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Abstra
t

A panel based method for automati
 optimization of aerodynami
 surfa
es using

pressure based fun
tionals is presented, where a potential �ow is used as a valid

approximation of the atta
hed �ow passing an arbitrary body. The optimiza-

tion is performed subje
t to the Stratford separation 
riterion and geometri
al


onstraints, where a favourable pressure distribution that indire
tly leads to a re-

du
ed drag represents the solution. The minimization of fun
tionals is done using

a sequential quadrati
 programming algorithm. The method is simple and has

low 
omputational demands. Its e�
ien
y is demonstrated in three 
on
eptually

di�erent test 
ases. In 
ase of an optimization of a fairing, en
losing a human

powered bi
y
le, the drag is redu
ed through a postponement of the transition

from laminar to turbulent �ow and the thinning of the boundary layer in the

pressure re
overy region. In 
ase of a fairing of a wing-fuselage jun
tion on an

airplane, a minimal drag at the same amount of lift is obtained through an elimi-

nation of a massive root �ow separation at moderate angle of atta
k, and in 
ase

of an optimization of a bulb keel of a sailboat, a favourable pressure distribution

and 
onsequently redu
ed drag is obtained simply through a smoother and on

average slower �ow passing the optimized surfa
es.

Key words: aerodynami
s, numeri
al optimization, pressure based

fun
tional, panel method, favourable pressure distribution, Stratford


riterion, laminar-turbulent transition, pressure drag, vis
ous drag,

boundary layer.
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Povzetek

V doktorski diserta
iji je predstavljena metoda za avtomati£no optimiza
ijo aero-

dinamskih povr²in s pomo£jo tla£nih funk
ionalov. Metoda temelji na panelni

metodi za izra£un tla£nih porazdelitev, kjer je poten
ialni tok uporabljen kot vel-

javen pribliºek prilepljenega toka, ki obteka poljubno telo. V metodi je vklju£en

tudi Stratfordov od
epitveni kriterij ter geometrijske omejitve, njen rezultat pa je

ugodna porazdelitev tlaka, ki posredno nakazuje na zmanj²anje upora telesa. Za

minimiza
ijo funk
ionalov je uporabljen SQP algoritem. Metoda je enostavna in

zahteva malo pro
esorske mo£i. Zmogljivost metode je prikazana na treh razli£nih

testnih primerih. Pri optimiza
iji zunanje lupine vozila na £love²ki pogon se upor

zmanj²a zaradi premika laminarno-turbulentnega prehoda proti kon
u telesa in

zaradi stanj²anja mejne plasti v obmo£ju tla£nega okrevanja. Pri drugem testnem

primeru, optimiza
iji prehoda krila na trup letala, je minimalni upor pri isti ve-

likosti vzgona pri srednje velikih vpadnih kotih doseºen z elimina
ijo od
epljenega

toka na korenu krila. Pri zadnjem testnem primeru, optimiza
iji kobili
e jadr-

ni
e, pa izra£unana ugodna porazdelitev tlaka vpliva na zmanj²an upor posredno

preko enakomernej²e in v povpre£ju po£asnej²e porazdelitve hitrosti.

Klju£ne besede: aerodinamika, numeri£na optimiza
ija, tla£ni funk-


ional, panelna metoda, ugodna porazdelitev tlaka, Stratfordov od-


epitveni kriterij, laminarno-turbulentni prehod, tla£ni upor, viskozni

upor, mejna plast.
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e
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* = perturbation
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Chapter 1

Introdu
tion

Automati
 aerodynami
 optimization is an ongoing �eld of resear
h. It 
ouples

the �elds of 
omputational �uid dynami
s (CFD) and numeri
al optimization.

In order to obtain an optimal aerodynami
 shape (e.g. at minimal drag), many

�ow 
omputations are needed. A lower degree of a CFD method 
omplexity

therefore results in a faster and more pra
ti
al optimization method. Further-

more, a simpler method typi
ally fo
uses on only 
ertain aspe
ts of the �ow (e.g.

laminar-turbulent transition), whi
h helps to fo
us the optimization pro
ess.

The use of 
al
ulus of variations, whi
h is the basis of all modern aerodynami


optimization methods, for the optimal aerodynami
 shape design was explored al-

ready in 1965 by Miele [1℄. Its appli
ation in optimal 
ontrol theory for 
ontrol of

systems governed by partial di�erential equations [2℄ was later used in 
ompress-

ible potential �ow problems [3℄. Independently it was also used in aerodynami


design via CFD by Jameson [4℄ who proposed to treat the design problem as a


ontrol problem in whi
h the 
ontrol is the shape of the boundary.

A 
lass of methods developed to study the design of nonplanar wing surfa
es


on
erns mostly the study of indu
ed drag by analysing the vorti
ity distribution

in the Tre�tz plane, a virtual plane far enough downstream from the body [5℄.

Su
h methods are also suitable for multidis
iplinary approa
hes where further

aspe
ts su
h as stru
tural weight and vis
ous drag are taken into a

ount [6�8℄.

Another 
lass of methods deals with a problem of studying the two dimensional

airfoil se
tions [9, 10℄ and optimizing them for best drag at given lift. These

se
tions 
an then form the basis of more 
omplex wing analyses.

The largest amount of work has been dedi
ated to optimization of full three

dimensional aerodynami
 
on�gurations. Some of the studies are presented and

des
ribed in overview papers [11�13℄. A number of studies [14�17℄ fo
us on the
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full set of Navier-Stokes equations, devising methods for the 
al
ulation of ideal

shapes, and often also taking into a

ount stru
tural 
onsiderations. These stud-

ies require signi�
ant 
omputational resour
es. A simpli�
ation of the �uid model

is therefore often desirable, and work has been done in employing the nonvis
ous,

Euler equations in the transoni
 regime [18�21℄. A further redu
tion in the �uid

model 
an be performed by using potential based methods, su
h as the panel

method [22�27℄ whi
h is a 
lass of boundary element methods (BEM) [28�30℄.

Sin
e a volume mesh surrounding the aerodynami
 surfa
e is at the panel method

repla
ed by a surfa
e mesh, the problem is simpli�ed and the optimization pro
e-

dure a

elerated signi�
antly. In su
h studies, drag is estimated using the bound-

ary layer equations via pressure distributions as supplied from the potential �ow.

The �uid model 
an be redu
ed even further by using a meshless method of funda-

mental solution (MFS) whi
h shows prominent results for potential �ows [31�33℄.

But sin
e the surfa
e of the body being optimized still needs to be dis
retized

in order to be able to reshape, the MFS method is not very pra
ti
al from the

surfa
e optimization point of view.

In all optimization methods, on
e the �uid model is 
hosen, an optimization of

a 
ost fun
tion 
an be performed using various minimization s
hemes [34℄. Most


ommonly, s
hemes that require a 
al
ulation of a gradient of a 
ost fun
tion with

respe
t to surfa
e parameters are applied, su
h as the quasi-Newton method.

The gradients 
an be 
al
ulated by dire
t numeri
al di�erentiation, however,

many studies employ the so 
alled adjoint formulation, where the gradients 
an

be 
omputed via a 
al
ulation of additional �ow equations that 
orrespond to

surfa
e perturbations [14,18�20℄. On the other hand, the 
al
ulation of gradients


an be avoided by 
hoosing a method that only requires the 
al
ulation of the

fun
tional itself. In re
ent years, geneti
 algorithms are gaining prominen
e [16℄.

The regime of interest of the present work is a low Ma
h number (M < 0.3),

moderate to high Reynolds number (106 ≤ Re ≤ 107) type of �ow. In this

regime, the �ow 
an be 
onsidered in
ompressible. For well designed aerodynami


surfa
es, the �ow 
an be also well separated into the essentially invis
id region

away from the aerodynami
 surfa
e, with vis
ous e�e
ts being dominant only in

the thin boundary layer 
lose to the surfa
e (on the order of hundredths of the

typi
al dimension in this regime), and in the (thin) wake behind the surfa
e. The

external �ow outside the boundary layer and the wake 
an be therefore des
ribed

by one of the potential �ow methods, the most prominent of these being the panel

method. The boundary layer �ow is then dominated by the invis
id external

2



pressure distribution and, if there is no separation of �ow present, the boundary

layer only loosely a�e
ts the external �ow by in
reasing the e�e
tive thi
kness of

the present aerodynami
 surfa
e [35℄.

The main idea behind the present work is that the 
al
ulation of the boundary

layer may not be ne
essary for obtaining a low drag aerodynami
 shape. As the

boundary layer �ow is driven by the pressure distribution, one 
an tailor pressure

distribution dire
tly in order to promote good boundary layer behaviour. The

problem 
an therefore be transferred from the dire
t 
al
ulation of drag using

boundary layer equations towards designing pressure fun
tionals whi
h, when

minimised, will give pressure distributions that promote favourable boundary

layer �ows.

For two dimensional airfoils, a su

essful pressure fun
tional that minimizes

the integral of the absolute value of the pressure gradient has already been em-

ployed [9℄. A similar formulation, that depends on a surfa
e pressure distribution

and a surfa
e gradient of this distribution, is in present work extended to three

dimensional shapes. In order to obtain pressure distributions a
ross the aero-

dynami
 surfa
e, in-house panel method 
odes were developed on the basis of a


onstant doublet singularity surfa
e distribution. The trade-o� between a

ura
y

and simpli
ity was sought. The minimization of the fun
tionals was done using

sequential quadrati
 programming (SQP) algorithms, whi
h are 
onsidered to be

among the most e�
ient methods for solving nonlinear 
onstraint optimization

problems [36, 37℄.

The main result of the present work is therefore a fast and pra
ti
al method

for optimization of three dimensional low speed aerodynami
 shapes. A novel

approa
h towards aerodynami
 optimization employs a fully invis
id formulation

that promotes e�
ient boundary layer �ow, even though an information about the

a
tual boundary layer �ow is deliberately lost. This approa
h is 
onsistent with

the typi
al task of an aerodynami
 designer, where surfa
e pressure distributions

are tailored manually in order to obtain smoothly varying �ows.

The theory that lies behind the proposed surfa
e optimization method is de-

s
ribed in Chapter 2. The method itself is presented in Chapter 3, whi
h is

divided into two main 
omponents for the present work, the panel method and

the surfa
e optimization. In Chapter 4, the method is tested on three fundamen-

tally di�erent examples, su
h as a fairing of a human powered vehi
le, a fairing

of a wing-fuselage jun
tion at the airplane and two fairings (hull-�n and �n-bulb)

at the keel of a sailboat. The results are validated with full Reynolds averaged

3



Navier-Stokes (RANS) 
al
ulations.
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Chapter 2

Theory

2.1 Potential Flow

A �xed �nite 
ontrol volume with a 
onstant volume and surfa
e area submerged

in a �ow �eld with density distribution ρ is 
onsidered �rst. Sin
e the �ow is

moving through the 
ontrol volume the time rate of 
hange of mass and momen-

tum 
an be observed in it. If the 
onservation of mass and Newton's se
ond law is

applied to the 
ontrol volume and transformed to di�erential form, the 
ontinuity

equation is written as

∂ρ

∂t
+∇ · ρV = 0 (2.1)

and the full Navier-Stokes equation as

ρ

(

∂V

∂t
+V · ∇V

)

= ρf−∇p+ ρν∇2
V+

1

3
ρν∇(∇ ·V). (2.2)

The 
ontinuity equation states that the mass 
an neither be 
reated nor destroyed

or in other words the mass must be 
onserved. The momentum equation on the

other hand des
ribes the time rate of 
hange of momentum due to the sum of all

for
es a
ting on observed 
ontrol volume. The Navier-Stokes equation (Eq. (2.2))

is written in Cartesian 
oordinates and in this form holds true for Newtonian

�uids only. These two statements, together with the equation of state, present

the fundamental equations of aerodynami
s and allow us to des
ribe any kind of

motion of a Newtonian �uid.

