the rolling stands with different grove geometries as a function of the 

material and shape of the strand rolled. Eventhough forward and backward slip 

based on friction are very important aspects of shape rolling, only sticking 

boundary condition is considered between steel and roll. The first aim of this 

research is to achieve numerical stability and to demonstrate successful results 

by LRBFCM for large deformation problems. Coupling of the mechanical and 

thermal models are achieved through temperature depended elastic material 

properties of steel. However, a realistic yiled function based on strain, strain rate 

and temperature will be included in the continuation of this work.The results on 

macro scale will be coupled with the microstructure models in order to have a 

complete micro-macro analysis of the deformation.    
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2 Governing Equations 

 

In Chapter 2 first the mechanical and then the thermal models, employed in the 

dissertation, are explained in details. In the first part, theory of deformation and 

its applications to different material types is elaborated. The discussion considers 

three material types; elastic, ideal plastic and slightly compressible ideal plastic. 

In the second part, equations used in the thermal model are explained. They 

involve steady conductive-convective heat transport and transient conductive 

heat transport. The coupling of the mechanical and the thermal models is 

discussed at the end of this chapter.  

2.1 Deformation theory 

A solid material, such as steel at rest, resists the forces acting on it up to a certain 

limit. If these forces are over certain value, the material starts to change its 

shape. The surface that faces the pressure, moves in a positive way with respect 

to the direction of the force. This process of changing shape of a material is 

called and analysed in physics as a deformation problem.   

The magnitude of the deformation in the material science is measured with 

strains. Strain is the ratio between the change of the length and the initial length 

across an axis due to deformation.  

When a material is compressed in one direction, just like in flat rolling, this 

effect will be seen in other directions as an elongation and creates strains as well. 

The ratio, that relates those strain values to specific material, is the Poisson’s 

ratio  for a specific material and   

t

a





  , (2.1) 

    

   

where t  is the transversal strain and a  is the axial strain. The negative sign in 

Equation (2.1) shows that the material elongates in one direction (axial 

direction) with a positive axial strain, in the other two directions the material 

shrinks; therefore it gets a negative transversal strain as shown in Figure 2.1.  A 
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typical value of Poisson’s ratio used in simulations for a hot rolled steel is 0.49 

[Glowacki, 2005].  

 
Figure 2.1: Definition of the Poisson’s ratio for an isotropic cubic material with 

side L  when one side is elongated for L and due to this effect the other two 

sides are shrunk by 'L . The strains are a L L    and t L L   .     

The ultimate stress point is the highest stress value during the uniaxial tension 

test that material achieves, because beyond this point less stress is necessary to 

cause more strain due to reduction in cross sectional area which appears as 

necking. Between necking and yielding, stress still increases as the strain 

increases as in Figure 2.6.  

Brittle materials such as glass do not have any yield stress, strain hardening and 

plastic region. The fracture occurs in the elastic region and the stress strain graph 

has a very steep linear shape as seen in Figure 2.2.   

 

Figure 2.2: Stress-strain graphs of brittle and ductile materials.  
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The forces acting on material’s surface to deform the sample also create shear 

forces or stresses that act tangential or parallel to the surface. Shearing can be 

imagined as sliding of an imaginary internal plane relative to its original 

position. The forces acting perpendicular to the surface are called the normal 

forces.      

The relationship between the shear stress   and the shear strain   is described as 

G



 , (2.2) 

where G  is the shear modulus. 

When analyzing the deformation of a realistic, three dimensional object, the 

stresses ij  are used in calculations. In a Cartesian coordinate system, where the 

axes ,  ,  x y z  are used, the components of a stress tensor can be seen in Figure 

2.3. The stresses ,  ,  xx yy zz    are in the direction of axes ,  ,  x y z  respectively. 

The other stress components, ij  where i j  are in the direction perpendicular 

to the axes and represent shearing.  

 

Figure 2.3: Normal and shear stresses are shown on a cube. 

Stress tensor T  can be written in a matrix form as 
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xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 

T . (2.3) 

The same stress tensor can, by rotational transformation, be written in terms of 

principle stresses i , which are chosen in such a way that no shearing occurs. 

After the rotation, the new axes obtained, are called principle directions and 

   0    0

0       0

0     0    

x

y

z







 
 

  
 
 

T . (2.4) 

Hydrostatic stress m  is defined in terms of principle stresses as 

3

x y z

m

  


 
 . (2.5) 

Hydrostatic stress tensor is 

  0    0

0      0

0    0    

m

m m

m



 



 
 


 
  

δ , (2.6) 

where δ  is 3x3 identity matrix 

1  0  0

0  1  0

0  0  1

 
 


 
  

δ . (2.7) 

Stress deviator tensor s  is defined as    

                        

                       

                            

xx m xy xz xx xy xz

yx xx m yz yx yy yz

zx zy zz m zx zy zz

s s s

s s s

s s s

   

   

   

   
   

     
   

   

s , (2.8) 

or in component from, ijs  is equals to 
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ij ij m ijs     . (2.9) 

In the deformation theory, Cauchy’s stress formulation is one of the fundamental 

theorems, which states that the forces acting at a point over the surface of a 

material can be defined through a stress vector  

t = T n , (2.10) 

where t  is the stress vector which has three components in 3D coordinate 

system, T  is the stress tensor and n  is the unit normal vector. The stress vector 

on an arbitrary plane defined by its unit normal n  can be calculated in terms of 

components of stress and unit normal as 

i ij jt n .  (2.11)  

Cauchy’s theorem in (2.10) can now be written in a form of the following three 

equations 

,

,

,

xx x xy y xz z x

yx x yy y yz z y

zx x zy y zz z z

n n n n

n n n n

n n n n

   

   

   

  

  

  

 (2.12)  

where   is a magnitude of stress in direction of unit normal vector n .  

A trivial solution can be determined if the following condition is met, 

                  

                 0

                    

xx xy xz

yx yy yz

zx zy zz

   

   

   



 



. (2.13) 

From this condition we get the following characteristic equation to solve, 

3 2

1 2 3 0I I I      , (2.14) 

where 1 2,I I and 3I  are the invariants of the stress tensor. They are defined as 

1

2 2 2

2

2 2 2

3

,

,

2  .

xx yy zz

xx yy yy zz xx zz xy yz xz

xx yy zz xy yz zx xy zz yz xx xz yy

I

I

I

  

        

           

  

     

    

 (2.15) 
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Similarly, for the stress deviator tensor s , its invariants ( iJ ) can be defined as 

     

 

1

2 2 2 2 2 2

2

3

3 1 1 2 3

0,

1
,

6

2 1
det  . 

27 3

xx yy zz

xx yy yy zz zz xx xy yz zx

J s s s

J

J I I I I

        

   

         
  

   s

 
(2.16) 

The advantage of using stress deviator tensor can be directly seen, since its first 

invariant always gets a zero value.  

In case of a unit normal, which makes equal angles with all three axes in a 

Cartesian coordinate system, written as      1 3 1 3 1 3x y z  n i i i  

where , ,x y zi i i  are the base vectors and x, y, z are the coordinates, the plane that 

this unit normal is perpendicular to, creates an octahedral plane shown in Figure 

2.11. The normal stress on the face of this octahedral plane is called octahedral 

stress, and defined as 

2

2

3
oct J  . (2.17) 

2.2 Mechanical model 

This sub-chapter discusses the formulation of the mechanical model within 

strong formulation. The model with its boundary conditions is explained for 

elastic materials, ideal plastic materials and ideal slightly compressible plastic 

materials.  

2.2.1 Formulation of mechanical model 

The mechanical model used in rolling is based on the deformation theory. There 

are two types of formulation; weak and strong. A comparison of these two 

formulations is made by [Liu, 2003] in the context of meshless methods. In the 

weak form the governing equation is written in terms of volume or area 

integrals, however in strong form the governing equation is defined by forces per 

unit volume and does not include any integration. A strong form is chosen in 

present analysis due to its compatibility with strong form heat and fluid flow 

simulations with meshless methods, previously developed in our group. The 

background theory of the mechanical equations used in this subchapter can be 
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found in [Lai, Krempl and Ruben, 2010], [Fung and Tong, 2001] and [Kleiber, 

1998].  

The static deformation problems is defined as 

T L σ+d 0 , (2.18) 

where L  is a derivative operator and represented by a 36 matrix as, 

T

      0       0        0            

 0           0            0       

 0        0                    0  

x z y

y z x

z y x

p p p

p p p

p p p

   
 
   
   
 

   
 

   
    

L , 
 

(2.19) 

where the position vector is defined as x x y y y yp p p  p i i i  and T  denotes the 

transpose of a matrix.  

The stress vector σ  is described in terms of its six components in a Cartesian 

coordinate system with axes ,  ,  x y z  as 

T

          xx yy zz yz xz xy        σ . (2.20)  

The last term in Equation (2.18) is the body force vector d . It is the contribution 

of body forces due to weight of the material during the deformation. In 3 

dimensional Cartesian coordinates it has the following components, 

x

y

z

d

d

d

 
 

  
 
 

d . (2.21)  

The strong formulation of deformation constitutes three individual balance 

equations in each three principle directions which are in the discussed 3D 

coordinate system 

0
xyxx xz

x

x y z

d
p p p

  
   

  
, 

 

(2.22) 
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0
xy yy yz

y

x y z

d
p p p

    
   

  
, 

0
yzxz zz

z

x y z

d
p p p

  
   

  
. 

 

(2.23) 

 

 

(2.24) 

The components of the stress vector can be related to the components of the 

strain vector with 66 stiffness matrix C . The corresponding values depend on 

the material behaviour and will be given later for considered three types of 

materials.   

σ =Cε , (2.25)  

where the strain vector is 

T

     xx yy zz yz xz xy        ε . (2.26)  

The strain vector can be related to the displacement vector 
T

  x y zu u u   u   

ε = Lu . (2.27)  

The volumetric strain v  in Cartesian coordinate system is  

v xx yy yy      . (2.28)  

The displacement vector between two positions can be seen in Figure 2.4.  
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Figure 2.4: Displacement and position vectors are shown for a corresponding 

time t .  

Hence the governing equation can be written in terms of displacement as 

T
L CLu +d = 0 . (2.29)  

Same equation can also be written more explicitly 
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(2.30)  
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(2.32)  

In a 2D system, the stress, strain and displacement vectors are reduced to 

T

    xx yy xy     σ , 
T

  xx yy xy     ε , 
T

 x yu u   u . (2.33)  

Therefore the governing equation (2.29) becomes 
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, (2.34) 
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. (2.35)  

In terms of displacement 
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         
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 (2.36)  
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 (2.37)  

It is important to note that in 2D the stiffness matrix is reduced to 33.  

2.2.2 Boundary conditions 

Consider a domain   with boundary  , where the boundary consists of two 

types of boundary conditions: the natural (displacement) 
u  or Dirichlet and 

essential (traction) 
  or Neumann boundaries 

u     . In the natural 

boundary condition a prescribed displacement u  is known and in the essential 

boundary condition the prescribed traction is known  .  

The main equation for natural boundary condition is written as 

T N σ τ , (2.38)  

where
 
in a 3D model,

 
N

 
becomes a 63 matrix consisting of unit normals 

coordinates  

T

    0    0    0       

0        0       0    

0     0             0

x z y

y z x

z y x

n n n

n n n

n n n

 
 

  
 
 

N . (2.39)  

Also τ  represents the prescribed shear stress at the surface where stress is 

applied. The components in Cartesian coordinate system are shown below 

x

y

z







 
 

  
 
 

τ . (2.40) 

The set of equations for natural boundary condition becomes 

; x

x xx y xy z xz xn n n       p , 

; y

x xy y yy z yz yn n n       p , 

(2.41) 

(2.42) 
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; z

x xz y yz z zz zn n n       p . (2.43) 

Each row above is indicated with different boundary notation 
x , 

y  and 
z  

respectively where 
x y z       . In terms of displacement 
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(2.44) 
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(2.46) 

In a 2D system the Equation (2.38) is reduced to  

x x y xy xn n    , (2.47) 
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y y x xy yn n    ,    
 

(2.48) 

where 
x y      . The Equations (2.47) and (2.48) can be written in terms 

of displacement as 

11 12 13

31 32 33 ,

y yx x
x

x y y x

y yx x
y x

x y y x

u uu u
n C C C

p p p p

u uu u
n C C C

p p p p


    
           

    
             

 
 

(2.49) 

 

21 22 23

31 32 33 .

y yx x
y

x y y x

y yx x
x y

x y y x

u uu u
n C C C

p p p p

u uu u
n C C C

p p p p


    
           

    
             

 
 

(2.50)  

The equation used for the essential boundary condition is in terms of prescribed 

displacement u  on the boundary,  

u = u . (2.51)  

In component form 

; ,

; ,

; ,

ux

x x

uy

y y

uz

z z

u u

u u

u u

 

 

 

p

p

p

 (2.52)  

where each row has specific boundary indicator 
ux , 

uy  and 
uz  respectively 

where 
u ux uy uz    . In component form in 2D 

x x

y y

u u

u u

   
   

   

. (2.53)  

where 
iu  is the component of the displacement vector and iu  is the component 

of the prescribed displacement vector in 
u ux uy    . This boundary 
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condition is applied when the displacement on the boundary is known or can be 

calculated. It is important to note that a boundary in one direction can have an 

essential boundary condition while in the other direction the natural boundary 

condition. The displacement vectors between different position vectors are 

drawn in Figure 2.5.   

 

Figure 2.5: Evolution of displacement vector u  between different position 

vectors , ,p r s  through the deformation. 

2.2.3 Elastic deformation 

The material behaviour is elastic up to the yield stress. Any deformation not 

exceeding the yield stress creates an elastic deformation. Under the elastic limit 

of deformation, the stress strain relation is approximately linear up to the point 

of proportional limit. When stresses up to the yield stress are applied and then 

they are released, the final strain becomes zero, which means the material goes 

back to its original shape. This is called elastic recovery. Up to the elastic limit 

the steel will not face any permanent deformation due to elastic recovery. 

However, elastic recovery can occur after higher amounts of stress exceeding 

yield stress as seen in Figure 2.6. The ratio of stress over strain up to the elastic 

limit is called Young’s modulus or modulus of elasticity E .  
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Figure 2.6: Scheme of uniaxial stress strain relations. Demonstration of elastic 

recovery (on left). Details of stress values of mild steel. 1- proportional limit, 2-

elastic limit, 3- yield point, 4- ultimate stress (on right).  

According to Hooke’s law, the uniaxial stress strain relation can be expressed in 

the following way 

E  . (2.54)  

In a 3D case, the stiffness matrix e
C  relates the vector of stresses with the vector 

of strains. It is given by  

  

 

 

 

1                          0          0            0

        1                 0           0           0

                 1        0           0           0

   0          0         0 
1 1 2

e E

  

  

  

 








 

C
 

 

 

1 2
          0            0

2

1 2
   0          0         0            0          0

2

1 2
   0          0         0            0           0      

2







 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (2.55)  

The matrix above requires the knowledge of Young's modulus E  and Poisson’s 

ratio  .  
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2.2.3.1 Plane stress case 

In continuum mechanics, a material is said to be under plane stress if the stress 

vector is zero across a particular surface. When that situation occurs over an 

entire element of a structure, as is often the case for thin plates, the stress 

analysis is considerably simplified, as the stress state can be represented by a 

tensor of dimension 2 (representable as a 2 × 2 matrix rather than 3 × 3). An 

example of an object obeying plane stress assumption is shown in Figure 2.7 

below.  

 

Figure 2.7: Scheme of plane stress situation. Demonstration of application when 

the force is being applied and material elongates.  

Plane stress case is defined when 0zz yz xz      but 0zz   .
 

The plane stress elastic stiffness matrix e
C   is defined as 

 

 

2 2

2 2

          0
1 1

          0
1 1

   0           0      
2 1

e

E E

E E

E



 



 



 
 
  

 
   
 
 
  

C . (2.56)  
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2.2.3.2 Plane strain case 

In real engineering components, stresses and strains are 3D tensors but in 

prismatic structures such as long metal billet, the length of the structure is much 

larger than the other two dimensions. The strains associated with length, i.e. zz  

and the shear strains zx  and zy are determined by nearby material and are small 

compared to the cross-sectional strains. Plane strain then becomes an acceptable 

approximation, as shown in Figure 2.8.  

 

Figure 2.8: Scheme of a plane strain situation over a long body and when a 2D 

plane is chosen for a 3D approximation of the object.  

The plane strain case is defined where 0zz xz yz      but 0zz  .
 
The strain 

components, related with the z  direction are limited to 0 which means the 

material is bounded to have no deformation in the third direction. The plane 

strain elastic stiffness matrix is shown to be [Chen and Han, 1988] 
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 
 
  

C . (2.57)  

This plane strain assumption is consistent with the homogeneous compression 

situation in rolling, when planes remain planes, as discussed in Chapter 3.  