The present work applies to the regime of high Reynolds number

Re =
lV

ν
(2.3)

5



and low Ma
h number

M =
V

Vs

(2.4)

�ows (106 ≤ Re ≤ 107 and M < 0.3 for the typi
al 
ases presented in this

work), where l and Vs represent a referen
e body length and the velo
ity of sound,

respe
tively. Low Ma
h number indi
ates that we are dealing with in
ompressible

�ow where density doesn't 
hange with time and spa
e. The 
ontinuity equation

(Eq. (2.1)) for in
ompressible or 
onstant density �uid 
an therefore be written

as

∇ ·V = 0. (2.5)

High Reynolds numbers, as it will be shown next, enables one to negle
t

the vis
ous e�e
ts in the outer region of the �ow. The Navier-Stokes equation

for in
ompressible �ow and without body for
es 
an be written in dimensionless

form as

St
∂V†

∂t†
+V

† · ∇†
V

† = −∇†p† +
1

Re
∇†2

V

†, (2.6)

where the dimensionless 
hara
teristi
 quantities used are ∇† = l∇, V

† = V/V∞,

t† = t/T and p† = p/ρV 2
∞, where V∞ represents a freestream velo
ity magni-

tude. The ratio between inertial and vis
ous for
es is presented by the freestream

Reynolds number Re = V∞l/ν and the importan
e of time-dependent phenomena

by a form of the Strouhal number St = l/TV∞.

All the terms in Eq. (2.6) are of order of one ex
ept the last term on the right

hand side of equation, whi
h is for high Reynolds numbers negligible 
ompared

to the other terms. In regions further away from solid boundaries, where velo
ity

approa
hes the freestream velo
ity V∞ of undisturbed �ow, shear stress derivative

is of the order of one (∇†2
V

† ≈ 1) and for high Reynolds numbers this vis
ous

term 
an be negle
ted. In thin layer adja
ent to body surfa
e (Fig. (2.1)), on the

other hand, the shear stress derivative 
an be quite substantial and the vis
ous

term in Eq. (2.6) be
omes 
omparable to the other terms and 
an't be negle
ted

even for high Reynolds numbers.

Consequently, there are two distin
tive regions surrounding the body in high

Reynolds number �ows [38℄. In the immediate vi
inity of the body there is

a thin boundary layer, where the vis
ous e�e
ts play a signi�
ant role in �ow

development. In this region boundary layer equations [35℄ need to be solved in

order to obtain the shear stress distribution and 
orresponding fri
tion for
es.

Sin
e the vis
ous e�e
ts are e�e
tively 
on�ned in this thin boundary layer, the

6
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Figure 2.1: High Re atta
hed �ow around an arbitrary body 
an be ap-

proximated by two distin
tive regions: a boundary layer with 
hara
teristi


vis
ous e�e
ts and an outer potential �ow region.

�ow further away from the solid surfa
e is said to be vis
ous free. The �ow

in this outer region 
an therefore be des
ribed with in
ompressible and invis
id

aerodynami
 equations whose solution provides a pressure distribution on the

boundary of the region. The same pressure distribution is felt by the observed

body sin
e for atta
hed �ows an assumption 
an be made that the pressure doesn't


hange a
ross the boundary layer [35℄.

A high-Reynolds number approximation is a valid assumption for numerous

problems su
h as low speed aerodynami
s in general aviation, hydrodynami
s of

marine vessels, et
. It simpli�es the �ow des
ription and allows one to obtain a

pressure distribution on a body surfa
e with less di�
ulty than does a Navier-

Stokes solution. Another important aspe
t to be 
onsidered is rotation of the

�ow. A simpli�
ation of the �ow des
ription in the outer region, that will be

introdu
ed next, allows one to write the aerodynami
 equations in a form that

will be used through the remainder of present work.

As a 
onsequen
e of velo
ity variations within the �uid, ea
h �uid element

experien
es translation, rotation and deformation while moving with the �ow. Its

rotation 
an be e�e
tively des
ribed by vorti
ity ve
tor, whi
h is de�ned through

angular velo
ity ve
tor as

ζ = 2ω′ = ∇×V. (2.7)

When �uid elements rotate while moving with the �ow, the �ow is 
onsidered to

be rotational or ∇×V 6= 0. On the other hand, after Kelvin's theorem [22℄

DΓ

Dt
= 0, (2.8)

whi
h states that the time rate of 
hange of 
ir
ulation Γ around a 
losed 
urve


onsisting of the same �uid elements is zero, previously nonrotating ideal �uid

elements 
an not start rotating in the region of negligible vis
ous for
es. This

7



kind of �ow is 
alled irrotational and 
an be des
ribed by expression

ζ = ∇×V = 0 (2.9)

The �ow in the outer invis
id region 
an be therefore denoted as irrotational

where Eq. (2.9) holds true. Sin
e a 
url of a gradient of any s
alar fun
tion

is identi
ally zero, we 
an write the velo
ity ve
tor as a gradient of a velo
ity

potential Φ as

V = ∇Φ, (2.10)

where

V = (Vx, Vy, Vz) = (
∂Φ

∂x
,
∂Φ

∂y
,
∂Φ

∂z
). (2.11)

Sin
e an irrotational �ow 
an be des
ribed by velo
ity potential, it is also 
alled

a potential �ow.

The in
ompressible 
ontinuity equation (Eq. (2.5)) for an irrotational �uid


an be further written as

∇ ·V = ∇ · ∇Φ = ∇2Φ = 0. (2.12)

This linear ellipti
al di�erential equation is Lapla
e's equation, whose solution is

a potential �eld. On
e the velo
ity distribution is 
al
ulated from Eq. (2.10), the

pressure distribution on body surfa
e needs to be obtained in order to 
al
ulate

the aerodynami
 for
es and moments.

In order to do that, the in
ompressible, invis
id and steady Navier-Stokes

equation without body for
es needs to be rewritten with the help of equation

V · ∇V = ∇
V 2

2
−V× ζ (2.13)

as

−V× ζ +∇
V 2

2
= −∇

p

ρ
. (2.14)

For an irrotational �ow (ζ = 0) Eq. (2.14) 
an be further simpli�ed to

∇

(

V 2

2
+

p

ρ

)

= 0, (2.15)

whi
h holds true for a steady �ow only if the expression in the parentheses is a
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spatial 
onstant

V 2

2
+

p

ρ
= 
onst. (2.16)

The derived equation is 
alled a Bernoulli's equation. It 
onne
ts magnitude of

velo
ity and pressure of every point in the �ow, whi
h enables one to 
ompute the

pressure distribution dire
tly from the velo
ity distribution. By 
omparing Eq.

(2.16) at two points in the �ow, where one is at in�nity, the following expression

for pressure 
oe�
ient holds true

Cp =
p∞ − p
1
2
ρV 2

∞

= 1 +
V 2

V 2
∞

. (2.17)

2.2 Drag

All aerodynami
 for
es and moments a body situated in a �uid �ow experien
es

have two root 
auses:

• pressure surfa
e distribution and

• shear stress surfa
e distribution.

The �uid moving along a solid boundary a
ts on the body solely through these two

me
hanisms. Both distributions represent an average for
e distribution per unit

area. The pressure distribution represents a normal stress with for
es oriented

normal to the body surfa
e, whereas shear stress a
ts tangential to the body

surfa
e. By integrating them over the whole body surfa
e, total for
e and moment

a
ting on the body 
an be obtained. The for
e 
an be further resolved into two


omponents, one in dire
tion of a freestream 
alled a drag, and one in dire
tion

perpendi
ular to the freestream 
alled a lift.

There are three 
ontributions to a total drag for
e: pressure drag, skin fri
tion

drag due to shear stress, and indu
ed drag due to lift. In this work we are

interested only in the �rst two 
ontributions, even though indu
ed drag 
an have

a major 
ontribution to total drag in some 
ases, e.g. an airplane on take-o� [39℄.

A

ording to d'Alembert's paradox [40℄, a 
ompletely atta
hed invis
id �ow

passing a nonlifting body with an arbitrary shape doesn't 
ause drag on the body.

This 
an be observed by taking into 
onsideration only the outer region of the

�ow des
ribed by the potential theory (Se
tion 2.1). As soon as vis
osity in the

boundary layer is taken into 
onsideration, vis
ous e�e
ts produ
e skin fri
tion

and possibly also �ow separation whi
h together always produ
e a �nite drag.

9



A no-slip 
ondition at the body surfa
e, due to a fri
tional for
e between the

surfa
e and the �uid, 
auses a retarded �ow right above the surfa
e. In the region

of an adverse pressure gradient it 
an happen that the �ow, already slowed down

by the fri
tional for
es, may no longer sustain an in
reasing pressure. The �ow


an stop or even reverse its dire
tion and start moving upstream (Fig. (2.2(a))),

whi
h 
auses the �ow to separate from the surfa
e and 
reate a large wake of

re
ir
ulating �ow behind the body. At the region of separated �ow the pressure

drops (Fig. (2.2(b))) and 
an therefore no longer 
an
el the pressure distribution

over the reminder of the body. A result is a pressure drag for
e due to a �ow

separation. A separated �ow should be avoided sin
e besides a large drag, it

produ
es also a major lift de
rease or even a stall.

n

V

x

y

(a)

Cp

0

-0.1

0.1

x

(b)

Figure 2.2: (a) Boundary layer velo
ity pro�les of a separated �ow, due to

adverse pressure gradient. (b) Pressure distribution on the upper side of

the airfoil of an atta
hed (dashed) and separated �ow (solid).

Over the range of Reynolds number between 106 and 107, where the main

interest of the present work lies, the external �ow passing a slender body usually

experien
es a laminar to turbulent boundary layer transition. Sin
e a laminar

boundary layer has smooth and regular streamlines, whereas the motion of a �ow

in a turbulent boundary layer is very irregular and full of verti
es of all sizes, the

two �ows have di�erent 
hara
teristi
s and produ
e a di�erent amount of drag.

Be
ause of a high di�usivity of a turbulent boundary layer, the �uid elements

with higher velo
ity 
an approa
h the surfa
e 
loser and the elements with smaller

velo
ity 
an digress further away from the surfa
e. Turbulen
e therefore produ
es

an ex
hange of momentum and energy whi
h thi
kens the boundary layer. A �at

plate at a zero in
iden
e has a thi
kness of a laminar boundary layer a

ording

to H. Blasius [41℄ proportional to the square root of a distan
e x along the plate

and inversely proportional to the square root of the Reynolds number (based on

10



the length of the plate c)

δlam = 5.0c1/2
x1/2

Re
1/2
c

. (2.18)

This result presents an exa
t solution of the L. Prandtl's laminar boundary layer

equations [38℄. On the other hand, there is no pure theory to des
ribe a turbulent

boundary layer. The thi
kness of the turbulent boundary layer is therefore given

approximately by [40℄

δturb = 0.37c1/5
x4/5

Re
1/5
c

. (2.19)

The boundary layer thi
kness δ is in these 
ases de�ned as a distan
e from the

solid surfa
e to the point in the �ow in surfa
e normal dire
tion n, with a velo
ity

magnitude equal to 99% of the freestream velo
ity V∞ (Fig. (2.3)). For the

example of a �at plate at zero in
iden
e the relation δturb > δlam indeed holds

true for every x along the plate.

n

V0.99V
∞

lam

turb

0

Figure 2.3: A typi
al velo
ity pro�le in a laminar (solid) and a turbulent

boundary layer (dashed) and 
orresponding boundary layer thi
knesses.

A high degree of mixing of �uid elements in turbulent boundary layer also

produ
es di�erent velo
ity pro�les adja
ent to the body surfa
e 
ompared to

the laminar �ow. A typi
al velo
ity pro�le in boundary layer before and after

transition is presented in Fig. (2.3). The turbulent boundary layer has a larger

velo
ity gradient (∂V/∂n)n=0 at the wall than laminar boundary layer [35℄ and

sin
e a shear stress of a Newtonian �uid is dire
tly proportional to the velo
ity

gradient

τw = ρν

(

∂V

∂n

)

n=0

, (2.20)

also the fri
tional stress is greater for turbulent boundary layer. By integrating

the skin fri
tion 
oe�
ient cf = τw/
1
2
ρ∞V 2

∞ over the 
omplete surfa
e of the body,

the fri
tion drag 
oe�
ient of the body 
an be 
al
ulated. In the 
ase of a �at

plate with a length c at zero in
iden
e in a laminar boundary layer, the fri
tion

11



drag 
an be expressed after [41℄ as

CDf,lam
=

1.328

Re
1/2
c

, (2.21)

and for a plate in a turbulent boundary layer after [40℄ approximately as

CDf,turb
=

0.074

Re
1/5
c

. (2.22)

The fri
tion drag of turbulent boundary layer 
an be therefore mu
h larger

than the fri
tion drag of laminar boundary layer, in 
ase of an atta
hed �ow

passing an arbitrary body. Due to mixing and the asso
iated momentum transfer

the average �ow velo
ity near the body surfa
e is higher for turbulent �ow. Fluid

elements of a turbulent �ow near the body surfa
e have more energy and 
an

better over
ome skin fri
tion and therefore withstand larger adverse pressure

gradients. For this reason the turbulent �ow doesn't separate from the surfa
e

as readily as laminar �ow. If the �ow does eventually separate, the separated

region is smaller for the turbulent �ow and 
onsequently the pressure drop less

expli
it [35℄. The pressure drag of the separated turbulent boundary layer is

therefore smaller than the pressure drag of the separated laminar boundary layer.

It depends on the shape of the body or the part of the body what kind of �ow

is preferred. If the body is blunt, laminar �ow 
auses large laminar bubbles [42℄

that lead to �ow separation and 
onsequently large pressure drag. For blunt

bodies turbulent �ow is desired, whereas for slender bodies usually laminar �ow

is preferable sin
e its fri
tion drag 
omponent is larger than its pressure drag


omponent. If there is a 
han
e the �ow will separate, e.g. at the pressure

re
overy region, the transition from laminar to turbulent �ow should o

ur right

before the separation. In this way, in order to a
hieve the smallest drag possible,

laminar �ow with smaller skin fri
tion is preferred in the region of favourable

pressure gradient, where the �ow is usually atta
hed, and a turbulent �ow with

smaller pressure drag in the pressure re
overy region.

Laminar-Turbulent Transition. An exa
t laminar to turbulent �ow tran-

sition lo
ation is not a trivial thing to predi
t, sin
e it is a�e
ted by many pa-

rameters su
h as Reynolds number, pressure distribution of the outer �ow, the

roughness of the wall, the turbulen
e intensity of the outer �ow, et
. In fa
t, the

transition doesn't happen at a point but over a region of a �nite length. Any

real �ow is in one way or another subje
t to smaller or bigger disturban
es and

12



the vis
osity is the fa
tor that a
ts to restrain produ
ed instabilities. Above a


ertain limit of the Reynolds number, the inertial for
es are so large in relation to

the vis
ous ones that the disturban
es are not su�
iently damped and will start

to grow. The transition pro
ess starts and the �ow goes through di�erent stages

before it be
omes a 
ompletely turbulent �ow. The transition is most noti
eable

by a great in
rease in the boundary layer thi
kness and in the wall shear stress

(Eqs. (2.18) - (2.22)).

A transition that starts with two dimensional Tollmien-S
hli
hting waves that

are superimposed on the laminar �ow is 
alled a natural transition [35℄. The basi


laminar �ow is therefore distorted by the growth of the unstable two dimensional

primary instabilities that get ampli�ed downstream in the boundary layer and

eventually transform into three dimensional se
ondary instabilities that lead to

Λ-stru
ture formations. These are repla
ed by turbulent spots, whi
h are the last

phase before the fully turbulent boundary layer develops.

If the amplitude of the turbulen
e intensity in the freestream is larger than

the amplitude of the two dimensional primary instabilities at the natural tran-

sition, this beginning phase of the transition 
an be by-passed. In 
ase of an

intense freestream turbulen
e or even high degree of surfa
e roughness, the tran-

sition starts dire
tly with three dimensional se
ondary instabilities or even with

turbulent spots. This type of transition is 
alled a by-pass transition [43�45℄.

In order to postpone the transition and 
onsequently redu
e the drag of the

body, the likelihood for the formation of the instabilities in the �ow should be as

low as possible. The stability theory of a laminar �ow states that the 
urvature

of the velo
ity pro�le at the body surfa
e is the 
ru
ial fa
tor for the stability of

the laminar �ow [35℄. A

ording to the boundary layer equation at the wall [35℄

ρν

(

d2V

dn2

)

n=0

=
dp

dx
, (2.23)

the pressure gradient dire
tly 
ontrols the 
urvature of the velo
ity pro�le and

therefore 
onsiderably in�uen
es the stability of the laminar �ow. A negative

pressure gradient 
an lower the amount of instabilities in the �ow and postpone

the transition, whereas a positive pressure gradient 
an not only strongly am-

plify the disturban
es but even initiate the transition. Streamwise instabilities

that lead to Tollmien-S
hli
hting waves 
an be therefore 
ontrolled by using a

favourable pressure gradient and by minimizing the extent of the pressure re
ov-

ery region.

13



If the dire
tion of pressure gradient is in
lined at an angle with respe
t to

the freestream dire
tion, the boundary layer and the outer region will try to

follow di�erent paths. If there is a rather large angle between the two dire
tions,

the 
ross-�ow instabilities 
an o

ur in the boundary layer that 
an, similar

to Tollmien-S
hli
hting waves, begin the transition pro
ess. A typi
al example

of this phenomenon is a swept wing or a rotating disk [46, 47℄. In order to

avoid 
ross-�ow instabilities, the strong pressure gradient 
omponent in dire
tion

perpendi
ular to the freestream should be minimized. This is another instability

sour
e that 
an be 
ontrolled by using a suitable pressure gradient.

Both 
ontributions of drag, pressure drag due to �ow separation and skin

fri
tion drag due to shear stress, are a 
onsequen
e of vis
osity of the �uid. Even

though the potential �ow doesn't produ
e drag, the potential �ow theory 
an still

be used to indire
tly in�uen
e on the amount of drag through pressure distribu-

tion (as was shown in the present se
tion), whi
h presents the base of the surfa
e

optimization method in the present work.

2.3 Solution of Lapla
e's Equation

In order to 
ompute a pressure distribution 
aused by the potential �ow passing

an arbitrary body, Lapla
e's equation (Eq. (2.12)), a se
ond-order linear partial

di�erential equation, needs to be solved. The fa
t that the Lapla
e's equation

is linear is parti
ularly important, be
ause a sum of any number of elementary

solutions is also a solution of this equation. For example if ea
h of n separate

solutionsΦ1, Φ2, ..., Φn solves Lapla
e's equation, then also the sum w1Φ1+w2Φ2+

...+wnΦn represents a solution, where w1, w2, ..., wn represent an arbitrary set of

real numbers.

2.3.1 Elementary Solutions

A solution 
omposed of a surfa
e distribution of elementary singularity solutions

also satis�es Lapla
e's equation. In this way the problem redu
es to �nding only

the strengths of ea
h elementary solution on the body's surfa
e. The problem

therefore be
omes a boundary-value problem where the boundary 
onditions are

satis�ed with proper elementary solution strengths. Sin
e we are dealing with a

simple steady potential �ow, where no vis
ous and 
ompressible e�e
ts need to be

a

ounted, using this method is 
omputationally mu
h less demanding, 
ompared
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>0

(a)

<0

(b)

Figure 2.4: A two dimensional representation of (a) a sour
e and (b) a

sink elementary solution, denoted with streamlines (lines with arrows) and

equipotential 
ir
les (dashed 
ir
les).

to methods that solve equations for the whole �uid domain V, su
h as e.g. �nite

volume methods.

There exists a number of elementary solutions, that by de�nition produ
e

irrotational and in
ompressible �ow and at the same time limit to zero at an

in�nite distan
e from their origin (where the in�uen
e of the body's presen
e

diminish to zero) and 
an be summed into a general solution. One of the examples

is a sour
e/sink �ow where all the streamlines are straight lines emanating from/

sinking into a 
entral point (Fig. (2.4)). The potential at an arbitrary point

P in a three dimensional domain V at a distan
e r from the sink/sour
e 
enter

lo
ation is then [22℄

ΦS = −
σ

4πr
. (2.24)

The velo
ity 
aused by this point sour
e/sink 
an be obtained by using Eq. (2.10).

The velo
ity has only the radial 
omponent that varies inversely with distan
e

from the 
entral point

V =
σ

4π

r

|r|3
. (2.25)

A positive σ represents a sour
e, whereas a negative σ a sink. In 
ase of a sour
e

elementary solution the �ow is introdu
ed from a point and in 
ase of a sink the

�ow is diminishing into a point. This phenomenon violates the 
onservation of

mass and the point must be, in 
ase of e.g. surfa
e integration, ex
luded from

integration.

Another example of an elementary �ow is a doublet �ow. It is 
omposed out of

a sour
e and a sink a distan
e g apart, as depi
ted in Fig. (2.5(a)). The velo
ity
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potential at a point P , a distan
e r from the sour
e-sink pair, 
an be obtained as

Φ(P ) = −
σ

4π

(

1

|r|
−

1

|r− g|

)

. (2.26)

In a limit, when the distan
e g between the sour
e and the sink goes to zero,

while keeping a produ
t gσ �nite and equal to µ, the potential goes to

Φ(P ) = lim
g→0

gσ→µ

−
σ

4π

(

|r| − |r− g|

|r||r− g|

)

. (2.27)

The numerator of Eq. (2.27) |r| − |r− g| goes in the limit to g cos θ and denomi-

nator |r||r− g| to r2. If the doublet points in dire
tion normal to the surfa
e (in

dire
tion of n), the potential 
an be written as

Φ = −
µn · r

4πr3
. (2.28)

As in the 
ase of a sour
e or a sink, the doublet �ow 
an be interpreted as a

�ow being indu
ed by a dis
rete doublet of a strength µ pla
ed at an arbitrary

point. Therefore, a doublet is a singularity that indu
es about itself the double-

lobed 
ir
ular �ow pattern shown in Fig. (2.5(b)). The potential 
an be further

rewritten to take a form of a normal derivative of a sour
e potential as

ΦD =
µ

4π
n · ∇

(

1

r

)

. (2.29)

The third elementary �ow example is a vortex �ow, with all the streamlines

as a 
on
entri
 
ir
les about an in�nite line, as sket
hed in Fig. (2.6(a)). The

velo
ity along any given 
ir
ular streamline is 
onstant but varies inversely with

a distan
e from the vortex line and 
an be expressed in 
ylindri
al 
oordinates

as [22℄

V =

(

0,−
Γ

2πr
, 0

)

, (2.30)

where Γ represents the 
ir
ulation of observed vortex line aligned with the z axis.