2.2.4 Plastic deformation 

Plastic deformation, beyond the elastic region, observed beyond the yield stress 

in Figure 2.6. In the plastic region, the elastic recovery is not enough to change 

the material back to its original shape, so there is a residual strain after the 

applied stress is released. This permanent deformation is also called plastic 

strain or plastic deformation.  

The yielding of a material is important in the present work, because it is also the 

point where the plastic deformation starts. Another important material 

characteristic is that the yield stress p  of a metal is sensitive to strain, strain 

rate and temperature. Some metals, such as carbon steel experience 

approximately constant stress after the yielding point [Chen and Han, 1988]. 

This region is called the plastic flow. This becomes quite useful for some 

material behaviour assumptions discussed further in this dissertation. 

In isotropic hardening, the yield surface is assumed to expand uniformly with 

respect to the origin. In kinematic hardening however, the yielding surface is not 

deformed, but shifted as shown in Figure 2.9. The experiments show that there is 

anisotropy during plastic deformation [Chen and Han, 1988], called Bauschinger 

effect. 
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Figure 2.9: Isotropic hardening (on the left) and kinematic hardening (on the 

right) are shown in terms of change in yield surface.  

2.2.4.1 Ideal plastic deformation 

Ideal plastic deformation takes place when it is assumed that the stress is always 

at yield surface. In other words, there is no work hardening. In this case the 

elastic region is neglected, and hence no elastic recovery takes place. Such 

material can be referred as rigid plastic. As a result, the total strain is equal to the 

plastic strain.  

There are different models to express the ideal plastic deformation, such as 

Tresca or von Mises. In this dissertation the assumptions from von Mises model 

are used. Von Mises defines the yield function of a material as 

2( , ) 0f K J K  T or 
2

2( , ) 0f K J K  T , (2.58)  

where
 
K  is maximum shear that a material can take and

 
 ,f KT  is the yielding 

function. The yielding functions of von Mises assumption in 1D and 2D are 

drawn in figure 2.10 and for 3D in Figure 2.12. Equation (2.58) can be written in 

terms of principle stresses as 

     
2 2 2 26x y y z x z K           , (2.59)  

or in general  

       
2 2 2 2 2 2 26 6xx yy yy zz zz xx xy yz zx K                 . (2.60)  
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Figure 2.10: Stress-strain curve of an ideal plastic material under uniaxial stress 

(left). Dual axial stress (right).  

In case when the stresses are applied in multiple directions, it is more 

complicated to determine exactly when the yielding starts. Von Mises stated that 

yielding starts when the octahedral shear oct  reaches a K  value, where K  

means maximum shear stress, a material can take in pure shear [von Mises, 

1913]. The octahedral shear stress is shown in Figure 2.11. From Equation 

(2.17) and Equation (2.22), 

2

2 2

3 3
oct J K   . (2.61)  

 

Figure 2.11: Scheme of shear stress oct  acting on octahedral plane with unit 

normal n . 
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Figure 2.12: Cylinder surface showing the von Mises yielding criterion in terms 

of principle stresses and deviatoric plane where 0x y z     .  

The equation (2.58) also gives the relation for uniaxial case ( 0y z   ) when 

yielding occurs, 

23 3x p K J    , (2.62)  

or in plane stress case when
 
 0z  , 

2 2 2

x y x y p       . (2.63)  

The effective stress   can be defined from von Mises equation (2.57), where 

23p J   . (2.64)  

Effective stress can be defined in terms of components of stress tensor [Zhou, 

Qin, Huang and Wang, 2004]. In terms of principle stresses, 
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     
2 2 21

2
x y y z x z            

  
. (2.65)  

In general it can be written as 

       
2 2 2 2 2 21

6
2

xx yy yy zz zz xx xy yz zx                  
  

. (2.66)  

It can be also be written in terms of components of stress deviator tensor s  

3

2
ij ijs s  . (2.67)  

Von Mises flow rule can be simply rewritten as a stress strain relationship 

2

3
ij ijs





 . (2.68)  

The relation can be explicitly written as  

 
1

2
xx xx yy zz


   



 
   

 
, (2.69)  

 

 
1

2
yy yy xx zz


   



 
   

 
, (2.70)  

 

 
1

2
zz zz xx yy


   



 
   

 
, (2.71)  

 

3xy xy


 


 , (2.72)  

 

3yz yz


 


 , (2.73)  

 

3zx zx


 


 . (2.74)  
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Where    is referred as plastic modulus pH . The effective strain   can be 

defined as 

2

3
ij ije e  , (2.75)  

where e  is the deviatoric strain defined as 
1

3
ij ij v ije     . Therefore, effective 

strain  

       
2 2 2 2 2 22

6
9

xx yy yy zz zz xx xy yz zx                  
  

. (2.76)  

The stiffness matrix p
C  in a 3D Cartesian coordinate system is defined for ideal 

plastic deformation as follows 

2
    0     0    0     0     0

3

2
0         0    0     0     0

3

2
0     0        0     0     0

3

1
0     0      0       0      0

3

1
0     0      0     0        0

3

1
0     0      0     0     0    

3

p 












 




C












 
 
 
 
 
 

. (2.77)  

The governing equations (2.30), (2.31) and (2.32) become 

2

2 2

22

2 2

2 2

2 2

2 1

3

1 1

3

1 1

3

x x

x x x x

y yx x
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x xz z

z z z x z x z

u u

p p p p

u uu u

p p p p p p p

u uu u

p p p p p p p
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  

 

     
   

     

        
                         

       
       

         
0,xb





 
  

 

 (2.78)  
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d

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  
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 (2.79)  

 

2 2
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                         

    
   

    
0.zd



 
  

 

 (2.80)  

The set of equations (2.78), (2.79) and (2.70) can be simplified by considering 

Laplace of the displacements 

22 2
2

2

1 1
2

1 1 1 1
,

yx xz
x
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 (2.81)  
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 (2.82)  
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 (2.83)  

The traction boundary conditions can also be written in terms of displacement 

for an ideal plastic material.  

1 2 1
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u u uu u
n n n

y x y z y
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(2.84) 
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(2.86) 

The stiffness matrix p
C  in 2D is 
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0       0
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1
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p 
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C . (2.87)  

The governing equations in 2D are 
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 (2.88)  
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 (2.89)  

The traction boundary conditions in 2D are 
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(2.91)  

The partial derivatives of the effective strain are 
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(2.93)  

The partial derivatives of the effective stress are defined as 

;  , ,
i i

i x y z
p p
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

  
 

  
, (2.94)  

where     is taken from the effective stress- effective strain relation for a 

specific material used.  
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2.2.4.2 Slightly compressible deformation 

A slightly compressible material first used for deformation problems in 

[Osakada, Nakano, and Mori, 1982] and also applied to rolling in [Mori and 

Osakada, 1984] by FEM. The mechanical results with using slightly 

compressible plastic material should not differ much from the ideal plastic 

incompressible material, since this method is applied to increase the stability and 

accuracy. The stiffness matrix for slightly compressible material has additional 

components regarding the ideal plastic stiffness matrix written in Equation 

(2.77). A small positive free parameter g is introduced and added to the non 

shear stress related components of the matrix. The stiffness matrix for a slightly 

compressible material is 
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. (2.95)  

The effective stress is  
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, (2.96)  

where g is a small positive constant suggested by Mori and Osakada [Mori and 

Osakada, 1984], to be between 0.01 and 0.0001.  

The effective strain is 
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The following relation can be written between the hydrostatic stress and the 

volumetric strain for a slightly compressible material 

v mg
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 . (2.98)  

In a 2D Cartesian coordinate system, the stiffness matrix for a slightly 

compressible material is 
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Hence the governing equation (2.28) becomes  
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 (2.100) 
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 (2.101)  

The traction boundary conditions for a slightly compressible plastic material are 
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. (2.103)  

2.3 Thermal model 

In this section, the governing equations for a steady convective diffusion 

equation in 3D that is in the context of a slice model converted to a 2D transient 

heat diffusion equation are given. The internal heat generation equations are 

written for elastic and plastic materials. Neumann, Robin and Dirichlet boundary 

conditions are defined.  

2.3.1 Formulation of thermal model 

A 3D steady convective-diffusive heat transfer equation is 

   pc T k T Q   v , (2.104)  

where   is the density, pc  is the specific heat, v  is the velocity vector, T  is 

temperature, k  is the thermal conductivity, and Q  is the internal heat generation 

rate due to deformation.  
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If we assume a constant velocity and density over a cross section, which is the 

same assumption as in the slice model discussed in Chapter 3, then the 

governing equation can be rewritten for a 2D model in transient diffusive form 

 
  

,
,p
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c k T t Q

t



  



p
p ; 

2Dp . (2.105)  

The governing equation (2.105) in 2D is 
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. (2.106)  

2.3.2 Boundary conditions 

There are three types of boundary conditions which are used in the thermal 

model over the boundary  . These are Robin, Neumann and Dirichlet boundary 

conditions acting on the parts of boundaries 
R , 

N , 
D , where 

R N D    .  

 
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p
p p p

n
, (2.107)  

 

 ,
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k q
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
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

p
p

n
, (2.108)  

 

 , ;  DT t T  p p . (2.109)  

Thermal conductivity k , heat transfer coefficient h , heat flux q , unit normal 

vector n  and the reference temperature 
refT  have to be known in order to 

calculate the temperature at the corresponding boundary.      

Coupling of the thermal and mechanical models is possible through properly 

applied material model properties. During the plastic deformation, if effective 

stress definition includes temperature as a parameter, then the coupling exists. 

Similarly for the elastic deformation if the material properties    ,  E T T  are 

temperature depended, coupling can be done. The deformation is first calculated 

by mechanical model and the material properties are obtained by using initial 
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temperature field. After the deformation, a new computational domain is 

obtained and thermal model is run for exactly the same time as the mechanical 

model has been run. The calculated new temperature field over the domain 

influences new material properties for the mechanical model, used in further 

deformation steps.  

2.3.3 Internal heat generation 

The area under the stress strain curve represents the strain energy per unit 

volume U , in the uniaxial case, it represents the integration of the stress over 

the strain of the deformation as 

U d

   . (2.110)  

In the multiaxial case, the sum of integrations over the strain components is 

considered  

 
ij

ij ij ijU d


    . (2.111)  

The internal heat generation rate Q  can be expressed as, 

U
Q

t






, (2.112)  

where   is the Taylor-Quinney parameter, which indicates the rate of 

mechanical energy turning into heat. A detailed study on this subject is given in 

[Rusinek and Klepaczko, 2009]. Internal heat generation rate can be defined for 

an ideal plastic material in the same way over the effective strain   as 

Q U d
t t 

   
 

 
  

. (2.113)  

In a discrete way, internal heat generation rate defined in (2.113) for a small 

deformation step between 0  and   can be written as 

0

Q d
t t






   

 

  . (2.114)  
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This method is applicable to slice model where the whole deformation (strain) is 

analyzed in a sequence of smaller reductions.  

From the previous equation, an increase in the temperature during a small 

deformation step can also be expressed 

 , ,
gain

p

T
T

c

  
 


   . (2.115)  

For isotropic elastic materials, the amount of energy in volume V  is  
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2 2 2
2
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V V
UdV dV                  . (2.116)  

The amount of energy per unit volume is 

T1

2
U  σ ε . (2.117)  

In component form 

 
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2 2 2
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xx xx yy yy zz zz yz yz xz xz xy xyU                  . (2.118)  

In a 2D system  

 
1

2
2

xx xx yy yy xy xyU         . (2.119)  

The major governing equations used in this dissertation are written in Table 2.1, 

Table 2.2 and Table 2.3 for isotropic elastic material, ideal plastic material and 

ideal plastic slightly compressible material respectively.   
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Mechanical governing 

equation in x direction for 

elastic material 
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Mechanical governing 
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Table 2.1: Governing equations used for isotropic elastic material in 2D.  

 

Mechanical governing 

equation in x direction for 

ideal plastic material 
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Mechanical governing 

equation in y direction for 

ideal plastic material 
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Table 2.2: Governing equations used for ideal plastic material in 2D. 
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Mechanical governing 
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for slightly compressible 

plastic material 
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Mechanical governing 

equation in y direction 

for slightly compressible 

plastic material 
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Table 2.3: Governing equations used for slightly compressible plastic material 

in 2D.  
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3 Physical Model of Hot Rolling 

 

In Chapter 3 the modelling assumptions of the hot rolling process are given. 

Slice model assumptions and their application to rolling are explained. Specific 

boundary conditions and symmetry assumptions for a slice model are 

determined. The mathematical description of grooves, rolls and a rolling 

schedule are discussed in detail. A complete set of the parameters, needed for a 

rolling simulation are given. A flowchart of the solution procedure strategy is 

shown as well.  

3.1 Slice model 

Rolling is a very complex 3D problem however, several assumptions can be 

made for its reasonably simplified description. The calculations can be done on 

2D cross sections which are parallel and aligned with the rolling direction with 

base vector zi . This solution concept is referred as the travelling slice method in 

which plane strain approach is used. The overall 3D process is analyzed by 

discrete 2D slices under compression by neglecting the thermal and mechanical 

interactions in the rolling direction. This is considered as a mixed Eulerian-

Lagrangian model. The details can be seen in Figure 3.1 and [Hanoglu and 

Šarler, 2013].  

The position of a slice z  is a time depended function which is needed for 

calculating the cooling intensity in the thermal model and deformation in the 

mechanical model. The relation between the slice position and time in Eulerian 

system is defined as  

( ) ( ) ; ( ) ( ) z
t

z t v t dt v t t   v i , 0( ) ( ) / ( )entryv t A t v A t .  (3.1) 
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where 0( )A t  is the area of initial slice and initial slice velocity 0( )entryv v t . 

( )A t  and  v t  represent the area of a slice and its velocity in the rolling 

direction at time t , when conservation of volume is considered.  

 

Figure 3.1: Scheme of slices used as computational domains through a rolling 

stand only when quadrant of a billet is considered.  

This slice model is based on the assumption of homogenous compression where 

planes remain planes as seen on Figure 3.2.  

 

Figure 3.2: Homogeous (on left) and non-homogenous compression (on right).  

Due to the geometry of a slice, there are usually 4 boundaries that have to be 

defined individually for each side of the slice. However, due to symmetry, and 

by neglecting the non symmetrical effect of body forces, a quarter
 
of the slice 

can be analyzed as presented in Figure 3.3. 
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Figure 3.3: Symmetry on a rolled slice.  

Left (L) and Bottom (B) boundaries are on the symmetry lines which require 

appropriate symmetry boundary conditions. For the mechanical model, the L 

boundary experiences   

0,  0x yu   .  (3.2) 

Similarly, the B boundary experiences  

0,  0x yu   .  (3.3) 

For the thermal model B and L boundaries experience insulating Neumann 

boundary conditions where the prescribed heat flux q  equals 0.  

For Top (T) and Right (R) boundaries, it is important to define first if there 

exists a contact with the roll or not. This can be predicted by considering the 

groove geometry and current geometry of the slice, which is discussed later in 

this chapter. In short, a cross section of a groove for a belonging slice position is 

drawn over the same slice. If there is no contact, the following boundary 

condition is applied for sides T and R in the mechanical model 

0,  0x y   .  (3.4) 
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For the thermal model, Robin boundary conditions are used 

air air

T
k h T T




    n

.  (3.5) 

In case of a contact, there are two possibilities to be used in the mechanical 

model. First is to use traction between the slice and the groove surface as 

determined by coefficient of friction. Traction boundary conditions at the contact 

will be numerically implemented in the future. Second is to use the sticking 

boundary condition. For the rolling simulation in this dissertation, the sticking 

boundary condition is applied  

,  x x y yu u u u  .  (3.6) 

In this case it is important to define the contact length. For the thermal model 

over the region with the contact, again Robin type is used  

roll roll

T
k h T T




    n

,  (3.7) 

however with different reference temperature and heat transfer coefficient. 

Examples of boundary conditions for mechanical and thermal models are shown 

in Figure 3.5.  

The simulation is a sequence of calculations in a predefined order. The details 

can be seen in Figure 3.6. Initial conditions have to be known in order to start 

the simulation. These initial conditions are: Initial temperature field when 0t t , 

initial size of the slice which is actually top right quarter of the whole slice, 

initial or entry velocity of the slice entryv  together with the initial area  0A t  

which are needed to calculate the velocity of any calculated slice during the 

simulation due to conservation of volume        0 0A t v t A t v t , material type 

or properties such as effective stress-effective strain relation for a rigid plastic 

material or Young’s modulus and Poisson’s ratio based on various temperature 

values for elastic model. Also some other parameters are needed to define the 

boundary conditions such as the ambient temperature airT  or roll temperature 

rollT  and the heat transfer coefficients to air airh  and roll rollh . The area of a slice 

is calculated as sum of area of triangles as shown in Figure 3.4, where one point 
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is always at the origin and two points are on the side boundary. The total number 

of nodes on the side boundary is sideN  and area is calculated through positions of 

these two nodes on the side boundary as  

1
1 1

1 2

sideN
xi yi xi yi

i

p p p p
A


 




  ,  (3.8) 

where xp  and yp  are the components of the position vector p  in Cartesian 

coordinate system.  