The last example of an elementary solution, to be presented in the present

work, is a uniform �ow (Fig. (2.6(b))), e.g. a uniform �ow with velo
ity V∞

oriented in the positive x dire
tion

ΦU = V∞x (2.31)

16



g

g cos θ

r - g

r

θ

P

(a)

μ

(b)

Figure 2.5: (a) A doublet elementary solution is 
omposed out of a sink

and a sour
e a distan
e g apart. (b) Streamlines (
ir
les with arrows) and

equipotential 
ir
les (dashed 
ir
les) around a doublet of strength µ in a

two dimensional representation.

Γ

(a)

V

(b)

Figure 2.6: (a) A 
ross se
tion of a �ow about a vortex of strength Γ
laying perpendi
ular to the plane of the paper and (b) a uniform �ow in

dire
tion of a freestream, denoted with streamlines (
urves with arrows)

and equipotential lines (dashed lines).

A simple 
ombination of elementary �ows 
an already produ
e some basi


potential �ows [22℄, e.g. a �ow over a Rankine oval (uniform �ow and a sour
e-

sink pair), nonlifting (two dimensional doublet �ow) or lifting (two dimensional

doublet and vortex �ow) �ow over a 
ir
ular 
ylinder, et
.
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2.3.2 Two Dimensional Elementary Solution Distributions

In this subse
tion some two dimensional 
ases of elementary solutions distributed

along a single axis will be examined and their solution sought. At the end a

suitable distribution of singularities will be 
hosen in order to des
ribe the �ow

past an arbitrary body.

If a two dimensional sour
e distribution σ(x) along the x axis is examined

(Fig. (2.7(a))), the velo
ity in y dire
tion at an arbitrary point, as a sum of the

in�uen
e of all dis
rete elementary sour
es laying in points x0 (two dimensional

form of Eq. (2.25)), has a form of

Vy(x, y) =
1

2π

∫ x2

x1

σ(x)
y

(x− x0)2 + y2
dx. (2.32)

In a limit, where y goes to zero, the integral goes to zero at all values of x ex
ept

at x = x0, therefore only points σ(x0) 
ontribute to the integral. That is why

σ(x) 
an be moved out of the integral in Eq. (2.32) and repla
ed by σ(x0). The

integration limits 
an now be pulled to in�nity in both dire
tions and the result

doesn't 
hange. The y 
omponent of velo
ity, when y is limiting towards zero

from the positive or the negative dire
tion, 
an be therefore written as

Vy(x, 0±) = lim
y→0±

σ(x)

2π

∫ ∞

−∞

y

(x− x0)2 + y2
dx. (2.33)

The result is after integration simply [22℄

Vy(x, 0±) =
∂Φ

∂y
(x, 0±) = ±

σ(x)

2
. (2.34)

For an arbitrary surfa
e sour
e distribution, the result 
an be rewritten as a

di�eren
e between normal derivatives of external and internal potential

σ =
∂Φ

∂n
−

∂Φi

∂n
, (2.35)

where subs
ript i indi
ates the limit to surfa
e from under the surfa
e and no

subs
ript the limit to surfa
e from above the surfa
e.

A two dimensional doublet distribution along the x 
oordinate pointing in

y dire
tion (Fig. (2.7(b))) produ
es at an arbitrary point a velo
ity potential

Φ(x, y) that 
an be expressed as a sum of the in�uen
e of all dis
rete elements

laying in points x0 (two dimensional form of Eq. (2.28)) as
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Φ(x, y) = −
1

2π

∫ x2

x1

µ(x)
y

(x− x0)2 + y2
dx. (2.36)

This potential has a similar form as the y 
omponent of velo
ity resulting as a

presen
e of a sour
e distribution (Eq. (2.32)) and also has a similar solution.

When approa
hing y = 0 from positive or negative dire
tion, a jump in potential

is 
reated, that 
an be written as

Φ(x, 0±) = ∓
µ(x)

2
. (2.37)

Strength of a doublet 
an be therefore expressed as a potential di�eren
e in points

right under and above the surfa
e as

µ = Φi − Φ. (2.38)

Velo
ity Vx 
an be further 
omputed as

Vx(x, 0±) =
∂Φ

∂x
(x, 0±) = ∓

1

2

dµ(x)

dx
. (2.39)

Sin
e a normal derivative of potential is zero at the body's surfa
e, a doublet

distribution results only in tangential �ow at the surfa
e of the body.

A two dimensional vortex distribution γ(x) 
an be treated in a similar manner

(Fig. (2.7(
))). The 
omponent of velo
ity in x dire
tion at an arbitrary point


an be expressed as a sum of the in�uen
e of all dis
rete elements laying in points

x0 (Eq. (2.30)) as

Vx(x, y) =
1

2π

∫ x2

x1

γ(x)
y

(x− x0)2 + y2
dx. (2.40)

In a similar manner as at the last two examples, the tangential velo
ity 
omponent

right above and right under the surfa
e 
an be 
omputed as

Vx(x, 0±) =
∂Φ

∂x
(x, 0±) = ±

γ(x)

2
. (2.41)

For an arbitrary surfa
e vortex distribution, the result 
an be rewritten as a

di�eren
e between tangential derivatives of external and internal potential as

γ =
∂Φ

∂x
−

∂Φi

∂x
. (2.42)

By 
omparing Eq. (2.39) and Eq. (2.41), it 
an be observed, that the doublet
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distribution 
an repla
e the vortex distribution su
h that

γ(x) = −
dµ(x)

dx
. (2.43)

A 
ombination of body surfa
e doublet distribution that indu
es only the

tangential 
omponent of velo
ity right at the surfa
e, sour
e distribution that

indu
es a normal velo
ity jump a
ross the surfa
e together with a freestream �ow

looks like a good 
ombination to model a �ow around an arbitrary body. For

wake modeling only doublet distribution is suitable, be
ause it 
orre
tly 
onsiders

a potential jump when 
rossing the wake, whi
h will be presented in the next

subse
tion. Additional distribution of vorti
es is in both 
ases redundant sin
e it

is equivalent to doublet distribution.

x x

y

1 2 x

( )x

(a)

x x

y

1 2
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( )x
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(
)

Figure 2.7: (a) Sour
e, (b) doublet and (
) vortex distribution along x axis.

2.3.3 Kutta Condition

Let us now 
onsider an arbitrary lifting body, e.g. a wing, and observe the

irrotational �ow passing the body on a 
ross-se
tion plane parallel to the plane

of symmetry and perpendi
ular to span dire
tion at some 
hosen span lo
ation

(Fig. (2.8)). If the velo
ity ve
tor is integrated over a 
urve lying on observed

plane starting from the point right under the wake going around the body and

�nishing at a point right above the wake, the bound 
ir
ulation of the wing is


al
ulated as

Γ =

∫ b

a

V · ds =

∫ b

a

∇Φ · ds =

∫ b

a

dΦ = Φb − Φa. (2.44)

Sin
e the wake itself is 
omposed of free vorti
ity that adve
ts into the �ow as a

surfa
e emanating from the trailing edge of the wing, it must be ex
luded from

the integration, otherwise the Eq. (2.10) for the potential �ow doesn't hold true.

The bound 
ir
ulation is therefore equal to a potential di�eren
e in points right

above and right under the wake. In the 
ase without a wake, the two potentials
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an
el ea
h other, and 
ir
ulation is zero. A

ording to Kutta-Joukowski theorem

L = ρ∞V∞Γ (2.45)

there 
learly needs to be a wake present in order to model a lifting surfa
e.

a

b

TE= 0

V

s

Figure 2.8: A path of integration, in order to 
al
ulate the bound 
ir
u-

lation, around an arbitrary wing from point a to point b 
oin
iding with

a 
ross-se
tion plane perpendi
ular to span dire
tion at some 
hosen span

lo
ation. The Kutta 
ondition is denoted at the trailing edge of the wing.

By 
omparing Eq. (2.38) and Eq. (2.44), a linear dependen
e between the

strength of a doublet that models the wake and the bound 
ir
ulation at an

arbitrary span position 
an be observed

Γ = −µ. (2.46)

Sin
e the potential �ow is de�ned up to a 
onstant (Eq. (2.10)), there is an

in�nite number of possible theoreti
al potential �ow solutions 
orresponding to

the in�nite 
hoi
es for values of Γ. In real life a wing at ea
h angle of atta
k

produ
es a single value of lift. That is why a 
ondition is needed that will give

the 
orre
t 
ir
ulation around a parti
ular lifting body at �xed 
ir
umstan
es and

in this way one parti
ular solution out of all possible.

This 
ondition 
omes from the fa
t that a steady �ow is smoothly leaving

the upper and the bottom surfa
es at the trailing edge (TE) of the lifting body.

In a 
ase of a �nite angle trailing edge a stagnation line is indu
ed along the

trailing edge, whereas in the 
ase of a 
usped trailing edge an equal velo
ity
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ve
tor (in dire
tion and magnitude) for both �ows, 
oming from the upper and

bottom surfa
e, 
an be observed. For both types of the trailing edge the vorti
ity

along the edge is a

ording to Eq. (2.7) zero and the Kutta 
ondition 
an be

summarized with a single expression (Fig. (2.8)) as

γTE = 0. (2.47)

By applying just stated Kutta 
ondition in doublet and vorti
ity distribution

relation (Eq. (2.43)), where x dire
tion goes along the wake, it 
an be seen that

the doublet strength must be 
onstant along the wake in the streamwise dire
tion

or µW = 
onst. at an arbitrary span lo
ation.

The same result 
an be demonstrated by looking at the problem from another

perspe
tive. It doesn't matter at whi
h point along the wake at a 
hosen spanwise

position the integration of velo
ity around the body is started (Eq. (2.44)). As

long as the starting vortex is ex
luded from integration, the same amount of


ir
ulation will always be embra
ed, whi
h denotes the same potential di�eren
e

in points right above and under the wake. The wake isn't a solid surfa
e, that is

why it 
an't produ
e lift and therefore a

ording to Kutta-Joukowski there are no

bound vorti
es in the wake. The wake is 
omposed only from free vorti
es whose

strength is preserved along the wake in the streamwise dire
tion. The amount of


ir
ulation that is released into the wake at some point along the body's span,


omes from the upper and the lower surfa
e right at the trailing edge

ΓW = Γup − Γlow (2.48)

or after Eq. (2.46)

µW = µup − µlow. (2.49)

If Kutta-Joukowski 
ondition is now written for the free vortex distribution γW

in the wake as

ρV× γW = 0, (2.50)

a 
ondition for the wake shape 
an be derived as

γW ‖ V. (2.51)

Free vorti
es are therefore a

ording to this linear theory parallel to the �ow

streamlines and 
ontinue to in�nity. In real life though, the vorti
es in�uen
e
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on ea
h other and together with the external �ow in�uen
e introdu
e additional

nonlinear e�e
ts, su
h as wake roll-up [22℄ and vortex breakup [48℄.
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Chapter 3

Method

In this 
hapter, a surfa
e optimization method applied in all test 
ases (Chapter

4) is presented. First, a 
lassi
 �rst-order panel method is summarized after J.