 
Figure 3.4: Scheme of triangles used in the calculation of a slice area. Side 

boundary nodes are shown by black dots.   
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Figure 3.5: A scheme of boundaries with different boundary conditions for the 

thermal model (on top left) and for the mechanical model (on top right), when 

there is a contact with a roll. The boundary conditions for the thermal model are 

also shown (on bottom) when there is no contact.   

The rolling simulation is done through calculation over aligned slices towards 

the rolling direction. There is a sequence of calculation steps for each slice and 

these steps are repeated for every slice until the end of the rolling process. The 

details can be seen in the flowchart of the rolling simulation in Figure 3.6.  
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Figure 3.6: Flowchart of the simulation.  

3.2 Modelling of hot rolling 

The set of parameters, which define the rolling simulation are: heat transfer 

coefficient to air airh , heat transfer coefficient to roll rollh , specific heat, thermal 

conductivity and density of steel pc , k ,  . Initial slice shape, initial slice rolling 

temperature furT , initial slice rolling speed entryv , ambient temperature refT , roll 
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temperature rollT , Taylor-Quenny parameter  , effective stress definition 

 , ,T    or in elastic case Young’s modulus  E T  and Poisson ratio  T .      

In the simulation initial slice is positioned with a certain distance from the centre 

of the first rolling stand, and that position is assumed as  0 0z t   at 0t t . The 

simulation is based on incremental solutions. These incremental steps can be 

defined in terms of time or position. In this dissertation a position depended 

incremental steps are chosen with two different slice position steps. If the slice is 

not influenced by the roll then an incremental step of 10z  mm is used, 

otherwise an incremental step 5z   mm is used. Therefore, the positions of the 

slices through the simulation are predefined, however the corresponding time 

between the slices is calculated during the simulation as  

 

   0 0

A t z
t

A t v t


  .  (3.9) 

If the simulation had been based on predefined time increments then the 

corresponding time values of slices would have been previously set and 

positions and velocities in the rolling direction would have been calculated 

during the simulation. 

3.3 Rolling schedule 

A rolling schedule consists of a sequence of rolling stands. Each rolling stand 

might have different orientation, such as vertical or horizontal. For large shape 

changes, the rolling schedule usually consists of varying orientation of the 

rolling stands in a sequence. The roll in the rolling stand has specific groove 

geometry. It can be flat or have some other shape. Grooves are used for shape 

rolling. Therefore, a further description is needed for grooves in a geometrical 

sense. An example of a rolling schedule can be seen in Figure 3.7.  



Physical Model of Hot Rolling                                                                             59 

 

 

 

 

Figure 3.7: An exmple of rolling schedule consisting of horizontal (H) and 

vertical (V) rolling stands. 

3.3.1 Groove dimensions  

A groove is a particular shape which can be of oval, diamond, box, round or of 

the some other type. A cross section of the groove should be calculated for each 

position of the slice towards the rolling direction. Thus, all the geometrical 

parameters should be known for each groove. In the present dissertation, 

grooves, such as schematically plotted in Figure 3.8, are assumed.   

 

Figure 3.8: A horizontal oval groove dimensions. GH is the groove height, GR 

is the groove radius, GW is the groove width and Rgap is the roll gap.  
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In the simulation, 15 imaginary groove nodes are created on the groove, each 

with different radial distance, groove point radius (GPR), from the centre of the 

roll which can be seen on Figure 3.9. All these points are positioned for a given 

slice position zSp
 and then the vertical groove can be redrawn with discrete 

groove lines between groove points  ,i xi yiGPR p p  as seen on Figures 3.9 and 

3.10. These groove points, for a slice position 
zSp , under the groove, which has 

roll centre positioned at zGp  can be created in this way  

 
 1 ; 1,2,..

2 1
xi G

G

GW
p i i N

N
  


, (3.10) 

 

   
2 2

; 1,2,..,
2

gap

yi zG zS i G

R
p RR p p GPR i N      , (3.11) 

where GN  is the total number of groove nodes and iGPR  is the groove point 

radius for each groove node as shown in Figure 3.9. In case of horizontal groove 

orientation, definitions of xip  and yip  are swapped.   

 
Figure 3.9: Groove point radii GPR are defined for each point on the groove. 

Only the top roll is shown in the Figure. 
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Figure 3.10: Corresponding groove lines used in the simulation for slices along 

the rolling direction with positions 'z , ''z  and '''z . RR is the roll radius, GH is 

the groove height, GW is the groove width and z  is the position of the groove 

line towards the rolling direction. Only the top roll is shown.  

 

Figure 3.11: Discrete groove lines with contacted points and reduction u . New 

position of the groove is drawn with a dashed line.   

A groove slice is created by connecting groove nodes as shown in Figure 3.11. 

All the groove slices through the simulation can be previously created for every 

incrementally increasing slice position which is under the groove. An example 

of groove slices can be seen in Figure 3.12 over the predefined slice until the 

position of the centre of the rolling stand. A groove slice can be drawn as soon 
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as the slice enters below the roll regardless of a contact. Groove slices before the 

contact are drawn for every 5 mm towards the rolling direction which are 

aligned from top to bottom until the contact. The groove slices are also needed 

for determination of contact between groove and slice. If there is a contact, also 

the amount of prescribed displacement is obtained as shown in Figure 3.13 due 

to sticking boundary condition. All of these physical assumptions presented in 

this chapter have to be defined in the pre-process of the simulation. This is 

mandatory step for the rolling simulation to start. An example of all the groove 

slices of a roll is shown in Figure 3.14.   

 

Figure 3.12: Groove slices for an oval groove through a horizontal rolling stand 

drawn for every 5 mm towards the rolling direction until the centre of the roll. 

Roll radius is 450 mm, groove radius is 85 mm and roll gap is 17 mm.     
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Figure 3.13: Scheme of groove lines and contact on the boundary with sticking 

boundary conditions. Red and green arrows show the amount of movement at 

the boundary for a corresponding slice of the red groove. The same assumption 

is done for the slice of the green groove.    



64                                                                             Physical Model of Hot Rolling 

 

 

 
Figure 3.14: Corresponding groove lines depending on the slice position are 

drawn starting from the 450 mm away from the roll centre until the contact 

location at 125 mm away from the roll centre where the radius of the roll is 450 

mm and groove radius is 85 mm.    
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4 Meshless Solution Procedure 

 

In Chapter 4 the LRBFCM solution procedure for mechanical and thermal 

models are given. In both models a local strong form solution procedure is used. 

This leads in the mechanical model to formation and solution of a global sparse 

matrix for each deformation step and in the thermal model to formation and 

solution by a set of local matrices for each time step. The solution of the non-

linear plastic material behaviour is achieved by Newton-Raphson iteration 

method. The details of numerical implementation of specific boundary 

conditions are given. The positioning and repositioning of the nodes relies on 

application of Elliptic Node Generation (ENG) with Transfinite Interpolation 

(TFI). A summary of the numerical implementation is given. 

4.1 Local radial basis function collocation method for 

mechanical model 

The meshless solution is in the present work based on discretization of the 

solution with RBF shape functions augmented with polynomial functions over 

the collocation nodes. The details are discussed and explained in [Šarler and 

Vertnik, 2006] and [Šarler, 2007]. The solution is based on discretization of the 

unknowns which is obtained from overlapping local influence domains created 

for each central node as shown in Figure 4.1. The performance of described 

LRBFCM has been assessed for large deformations by comparison [Hanoglu, 

Islam and Šarler, 2011] with FEM.  
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Figure 4.1: A scheme of a computational domain with collocation nodes on the 

boundary   and domain  . Examples of typical influence domains for 

calculated nodes are shown as blue dots in the centre. The influence domain that 

involves only domain points is given by a dashed black line and the influence 

domain that involves a boundary point is described by a dashed red line. 

7 nodes are used in an influence domain in the mechanical model and 5 nodes 

for the thermal model. This is sufficient to calculate the required derivatives in 

the mechanical and thermal models, respectively. The 4 neighbouring nodes for 

each internal node are chosen from the 2 closest nodes on vertical and horizontal 

node order. In case of 7 nodded influence domains, additionally 2 closest nodes 

are chosen regarding the central node, however these nodes cannot be on the 

boundary. Examples of these two types of influence domains can be seen in 

Figure 4.1. In the mechanical model, 5 nodded influence domain is not enough 

to get accurate results, therefore at least one more additional node needs to be 

used, which has different position on x and y regarding the central node.         

During the solution procedure a slice is taken as a computational domain. A 

meshless numerical approach, described in the continuation, is used here for the 

solution of displacements and temperatures. All the other unknowns of the 

mechanical model can be obtained through known displacement values. The 

discretization of the displacement vector is done locally by using the nodes in 

the respective influence domain. The local displacement discretization is used to 

create a global system of equations for solving the displacement in each of the 

nodes.   

The slice is discretized by a total number of the nodes   

N N N   , (4.1)  
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where N  is the number of the nodes in the domain as well as the number of 

overlapping influence domains, and N  is the number of the nodes on the 

boundary.  

The governing equations in Tables 2.1, 2.2 and 2.3 require the displacement 

vector u  to be determined, where its components in 2D can be discretized as  

 
1

( )
l pN N

x l n l xn

n

u


 




 p p ,   

 
1

( )
l pN N

y l n l yn

n

u


 




 p p . 

 

(4.2) 

 

 

(4.3)  

where l n  are RBF interpolation functions together with the first order 

polynomial functions, l  is the influence domain index, ,l xn l yn   are the 

collocation coefficients to be determined, l N  is the number of nodes in the 

influence domain and in mechanical model considered as 7, pN  is the number 

of polynomial functions and p  is the position vector in a 2D Cartesian 

coordinate system  

x x y yp p p i i , (4.4)  

and ,x yi i  are the Cartesian base vectors. Radial basis functions used in the 

calculations are multiquadric (MQ) by [Franke, 1982] and defined as  

     
22 2 2 2

max max/ /n x xn y ynp p x p p y c     p , (4.5)  

where  ,xn ynp p  is the position of the n
th

 neighbouring point and c  is a free 

parameter chosen as 32 in the present work which is consistent with the research 

done by [Vertnik, 2010] and [Mramor, 2014]. A detailed study on optimal shape 

parameters is made by [Wang and Liu, 2002]. maxx  and maxy  are scaling 

parameters, chosen as maximum axial distances in between considered nodes.  

Same function can also be defined for each node in an influence domain  
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2 2

2 2 2

max max, , , , ,
/ / ;

n=1,2,.., ;  1,2,.., , 1,2,..,

l n l lk l m xk l m xk l n yk l m yk l n
p p x p p y c

N m N k N 
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 

p
 (4.6)  

We choose 3 polynomial augmentation functions, i.e. 3pN   , defined as 

  1 ,
1l N k l m

  p , (4.7)  

 

      2 , , ,1l N k l m xk l m xk l
p p


   p , (4.8)  

 

      3 , , ,1l N k l m yk l m yk l
p p


   p , (4.9)  

where k  is the function returning global node index, m  is the node index in 

influence domain l , l  is the influence domain index, ( ,1)k l  is the global index 

of central node in influence domain l , maxl x  and maxl y  are the maximum 

distances between the nodes in an influence domain in x and y directions.  

The involved first and second derivatives of the RBF and polynomial functions 

are 

2
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2 2

2
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 (4.11)  
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(4.15)  

All the second derivatives of the first order polynomial functions in Equations 

(4.7), (4.8) and (4.9) vanish.  

The application of displacement discretization in (4.2) and (4.3) in the governing 

equations for elastic material in (2.35) and (2.36) gives the following expression 
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(4.17)  

It is important to note that the stiffness matrix components might also be 

different in each of the nodes, depending on the material type used. The 

equations (4.9) and (4.10) are simplified to 
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(4.19)  

For each node in an influence domain, except for the boundary nodes, 

displacement discretization can be written as in equations (4.2) and (4.3). For a 

boundary node, the displacement discretization is implemented in the 

corresponding boundary equation for that node. Therefore, a local system of 
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equations can be written in a matrix form for each influence domain to obtain 

 2 l pN N   collocation constants from the equation 

l l lΨ α b , (4.20)  
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0; 2l m lb m N  . (4.28)  

The coefficients are obtained from the following condition 

1

l l l
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The collocation coefficients in local system of equations (as in Equation (4.30)) 

are subsequently used to replace all coefficients in the governing equation (4.16) 

and (4.17). Therefore the governing equation can now be written with 

collocation coefficients replaced by the displacement values and/or boundary 

conditions 
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(4.32)  

The equations above are written considering only local influence domains. 

However, these two set of equations for each node on the domain can also be 

written in a global way, by considering the neighbours in an influence domain 

that the node is in. In this way, the displacement vectors for all the collocation 

nodes on a domain can be solved at once. A sparse matrix A is created for the 

solution of displacements in which two rows are occupied for each node in the 

domain and the number of non-zero elements on the rows is two times the 

number of neighbouring nodes in the domain inside the influence domain of the 

same node. Hence we would end up with a matrix A  with a size of 2 2N N   

and the following equation can be written for all the nodes p  

AU B .

 

(4.33)  
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Where the introduced boundary indicators are defined as 
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For ideal plastic or slightly compressible ideal plastic material in 2D, the 

displacements in the governing equations (2.87, 2.88) or (2.99, 2.100) can be 

discretized as 
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where xf  and yf  are the right hand side of the governing equations (2.87, 2.88) 

or (2.99, 2.100) and defined for a global point ( , )k l m  and calculated from the 

displacement vector at that point. These functions are also displacement 

depended equations, however discretization cannot be applied due to their non-

linear behaviour. Therefore the right hand side of the equation is satisfied with 

previous values of displacement and an initial guess is used at the beginning. 

This method is called Newton-Raphson and explained in Subchapter 4.3.  

If the material parameter g  used in slightly compressible material model, is set 

to 9 2 , than the same stiffness matrix is obtained as in the ideal plastic 
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where ( , )k l m p , ( , )k l r p  and ( , ) 1,2,.., ik l m N  , ( , ) 1,2,.., ik l r N .  

The definition of the right hand side of the sparse system of equations for both 

plastic cases is 

2 2 ( , ) 1,2 ( , ) 1 ( , ) 2 ( , ) 1,2 ( , ) ( , ) ( , )

1 1

l lN N
x y

m k l m k l r k l r k l m k l r k l r xk l m

r r

B A A f
 

  

 

       , (4.47)  

 

2 1 2 ( , ),2 ( , ) 1 ( , ) 2 ( , ),2 ( , ) ( , ) ( , )

1 1

l lN N
x y

m k l m k l r k l r k l m k l r k l r yk l m

r r

B A A f
 

 

 

       . (4.48)  

 The boundary indicators are the same as in (4.34). 

4.2.2 Newton-Raphson iteration method 

The ideal plastic solution requires partial derivatives of effective stress and 

effective strain. The governing equation can be separated into two parts, 

discretized and non-discretized parts. Non-discretized part can be calculated by 

using previous displacement values and recalculated in an iterative method 

called Newton-Raphson until a satisfactory convergence has been achieved. The 

details of this approach are discussed in the books by [Chen and Han, 1988] and 

[Press, Teukolsky, Vetterling and Flannery, 1992]. The governing equation is in 
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the form of Laplace equation. The equation of mechanical equilibrium can be 

expressed as   

2 U f .

 

(4.49)  

The equation has both sides depended on the unknown displacements and their 

partial derivatives. Therefore the solution can be obtained by iterative Newton-

Raphson method as described below.  

General theory of Newton-Raphson Method for a scalar U  with iteration index 

j  is  

   
 

   1 1 1 1,    

j

j j j j j j
f U

AU f U f U U U f U
U

   


   


,

 

(4.50)  

where A  is a known scalar and  f U  is a known function. 0U  is the initial 

guess for the iteration to start. For a 2D vector of displacement
 

T

 x yu u   u
 
the 

solution is in the following form
 

 Au f u .

 

(4.51)  

In component form  

 

 

, ,

, .

x x x x y

y y y x y

A u f u u

A u f u u



  

(4.52)  

The right hand side of the equations above can be approximated with Newton-

Raphson method for a 2D system  

 
 

   1 1

,

j

ij j j j

i i i i

i x y i

f
f u u f

p

 




 




u
u u .

 

(4.53)  

The solution equation (4.49) for displacements can be written in terms of global 

node index ( , )k l m  and components of sparse matrix ijA as in (4.30) 

 2 ( ,1) 1,2 ( , ) 1 ( , ) ( ,1)

1

l N

k l k l m xk l m x k l

m

A u f


 



 u , (4.54)  
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 2 ( ,1),2 ( , ) ( , ) ( ,1)

1

N

k l k l m yk l m y k l

m

A u f




 u .