Katz and A. Plotkin [22℄. Next, an ele
trostati
 analogy of a surfa
e integral over

a panel doublet distribution is introdu
ed. This analogy is then used in order

to write a novel form of a panel method, a tool for surfa
e potential distribution


al
ulation. A model of a wake and a method for a velo
ity, pressure and pressure

gradient distribution 
al
ulation is presented at the end of the �rst se
tion.

In the se
ond se
tion, a 
omplete pro
edure of surfa
e optimization is pre-

sented, how the transformation of an initial surfa
e is des
ribed and implemented,

what are the 
ost fun
tions being minimized in order to obtain optimal results

and �nally, whi
h 
onstraints are being used at di�erent test 
ases.

3.1 Panel Method

3.1.1 The Problem

The present work deals with a steady in
ompressible potential �ow in a volume

V with an outer boundary S∞ en
losing an arbitrary body with surfa
e SB and

possibly also a wake surfa
e SW behind the body. The problem is treated in

a body �xed 
oordinate system. The velo
ity and pressure distributions are

obtained by the Lapla
e's equation (Eq. (2.12)) and Bernoulli's equation (Eq.

(2.17)), respe
tively. The problem is a boundary-value problem, where boundary


onditions need to be de�ned.

Be
ause of the invis
id property of the �uid in the potential �ow, the no-slip


ondition on the solid surfa
e isn't satis�ed. Furthermore, sin
e the �ow 
an't

physi
ally penetrate into the body, the velo
ity ve
tor must be tangent to the
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surfa
e and 
onsequently only the normal 
omponent of velo
ity equals zero at

the solid surfa
e boundary

V · n = ∇Φ · n =
∂Φ

∂n
= 0, (3.1)

where n is a ve
tor normal to the body's surfa
e. On the other hand, the distur-

ban
e in the �ow 
reated by the presen
e of the body should de
ay with distan
e

r from the body. At domain's outer region (r → ∞) the following limit must

hold true

lim
r→∞

(∇Φ− V∞) = 0. (3.2)

Far away from the body, toward in�nity, the �ow therefore approa
hes the uniform

freestream 
ondition. But sin
e an invis
id potential �ow is being dealt with, the

wake doesn't vanish far from the body. Be
ause of this, the limit Eq. (3.2) doesn't

hold true in the immediate vi
inity of the wake on domain's outer region.

3.1.2 Classi
 First-Order Panel Method

Total potential at an arbitrary point P in the observed domain V as a 
onsequen
e

of a sour
e and a doublet distribution on the surfa
e of the body and the wake


an be 
onstru
ted after J. Katz and A. Plotkin [22℄ as a sum of a perturbation

potential Φ∗
and a freestream potential Φ∞ as

Φ(P ) = Φ∗(P ) + Φ∞(P ), (3.3)

or

Φ(P ) =

∫

SB

(ΦD(P ) + ΦS(P )) dS +

∫

SW

ΦD(P )dS + Φ∞(P ). (3.4)

The wake is modeled by a thin doublet sheet and the body by a doublet and a

sour
e surfa
e distribution. Physi
al surfa
e normals n always point out of the

observed volume, therefore out of the volume V on boundary S∞ and into the

body on surfa
e SB. The freestream potential has a form of

Φ∞ = V∞,xx+ V∞,yy + V∞,zz. (3.5)

Introdu
ing Eqs. (2.24) and (2.29) for ΦS and ΦD into Eq. (3.4) results in

Φ(P ) =
1

4π

∫

SB+SW

µ n · ∇

(

1

r

)

dS −
1

4π

∫

SB

σ

(

1

r

)

dS + Φ∞. (3.6)
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In order to solve this main potential equation the boundary 
onditions need to

be satis�ed. The outer boundary 
ondition at surfa
e S∞ (Eq. (3.2)) requires the

derivative of perturbation potential to go to zero due to a small rea
h of body's

in�uen
e on the freestream and large distan
e from the body.

∇Φ∗|S∞
= 0. (3.7)

In other words, velo
ity should be equal to freestream velo
ity far from the body.

Again, this holds true at the whole outer region S∞ ex
ept in the immediate

vi
inity of the wake. A

ording to Eqs. (2.24) and (2.29), both elementary

solutions already satisfy this boundary 
ondition.

On the other hand, the Neumann boundary 
ondition on the observed body's

surfa
e SB (Eq. (3.1)) states that the �ow 
an not go into the solid body and, as

a 
onsequen
e, the normal 
omponent of velo
ity is zero

∇ (Φ∗ + Φ∞) · n = 0. (3.8)

Now that boundary 
onditions to the problem are spe
i�ed, a unique solution

still 
an't be obtained. There is an in�nite number of di�erent sour
e and doublet

distribution 
ombinations that satisfy these boundary 
onditions (Eqs. (3.7) and

(3.8)). An arbitrary 
hoi
e therefore has to be made in order to de�ne a desirable


ombination of elementary solutions and solve the Eq. (3.6). There are also some

physi
al 
onsiderations that need to be dealt with in the problem. For example

the right amount of 
ir
ulation around the body needs to be assured in order

to model a lifting body. This is a
hieved by properly modeling the wake and

in
orporating the Kutta 
ondition (Eq. (2.49)) at the trailing edge.

If the boundary SB is en
losed, then as a 
onsequen
e of Neumann boundary


ondition (Eq. 3.8), the potential inside the body without internal singularities


an be a 
onstant

Φi = 
onst. (3.9)

An equivalent statement says that velo
ity inside the body equals zero ∇Φi =

Vi = 0. With the help of this observation a Diri
hlet boundary 
ondition 
an be

set in terms of the potential inside the body. The inner potential 
an be then

expressed as

Φi(x, y, z) =
1

4π

∫

SB+SW

µ n·∇

(

1

r

)

dS−
1

4π

∫

SB

σ

(

1

r

)

dS+Φ∞ = 
onst. (3.10)
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Both, the Neumann and Diri
hlet boundary 
onditions equivalently state that

normal 
omponent of velo
ity on body's surfa
e must be zero.

Besides 
hoosing di�erent sour
e/doublet 
ombinations in order to satisfy

boundary 
onditions, one must also 
hoose an appropriate 
onstant for inner

potential in order to �nd a solution of Eq. (3.10). As it will be shown next,

an inner potential that is not a 
onstant 
an also be 
hosen. Following J.

Katz and A. Plotkin [22℄, the inner potential 
an be set to freestream poten-

tial Φi = Φ∗
i + Φ∞ = Φ∞, whi
h redu
es Eq. (3.10) to the simpler form

1

4π

∫

SB+SW

µn · ∇

(

1

r

)

dS −
1

4π

∫

SB

σ

(

1

r

)

dS = 0. (3.11)

A di�eren
e between normal derivatives of a total potential outside and inside

the body is de�ned a

ording to Eq. (2.35) as a sour
e strength. Considering that

the freestream potential is a 
onstant and that a positive normal ve
tor points

into the body, the expression for the sour
e 
an be simpli�ed as

−σ =
∂Φ

∂n
−

∂Φi

∂n
=

∂Φ∗

∂n
−

∂Φ∗
i

∂n
. (3.12)

Sin
e Φ∗
i = 0 everywhere inside the body also ∂Φ∗

i /∂n = 0 on SB holds true. If

the Neumann boundary 
ondition (Eq. (3.8)) is rewritten as ∂Φ∗/∂n = −n ·V∞,

the sour
e strength 
an be written as

σ = n ·V∞. (3.13)

Even though a freestream potential that is not a 
onstant is 
hosen as an inner

potential, the Neumann boundary 
ondition (Eq. (3.8)) is still satis�ed if the

sour
e distribution is de�ned a

ording to Eq. (3.13).

The sour
e distribution is now 
hosen and sin
e the freestream distribution

for a parti
ular problem is usually known, the doublet distribution is left to be

de�ned. After 
al
ulating the body surfa
e doublet distribution that satis�es

the boundary 
ondition, the solution is still unique only for a nonlifting body.

For a lifting surfa
e the wake doublet distribution needs to be de�ned as well.

As was shown in the previous 
hapter, the wake doublets 
an be expressed with

body doublets through a Kutta 
ondition (Eq. (2.49)), whi
h assures the 
orre
t

amount of lift for
e the �ow indu
es on the body.

The surfa
e of the body and the wake should now be dis
retized into NB

body surfa
e panels and NW wake surfa
e panels, respe
tively (Fig. (3.1)). The
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Diri
hlet boundary 
ondition (Eq. (3.11)) must be spe
i�ed for a 
ollo
ation

point, whi
h lies right under the 
entroid of ea
h body panel. Therefore, for ea
h

one of NB 
ollo
ation points, the following statement holds true

NB
∑

k=1

1

4π

∫

SB,k

µ n · ∇

(

1

r

)

dS +

NW
∑

i=1

1

4π

∫

SW,i

µ n · ∇

(

1

r

)

dS

−

NB
∑

k=1

1

4π

∫

SB,k

σ

(

1

r

)

dS = 0.

(3.14)

An integral over ea
h individual panel is 
omputed �rst, where µ, σ and n are

doublet strength, sour
e strength and surfa
e normal of ea
h in�nitesimally small

surfa
e dS, respe
tively. Ea
h panel's 
entroid is a distan
e r away from the


orresponding 
ollo
ation point. The next step is a summation of 
ontributions

of all the panels in order to take into a

ount the in�uen
e of the whole doublet

and sour
e surfa
e distribution in one 
ollo
ation point. An assumption 
an be

now made, that ea
h panel has a 
onstant doublet and/or sour
e distribution

over its surfa
e. Eq. (3.14) 
an be rewritten as

NB
∑

k=1

Cjkµk +

NW
∑

i=1

Cjiµi −

NB
∑

k=1

Bjkσk = 0, (3.15)

for ea
h 
ollo
ation point j. All panel integrals are repla
ed by 
oe�
ients Cjk, Cji

and Bjk, where indi
es k and i run over all the body and wake panels, respe
tively.

N

N

B

W

k k

i
j

n

,

Figure 3.1: Dis
retization of the body and the wake surfa
e into NB body

panels and NW wake panels, respe
tively. All body and wake panels have


onstant doublet and/or sour
e distribution over their surfa
es. The 
ollo-


ation point (red dot) lies right under the 
entroid (bla
k dot) of ea
h body

panel.