 

(4.55)  

Application of Newton-Raphson method with an iteration index j  

 
 

 
   

( ,1)1 1

2 ( , ) 1 ( , ) ( ,1) ( ,1)

1

( ,1) 1

( ,1) ( ,1) ( ,1) ,

l
jN

x k lj j j

k l m xk l m xk l xk l

m x

j

x k l j j j

yk l yk l x k l

y

f
A u u u

u

f
u u f u

u


 








 




  




u

u  

(4.56)  

 

 
 

 
   

( ,1)1 1

2 ( , ) ( , ) ( ,1) ( ,1)

1

( ,1) 1

( ,1) ( ,1) ( ,1) .

l
jN

y k lj j j

k l m yk l m xk l xk l

m x

j

y k l j j j

yk l yk l y k l

y

f
A u u u

u

f
u u f u

u


 






 




  




u

u  

(4.57)  

The system of equations can now be written in a matrix form by introducing a 

Jacobian matrix  j
J U  for N

 internal nodes on a computational domain  
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1
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
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



 

 

 

 
 
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 
 

  
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 

 

 

 

 
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j

j
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x x
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xN xN
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yN yN
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yN yN

x y

u f

u f

u f

u f

f f

u u

 

 



 











 
 
 
 
 
 

    
    
    
    
    
    
    
    
    
   
        

 
  

  
 
 
 

U

J U

 

.

j





f U

 

 

(4.58)  

The matrix representation is  

 

   1 1j j j j   AU J U U f U .

  

(4.59)  

The derivatives in the Jacobian matrix are too complex to be solved analytically. 

Therefore they are replaced by their numerical approximation   

     , , ,x x y x x x y x x y

x x

f u u f u u u f u u

u u

   


 
,

 

(4.60)  

 

     , , ,x x y x x y y x x y

y y

f u u f u u u f u u

u u

   


 
,

 

(4.61)  

 

     , , ,y x y y x x y y x y

x x

f u u f u u u f u u

u u

   


 
,

 

(4.62)  
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     , , ,y x y y x y y y x y

y y

f u u f u u u f u u

u u

   


 
.

 

(4.63)  

where the additional displacements ,x yu u   are usually taken between 1 % and 

10 %  of the displacement ,x yu u . In the present work, 5 % is chosen.  

Finally, the system of equations (4.56) and (4.57) can be rewritten as  

   

   

   

( ,1) ( ,1) ( ,1) ( ,1)1 1

2 ( , ) 1 ( , ) ( ,1)

1

( ,1) ( ,1) ( ,1) ( ,1) 1

( ,1)

( ,1) ( ,1) ( ,1) ( ,1)

, ,

, ,

, ,

j j j jN
x xk l x yN l x xk l yk lj j

k l m xk l m xk l

m x

j j j j

x xk l yk l y x xk l yk l j

yk l

y

j j j j

x xk l x yk l x xk l yk l

f u u u f u u
A u u

u

f u u u f u u
u

u

f u u u f u u


 







  




  




  
 



   
 

( ,1)

( ,1) ( ,1) ( ,1) ( ,1)

( ,1) ( ,1)

, ,
,

j

xk l

x

j j j j

x xk l yk l y x xk l yk l j j

yk l x k l

y

u
u

f u u u f u u
u f

u



  
 


u

 

(4.64)  

 

   

   

   

( ,1) ( ,1) ( ,1) ( ,1)1 1

2 ( , ) ( , ) ( ,1)

1

( ,1) ( ,1) ( ,1) ( ,1) 1

( ,1)

( ,1) ( ,1) ( ,1) ( ,1)

, ,

, ,

, ,

j j j jN
y xk l x yk l y xk l yk lj j

k l m yN l m xk l

m x

j j j j

y xk l yk l y y xk l yN l j

yN l

y

j j j j

y xk l x yk l y xk l yk l

f u u u f u u
A u u

u

f u u u f u u
u

u

f u u u f u u

u


 





  




  




  
 





   
 

( ,1)

( ,1) ( ,1) ( ,1) ( ,1)

( ,1) ( ,1)

, ,
.

j

yk l

x

j j j j

y xk l yk l y y xk l yk l j j

xk l y k l

y

u

f u u u f u u
u f

u

  
 


u

 

(4.65)  

 

The solution above, after a number of iterations, gives us the two linearly 

independent displacements for each node in a column matrix for total number of 

N
 nodes, which is  
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T

1 1 2 2    . . .   x y x y xN yNu u u u u u
 

 
 U = .

 

(4.66)  

In a matrix form new displacements can be obtained by using previous 

displacement values as shown below until a convergence has been achieved  

  1j j i j j  A J U J U f .

 

(4.67)  

This method also requires an initial guess to start with the iterations. In the 

current model, displacement field from the elastic solutions are used as initial 

guess and derivatives for Jacobian matrix are obtained. This is required only at 

the beginning of the iteration. Once the iterations start the iterations continue 

until convergence has been achieved. The vector of displacements obtained from 

the iteration number 1j   is used during the next iteration 2j  . The 

convergence criteria for the calculated displacement values is defined by 

[Lenard, Pietrzyk, and Cser, 1999] 

 

 

2
2

1

1

2
2

1

1

0.001

N
j j

i i

i

N
j

i

i

U U

U



















.

 

(4.68)  

For the boundary nodes, displacements can be solved afterwards by using local 

collocation expansion coefficients in (4.29) and then applying the same 

coefficients to discretization of displacements in (4.2) and (4.3).  

4.2 Local radial basis function collocation method for 

thermal model 

The governing equation of the thermal model for a 2D slice is written in Table 

2.1. When a time discretization is applied the equation becomes 

 p

T
c k T Q

t



  


. (4.69)  

When the internal heat generation rate is discretized for a slice  

slice

slice

U
Q

t






, (4.70)  
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where sliceU  is the difference in strain energy, slicet is the time difference 

between the previous and current slices. Therefore the Equation (4.69) can be 

written in explicit time stepping as 

 2

0 0 0 0 0
slice

i i i i i i

p slice p

Ut
T T k T k T t

c t c



 


      


 (4.71)  

The discretization takes place in the thermal model in terms of temperature T  

and thermal conductivity k  as shown below,  

 
1

( )
l pN N

l n l Tn

n

T


 




 p p , (4.72)  

 
1

( )
l pN N

l n l kn

n

k


 




 p p . 
(4.73) 

In thermal model it is enough to use 5l N  . If we assume constant thermal 

conductivity in a 2D system then the explicit equation written above becomes  

   
2 2

1 2 2
1

( ) ( )

,

l pN N

l m l m l Tm

mp x y

slice

slice p

t
T T k

c p p

U
t

t c



    












    
         






p p p p

 (4.74)  

where   is the index of explicit time stepping. Robin 
R  and Neumann 

N  

boundary conditions given in (2.106) and (2.107) can also be written in terms of 

collocation as 

 

1

( ) ( ) ( ) ( )

( )

;  

l pN N
x l m y l m

l Tm

m

l m

ref R

n n
x yk

h

h T

  










  
  

 
  

 


p p p p

p

p

, (4.75)  

 

1

( ) ( ) ( ) ( ) ( );  .
l pN N

N

x l m y l m l Tm

m

k n n q
x y



  




  
    

  
 p p p p p p  (4.76)  
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The temperature interpolation in (4.67) can be written as set of equations for 

each node in an influence domain. Collocation constants for a local influence 

domain can be then obtained through local interpolation of the current 

temperatures as 

1

l T l l

α θ T , (4.77)  

where 
T

1 2 ( ), ,....,
l pl l T l T l T N N

   
 
 

α  and 
T

( ,1) ( , ),..., ,0,0,0
ll k l k l NT T


   T .  The 

size of the local interpolation matrix for thermal model is 

   l p l pN N N N     and its components are 

 ( , ) ; 1,2,..,l nm l n k l m ln N  p , (4.78)  

 

; 1, 1,.., ; 1,2,..,l nm l mn l l l p ln N N N N m N          , (4.79)  

 

0; , 1, 2,..,l nm l l l pn m N N N N        . (4.80)  

These collocation constants calculated here are used in equation (4.72) to 

calculate new values of temperature. This is repeated until the total number of 

explicit time stepping   times the t  becomes equal to slicet . 

 slicet t    , (4.81)  

For the boundary conditions another local system of solutions can be written for 

the influence domains which have a node on the boundary in a very similar way 

as in the mechanical model, however the size of the matrixes are half of the size 

used in the mechanical model. The matrix presentation is  

l l T lΦα b , (4.82)  

where 
T

1 2 ( ), ,....,
pl l T l T l T N N

   
 
 

α , components of local solution matrix for 

the thermal model l ij  and right hand side ib  are shown below 
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
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
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p
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p p

p p p

p

; 1,2,.., lm N

















 (4.83)  

 

; 1, 2,..., ; 1,2,..,l mn l nm l l l p lm N N N N n N            (4.84)  

 

0; , 1, 2,...,l mn l l l pm n N N N N         (4.85)  

 

 

 

( , )

( , )

;

; ; 1,2,..,

;

k l m

N

l m k l m l

ref R

ref

T

b q m N

h T



 
 
 

   
 
   

p p

p p

p

 (4.86)  

 

0; 1, 2,..,l m l l l pb m N N N N        (4.87)  

The ( pN N   ) number of expansion coefficients l Tm for each of the influences 

domain l  can be obtained through 

1

l T l l

α Φ b , (4.88)  

The coefficients l Tm  above for a boundary node in an influence domain l  

should also satisfy the temperature interpolation in equation 4.70 for the same 

influence domain. Thus the temperature value on a boundary point can be 

obtained to complete the thermal calculation.   
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4.3 Generation and manipulation of the nodes 

Even though the collocation nodes are uniformly distributed on the rectangular 

initial slice, deformation through many steps forces the collocation nodes to 

obtain completely irregular positions. Since the stability of the solution also 

depends on the position of the collocation nodes, eventually a repositioning of 

the collocation nodes is necessary for the system to stay stable for further 

deformation steps. Especially in between the rolling stands when the same roll 

orientation is repeated such as horizontal-horizontal or vertical-vertical. When it 

has been decided to reposition the collocation nodes, first the nodes on the 

boundary are equidistantly redistributed. After that, the internal nodes are 

distributed as orthogonally as possible with its neighbouring nodes. The new 

arrangement of the nodes is done in two steps. First, Trans Finite Interpolation 

(TFI) [Thompson and Han, 1999] is used for aligning of the nodes in accordance 

with the boundary nodes. This is followed by Elliptic Node Generation (ENG) 

[Thompson and Han, 1999] which repositions them in an iterative way to make 

them approximately orthogonal.  

4.3.1 Trans finite interpolation 

When the slice goes through a set of vertical and horizontal rolling stands, it is 

necessary to reposition the nodes in order to continue with the calculations. 

Node generation function first positions the nodes based on TFI. Boundary 

nodes are distributed on each side with equal distances. However, the number of 

the nodes on 4 sides needs to be determined. Facing sides such as top and 

bottom have to have the same number of the nodes. It is easy to define the 

bottom and the left side which overlay the symmetry axes. However it is 

important to separate top and right boundary lines. During the deformation steps 

an index called the last contact node, is taken into consideration. This is the node 

with highest latitudinal value in case of vertical rolling stand or highest 

longitudinal value in case of the horizontal rolling stand among all the nodes 

which are in contact with the roll. Details can be seen in Figure 4.2.  
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Figure 4.2: Scheme of the boundary node positions during horizontal (left) or 

vertical (right) approach of the roll. The nodes that have contact with the roll are 

denoted with black circles and the last contact node is shown for both cases.   

This last contact node separates the top boundary from the right. Therefore, the 

boundary nodes on the top and the right sides can also be positioned with equal 

distance. All the nodes besides the boundary can now be positioned in a loop 

based on TFI.  
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(4.90)  

 ,r s  is the function that returns global node index when r  is the index of the 

node on latitudinal direction and s  is on longitudinal direction, maxr  is the 

number of the boundary nodes on right or left boundaries, maxs  is the number of 

the boundary nodes on top or bottom boundaries including the corner nodes and 

maxr r r  , maxs s s  . 
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4.3.2 Elliptic node generation 

The TFI does not achieve the desired orthogonal node arrangement, therefore an 

iterative method called ENG is applied. Again the boundary nodes remain as 

they are. In the calculations Gauss-Seidel iteration is used and can be written for 

a node  ,r s .  
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Where the parameters 11 12,g g  and 22g  are defined as 
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ENG is an iterative method which means that for all the nodes the positions are 

recalculated until a satisfactory convergence has been achieved. However, the 

previously defined TFI is calculated only once for each node. In the rolling 

simulation, 100 iterations are used, which is always enough to satisfy a 

reasonably orthogonal node repositioning, and to continue with the simulation. 

An example of the repositioning of the nodes is shown in Figure 4.3.  

 

Figure 4.3: An example of generation of nodes with Elliptic Node Generation 

(ENG). Picture on the left is the deformation results after an oval rolling when a 

uniform node distribution is applied to an initial rectangle and picture on the 

right is the same deformed slice when nodes are redistributed with ENG.  

After the application of ENG, newly positioned nodes obtain new values of 

temperature and displacement from the interpolation from TFI positioned nodes. 

For this purpose, a simple inverse distance interpolation [Shepard, 1968] is used 

for each new node over the overlapping old influence domain. This interpolation 

has to be applied, because of the very big gradients of the field. RBF 

interpolation would give too much over or undershoot as explained below. 

Shepard interpolation is given  
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(4.96)  
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where D  is the Euclidean distance and   is in the present work taken as 2. The 

function f  can stand for temperature field or components of the displacement 

vector. A scheme of Shepard’s interpolation for a newly positioned node over an 

influence domain, from the previous configuration, is shown in Figure 4.4.   

 

Figure 4.4: Scheme of obtaining a value for a new node position (hollow) with 

using old node configuration (black nodes) with their values and distances iD  in 

an influence domain.    

The temperature and the displacement values for the newly positioned node 

could have been also calculated with RBF interpolation over the nearest previous 

influence domain. On the other hand, after the new node arrangement, node 

positions in an influence domain could be completely different or similar to the 

nodes positions from the old node arrangement. In case of the nodes from the 

new and the old configuration are very closely positioned, an overshoot can be 

observed through RBF interpolation for the new values to be recalculated, which 

is not acceptable for the simulation results. Therefore Shepard’s interpolation is 

chosen here in which overshot is not observed.    

4.4 Numerical implementation 

The static solid material deformation problem is an elliptic problem which does 

not include time variation. A global system of equations are written based on 

Local Radial Basis Function Collocation Method (LRBFCM) which results in a 

sparse matrix where still a global approach is considered but instead of the 
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whole domain, local influence domains are considered. Solution of the sparse 

system of equations gives us the displacement results which are stored in the 

computer for further strain and stress calculations. An amount of 4N N 
 data 

are stored in the sparse matrix so if the number of the nodes increases, the 

calculation time increases nearly linear. In case of a full matrix, the computing 

time increases proportionally to the number of algebraic operations, which is 

 
3

2 2 3N . However, for the thermal model, only the local matrices are created 

at the beginning of the calculation, and if there is no deformation, then the 

previous ones are used. Even though thermal part requires time depended 

solution, it is much faster than the mechanical solution. An open source library 

Math.Net [Math.Net Iridium, 2008] is chosen for matrix calculations, LU 

decomposition is used for solving the system of equations.    

A code has been written in C# [Microsoft Visual C#, 2007] with an interface 

where all the pre-process parameters are defined and also all the post process 

results can be seen as shown in Figure 4.5. The number of the slices is 

predefined though the positions in the rolling direction with a predefined 

incremental slice distance. Results can also be seen in a stepwise approach and 

for each slice. A similar approach as in the commercial codes is used. The 

results of temperature, displacement vectors, strain vector components and stress 

vector components can be seen on the interface of the program for a desired 

slice. For each slice also the position and corresponding time are also shown. 

Results can also be saved for a corresponding slice for further analysis by using 

various post process programs. In this dissertation ParaView [ParaView Parallel 

Visualization Application, 2012] post-processing program is used.  
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Figure 4.5: Snapshot of the software developed in C#.  

Thermal field is always calculated in a continuous form from the beginning until 

the end, however results from the mechanical model are separately stored for 

each rolling stand. This means there is a continuous deformation through each 

rolling stand. Displacement, strain and stress values are cumulatively calculated 

for each rolling stand through the deformation steps.  

The code can be easily modified for different rolling schedules. New groove 

geometries can be easily defined or added. Initial shape and velocity can be 

changed on the interface. The user can individually chose thermal and/or 

mechanical models to calculate. Material properties with material constants can 

be entered on the interface or can be read from a file where material properties 

are written in form of temperature depended table. A table which is used in this 

dissertation is included in the Appendix.  
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5 Verification of the Method 

 

In Chapter 5, spectra of mechanical and thermal test cases are performed and 

compared with reference solutions to assess the accuracy and behaviour of the 

LRBFCM solution. Concerning the thermal model, a convective cooling test 

case is compared with FEM. Concerning the mechanical model, compression 

and tension examples are separately tested with prescribed displacement and 

traction by LRBFCM for an elastic material. The results from these cases are 

compared also with FEM and excellent agreement has been found. Moreover, 

bending of a cantilever beam, expansion of a cylindrical tube, linear 

compression-tension and bending of a beam by a uniform load are calculated 

and compared with analytical solutions. The tests are concluded by a flat rolling 

example with ideal plastic behaviour, compared with FEM. 