If the sour
e strengths are sele
ted a

ording to Eq. (3.13), then 
oe�
ients
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Bjk are known and 
an be moved to the right hand side (RHS) of the equa-

tion. Sin
e there is NB body doublet strengths and NW wake doublet strengths,

together NB + NW unknowns, and only NB equations, one for ea
h 
ollo
ation

point, the Kutta 
ondition (Eq. (2.49)) needs to be applied in order to 
onne
t

the body and wake doublets. A

ording to Kutta 
ondition, ea
h wake doublet


an be expressed in terms of the body trailing edge doublets as

µi = µi,up − µi,low, (3.16)

where µi,up is a doublet on the upper and µi,low on the lower side of the body

surfa
e at the trailing edge, both neighbours of the 
orresponding wake doublet.

The in�uen
e of ea
h wake panel 
an therefore be written as

Cjiµi = Cji(µi,up − µi,low). (3.17)

If Eqs. (3.17) are inserted into Eq. (3.15), then a new set of 
oe�
ients 
an

be introdu
ed as Ajk = Cjk, if body panel is not at the trailing edge and as

Ajk = Cjk ± Cji, if body panel is at the trailing edge.

In this way, the number of unknowns be
omes equal to the number of equa-

tions. System of equations 
an now be written as

NB
∑

k=1

Ajkµk =

NB
∑

k=1

Bjkσk. (3.18)

In short, ea
h panel has a 
onstant doublet and/or sour
e distribution whi
h


auses a 
hange of potential in an arbitrary point P in the observed volume. If a

potential at the point P , as an in�uen
e of the whole body and wake, is sought,

ea
h panel's distribution needs to be integrated �rst and the in�uen
e of all the

panels summed afterwards.

3.1.3 Ele
trostati
 Analogy

A simpler method that 
an be used in order to 
ompute a potential at an arbi-

trary point P as a 
onsequen
e of a presen
e of a body leans on an analogy to

ele
trostati
s. A

ording to the analogy, the ele
trostati
 potential at a point P

is, as a 
onsequen
e of a panel with a 
onstantly distributed ele
tri
 dipole over

its surfa
e, proportional to the solid angle of observed panel looking from the

point P [49℄.
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If a doublet distribution repla
es the ele
tri
 dipole distribution, a velo
ity

potential instead of an ele
trostati
 potential 
an be 
omputed. A potential in

j-th 
ollo
ation point as a 
onsequen
e of i-th panel is therefore proportional to

the doublet strength µi of the panel multiplied by the solid angle Ωji (Fig. (3.2))

at whi
h the point sees this panel

Φ∗
j = −

µi

4π
Ωji. (3.19)

Sin
e panels with a 
onstant doublet distribution are 
onsidered in present work,

the ele
trostati
 analogy represents a major simpli�
ation to the problem. More-

over, it 
an be applied to panels of an arbitrary shape.

A Diri
hlet boundary 
ondition in a form of a 
onstant inner potential (Eq.

(3.9)) is used, where a value of zero is 
hosen as the 
onstant

Φj = Φ∗
j + Φ∞,j = 0. (3.20)

In this way, a body sour
e distribution is redundant, whi
h additionally simpli�es

the method. Of 
ourse, any other 
onstant di�erent from zero, 
ould also be used.

This would only shift the doublet distribution by a 
onstant, but the results for

the external potential would remain the same.

Pj

µ

Ωji

i

Figure 3.2: Solid angle Ωji of a panel with a 
onstant doublet surfa
e dis-

tribution µi, looking from the 
ollo
ation point Pj .

If the freestream potential is written as an integral of a freestream velo
ity

Φ∞,j = V∞,xxj + V∞,yyj + V∞,zzj = RHSj, (3.21)

the base system of equations of the problem 
an be expressed by 
ombining Eqs.
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(3.19) - (3.21) as

1

4π
Ωjiµi = RHSj. (3.22)

After 
omputing the doublet distribution as a solution of the system of equations

(Eq. (3.22)), where additionally the Kutta 
ondition needs to be 
onsidered

based on the pro
edure des
ribed with Eqs. (3.16) and (3.17), all distributions

are known, all boundary 
onditions are satis�ed and the potential Φ at any point

in the observed volume V 
an be de�ned. Sin
e a body surfa
e velo
ity, pressure,

and gradient of a pressure distributions are in pursuit, a spe
ial interest lies in

the value of the potential in ea
h panel 
entroid.

3.1.4 Wake

An invis
id outer �ow is 
onsidered as a valid approximation for 
omputing a

surfa
e pressure distribution of an atta
hed �ow passing a body, but in order

to de�ne the potential distribution around the lifting body, the vis
osity at its

trailing edge 
an't be negle
ted. A �nite vis
osity is in
orporated in the prob-

lem through Kutta 
ondition (Subse
tion 2.3.3) and 
onsequently through an

nonphysi
al surfa
e behind the body 
alled a wake.

In the 
ase where a part of the body has no 
lear trailing edge, e.g. a wing-

fuselage 
on�guration, two di�erent wake se
tions should be used [50℄. Behind

the wing, a wake denoted as wake A is used. Its doublet strength distribution

is de�ned through the Kutta 
ondition. For the fuselage, on the other hand, an

assumption 
an be made that it doesn't shed vorti
ity into the wake. The doublet

distribution of the wake behind the fuselage, wake B, must be therefore, a

ording

to Eq. (2.43), 
onstant in the spanwise dire
tion. These wake B doublets must

also have the strength equal to their �rst neighbour in the wake A, otherwise

there would be a �nite vortex in the region of the fuselage-wing jun
tion. Wake

A therefore has doublets that are variable in the spanwise dire
tion and 
onstant

in the streamwise dire
tion (Subse
tions 2.3.2 and 2.3.3), whereas wake B has a


onstant distribution of doublets.

A de
ision has been made to always use the shape of the wake as a �at plane,

therefore negle
ting wake roll-up, leaving the trailing edge of the lifting body at

an angle 
utting the trailing edge angle in half - along bise
ting plane. In this

way, the same shape of the wake 
an be used for all angles of atta
k. Sin
e the

surfa
e pressures are insensitive to the angle of in
lination of the wake [51℄, this

approximation gives solutions that are essentially as a

urate as 
an be expe
ted
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from the potential �ow assumption. In true nature, the wake is far from the body

eventually dissipated by vis
ous and turbulent e�e
ts (vortex breakup). That is

why, a reasonable length of the wake should su�
iently des
ribe the real 
ase. In

all test 
ases in present work, the wake therefore extends approximately thirty

lifting-body 
hord lengths behind the body.

3.1.5 Velo
ity, Pressure, and Gradient of a Pressure Dis-

tributions

Sin
e we are dealing with a potential �ow, the velo
ity at the body surfa
e is not

equal to zero and is tangent to the surfa
e. Velo
ity ve
tor of i-th body panel in

its 
entroid point 
an be 
omputed from its own potential and the potential of its

neighbours. An arbitrary panel is a neighbour of the panel i if they share an edge

and if an angle between their normals is less that 60◦, as it was 
hosen. Sin
e

quadrilateral panels are 
hosen for this work, the maximal number of neighbours

ea
h panel has is four. At sharper edges, e.g. at a wing trailing edge, there are

only three neighbours, and at some 
orners even just two neighbours.

If 
entroids of all the neighbours, where the potentials are 
al
ulated, are

proje
ted on i-th panel's lo
al 
oordinate system (Fig. (3.3)), then i-th panel's

potential Φi together with its neighbours' potentials 
an be used to 
onstru
t a

linear approximation. The potential at an arbitrary point in the vi
inity of the


entroid i 
an be expressed as

Φ = Φi +

(

∂Φ

∂x

)

xi +

(

∂Φ

∂y

)

yi, (3.23)

where xi and yi represent the lo
al 
oordinates and expressions (∂Φ/∂x) and

(∂Φ/∂y) the velo
ity 
omponents in this 
oordinate system. If expression Eq.

(3.23) is evaluated at proje
ted 
entroid of ea
h neighbour, the unknown gradients


an be 
omputed with a weighted least square method, where the minimum

min

[

∑

j

wj

(

Φi +

(

∂Φ

∂x

)

i

xj +

(

∂Φ

∂y

)

i

yj − Φj

)2
]

(3.24)

is sought. The system of equations that needs to be solved in order to 
ompute
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velo
ity 
omponents in lo
al 
oordinate system for i-th panel is then









∑

j wjx
2
j

∑

j wjyjxj

∑

j wjyjxj

∑

j wjy
2
j

















(∂Φ/∂x)i

(∂Φ/∂y)i









=









∑

j wj (Φj − Φi) xj

∑

j wj (Φj − Φi) yj









.

(3.25)

The weight wj is 
hosen to be re
ipro
al square distan
e between j-th and i-th


entroid point in global 
oordinate system (Fig. (3.3)). Neighbours that are


loser to i-th 
entroid have a greater in�uen
e on the result and vi
e versa. The

solution of Eq. (3.25) represents, after a transformation to a global 
oordinate

system, a velo
ity surfa
e distribution V.

y

x

i

i

i

j

(x ,y )
j j

wj

1

Figure 3.3: i-th panel with its four neighbours. Bla
k dots denote 
entroids,
whereas red dots denote their proje
tion on i-th lo
al 
oordinate system.

The surfa
e pressure distribution, or more pre
isely the dimensionless pres-

sure 
oe�
ient distribution, 
an be 
omputed in the next step from the velo
ity

surfa
e distribution using Bernoulli's equation (Eq. (2.17)). Information about

the gradient of a pressure distribution over the body surfa
e is also needed, sin
e

it is used for the 
al
ulation of a 
ost fun
tion that is being minimized during

surfa
e optimization. The gradient of a pressure is 
omputed from the pressure

distribution in a similar manner to the 
omputation of the velo
ity from the

potential.
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3.2 Surfa
e Optimization

In this se
tion, a pro
edure of surfa
e shape transformation is des
ribed that takes

pla
e during surfa
e optimization. Next, the 
ost fun
tions are presented that

are used in present work in order to obtain a favourable pressure distribution.

Optimization 
onstraints that enable in
reased 
ontrol of surfa
e transformation

are introdu
ed at the end of this se
tion.

A mathemati
al expression that des
ribes the optimization problem 
an be

written as

min
k

F (k) su
h that



















nec(k) ≤ 0

ec(k) = 0

lb ≤ k ≤ ub.

(3.26)

Here, the optimization variables k, that minimize the 
ost fun
tion F (k) under

di�erent 
onstraints are in pursuit. nec(k) and ec(k) are nonequality and equal-

ity 
onstraints, while lb and ub represent the lower and the upper optimization

variable boundaries, respe
tively.

Surfa
e optimization 
an be done for the whole body, or just for a part of its

surfa
e, 
alled a pat
h. During the whole body optimization the 
omplete body

surfa
e is free to 
hange, whereas during the optimization of a sele
ted surfa
e

pat
h, only the pat
h 
an take a new shape and the rest of the body has a �xed

surfa
e.

3.2.1 Bézier Surfa
e and Deformation Ve
tor Field

As it was already stated, the surfa
e of the observed body is meshed with quadri-

lateral panels. A point 
ommon to all neighbouring panels lying around it is


alled a node. This meshed original surfa
e represents an initial 
ondition for

the surfa
e optimization. The shape of the pat
h is 
hanged by moving its node

points a

ording to the deformation ve
tor �eld and magnitude of 
hange surfa
e

fun
tion. Deformation ve
tor �eld sets the dire
tion and additionally the �xed

share of shift for ea
h node. Magnitude of 
hange surfa
e fun
tion on the other

hand sets the varying share of node shift and is de�ned by a Bézier surfa
e [52℄.