5.1 Testing of the thermal model 

Simulation of hot shape rolling is a very complicated process. The complicated 

geometry and large deformations might create numerical instabilities that are 

difficult to handle. Therefore, focusing on numerical issues such as proper 

solution of thermal and mechanical fields is of high priority. The results from the 

FEM based code DEFORM are used as reference solutions. 

The solution of hot shape rolling is a coupled thermo-mechanical process. In 

order to get confidence in the results, the thermal and the mechanical models are 

first tested separately to check their accuracy. First, a convective cooling 

example is calculated, to see the accuracy of the thermal model. The Equation 

(4.69) is used as governing equation in this test.  
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5.1.1 Convective cooling 

A square domain with 50 mm side is used for testing. The density is 7450   

kg/m
3
, specific heat is 630pc   J/kgK, thermal conductivity is 29k   W/mK. 

Uniformly distributed 676 discretization points are used across the domain.  

1076 elements are used in reference FEM. The time step in LRBFCM is set to 

0.1 s and for FEM 1 s is used. The scheme of the problem can be seen in Figure 

5.1. 

 

Figure 5.1: Scheme of the boundary conditions of the thermal test case.  

Left and bottom boundaries are of the Neumann type where the prescribed heat 

flux is 0 W/m
2
. For the top and right boundaries Robin type of boundary 

condition is applied.  
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The initial temperature is set to 1000 °C, 1 20h   W/m
2
K, 2 5000h   W/m

2
K, 

1 25refT   °C, 2 500refT   °C and 0Q   W/m
3
. The heat transfer coefficient on 

the top side is chosen in such a way to be consistent with the contact with the 

roll and the heat transfer coefficient of the right side imitates the heat flow to the 

air. The simulation result as 10 s, 30 s and 60 s are compared with FEM in 

Figure 5.2, Figure 5.3 and Figure 5.4 respectively.  

 

 

Figure 5.2: Thermal test case. Left: LRBFCM, Right: FEM at time 10 s. All of 

the sides have the length of 50 mm. Lines represent B = 709 °C, C = 745 °C, D 

= 782 °C, E = 818 °C, F = 854 °C, G = 891 °C, H = 927 °C and I = 964 °C. 
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Figure 5.3: Thermal test case. Left: LRBFCM, Right: FEM at time 30 s. All of 

the sides have the length of 50 mm. Lines represent B = 651 °C, C = 694 °C, D 

= 737 °C, E = 780 °C, F = 823 °C, G = 866 °C, H = 909 °C and I = 952 °C. 

 

Figure 5.4: Thermal test case. Left: LRBFCM, Right: FEM at time 60 s. All of 

the sides have the length of 50 mm. The contour lines represents B = 620 °C, C 

= 662 °C, D = 703 °C, E = 745 °C, F = 787 °C, G = 829 °C, H = 871 °C and I = 

913 °C.  

The shaded graphs of the results in Figure 5.4 are shown in Figure 5.5 below.  

 

Figure 5.5: Thermal test case. All of the sides have the length of 50 mm. Left: 

LRBFCM, Right: FEM at time 60 s.  
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5.1.2 Internal heat generation during deformation 

In this case a rectangular domain 47.5 40  mm is chosen and deformation is 

applied through oval groove like in Figure 6.9. An elastic plane strain model is 

used with 100.404E  GPa and 0.3535  . On the boundaries Neumann type is 

used 0NT   W/m
2
K and uniform initial temperate of the slice is 1100 °C. An 

oval groove is used for rolling with GR = 85 mm, GW = 122 mm, RR = 540 mm 

and R 17gap   mm. The temperature increase due to internal heat generation 

calculated by LRBFCM is seen in Figure 5.6 below. 525 collocation nodes are 

used.   

 

Figure 5.6: Temperature increase due to internal heat generation when no heat 

flux occurs at the boundaries and initial uniform temperature at 1100 °C and 
410  .  

5.2 Testing of the mechanical model  

The computer code, developed for rolling, is tested on several quite simple 

deformation cases. These are: various compression or tension examples with 

prescribed displacements or traction, 4 different deformation cases with known 

analytical solutions and a flat rolling example. In all the tests with elastic 

material, governing equations in Table 2.1 are used.  
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5.2.1 Compression - tension examples 

Compression and tension tests are the first examples used for testing LRBFCM 

solved mechanical model. Many combinations of the boundary conditions can be 

applied in terms of prescribed traction or prescribed displacement. During the 

following examples, an elastic 2 × 2 m material with Young’s modulus 1E   Pa 

and Poisson ratio 0.3   is chosen. Centre of the coordinate system is in the 

middle of the bottom line of the object. At the top, the prescribed displacement 

or pressure is applied towards the y direction, however the displacement in x 

direction is always fixed to 0. The results in this section are compared with 

FEM. 

 

Figure 5.7: Testing of the mechanical model. Scheme of the geometry and 

boundary conditions for compression-tension examples. The size of the square is 

2   2 m.  

5.2.1.1 Compression with prescribed displacement 

In this example, a compression is applied from the top, with a prescribed 

displacement. This is an elastic plane strain problem as shown in Figure 5.7. The 

boundary conditions are given below, 

0 m,  0.5 mx yu u      
Tp , 
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0 Pa,  0 Pax y       
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Lp . 

The displacement vectors, calculated LRBFCM are shown in Figure 5.8 below.  

 

Figure 5.8: LRBFCM solution of the compression test. Displacement field after 

the compression. 121 collocation nodes are used in the calculation.  

The same compression test is also calculated by FEM and the deformation, 

illustrated with displacement vectors is show in Figure 5.9.  
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Figure 5.9: FEM solution of the compression test and displacement field after 

the compression.  

Comparison between LRBFCM and FEM is made in terms of displacement field 

in Figure 5.10 and excellent agreement has been found. 
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Figure 5.10: Contour graphs of displacement fields when a deformation of 0.5 

m is imposed from the top with sticking boundary conditions. LRBFCM solution 

(on top) and FEM solution (at the bottom). The lines represent B = 0.0556 m, C 

= 0.111 m, D = 0.167 m, E = 0.222 m, F = 0.278 m, G = 0.333 m, H = 0.389 m, I 

= 0.444 m and J = 0.5 m.  

Three different compression rates are applied and a very good match has been 

achieved between LRBFCM and FEM as in Table 5.1.  
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Compression rates 
Width calculated by 

LRBFCM in m 

Width calculated by FEM 

in m 

10 % 2.0895 2.0894 

25 % 2.2237 2.2236 

50 % 2.4475 2.4472 

Table 5.1: Comparison of expansion at the bottom of the square, calculated by 

LRBFCM and FEM.  

5.2.1.2 Tension with prescribed displacement  

In this example, tension is applied from the top with a prescribed displacement. 

This is an elastic plane strain problem as shown in Figure 5.7. The boundary 

conditions are given below, 

0 m,  0.2 mx yu u     
Tp , 

0 Pa,  0 Pax y       
Rp , 
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x y
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u u
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p p

p p
, 

0 Pa,  0 Pax y       
Lp . 

Displacement fields calculated by LRBFCM and FEM, illustrated by 

displacement vectors and a comparison of contour graphs is made in Figures 

5.11, 5.12 and 5.13 respectively.   
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Figure 5.11: Displacement field calculated by LRBFCM when 0.2 mm tension 

is applied on the top with sticking boundary conditions. 121 nodes are used.  

 

Figure 5.12: Displacement field calculated by FEM when 0.2 mm tension is 

applied on the top with sticking boundary conditions. 256 finite elements are 

used.  
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Figure 5.13: Contour lines of displacement fields compared, LRBFCM (on top) 

with FEM (at bottom). Lines represent A = 0.0 m, B = 0.033 m, C = 0.067 m, D 

= 0.1 m, E = 1.033 m and F = 1.067 m.   
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For this test case, three different compression rates are also applied and very 

good match has been achieved as in Table 5.2.  

 

Tension rates 
Width calculated by 

LRBFCM (m) 

Width calculated by 

FEM (m) 

10 % 1.9105 1.9106 

25 % 1.7763 1.7764 

50 % 1.5525 1.5528 

Table 5.2: Comparison of expansion at the bottom of the square, calculated by 

LRBFCM and FEM.  

5.2.1.3 Compression with prescribed pressure 

In this example, a compression is applied from the top with a prescribed traction. 

This is an elastic plane strain problem as shown in Figure 5.7. The boundary 

conditions are given below, 

0 mxu  , 0.5 Pay       
Tp , 

0x   Pa, 0y   Pa     
Rp , 

      
0 m, 0 m

0 Pa, 0 m

x y

x y

u u

u

 

 
               

B

B

(0,0)

(0,0)

   


  

p p

p p
, 

0 Pa,  0 Pax y       
Lp . 

The displacement fields in vector form calculated by LRBFCM and FEM and 

shown in Figures 5.14 and 5.15. Further comparisons of displacement fields and 

strain vector components , ,xx yy xy    are made in Figure 5.16, Figure 5.17, 

Figure 5.18 and Figure 5.19 respectively. 441 collocation nodes are used in 

LRBFCM solutions.  
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Figure 5.14: Displacement field calculated by LRBFCM FEM when-0.5 Pa 

pressure is applied at the top boundary. 121 collocation nodes are used.  

 

Figure 5.15: Displacement field calculated by FEM when-0.5 Pa pressure is 

applied at the top boundary. 1024 elements are used.  
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Figure 5.16: Comparison of displacement fields with LRBFCM (on top) and 

FEM (at the bottom). At top boundary -0.5 Pa pressure is applied when the 

movement along the x axis is fixed to 0. Lines represent B = 0.185 m, C = 0.37 

m, D = 0.555 m and E = 0.74 m.  
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Figure 5.17: xx  contours calculated by LRBFCM on top and FEM at the 

bottom for compression with prescribed pressure example.  
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Figure 5.18: yy  contours calculated by LRBFCM on top and FEM at the 

bottom for compression with prescribed pressure example. 
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Figure 5.19: xy  contours calculated by LRBFCM on top and FEM at the 

bottom for compression with prescribed pressure example. 

5.2.1.4 Tension with prescribed pressure 

In this example, a compression is applied from the top with a prescribed traction. 

This is an elastic plane strain problem as shown in Figure 5.7. The boundary 

conditions are given below, 

0 m,  0.2 Pax yu      
Tp , 

0 Pa,  0.5 Pax y       
Rp , 

      
0 m, 0 m

0 Pa, 0 m

x y

x y

u u

u

 

 
         

B

B

(0,0)

(0,0)

   


  

p p

p p
, 

      0 Pa,  0 Pax y            
Lp . 
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Figure 5.20: Displacement field calculated by LRBFCM when 0.2 Pa tension is 

applied at the top. 441 nodes are used.  

 
Figure 5.21: Displacement field calculated by FEM when 0.2 Pa tension is 

applied at the top. 1024 finite elements are used.  
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Figure 5.22: Comparison of displacement fields with LRBFCM (left) and by 

FEM (right). At top boundary 0.2 Pa pressure is applied towards the outside 

when the movement along the x axis is fixed to 0. Lines represent B = 0.0617 m, 

C = 0.123 m, D = 0.185 m, E = 0.247 m and F = 0.308 m.  

 

Figure 5.23: xx  contours calculated by LRBFCM on left and FEM on right for 

tension with prescribed pressure case. 
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Figure 5.24: yy  contours calculated by LRBFCM on left and FEM on right for 

tension with prescribed pressure case. 

 

Figure 5.25: xy  contours calculated by LRBFCM on left and FEM on right for 

tension with prescribed pressure case. 

Displacement vectors calculated by LRBFCM and FEM are shown in Figure 

5.20 and Figure 5.21. Further comparisons of displacement fields and strain 
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vector components , ,xx yy xy    are made in Figure 5.22, 5.23, 5.24 and 5.25 

respectively. 441 collocation nodes are used in LRBFCM solutions.  

During the compression and tension examples with prescribed pressure, the 

computations with LRBFCM are much faster than with FEM. This is because 

number of nodes used in LRBFCM results is less than half of the number of 

finite elements used in FEM. It is also observed that with the same number of 

computational nodes in LRBFCM and FEM, LRBFCM would give results faster 

approximately up to a few hundred nodes/elements. When that number is 

exceeded, FEM code would be faster. It should also be noted, that the code, 

developed in the framework of this dissertation is of the laboratory type, whereas 

the used FEM code is commercial. 

5.2.2 Bending of a cantilever beam 

Another mechanical deformation example widely used for comparison is 

bending of a cantilever beam. This is an elastic plan stress problem. Side L  is 48 

m and height H  is 12 m. The traction applied at the end 30P  Pa, Young’s 

modulus of the beam 1000E   Pa and 0.3  . Boundary conditions are 

explained below. 

0 Pa,  0 Pax y       
Tp , 

0 Pa,  x y P       
Rp , 

0 Pa,  0 Pax y                 
Bp , 

 ,  x x y yu u u u     
Lp . 

The boundary conditions on the left side are taken from the analytical solution. 

The definition of the problem can be seen in Figure 5.26 below.   
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Figure 5.26: Scheme of the problem with bending of a cantilever beam.  

The analytical solution is taken from [Liu, 2003]. 

   
2

26 3 2
6 2 2

x y x x y

P H H
u p L p p p H

EI


     
                     

(5.1)  

 

     
2

23 4 5 3
6 2 4

x
y y x x x

H pP H
u p L p L p p

EI
 

   
         

      

(5.2)  

whit the moment of inertia 3 12I H .  

The LRBFCM solution for the bending of a cantilever beam problem is shown in 

Figure 5.27 with analytical solution. The displacement field with displacement 

vectors are also calculated by LRBFCM in Figure 5.28.  
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Figure 5.27: LRBFCM results of deformation (blue points) compared with the 

analytical solution (red squares) at the boundary points. 633 collocation nodes 

are used.    

Figure 5.28: Displacement field of bending of a cantilever beam calculated by 

LRBFCM. 633 collocation nodes are used.  

This solution of the test is achieved with different number of collocation nodes. 

The root mean square errors (RMSE) of the displacements are shown in Figure 

5.29 as a function of the number of collocation nodes.    
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Figure 5.29: RMSE of displacements as a function of the node density. 

The shear stress at the right side is also defined as  

22

2 4 2
xy y

P H H
p

I


  
    

     

(5.3)  

For the same case, the shear stress at the end of the beam ( 48x   m) can be 

calculated with LRBFCM and compared with the Equation (5.3). The 

comparison is shown in Figure 5.30.  
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Figure 5.30: Shear stress at the end of the cantilever beam when 48x   m  

compared with the analytical solution when 633 collocation nodes are used.  

5.2.3 Expansion of a cylindrical tube 

The following example is also solved by LRBFCM, denoted pressure in an 

infinite tube. The details are shown in Figure 5.31. This is an elastic plane strain 

problem with analytical solution [Liu, 2003]. Parameters used in the solution 

are; 10000E   Pa, 0.3  , 1000P   Pa, 1 15r   m, 2 35.75r   m. The boundary 

conditions are given below. 

0 Pa,  0 Pax y       
outp , 

,  x x y yn P n P        
inp . 
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Figure 5.31: Scheme of expansion of a tube with an internal pressure in 2D. 

The analytical solution is represented in terms of the radial displacement ru , 

since the angular displacement (u ) is always 0 and given by [Liu, 2003] as 

 
 

  
2

1 2

22 2

2 1

1 1r

Prr r
u r v v

rE r r

 
   

  
.

 

(5.4)  

Due to symmetry only the top right quarter of the domain is considered.  

                                                                 

Figure 5.32: Uniform node arrangement with 919 nodes on the right and equal 

distance nodes arrangement also with 919 nodes on the left. 
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Due to better compatibility with the meshless method, an equal distance node 

arrangement is used for the interpolation of the computational domain, as seen in 

Figure 5.32. The LRBFCM and analytical solutions can be seen in Figure 5.33 

below.   

 

Figure 5.33: Comparison of LBFCM solution (blue points) with analytical 

solution at the boundary points (red squares) when 10000E   Pa, 0.3   and 

P= 1000 Pa with 919 collocation nodes.  

The RMSE of the LRBFCM solution of the pressure in an infinite tube case with 

increasing number nodes is presented in Figure 5.34. The displacement vectors 

of the solution are shown in Figure 5.35.  
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Figure 5.34: RMSE of radial displacements as a function of the node density. 

 

Figure 5.35: Displacement field with 239 collocation nodes.  
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5.2.4 Linear compression-tension  

In this example a 2m2m square material is used with Young’s modulus 

1 PaE   and Poisson’s ratio 0.3  . The details of the problem can be seen in 

Figure 5.36 Maximum pressure is equal to the Young’s modulus P E . Solution 

is based on LRBFCM for this plane strain problem. The boundary conditions are 

given as 

0 Pa,  0 Pax y       
Lp , 

0 Pa,  0 Pax y       
Rp , 

       
0 m, 0 m

0 Pa, 0 m

x y

x y

u u

u

 

 
                       

B

B

(1,0)

(1,0)

   


  

p p

p p
, 

 0 Pa,  1  Pax y xP p       
Rp . 

 

 

Figure 5.36: Example of linearly distributed decreasing pressure from the top. 

Analytical solution for this case is given by [Huang and Cruse, 1994]  
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   
2 20.195 1 0.445x x yu p p    ,

 

(5.5)  

 

 0.91 1y x yu p p 

 

.

 

(5.6)  

 

 

Figure 5.37: Blue points are the positions of the collocation nodes after the 

deformation, and compared with the analytical solution at the boundaries, 

represented by red squares. 437 collocation nodes are used.  

The solution of linear compression-tension example calculated by LRBFCM is 

shown in Figure 5.37 and the displacement vectors can be seen in Figure 5.38.  
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Figure 5.38: Displacement field calculated by LRBFCM for each node after the 

deformation. 437 collocation nodes are used.  

RMSEs of the displacements are calculated with increasing number of the nodes 

and shown in Figure 5.39 and Figure 5.40.   
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Figure 5.39: RMSE of displacement in x  direction as a function of the node 

density. 

 

Figure 5.40: RMSE of displacement in y direction as a function of the node 

density. 
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5.2.5 Bending of a beam by a uniform load 

In this problem an elastic cantilever beam with dimensions 40 m 4 m is 

considered, obeying plane strain material definition. Uniform pressure is applied 

from the top when the central points on the left and right sides are fixed as 

shown in Figure 5.41, where 710E   Pa, 0.3   and 5000P   Pa.  Boundary 

conditions are given below 

0 Pa,   Pax y P      
Tp , 

  
0 m, 0 m

0 Pa, 0 m

x y

x y

u u

 

 

 
         

L

L

( 2,0)

( 2,0)

L

L

    


   

p p

p p
, 

0 m, 0 m

0 Pa, 0 m

x y

x y

u u

 

 

 
              

R

R

( 2,0)

( 2,0)

L

L

   


  

p p

p p
, 

0 Pa,  0 Pax y                 
Bp . 

 

Figure 5.41: Scheme of bending of a lever by a uniform load.  

Analytical solution is given by [Timoshenko and Goodier, 1951] as 

33
2 2

3 3
2

2 2
3 3 5

2
2

3 3

y yx
y x x

x

y

x y

p pp
p L p p H

P
u

EI p H
p H p

   
       

    
    
    

     
  

,

 

(5.7)  
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(5.8)  

The LRBFCM solution of the case of bending of a beam by uniform load, 

together with the adjacent analytical solution is shown in Figure 5.42 below. The 

displacement vectors are plotted in Figure 5.43.  

 

Figure 5.42: Deformation results where the blue points are calculated by 

LRBFCM and the red squares represent the analytical solution at the boundary. 

815 collocation nodes are used.  
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Figure 5.43: Displacement field of a cantilever beam under uniform pressure. 

815 collocation nodes are used. 

The RMSE of the displacements calculated by LRBFCM are expressed in Figure 

5.44 with increasing number of the nodes.  

 

Figure 5.44: RMSE of displacements as a function of the node density.  
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5.2.6 Testing of ideal plastic deformation  

The following flat rolling example is done for a slightly compressible ideal 

plastic material, where the effective stress-effective strain relation is given as 
0.214589   MPa. Only the top right quarter of the material with size 80 mm × 

95 mm is considered. The plane strain problem definition can be seen in Figure 

5.45. No friction is assumed between the roll and the material, therefore the right 

side is expected to get perfectly horizontal line after the deformation. Two types 

of reduction are applied which are 1mm and 4 mm. the LRBFCM results are 

compared with FEM solution.  

 

Figure 5.45: An example of compression with prescribed displacement and 

sticking boundary condition as in the flat rolling.  

The comparisons of the displacement fields for 1 mm reduction can be seen in 

Figure 5.46 and for 4 mm in Figure 5.47. The displacement vectors calculated by 

LRBFCM are plotted in Figure 5.48 and Figure 5.49. In the calculations, 

governing equations in Table 2.3 are used where 0.001g  . 99 nodes are used in 

LRBFCM solutions and 80 elements are used in FEM solutions.  
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Figure 5.46: Contour graph of displacement field when 1 mm reduction is 

applied from the top with no friction. The material model used here is 
0.214589   MPa. The figure on the top is calculated by LRBFCM and on the 

bottom is calculated by FEM. 
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Figure 5.47: Contour graph of displacement fields when 10 % reduction is 

applied as described in flat rolling example Figure 5.41. The material model 

used here is 
0.214589   MPa. Figure on top is calculated by LRBFCM and on 

the bottom is calculated by FEM. 
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Figure 5.48: Displacement vectors calculated by LRBFCM at 1 mm 

compression from top as in Figure 5.42.  

 

Figure 5.49: Displacement vectors calculated by LRBFCM at 10 % reduction as 

in Figure 5.43.  
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In this chapter many test cases have been performed to check the accuracy of the 

LRBFCM, separately for the thermal and the mechanical models. The results of 

simulations are individually tested and compared with FEM or analytical 

solutions. In every test case, there was no problem of stability issues, and a very 

good agreement between the reference solutions has been achieved. These test 

cases show that LRBFCM is capable to be further tested for large and 

continuous deformation problems, as shown in the next chapter.  
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6 Testing of the Hot Rolling 

Model 

 

Several mechanical tests, specific for checking of the deformation as occurs in 

hot rolling are performed in chapter 6. They include flat and shape rolling 

examples considering elastic material properties. Two types of rolling stands; 

flat and oval are considered. Only the mechanical model is used in the 

simulations, and since there is no analytical solution for such a complicated 

deformation shape, the results are compared with FEM in terms of displacement 

and strain fields.  

6.1 Flat rolling example 

The geometry of material to be rolled is a rectangle with dimensions 95 mm80 

mm. For simplicity, as elaborated in chapter 3, only the top right quarter is 

considered. The simulation is done in 5 steps and each step has prescribed 

displacement of the top roll, which is 1 mm downwards. Overall the total 

reduction is 12.5 %. The plane strain problem is considered and the elastic 

material properties are 810E  Pa and 0.3v  . The problem definition is shown 

in Figure 6.1.    
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Figure 6.1: Scheme of flat rolling simulation with considered symmetric right 

upper corner. Sticking boundary condition is applied with 5 mm reduction with 

1mm/s reduction speed in 5 steps.    

 

 
Figure 6.2: Testing of flat rolling example with displacement field calculated by 

LRBFCM. 479 collocation nodes are used.  
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Figure 6.3: Testing of flat rolling example with displacement field calculated by 

FEM. 1015 elements are used.  

The displacement vectors for the flat rolling case, calculated by LRBFCM, after 

the fifth deformation step, are shown in Figure 6.2 and by FEM in Figure 6.3. 

Comparison of the displacement fields is shown in Figure 6.4 and comparison of 

the calculated strain vector components , ,xx yy xy    are separately shown in 

Figures 6.5, Figure 6.6 and Figure 6.7. 479 collocation nodes are used in 

LRBFCM. In this test, governing equations in Table 2.1 are used.  
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Figure 6.4: Testing of the mechanical model. Displacement field calculated by 

LRBFCM (on top) and FEM (at bottom). Lines represent B = 0.833 mm, C = 

1.67 mm, D = 2.50 mm, E = 3.33 mm, F = 4.17 mm. 
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Figure 6.5: Testing of the mechanical model. xx  field calculated by LRBFCM 

(on top) and FEM (at bottom). Lines represent B = 0.022, C = 0.44, D = 0.066, E 

= 0.087, F = 0.111.  
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Figure 6.6: Testing of the mechanical model. yy  field calculated by LRBFCM 

(on top) and FEM (at bottom). Lines represent A = -0.200, B = -0.183, C = -

0.167, D = -0.150, E = -0.133 and F = -0.117.  
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Figure 6.7: Testing of the mechanical model. xy  field calculated by LRBFCM 

(on top) and FEM (at bottom). Lines represent A = -0.150, B = -0.125, C = -

0.100, D = -0.075, E = -0.050 and F = -0.025.  

The flat rolling with sticking boundary conditions example is compared with 

FEM for the same material with different temperatures as in the Figure 6.8. The 

comparison is made in terms of width expansion over the x axis. The initial 

width is 47.5 mm and its increase in each deformation step is calculated. As 

expected, at high temperatures, the expansion is larger.   
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Figure 6.8: Comparison of width expansion during flat rolling with LRBFCM 

and FEM at two different temperatures when E (1100 °C) = 100.404 GPa and  

(500 °C) = 0.3535 and E (500 °C) = 172.963 GPa,  (500 °C) = 0.30427. 12.5% 

total reduction is applied in 5 steps and 479 collocation nodes are used in 

LRBFCM and 1015 elements are used in FEM.  

6.2 Shape rolling example 

In this example same material properties are used as in the previous flat rolling 

example. Initial size of the slice is 47.5 mm × 40 mm. This is an elastic plane 

strain problem with sticking boundary conditions. An oval groove with a radius 

of 85 mm and width of 122 mm is used. The prescribed displacement of the oval 

groove is 1.7 mm downwards until the groove height is reduced to 34.5 mm. 

This is achieved in 11 steps. The definition of the problem is shown below in 

Figure 6.9.  

 

Figure 6.9: An example of oval rolling when a quarter of a 95 mm   80 mm 

slice is analyzed through an oval groove with a radius of 85 mm.  
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Figure 6.10: Displacement vectors calculated with LRBFCM at the exit of the 

rolling stand with oval groove. 525 collocation nodes are used.  

 

Figure 6.11: Displacement vectors calculated with FEM at the exit of the rolling 

stand with oval groove. 1013 finite elements are used.  
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The displacement vectors for the shape rolling case after the 11
th

 deformation 

step are calculated by LRBFCM in Figure 6.10 and by FEM in Figure 6.11. 

Comparison of the total displacement fields is shown in Figure 6.12 and Figure 

6.13. In this test governing equations in Table 2.1 are used.  

 

 

     

Figure 6.12: Comparison of displacement fields of the shape rolling example. 

The contour graph on top is calculated with LRBFCM and bottom with FEM. 
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The lines represent the values of B = 2.2 mm, C = 4.41 mm, D = 6.61 mm, E = 

8.82 mm, F = 11.0 mm, G = 13.2 mm and H = 15.4 mm.  

 

 

 

Figure 6.13: Displacement fields are calculated by LRBFCM (on top) and FEM 

(at bottom).  

The strain vector components , ,xx yy xy    are calculated by LRBFCM and 

compared with FEM individually. For each component first a contour, than a 

shaded graph is drawn. These results are shown in next 6 figures (Figure 6.14, 
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Figure 6.15, Figure 6.16, Figure 6.17, Figure 6.18, Figure 6.19). 525 collocation 

nodes are used in LRBFCM results and 1013 elements are used in FEM.   

 

 

Figure 6.14: Contour graphs of xx , results of LRBFCM (on top) and FEM (at 

bottom). The lines represent A = 0.05, B = 0.1, C = 0.15, D = 0.2, E = 0.25, F = 

0.3.  
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Figure 6.15: xx  fields are calculated by LRBFCM (on top) and FEM (at 

bottom).  
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Figure 6.16: Contour graphs of yy , results of LRBFCM (on top) and FEM  (at 

bottom). The lines represent A = -0.7, B = -0.6, C = -0.5, D = -0.4, E = -0.3, F = 

-0.2.  



Testing of the Hot Rolling Model                                                                       149 

 

 

 

 

 

 

Figure 6.17: yy  fields are calculated by LRBFCM (on top) and FEM (at 

bottom). 
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Figure 6.18: Contour graphs of xy , results of LRBFCM (on top) and FEM (at 

bottom). The lines represent A = -0.4, B = -0.333, C = -0.267, D = -0.2, E = -

0.133, F = -0.067.  
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Figure 6.19: xy  fields are calculated by LRBFCM (on top) and FEM (at 

bottom).     
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The results of oval rolling simulation in previous figures are based on constant 

elastic material properties. However, if the temperature value is changed during 

the same test case, such as in the Table 6.1, then the thermal effect to the 

mechanical model can be seen. A comparison is made between LRBFCM and 

FEM solution for different temperature values. As expected, the width expansion 

is larger as the temperature increases. The material properties are taken for 

16MnCrS5 steel for different temperature values and oval rolling test with 11 

deformation steps is redone for each temperature value.   

Temperature °C 
With at the exit (mm) 

by LRBFCM 

With at the exit (mm) 

by FEM 

1200 52.99 52.66 

1100 52.69 52.42 

1000 52.41 52.19 

900 52.14 51.96 

800 51.86 51.74 

700 50.80 50.88 

600 50.67 50.76 

500 50.53 50.65 

Table 6.1: Shape rolling simulation is done by LRBFCM and the elastic 

material properties are previously obtained by each corresponding temperature 

for 16MnCrS5 steel. The width at the x axis after the deformation, is measured 

and compared with different temperature values.  

The deformations, calculated by LRBFCM and FEM in this chapter, are 

relatively large with respect to the examples in the previous chapter. These 

solutions are calculated in many discrete steps and cumulative results are shown 

at the end. Therefore, the compared results could not anymore achieve almost 

perfect match. Nevertheless, a reasonably good agreement has been found. The 

displacement fields are again very similar and pattern of the contour lines of the 

strain vector components are also similar with FEM. The flat rolling results have 

better match than the oval rolling example since oval rolling creates remarkable 
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shape changes. The best agreements between LRBFCM and FEM are seen in 

displacement fields, as expected. The strain results require additional 

discretization process by using the calculated displacements, therefore there is a 

further process to calculate strain result when the displacement results are 

calculated. Even though, the displacement results are very similar, the strain 

results might slightly differ. It is important to note that both of the solvers rely 

on completely different solution procedure and commercial codes have a lot of 

optimization process involved, which could not be expected from our laboratory 

type LRBFCM solver. Therefore, it has been expected that during the detailed 

analysis of the cases in this chapter, it is logical that the solutions might differ.  

Observation of the computing times of the examples in this chapter indcates that 

the computational time of FEM code is much less than LRBFCM, even though 

the number of collocation nodes in LRBFCM code is much smalled than the 

number of nodes in FEM code. It can be concluded that when there is a 

continuous deformation analysed in discrete steps, such as in this chapter, FEM 

code is well optimized and gives results much faster. The observed time 

difference between the codes increases against the number of deformation steps. 

This might also be attributed to the laboratory and commercial character of the 

coeds compared. 

It can be concluded from the test cases shown, that LRBFCM is a 

straightforward and stable enough solution procedure to solve large deformation 

problems. Moreover, a complete rolling analysis can be done by LRBFCM as 

demonstrated in the next Chapter 7.  
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7 Sensitivity Studies of the Hot 

Shape Rolling  

 

In Chapter 7, a simulation of a realistic rolling mill schedule, as appears in 

Štore-Steel rolling mill, manufactured by Siderimpes, is given. The rolling 

schedule consists of 5 rolling stands in a row, and each rolling stand has a 

specific groove geometry. The simulation is demonstrated for rolling of a 

rectangular billet into a circular rod. Results of displacement, temperature, strain 

and stress components are shown at the exit of each rolling stand. Several 

simulations are run with different operating parameters, thermal and mechanical 

properties and their influence on the results is elaborated.  

7.1 Simulation of hot shape rolling of steel  

In the simulation, an elastic plane strain material response is considered with 

temperature depended Young’s modulus and Poisson’s ratio. The material 

properties are obtained from JmatPro database from which a suitable table is 

written for every 10 °C up to 1250 °C for 16MnCrS5 steel. Each computational 

node’s material properties are updated for corresponding temperature, and linear 

interpolation is used in between the values from the table. The thermo-

mechanical solution is therefore coupled, however elastic. It is assumed that 

none of the energy due to deformation is absorbed by the material except the 

deformation turning into heat. Therefore, there is no elastic recovery. The 

geometrical definitions of the grooves and rolling stands are given in Table 7.1. 

In this simulation of rolling governing equations in Table 2.1 are used.  
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Rolling 

Stand  Groove Type  
Groove 

Radius 

(mm)  

Roll 

Radius 

(mm)  

Roll 

Gap 

(mm)  

Groove 

Height  

(mm) 

Groove 

Width  

(mm) 

z 

Position 

(mm)  
1  OVAL (H)  85  450  17  26 122.4 0  
2  OVAL (H)  85  450  5  26 122.4 3000  
3  ROUND(V)  40  450  14  33 78.5 5600  
4  OVAL (H)  55  450  2.6  25 92.2 9200  
5  F.ROUND(V)  30.4  450  4  28.4 62 12200  

Table 7.1: Predefined groove dimensions used in the simulation.  

The rolling schedule consists of varying orientation namely horizontal or 

vertical. The configuration can be seen in Figure 7.1 below.  