Bézier surfa
e is therefore used only to des
ribe the magnitude of the trans-

lation of our pat
h and not to des
ribe its surfa
e dire
tly. A Bézier surfa
e

multiplied by a deformation ve
tor �eld d is added to the original pat
h and

together they form a new shape, whi
h is depi
ted in Fig. (3.4). For a position
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of an arbitrary node i the following equation then holds true

ri,new = ri,old + h(ui, vi)di, (3.27)

where 0 ≤ ui ≤ 1 and 0 ≤ vi ≤ 1 represent surfa
e 
oordinates of i-th node on the

pat
h and h(ui, vi) a s
alar value of a Bézier surfa
e. ri is a position of i-th node

in global Cartesian 
oordinate system. The Bézier surfa
e h(u, v) that is used to

translate all the nodes on the pat
h parametrized with surfa
e 
oordinates (u, v)

is de�ned as

h(u, v) =
n

∑

i=1

m
∑

j=1

Bn
i (u)B

m
j (v)ki,j, (3.28)

where one of the Bernstein polynomials is

Bn
i (u) =

(

n− 1

i− 1

)

ui−1(1− u)n−i
(3.29)

with binomial 
oe�
ient as

(

n− 1

i− 1

)

=
(n− 1)!

(i− 1)!(n− i)!
. (3.30)

Indi
es i and j run through all the n×m s
alar 
ontrol points ki,j, that represent

the optimization variables. With a proper value of ea
h 
ontrol point a minimal


ost fun
tion 
an be a
hieved and therefore an optimal pat
h shape designed.

From the stated it 
an be seen, that only a small number of variables is needed

to smoothly 
hange the shape of the original surfa
e, instead of a few hundreds

or even thousands in order to shift ea
h node separately.

If all 
ontrol points are equal to zero, then also the values of Bézier surfa
e

in all the nodes are zero and the pat
h preserves its shape. The same result


an be observed if the deformation ve
tor is zero. Sin
e a shift of ea
h node

is 
ontrolled in two ways, di�erent shape features 
an be assured. With Bézier

surfa
e a smooth pat
h shape 
hange is a
hieved, whereas with a proper 
hoi
e

of the deformation ve
tor �eld e.g. a tangen
y to the �xed surfa
e around the

pat
h 
an be preserved. Sin
e a deformation ve
tor �eld, instead of a Bézier

surfa
e, is used in order to preserve the tangen
y, a smaller number of 
ontrol

points is needed and a pat
h is able to take a more dynami
 shape 
lose to its

edge. A smaller number of 
ontrol points 
onse
utively means a 
omputationally

less demanding problem.

A dire
tion of deformation d is de�ned for every node in advan
e and it doesn't
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Figure 3.4: Ea
h node on the surfa
e (i-th node depi
ted in blue 
olour) is

during optimization pro
ess transformed in spa
e by adding to its position

ve
tor ri a deformation ve
tor di (red ve
tor �eld) multiplied by a value of

the Bézier surfa
e h(u, v) (its 
ontrol points k are depi
ted in green 
olour)

at that position.


hange during the optimization. On the other hand, for the Bézier surfa
e 
ontrol

points, sin
e they are optimization variables, only the initial values are de�ned

at the beginning of the optimization pro
ess.

In the present work, a 
ase dependent deformation ve
tor �eld is used, sin
e

a nature of ea
h 
ase is di�erent. In general, a deformation ve
tor �eld must

give enough freedom for the pat
h to take an optimal shape, but it still needs

to properly 
onstrain and dire
t the translation of nodes in order to a
hieve

physi
ally reasonable results. In some 
ases a deformation in dire
tion of a surfa
e

normal is a good 
hoi
e, e.g. it enables a blu� body to expand and 
ontra
t in

all dire
tions, but it usually needs to be 
onstrained in order not to push the

surfa
es together. Although this redu
es the in�uen
e of a body on the �ow and


onsequently the drag, the zero-
ross-se
tion solution is physi
ally not a

eptable.

On highly 
urved surfa
es a deformation in normal dire
tion 
an also result in an

interse
tion of panels, whi
h additionally leads to some numeri
al problems.

A tangen
y to the �xed surfa
e around the pat
h 
an be preserved by mul-

tiplying a normalized deformation ve
tor �eld by a fun
tion that tangentially

des
ends to zero at the pat
h edge. Away from the edge, this fun
tion should

have a value of one, so that the amount of deformation in this region is 
ontrolled

37



mainly by the Bézier surfa
e. A proper deformation ve
tor �eld 
hoi
e is, as was

stated, of great importan
e in order to a
hieve optimal results without problems

during optimization.

3.2.2 Cost Fun
tions

A

ording to the potential �ow theory, the �ow passing an arbitrary body doesn't

produ
e drag (Se
tion 2.2). Be
ause of this reason, the proposed optimization the-

ory 
an be used to minimize drag only in an indire
t way, e.g. through a surfa
e

pressure distribution. A fun
tional or a 
ombination of fun
tionals (
ost fun
-

tion) should therefore be used, whi
h will, when minimized, produ
e a favourable

pressure distribution.

A minimization of a 
ost fun
tion in a form of an integration of a pressure

gradient a
ross the body's surfa
e

F =

∫

|∇Cp| dS (3.31)

smoothens the pressure distribution [9℄, whi
h prevents unne
essary �u
tuations

of the �ow velo
ity. In a dis
retized form the 
ost fun
tion 
an be written as

F =
∑

i

|∇Cp|i Si, (3.32)

where Si is a surfa
e area of i-th panel. As it will be shown in Chapter 4, a

minimization of a 
ost fun
tion in a form of Eq. (3.32) results in a plateau-like

pressure distribution in a streamwise dire
tion a
ross the body. At the leading

edge of the body, the pressure qui
kly drops to the plateau pressure value and at

the pressure re
overy region it qui
kly in
reases ba
k to the freestream pressure.

In this way a minimal amount of a

eleration and de
eleration of the �ow is

a
hieved, whi
h redu
es instabilities in the boundary layer and 
an lead to a

thinner boundary layer.

Why the minimization of Eq. (3.32) leads to a plateau-like pressure distribu-

tion 
an be best seen in a two dimensional 
ase, where the integral of the pressure

gradient 
an be written as

∫
∣

∣

∣

∣

∂Cp

∂x

∣

∣

∣

∣

dx =
∑

i

|Cp,i − Cp,i+1| , (3.33)

where Cp,i represent pressure 
oe�
ient values in points with zero pressure gra-
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dient. Imagine now a pressure distribution around an airfoil, where only the

upper side of the shape is being optimized with a �xed lift for
e 
onstraint (Fig.

(3.5(a))). It is 
lear that the sum in Eq. (3.33) rea
hes the minimal value when

the maximal Cp,min is obtained. Sin
e the surfa
e under the pressure distribution


urve must remain 
onstant be
ause of the �xed lift for
e 
onstraint, the optimal

pressure distribution on the upper side of the airfoil must obtain a plateau-like

shape with a plateau pressure value at maximal Cp,min (Fig. (3.5(b))). Even

though test 
ases in present work (Chapter 4) don't have �xed lift for
e 
on-

straint, the surfa
e under the pressure distribution 
urve, be
ause of the geomet-

ri
al 
onstraints and the nature of the deformation ve
tor �eld, is still 
onstrained

and a �nite maximal Cp,min exists.

-Cp

,min-Cp

x

S = const.

0

(a)

-Cp

,min-Cp

x

S = const.

0

(b)

Figure 3.5: Two dimensional pressure distribution over the upper side of

(a) an airfoil and (b) its optimal distribution.

If a parameter b, 
alled a bias, is added to the pressure gradient in the stream-

wise dire
tion as

F =
∑

i

√

(

∇‖Cp − b
)2

i
+ (∇⊥Cp)

2
i Si, (3.34)

the minimization will try to a
hieve a streamwise pressure gradient value equal

to b on as many panels as possible. An appropriate value of bias will 
hange the

plateau-like region of a pressure distribution to a ramp-like distribution, whi
h

will gradually a

elerate the �ow as far ba
k to the end of the body as possible.

A favourable pressure gradient therefore postpones the transition and may also

prevent the �ow separation.

As 
an be seen from Eq. (3.34), a gradient of a pressure surfa
e distribution

is 
omposed out of a streamwise 
omponent and its transverse 
omponent. Sin
e

the latter is responsible for introdu
ing a 
ross-�ow instabilities into the boundary

layer, the sum of both 
omponents should be minimized. The pressure distribu-
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tion be
omes therefore smoother in all dire
tions. In all test 
ases of present

work both 
omponents have been treated equally regarding the minimization of

the 
ost fun
tion, as per Eq. (3.34).

Introdu
ed 
ost fun
tions should have after minimization a positive impa
t

on the amount of instabilities in the boundary layer, but nevertheless, additional

steps should be taken in order to properly design also the pressure re
overy region.

In next subse
tion a 
riterion will be introdu
ed as a 
onstraint, that 
onsiders

espe
ially this part of the surfa
e.

3.2.3 Constraints

Stratford 
riterion. In some 
ases the pressure re
overy region 
an be so severe

that the �ow deta
hes from the body surfa
e and tremendously in
reases the drag.

In order to prevent this from happening a Stratford 
riterion [53℄ is additionally

in
orporated as a 
onstraint during optimization pro
ess.

The Stratford 
riterion is a rather simple method to estimate a point where

the laminar or turbulent �ow will deta
h from the body surfa
e on the basis of

the Reynolds number, the pressure distribution and the gradient of the pressure

distribution. It is a 
onservative 
riterion that predi
ts the separation just a bit

before the methods based on the full boundary layer equations [54℄. Even though

it is a simple and easy to implement method, it still enables one to 
ompute

a pressure distribution that is everywhere on the edge of the separation, whi
h

permits a maximum extent of laminar �ow and a rapid pressure re
overy region.

Sin
e the laminar and the turbulent �ows have di�erent 
hara
teristi
s, the


riterion forms for both �ows also di�er. In 
ase of a �ow transition right before

the re
overy region, the Stratford 
riterion for separation of a turbulent �ow

G = Cp′
√

x′
dCp′

dx

(

106

Rex′

)0.1

=







0.35, d2p
dx2 < 0

0.39, d2p
dx2 > 0

, (3.35)

but with a �history� of a laminar �ow

x′ =

∫ xm

0

(

V

Vmax

)5

dx+ (x− xm), (3.36)

should be used. x′
in Eq. (3.36) represents an e�e
tive length of the boundary

layer, where the integral takes into 
onsideration what happened to the �ow along

the body's surfa
e up to the beginning of the pressure re
overy. C ′
p is a 
anoni
al
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pressure 
oe�
ient

C ′
p = 1−

V 2

V 2
max

=
Cp − Cp,min

1− Cp,min
, (3.37)

whose derivative is

dC ′
p

dx
= −

1

Vmax

dV

dx
=

1

1− Cp,min

dCp

dx
. (3.38)

x′
is an e�e
tive boundary length that goes along the body in a streamwise

dire
tion, xm is a value of a streamwise 
oordinate indi
ating the beginning of

the pressure re
overy, and Cp,min and Vmax are the 
orresponding minimal pressure

and maximal velo
ity magnitude, respe
tively. Reynolds number is 
onstru
ted

from the maximal velo
ity Vmax and e�e
tive length x′
.