 

 

Figure 7.1: Rolling schedule consists of 5 rolling stands with vertical (V) and 

horizontal (H) orientation.  

All the parameters of the rolling mill used in the rolling simulation are given in 

Table 7.2. Initial slice is positioned 500 mm away from the centre of the first 

rolling stand and simulation is continued for 13.000 mm. The results are shown 

for a slice at the exit of each rolling stand and for each rolling stand 

displacement vector, contour graph of displacement, shaded and contour graphs 

of temperature, contour graphs of strain vector components , ,xx yy xy    and 

shaded graphs of stress vector components , ,xx yy xy    are shown.  
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Heat transfer 

coefficient to air  
airh   20 

2W m K   

Heat transfer 

coefficient to roll rollh   10000 
2W m K  

Thermal 

conductivity of 

steel 

k   29 W mK  

Specific heat of 

steel pc   630 J kgK   

Initial rolling 

temperature 
furT   1100 °C 

Initial rolling speed entryv   0.76 m/s 

Ambient 

temperature  
airT   25 °C 

Roll temperature rollT   500 °C 

Taylor-Quinney 

parameter 
   0.001 - 

Young’s modulus 

0(1250 C)E

- 
0(30 C)E  

85.229 – 210.67 GPa 

Poisson’s ratio 
 01250 C

-   030 C  
0.36203 – 0.28728 - 

Table 7.2: Input parameters for hot shape rolling simulation.  

7.2 Thermo-mechanical simulation after the first 

rolling stand 

The displacement vectors at the exit of the first rolling stand are shown in Figure 

7.2. The green lines represent 26 groove lines which have contacted the slice. 

Initially 525 nodes are uniformly distributed on the domain and boundary. 

Except Figure 7.2 all the results from the first rolling stand are calculated with 

LRBFCM with 525 collocation nodes. The results in terms of displacement 

vectors in this chapter are shown with less number of collocation nodes than 

used in the calculation to explicitly demonstrate the vectors.    
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Figure 7.2: Displacement vectors at the exit of the first rolling stand. 26 groove 

lines represent necessary deformation steps as a consequence of the process with 

121 collocation nodes.  

Shaded and contour graphs of temperature field at the exit of the first rolling 

stand can be seen in Figure 7.3 and Figure 7.4 below. The highest temperature 

drop is at the top-right corner where the roll contact starts. 
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Figure 7.3: Temperature field at the exit of the first rolling stand.  

 

Figure 7.4: Temperature field at the exit of the first rolling stand. The lines 

represent A = 1060.04 °C, B = 1068.03 °C, C = 1076.02 °C, D = 1084.02 °C, E 

= 1092.01 °C and F = 1100.00 °C. 

Contour lines of the displacement field are shown in Figure 7.5. As expected, the 

largest displacement is at the initial top-right corner where the first contact 

occurs.   
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Figure 7.5: Displacement field at the exit of the first rolling stand. The lines 

represent A = 1.92 mm, B = 3.84 mm, C = 5.77 mm, D = 7.69 mm, E = 9.62 

mm, F = 11.54 mm, G = 13.47 mm and H = 15.39 mm.  

Contour lines of the components of the strain vector fields , ,xx yy xy    are shown 

in Figures 7.6, 7.7 and 7.8 below. As expected, the highest values are again 

around the first contacted region. In xx , the lines are elongated over the 

boundary which has contact with the roll, however in yy  the lines are elongated 

over the boundary which is free to move. The highest and lowest values of xy  

are symmetrically positioned right next to the last contact point, as expected for 

the shear strain.   
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Figure 7.6: xx  field at the exit of the first rolling stand. The lines represent A = 

0.023, B = 0.109, C = 0.196, D = 0.282, E = 0.369 and F = 0.456. 

 

Figure 7.7: yy  field at the exit of the first rolling stand. The lines represent A = 

-1.84, B = -1.56, C = -1.27, D = -0.98, E = -0.70 and F = -0.41. 
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Figure 7.8: xy  field at the exit of the first rolling stand. The lines represent A = 

-0.269, B = -0.171, C = -0.075, D = 0.022, E = 0.119, F = 0.216 and G = 0.312. 

Contour lines of the components of the stress vector fields , ,xx yy xy    are given 

in Figures 7.9, 7.10 and 7.11 below. In Figure 7.9 and Figure 7.10, the stress 

fields are somehow similar where the lowest region is concentrated around the 

first contacted region and highest values are over the contacted boundary. Shear 

stress has the highest and lowest values symmetrically around the last contact 

point and values in between are distributed circularly inside the domain.  
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Figure 7.9: xx  field at the exit of the first rolling stand.  

 

Figure 7.10: yy  field at the exit of the first rolling stand.  

 



164                                                      Sensitivity Studies of the Hot Shape Rolling 

 

 

 

Figure 7.11: xy  field at the exit of the first rolling stand.  

7.3 Thermo-mechanical simulation after the second 

rolling stand 

The displacement vectors at the exit of the second rolling stand are shown in 

Figure 7.12. The dark blue lines represent the 16 groove lines which have 

contacted the slice. In between first and second rolling stand, ENG is applied 

and the total number of collocation nodes becomes 435. Except Figure 7.12 all 

the results from the second rolling stand are calculated with 435 collocation 

nodes.   
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Figure 7.12: Displacement vectors at the exit of the second rolling stand with 

112 collocation nodes. 16 groove lines represent necessary deformation steps as 

a consequence of the process.  

Shaded and contour graphs of the temperature field at the exit of the second 

rolling stand can be seen in Figure 7.13 and Figure 7.14 below. The highest 

temperature decrease is still around the first contacted region during the first 

rolling stand. The temperature drop is relatively uniform over the contacted 

region because the groove geometry of the second rolling stand is the same as 

the first one however the roll gap is smaller. Therefore, the contacted region at 

the exit of the first rolling stand is the same as the contact at the beginning of the 

second rolling stand. In Figure 7.15 contour lines of displacement are shown. 

Contour lines of the components of the strain vector fields , ,xx yy xy    are given 

in Figures 7.15, 7.16 and 7.17 below. The highest value for xx  is around the last 

contact node. For the yy  and xy  values the highest values in magnitude are 

around the first contacted region during the first rolling stand.  
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Figure 7.13: Temperature field at the exit of the second rolling stand.  

 

 

Figure 7.14: Temperature field at the exit of the second rolling stand. The lines 

represent A = 1057.55 °C, B = 1066.04 °C, C = 1074.53 °C, D = 1083.02 °C and 

E = 1091.51 °C. 
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Figure 7.15: Displacement field at the exit of the second rolling stand. The lines 

represent A = 0.67 mm, B = 1.33 mm, C = 2.00 mm, D = 2.67 mm, E = 3.33 

mm, F = 4.00 mm, G = 4.67 mm and H = 5.33 mm. 

 

Figure 7.16: xx  field at the exit of the second rolling stand. The lines represent 

A = 0.030, B = 0.059, C = 0.088, D = 0.117, E = 0.146, F = 0.175, and G = 

0.204. 
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Figure 7.17: yy  field at the exit of the second rolling stand. The lines represent 

A = -0.564, B = -0.490, C = -0.416, D = -0.342, E = -0.268 and F = -0.194.  

 

 

Figure 7.18: xy  field at the exit of the second rolling stand. The lines represent 

A = -0.148, B = -0.091, C = -0.034, D = 0.023 and E = 0.080. 
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Shaded graphs of stress vector components , ,xx yy xy    are shown in Figure 

7.19, Figure 7.20 and Figure 7.20 respectively calculated at the exit of the 

second rolling stand.   

 

Figure 7.19: xx  field at the exit of the second rolling stand.  

 

Figure 7.20: yy  field at the exit of the second rolling stand.  
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Figure 7.21: xy  field at the exit of the second rolling stand.  

7.4 Thermo-mechanical simulation after the third 

rolling stand 

The displacement vectors at the exit of the third rolling stand are shown below in 

Figure 7. The violet lines represent 25 groove lines which have contacted the 

slice. Third rolling stand is the first vertical rolling stand in the rolling schedule. 

Except Figure 7.22, all the results from the third rolling stand are calculated with 

435 nodes. Temperature field at the exit from the third rolling stand are shown in 

Figure 7.23 and Figure 7.24 in shaded and contour graphs. The highest 

temperature drop is at the contacted boundary however the contact starts from 

the bottom and increases towards the top. The additional temperature drop at the 

top part of the contact is still due to the first contact during the first rolling stand.  

Also the highest displacement is at the bottom of the contact which can be seen 

in contour graph of the displacement in Figure 7.25.  
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Figure 7.22: Displacement vectors at the exit of the third rolling stand. 25 

groove lines represent necessary deformation steps as a consequence of the 

process.  

 

Figure 7.23: Temperature field at the exit of the third rolling stand.  
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Figure 7.24: Temperature field at the exit of the third rolling stand. The lines 

represent A = 1061.90 °C, B = 1066.66 °C, C = 1071.42 °C, D = 1076.18 °C, E 

= 1080.94 °C, F = 1085.70 °C, G = 1990.47 °C and H = 1095.23 °C.  

 

Figure 7.25: Displacement field at the exit of the third rolling stand. The lines 

represent A = 1.84 mm, B = 3.68 mm, C = 5.52 mm, D = 7.36 mm, E = 9.21 

mm, F = 11.05 mm, G = 12.89 mm and H = 14.73 mm. 



Sensitivity Studies of the Hot Shape Rolling                                                      173 

 

 

 

Contour lines of components of the strain vector fields , ,xx yy xy    at the exit of 

the third rolling stand are given in Figures 7.26, 7.27 and 7.28 below. xx  field 

gets negative values and yy  field gets positive values since the compression by 

the groove is in x  direction. Contour lines of the components of the stress 

vector fields , ,xx yy xy    at the exit of the third rolling stand are given in Figures 

7.29, 7.30 and 7.31. Highest stress values in magnitude are seen around the 

contact region for xx  and yy  fields. However highest values of shear stress 

and strain occurs around the last contact node.  

 

Figure 7.26: xx  field at the exit of the third rolling stand. The lines represent A 

= -0.447, B = -0.388, C = -0.329, D = -0.270, E = -0.211, F = -0.153, G = -0.094 

and H = -0.035. 
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Figure 7.27: yy  field at the exit of the third rolling stand. The lines represent A 

= 0.021, B = 0.050, C = 0.078, D = 0.107 E = 0.136 and F = 0.165. 

 

Figure 7.28: xy  field at the exit of the third rolling stand. The lines represent A 

= 0.017, B = 0.059, C = 0.100, D = 0.142, E = 0.183 and F = 0.225.  
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Figure 7.29: xx  field at the exit of the third rolling stand.  

    

 

Figure 7.30: yy  field at the exit of the third rolling stand.  
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Figure 7.31: xy  field at the exit of the third rolling stand.  

7.5 Thermo-mechanical simulation after the fourth 

rolling stand 

The displacement vectors at the exit of the fourth rolling stand are shown in 

Figure 7.32. The red lines represent the 17 groove lines which have contacted 

the slice. Fourth rolling stand is again a horizontal rolling stand. Except Figure 

7.32, all the results from the fourth rolling stand are calculated with 435 

collocation nodes. Temperature field at the exit from the fourth rolling stand can 

be seen in shaded and contour graphs in Figures 7.33 and 7.34 respectively. 

Again the highest temperature drop is across the contacted region and additional 

cooling around the first contacted region during the first rolling stand can still be 

seen. The displacement field in contour graph at the exit of the fourth rolling 

stand can be seen in Figure 7.35. The highest displacement is on the left side of 

the contact where the contact starts.  
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Figure 7.32: Displacement vectors at the exit of the fourth rolling stand with 

112 collocation nodes. 17 groove lines represent necessary deformation steps as 

a consequence of the process.  

 

Figure 7.33: Temperature field at the exit of the fourth rolling stand.  
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Figure 7.34: Temperature field at the exit of the fourth rolling stand. The lines 

represent A = 1058.24 °C, B = 1066.58 °C, C = 1074.91 °C, D = 1083.25 °C, E 

= 1091.58 °C and F = 1099.92 °C.  

 

Figure 7.35: Displacement field at the exit of the fourth rolling stand. The lines 

represent A = 0.77 mm, B = 1.53 mm, C = 2.29 mm, D = 3.06 mm, E = 3.83 

mm, F = 4.59 mm, G = 5.36 mm and H = 6.12 mm. 
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The components of the strain vector , ,xx yy xy    are shown in contour graphs at 

the exit of the fourth rolling stand in Figures 7.36, 7.37 and 7.38 respectively. 

Since the compression of the groove is in y  direction xx  field gets positive 

and yy  field gets negative values. Moreover, the components of the stress 

vector , ,xx yy xy    are shown in shaded graphs at the exit of the fourth rolling 

stand in Figures 7.39, 7.40 and 7.41 respectively. Highest values for xx  and 

yy  occur across the non contacted region. For the shear strain and shear stress, 

highest values are again near the last contact node.   

 

Figure 7.36: xx  field at the exit of the fourth rolling stand. The lines represent 

A = 0.028, B = 0.052, C = 0.076, D = 0.101, E = 0.124 and F = 0.148.  
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Figure 7.37: yy  field at the exit of the fourth rolling stand. The lines represent 

A = -0.423, B = -0.369, C = -0.315, D = -0.262 and E = -0.208. 

 

Figure 7.38: xy  field at the exit of the fourth rolling stand. The lines represent 

A = -0.100, B = -0.067, C = -0.034, D = -0.002, E = 0.030 and F = 0.063.  
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Figure 7.39: xx  field at the exit of the fourth rolling stand.  

 

Figure 7.40: yy  field at the exit of the fourth rolling stand.  
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Figure 7.41: xy  field at the exit of the fourth rolling stand.  

7.6 Thermo-mechanical simulation after the fifth 

rolling stand 

The displacement vectors at the exit of the fifth rolling stand are shown in Figure 

7.42. The brown lines represent the 23 groove lines which have contacted the 

slice. Fifth rolling stand is the second vertical rolling stand in the rolling 

schedule and also the finishing one. Except Figure 7.42, all the results from the 

fifth rolling stand are calculated with 435 collocation nodes. Temperature field 

at the exit from the fifth rolling stand can be seen in shaded and contour graphs 

in Figures 7.43 and 7.44 respectively. The temperature drop is across the 

contacted region and additional cooling around the first contacted region during 

the first rolling stand can still be seen. The displacement field in contour graph at 

the exit of the fifth rolling stand can be seen in Figure 7.45. The highest 

displacement is bottom of the contact where the contact starts.  
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Figure 7.42: Displacement vectors at the exit of the fifth rolling stand. 23 

groove lines represent necessary deformation steps as a consequence of the 

process.  

 

Figure 7.43: Temperature field at the exit of the fifth rolling stand.  
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Figure 7.44: Temperature field at the exit of the fifth rolling stand. The lines 

represent A = 1048.63 °C, B = 1055.02 °C, C = 1061.40 °C, D = 1067.78 °C, E 

= 1074.17 °C, F = 1080.56 °C and G = 1086.94 °C and H = 1093.32 °C.  

 

Figure 7.45: Displacement field at the exit of the fifth rolling stand. The lines 

represent A = 1.53 mm, B = 3.07 mm, C = 4.60 mm, D = 6.13 mm, E = 7.67 

mm, F = 9.20 mm, G = 10.74 mm and H = 12.27 mm. 
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The components of the strain vector , ,xx yy xy    fields are shown in contour 

graphs at the exit of the fifth rolling stand in Figures 7.46, 7.47 and 7.48 

respectively. Since the compression of the groove is in x  direction xx  field 

gets negative and yy  field gets positive values. Since this rolling stand is the 

last or finishing rolling stand, almost all the boundary, except the symmetry 

lines, gets contact with the roll. There is a very small region over the boundary 

on the top which has no contact and is free to deform, therefore over that region 

different behaviour of strain and stress fields is observed comparing to rest of the 

slice. Moreover, the components of the stress vector , ,xx yy xy    fields are 

shown in shaded graphs at the exit of the fifth rolling stand in Figures 7.49, 7.50 

and 7.51 respectively. Highest values for xx  and yy  occur across the non 

contacted region. For the shear strain and shear stress highest value in magnitude 

again occurs near the last contact node.   

 

 

Figure 7.46: xx  field at the exit of the fifth rolling stand. The lines represent A 

= -0.45, B = -0.40, C = -0.35, D = -0.30, E = -0.25 and F = -0.20.  
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Figure 7.47: yy  field at the exit of the fifth rolling stand. The lines represent A 

= 0.060, B = 0.084, C = 0.107, D = 0.130 and E = 0.154.  

 

Figure 7.48: xy  field at the exit of the fifth rolling stand. The lines represent A 

= -0.065, B = -0.028, C = 0.009, D = 0.047 and E = 0.084.  
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Figure 7.49: xx  field at the exit of the fifth rolling stand.  

   

Figure 7.50: yy  field at the exit of the fifth rolling stand.  
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Figure 7.51: xy  field at the exit of the fifth rolling stand.  

At the end of the fifth rolling stand, as expected, a quarter of a cross section of a 

round bar is achieved. The length on x  axis is 30.4 mm and on y  axis is 30.6 

mm. Overall, the results in this chapter confirm that the configuration of the 

rolling schedule applied here is capable of producing a round bar with 60 mm 

diameter. It is important to note that the steel is still very hot even after the 

rolling and there will be further cooling and shrink until it reaches the room 

temperature.    

7.7 Sensitivity tests of the simulation 

In this simulation of rolling 1455 slices are considered over 13 m rolling 

schedule length and it takes 10.56 s time for the initial slice to come to the end. 

The previous numerical results of a rolling simulation in this chapter are 

calculated by LRBFCM and shown for 5 slices which are at the exit of each 

rolling stand. Up to now, the results were based on one slice at a time. However, 

in order to have a better understanding of the rolling process, some results could 

be shown for every slice positions such as average temperature and slice 

velocity. Moreover, sensitivity studies can be made with increasing or 
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decreasing some parameters to see their influence. In Figure 7.52, average 

temperature values of a each slice at different positions are plotted with nominal 

conditions as in Table 7.2. When the roll temperature is increased to 600 °C 

from 500 °C the heat loss is reduced and the average temperature is increased. If 

the heat transfer coefficient between the roll and the slice is increased to 15.000 

W/m
2
K from 10.000 W/m

2
K the heat loss is increased and average temperature 

is decreased.  

Velocity of the slice depends on the geometry of the slice and is plotted in 

Figure 7.53 for nominal conditions. Slice geometry is calculated through 

mechanical model which is coupled with thermal so if the temperature values are 

changed the deformation would differ. In Figure 7.53 the slice velocities are 

shown. When the slice temperature is kept at 1100 °C, no significant difference 

is observed comparing to the nominal conditions because during the nominal 

conditions, temperature drop is around 50 °C and this does not change much 

elastic material properties of the material therefore it still deforms very similar. 

However, if the temperature of the slice is kept at 500 °C, then the difference in 

slice velocity is more and more visible up to the third rolling stand.  Due to the 

increase in the modulus of elasticity of the steel, the amount of the deformation 

is smaller and velocity of the slice is higher. When passing through the fourth 

and fifth rolling stands the velocity is again similar to the nominal conditions 

since those rolling stands have very small roll gap, especially the fifth one. This 

is also usually why the last rolling stands are called finishing rolling stands 

where the roll gap is very small and the steel is forced to have the final shape. 

The same effect can also be seen in Figure 7.53 where the final velocities, 

therefore the shapes, are almost the same at the end.  
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Figure 7.52: Average slice temperatures in °C versus the slice positions towards 

the rolling direction. Different thermal coefficients used and compared with 

nominal conditions. 
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Figure 7.53: Velocity of slices versus the slice positions towards the rolling 

direction. Different material properties are considered and results based on 

constant temperature at 1100 °C and nominal conditions almost overlap.   

In all the sensitivity tests for the calculation of the slice velocity, the initial slice 

velocity is used as defined in Table 7.2. If there would be a change in the initial 

speed, then the same proportional change would be observed in all the calculated 

velocities of the slice at different positions. Since this is a coupled thermo-

mechanical problem, the influence of mechanical parameters is also observed in 

Figure 7.52 as a result of variation in the thermal parameters.   

In this simulation, the numerical results by LRBFCM for a complete rolling 

schedule are given as well as the sensitivity studies at the end. Once again it is 

shown here that a meshless method is capable of analysing large deformation 

problems such as rolling.   
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8 Conclusion 

 

The concluding remarks are given in chapter 8, which incorporates overview of 

the performed work, its originality, advantages of the approach used, 

contributions to science and technology, list of respective publications and 

suggestions for future work.  

8.1 Overview 

The main aim of this dissertation is the development of hot rolling process 

simulation that involves large deformations by a strong-form formulated local 

meshless solution procedure. A rolling schedule is considered in the example, 

which has 5 rolling stands in a sequence. During the simulation, a rectangular 

initial shape turns into a bar at the exit of the fifth rolling. The equations for the 

thermal and mechanical models are elaborated in Chapter 2 for a 3D model. The 

mechanical model uses balance of forces per unit volume and the thermal model 

uses balance of heat fluxes per unit volume. During the simulation of hot shape 

rolling, natural and essential boundary conditions for the mechanical model, 

Neumann and Robin boundary conditions for the thermal model are applied. The 

strong form of the governing equation of the mechanical model is rewritten for a 

2D problem. The equation of the mechanical model consists of partial 

derivatives of stresses, however the stresses have been written in terms of 

displacements. This replacement is done for three different material behaviours: 

the linear elastic, the ideally plastic and the slightly compressible ideal plastic 

material behaviour. The 3D steady convective-diffusive heat transfer equation in 

thermal model is rewritten in a 2D transient diffusive heat transfer equation 

form. The thermal model requires partial derivatives of temperatures, including 

an additional source term, called internal heat generation rate for coupling the 

thermal and mechanical fields. Also the mechanical model uses temperature 

values from the thermal model to define the material properties, therefore both 

models are mutually coupled. The simulation of rolling is done by using 
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imaginary slices aligned with the rolling direction, when homogenous 

compression assumption is considered, and discussed in Chapter 3. In the plane 

strain problem, one slice is calculated at a time so it appears like the same slice 

has been travelling across the rolling stand until the end of continuous rolling. 

Therefore, the method is referred as a travelling slice model which makes the 

description of a mixed Eulerian and Lagrangian type. The slices that represent 

current crossection of the rolling mill, become computational domains for 

calculations. The necessary geometrical properties are defined for each groove 

so that the discrete groove lines can be drawn when the slice is positioned under 

the roll. If there is a contact, first the deformation (displacements, strains and 

stresses) is calculated by using the temperatures values from the previous slice. 

Later, for the same slice, temperature values are calculated by the thermal model 

including the internal heat generation rate, obtained from the deformation 

results. In the mechanical model, the displacements in the governing equation 

are discretized by LRBFCM and replaced as discussed in Chapter 4. Solution is 

obtained through local system of equations written in a global sparse matrix. For 

the non-linear behaviour of the material properties, which appears in plastic 

models, the solution can be obtained by Newton-Raphson iteration method. For 

the thermal model, the solution is achieved by explicit time stepping by using 

time discretization. Temperature field is discretized by LRBFCM. Solution is 

obtained by local discretization of the governing equations.  

Large deformation calculations by a local meshless solution procedure require 

significant amount of attention to the node arrangement. Therefore, in between 

certain deformation steps, node rearrangement is needed. It is done by ENG and 

TFI. When the nodes are repositioned, their values are obtained by interpolation 

from the previous arrangement and node values.  

Some predefined tests cases are solved by LRBFCM in Chapter 5 and 6 before 

the solution procedure is applied to a complete rolling simulation to assess its 

capabilities. Firstly, one step deformation problems are analyzed and compared 

with analytical solutions or FEM solutions in Chapter 5. Later, flat and oval 

rolling examples are analysed and compared with FEM in Chapter 6, where the 

deformation is analysed in small discrete steps. After satisfactory results of the 

theoretical tests are achieved, the solution procedure is applied to simulation of 

hot shape rolling, where the whole deformation is divided into 1455 deformation 

steps towards the rolling direction. These discrete deformation slices at the exit 

of the each rolling stand are then analysed in terms of temperature, 



Conclusions                                                                                                        195 

 

 

 

displacements, strain and stress components in Chapter 7. The material has 

coupled thermo-mechanical elastic properties as given in Appendix. It is also 

assumed that, except for the mechanical energy turning into heat, all the 

deformation energy has been irreversibly absorbed by the material.  

8.2 Performed work 

Before applying the thermo-mechanical solution for the simulation of hot shape 

rolling, predefined test cases are calculated for assessment purposes.  

Performed tests cases for the thermal model are: 

 Convective cooling 

 Internal heat generation 

Performed test cases for the mechanical model are: 

 Compression-tension examples with prescribed displacements 

 Compression-tension examples with prescribed pressure 

 Bending of a cantilever beam 

 Expansion of a cylindrical tube 

 Linear compression-tension 

 Bending of a beam by a uniform load 

 Ideal plastic deformation example 

 Flat rolling example 

 Oval rolling example 

First 9 examples, explained in Chapter 5, are calculated in one step and excellent 

agreement with the reference FEM results and analytical solutions has been 

found. Last two examples, explained in Chapter 6, are done in a stepwise 

solution procedure, just like during the simulation of hot shape rolling, and again 

a good agreement has been found with the FEM. When satisfactory results have 

been achieved for the test cases, a numerical simulation of hot shape rolling has 

been done by using elastic material properties of 16MnCrS5 steel and realistic 

rolling data of continuous Siderimpes company constructed Štore Stell rolling 

mills to simulate a complete rolling sequence. All the results are shown in 

various graphs after each rolling stand in Chapter 7.   
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8.3 Originality 

LRBFCM is for the first time used for simulating hot shape rolling of steel. 

Strong formulation is used in the meshless solution of the thermal and 

mechanical models and both of them are coupled. Overall, a complex 

incremental deformation system is analyzed in 3D by using 2D imaginary slices. 

The results are verified by comparison with a weak formulation based FEM code 

and exact solutions. A unique rolling schedule is used in the simulation. The 

shape change of the steel from a rectangular prism to a bar is achieved through 

large deformations during the pass of each rolling stand.  

8.4 Expected advantages 

Since a fully meshless procedure has been used, it does not require any kind of 

meshing process, which might cause problems as in FEM. The advantages of 

using a meshless method over FEM are: it does not depend on node positioning 

as much as FEM, but FEM dramatically depends on mesh quality, a FEM model 

is usually overly stiff, which might give less accurate stress results. Meshless 

method is easier to code, it provides more flexibility in engineering applications, 

it is more capable of calculating large deformations, it is simple to pre-process, it 

allows to simply relocate the nodes and it has a high precision. The numerical 

implementation also lets changing the complexity and the type of the material 

model easily. In the calculations, a strong formulation is used, so there is no 

need for cumbersome background cells for integration that are used in the weak 

formulation. However, in meshless simulations, it might be necessary to suitably 

rearrange the node positions to be able to continue with the simulation. In this 

work, an ENG algorithm is used for this purpose, and it is observed that every 

time it is used, there is a lot of data to be interpolated for the newly positioned 

node. Therefore, it is critical to decide when it is necessary to use ENG since it 

should be used as little as possible. Based on the experience while working on 

the simulation results, the application of renoding is a must in between the 

rolling stand with the same orientation, such as horizontal - horizontal or vertical 

- vertical. However a more sound mathematical determination of decision of 

when the renoding is needed should be derived.   

The presented rolling simulation capabilities are be able to simulate a complete 

hot shape rolling mill. The technological advantages are as follows:  
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 The design changes such as different groove geometries in a rolling 

stand can be tested based on the simulation. 

 The process parameters such as initial temperature and velocity can be 

set, based on the simulation. 

8.5 Suggestions for future work 

In this dissertation, a rolling simulation is performed on the temperature 

depended elastic material. However, ideal plastic material properties can also be 

applied to the rolling simulation. A realistic yield stress function taking strain 

hardening into consideration will be obtained for a specific steel grade and 

comparison can be done with the real results from the industry. In this way the 

hot shape rolling simulation might be very useful in practice. During this 

research, also an ideal plastic material has been implemented in the rolling 

simulation, but during the Newton-Raphson iteration not always convergent 

results have been achieved. Therefore, it couldn’t be reliably used in the present 

stage of the development. Shear stress at the boundary with using coefficient of 

friction may also be applied instead of only sticking boundary conditions. So 

that transversal slip would be considered.  

Also, further research is needed on the number of collocation nodes considered 

in an influence domain. In this dissertation 5, and 7 nodes are considered and an 

increase in the accuracy has been achieved as the number increases, when 

comparing with the analytical solutions in Chapter 5. The free parameter in RBF 

is always fixed at 32 however, a varying approach based on different equations 

such as on boundary and governing equations, and on different node 

arrangements can be applied to improve the accuracy.   

An algorithm must be developed to decide automatically when the node 

repositioning is a necessary in between the deformation steps in order to sustain 

stability with optimal conditions.   

There are also some additional, technologically important rolling parameters to 

be calculated during the simulation, such as the roll separating force, which is 

the average pressure over the contact area, multiplied by the area of the contact. 

Roll torque is another important aspect of rolling and with the angular velocity 

of the roll, roll power can be calculated. By using angular velocity of the roll, the 

exact position of neutral point can be determined over the contact. At the neutral 
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point, the roll’s surface velocity is the same as the velocity of the material being 

rolled towards the rolling direction. Speed of the rolls can also be verified 

through the simulation.  

Macro scale simulations, developed for rolling in the present work will also be 

in the future coupled with the microstructure deformation models as in [Liu, 

2014], in order to have a multiscale analysis of the deformation and an overview 

on evolution of the microstructure during rolling.    
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Appendix 
 

Temperature 

(°C) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Temperature 

(°C) 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

1250 85.22943 0.36203 630 156.26 0.30882 

1240 86.25066 0.36146 620 157.6183 0.30847 

1230 87.27053 0.3609 610 158.9659 0.30812 

1220 88.28902 0.36033 600 160.3023 0.30777 

1210 89.30615 0.35976 590 161.6272 0.30742 

1200 90.32191 0.35919 580 162.9405 0.30707 

1190 91.3363 0.35862 570 164.2386 0.30672 

1180 92.34934 0.35805 560 165.5244 0.30637 

1170 93.36101 0.35748 550 166.7976 0.30602 

1160 94.37132 0.35691 540 168.0579 0.30567 

1150 95.38027 0.35634 530 169.3049 0.30532 

1140 96.38786 0.35577 520 170.5384 0.30497 

1130 97.39409 0.3552 510 171.7581 0.30462 

1120 98.39897 0.35463 500 172.9635 0.30427 

1100 99.40249 0.35407 490 174.1544 0.30392 

1090 100.4047 0.3535 480 175.3305 0.30357 

1080 101.4055 0.35293 470 176.4915 0.30322 

1070 102.4049 0.35236 460 177.646 0.30286 

1060 103.403 0.35179 450 178.8045 0.30248 

1050 104.3998 0.35122 440 179.9462 0.3021 

1040 105.3952 0.35065 430 181.0711 0.30172 

1030 106.3893 0.35008 420 182.1786 0.30134 

1020 107.382 0.34951 410 183.2687 0.30096 

1010 108.3733 0.34894 400 184.3409 0.30058 

1000 109.3633 0.34837 390 185.395 0.3002 

990 110.352 0.3478 380 186.4308 0.29983 

980 111.3393 0.34723 370 187.448 0.29945 

970 112.3252 0.34666 360 188.4465 0.29908 

960 113.3098 0.34609 350 189.4259 0.2987 

950 114.2931 0.34553 340 190.3867 0.29833 

940 115.275 0.34496 330 191.3322 0.29797 

930 116.2555 0.34439 320 192.258 0.29761 

920 117.2347 0.34382 310 193.1638 0.29724 

920 118.2126 0.34325 300 194.0477 0.29688 

910 119.1891 0.34268 290 194.9135 0.29652 

900 120.1642 0.34211 280 195.7589 0.29616 
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890 121.138 0.34154 270 196.584 0.2958 

880 122.1105 0.34097 260 197.3885 0.29545 

870 123.0816 0.3404 250 198.1534 0.29509 

860 124.0642 0.33983 240 198.9169 0.29473 

850 125.0506 0.33926 230 199.6654 0.29437 

840 126.0342 0.33868 220 200.392 0.29402 

830 127.0152 0.33811 210 201.0972 0.29366 

820 127.9937 0.33754 200 201.7815 0.2933 

810 128.9845 0.3369 190 202.4451 0.29295 

800 129.9864 0.33618 180 203.0883 0.29259 

790 130.9835 0.33547 170 203.7114 0.29224 

780 131.9758 0.33477 160 204.3148 0.29188 

770 132.9637 0.33408 150 204.8988 0.29153 

760 133.9472 0.33339 140 205.4639 0.29117 

750 134.9266 0.3327 130 206.0106 0.29082 

740 136.0903 0.33146 120 206.5397 0.29046 

730 139.6362 0.32166 110 207.0517 0.29011 

720 143.037 0.31358 100 207.5477 0.28975 

710 145.048 0.31163 90 208.0285 0.2894 

700 146.4786 0.31128 80 208.4952 0.28905 

690 147.9026 0.31092 70 208.9492 0.28869 

680 149.3186 0.31057 60 209.3919 0.28834 

670 150.7258 0.31022 50 209.825 0.28799 

660 152.1239 0.30987 40 210.2504 0.28763 

650 153.5124 0.30952 30 210.6704 0.28728 

640 154.8913 0.30917 - - - 

Table A.1: Elastic material properties for 16MnCrS5 steel for corresponding 

temperature values used in hot shape rolling simulation. 
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