The Stratford 
riterion (Eq. (3.35)) is valid only for 
anoni
al pressure 
oef-

�
ients C ′
p < 4/7. For larger numbers it doesn't hold true, but it 
an still serve

as a referen
e. The 
riterion was used at all re
overy regions of the present work,

even if there is an absen
e of a theoreti
al justi�
ation of its validity.

There are two di�erent 
riti
al values of a Stratford number G, at whi
h the

�ow suppose to separate, depending on the shape of the pressure re
overy region

(Eq. (3.35)). For a 
on
ave re
overy 0.35 is used and for a 
onvex 0.39.

The aim of this 
onstraint is to keep the Stratford number of ea
h panel

under this 
riti
al value, but sin
e the number of 
onstraints should be as small

as possible in order to shorten the 
omputation time, ea
h panel shouldn't be


onstrained separately.

Moreover, neither should a single panel with the maximal Stratford number be


onstrained. If only one panel with 
urrently the largest number is 
onstrained,

only that panel will re
eive attention during an optimization step, in order to

be put under 
onstraint. But in the next step some other panel 
ould have the

largest number and that one will be in the spotlight. During the optimization

pro
ess jumping from panel to panel 
an o

ur, whi
h 
an bring some 
onvergen
e

problems. To avoid this problems, the best way is to 
onstrain an average of a

few panels with the largest Stratford numbers. The fun
tion that is therefore put

under 
onstraint is

GM =

∫

SB
G(r)ea0(Gmax−G(r))dr

∫

SB
ea0(Gmax−G(r))dr

. (3.39)

Gmax is the maximal Stratford number and the parameter a0 de�nes how many

panels with largest Stratford numbers are taken into 
onsideration. The bigger

the parameter a0 > 0 the smaller number of panels will in�uen
e on the number
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GM . The number GM is always smaller 
ompared to the maximal panel Stratford

number, ex
ept in a limit, when a0 → ∞, they are equal. In this way all the Strat-

ford number peaks s
attered through the pat
h will be smoothly and gradually

put under 
onstraint and fewer problems with 
onvergen
e should o

ur.

The Stratford number pat
h distribution is in the �rst test 
ase (Se
tion 4.2)

weighted also with a �soft� Heaviside fun
tion of pressure as

Gi,new =
Gi,old

1 + exp
(

Cpi−a1
a2

) , (3.40)

so that the region with maximal pressure, su
h as at the trailing edge, isn't

taken into 
onsideration during the optimization. At the trailing edge region

the �ow leaves the body into the wake and 
an produ
e a short high pressure

impulse. Sin
e it is not possible to get rid of this anomaly, it is better to ignore

it, otherwise the optimization 
an spend a lot of time optimizing that region and

at the end diverge or produ
e unusable results. This pro
edure is, be
ause of

some 
onvergen
e problems, omitted at the latter two test 
ases (Se
tions 4.3

and 4.4).

Another modi�
ation of the Stratford 
riterion is introdu
ed into the method

be
ause of some 
onvergen
e problems at the �nal stage of the optimization. The

optimization is �rst run with parameters xm, Cp,min and Vmax (Eqs. (3.36)-(3.38))

de�ned at ea
h iteration su

essively. After a few iterations of optimization, when

the method �nds an approximate optimal shape and these parameters settle down,

the optimization is deliberately stopped. Parameters xm, Cp,min and Vmax de�ned

at the last iteration and the integral in Eq. (3.36) 
al
ulated 
onsidering also these

parameters are then used as 
onstants at the 
omplete optimization pro
edure.

These parameters therefore don't vary from iteration to iteration any more, but

remain �xed through the whole optimization. Without this simpli�
ation, the

solution tends to diverge in some 
ases. For the sake of generality, the same

simpli�
ation is used in all test 
ases. In 
ases without 
onvergen
e problems the

method is veri�ed to produ
e identi
al solutions with or without this modi�
ation.

Geometri
al 
onstraints. One way of 
ontrolling the amount of modi�
a-

tion of a pat
h is by bounding the size of 
ontrol points of Bézier surfa
e (Eq.

(3.28)) that de�nes the 
hange of the pat
h shape. Sin
e there is a small number

of 
ontrol points, their size has an in�uen
e on a wider region of the pat
h. In

some 
ases a very lo
al 
ontrol of shape modi�
ation is needed, usually be
ause

of some pa
kaging problems, but also in other appli
ations, e.g. to maintain the
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shape of a trailing or leading edge. These geometri
al 
onstraints are therefore

useful at 
ontrolling the exa
t magnitude of translation at some 
hosen points

and in this way preventing the surfa
e to 
ontra
t or indent at those points.

The Stratford 
riterion (Eq. (3.35)) and these geometri
al 
onstraints are

introdu
ed into optimization pro
ess as nonequality nonlinear 
onstraints (Eq.

(3.26)).
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Chapter 4

Results

In this 
hapter, a 
onvergen
e analysis of the panel method with an example of a

sphere is made �rst. Next, the results of proposed surfa
e optimization analysis

on three 
on
eptually di�erent test 
ases are presented and evaluated with results

obtained by CFD analysis. All three test 
ases originate from real world 
ases.

At all test 
ases, the body surfa
e was �rst meshed using a program 
alled

Salome, whi
h is an open-sour
e software that provides a generi
 platform for

pre- and post-pro
essing for numeri
al simulation. This original mesh was then

used as an initial 
ondition for the surfa
e optimization pro
ess, for whi
h a

program was written in Matlab environment. During this pro
ess a Matlab's

fun
tion 
alled fmin
on, whi
h uses a superlinear 
onvergent sequential quadrati


programming method (SQP) with an a
tive-set method as a quadrati
 program-

ming subproblem solver [34℄, has been used in order to �nd a minimum of a


onstrained nonlinear multivariable 
ost fun
tion. A solution of the subproblem

is then used for a line sear
h pro
edure [55℄ for a new major iteration. Fun
tion

fmin
on therefore requires prede�ned initial estimate and boundaries of all opti-

mization variables, and pointers to the 
ode of the 
ost fun
tion and all possible


onstraints that are used at ea
h iteration of the optimization pro
ess.

CAD models were then 
onstru
ted from the optimized surfa
e meshes and

together with the original surfa
es put into the CFD analysis in order to evaluate

the results. For CFD 
omputations a �nite volume program 
alled OpenFOAM

with its RANS solver for in
ompressible and vis
ous �ows, simpleFoam, was used.

The meshes for this purpose were 
onstru
ted with the snappyHexMesh subrou-

tine.

In the �rst test 
ase, where a laminar-turbulent transition plays an important

role, a k−kL−ω turbulen
e model [56℄ was used in order to predi
t the lo
ation of
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transition. In the remaining two 
ases the simpler one equation Spalart-Allmaras

turbulen
e model [57℄ was used, be
ause it has already shown good performan
e

in jun
tion �ows [58℄. All the CFD 
omputations were run to full 
onvergen
e,

whi
h was determined by the �attening of all residuals (at values smaller than

10−5
) and for
es.

4.1 Panel Method Veri�
ation

The proposed panel method is veri�ed using an example of a potential �ow pass-

ing a sphere. In order to redu
e the 
omputation time, the 
ase is 
onsidered

as a symmetri
al problem, where only a half of a sphere surfa
e is dis
retized

into di�erent number of quadrilateral panels NB. The system of equations (Eq.

(3.22)) is in this way halved, but the se
ond half of the sphere with symmetri
al

doublet distribution is still taken into 
onsideration. The in�ow is parallel to the

symmetry plane that 
uts the sphere on two halves. The property of a symmetry

plane is that none of the streamlines 
an 
ross it and that the streamline that

starts on this plane at the in�ow will sti
k to it all the way around the body and

onwards.

At ea
h number NB a relative di�eren
e between panel method results and

analyti
al solution for a potential

ΦAN (r, θ) = V∞ cos θ

(

r +
R3

2r2

)

(4.1)

and a velo
ity surfa
e distribution

Vθ,AN(r, θ) = −V∞ sin θ

(

1 +
R3

2r3

)

(4.2)

is 
omputed as

∑NB

i Si |Φi − (ΦAN )i|
∑NB

i Si|(ΦAN)i|
(4.3)

and

∑NB

i Si |Vi − (Vθ,AN)i|
∑NB

i Si(Vθ,AN)i
. (4.4)

Ea
h summation runs over all the panels with surfa
e areas Si. Ea
h analyti
al so-

lution is, the same as panel method results, 
omputed in 
entroid of 
orresponding

panel. Sphere radius and inlet velo
ity are 
hosen as R = 1 and V∞ = (1, 0, 0).
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It 
an be seen from Fig. 4.1(a) that the relative di�eren
e between the 
om-

puted and the analyti
al solution is inversely proportional to the number of panels

NB. With in
reasing number of panels, the panel method 
onverges to the ana-

lyti
al solution. On the other hand the time of 
omputation (
. time) in
reases

faster than N2
B in this 
ase. A de
ision has to be made as to what is a reasonable

number of panels in order to a
quire results with a satisfa
tory a

ura
y, but at

the same time not to in
rease the 
omputation time ex
essively.

An example of 
omputed velo
ity surfa
e distribution where a half of a sphere

is dis
retized into NB = 578 panels is presented in Fig. 4.1(b). The in�ow travels

from the left to the right side of the �gure. Sin
e a potential �ow without vis
osity

e�e
ts is applied, the velo
ity surfa
e distribution at the impa
t side equals the

one at the re
overy region. The for
e a
ting on the sphere is therefore equal to

zero (d'Alembert paradox).
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Figure 4.1: (a) A relative di�eren
e between 
omputed and analyti
al so-

lution of a potential and a velo
ity surfa
e distribution for a sphere and

an indi
ated 
omputation time with respe
t to the number of panels NB.

(b) Velo
ity surfa
e distribution over a sphere dis
retized into NB = 578
panels.

4.2 Test Case No. 1: Laminar-Turbulent Transi-

tion

In the �rst test 
ase an optimization of a surfa
e of a human powered vehi
le

is treated (Fig. 4.2). Besides rolling resistan
e of the tyres, the fairing of this

bi
y
le (propelled by a person lying inside) 
auses all the drag of the vehi
le.
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An optimization of the shape of the fairing should therefore notably improve the

bi
y
le performan
e.

Figure 4.2: A bi
y
le propelled by a person lying inside a 
ompletely 
losed

fairing.

The bi
y
le is usually driven under small 
ross-wind 
onditions, and sin
e its

shape is slender, the �ow stays atta
hed. The major 
omponent of a drag for
e

is therefore skin fri
tion, where the laminar-turbulent transition lo
ation plays a

signi�
ant role on its size (Se
tion 2.2). In order to redu
e the skin fri
tion drag,

the laminar �ow needs to be promoted as far ba
k to the end of the bi
y
le as

possible.

A favourable surfa
e pressure distribution is therefore in pursuit, that will

gradually a

elerate the �ow as long as possible and in a pressure re
overy region

not just prevent the �ow from separation, but also thin the boundary layer. With

a smoother pressure distribution, a smaller pressure drag 
an be attained. An

average speed of the bi
y
le is 90km/h and its length is 2.5m, whi
h means that

it is driven approximately at Re = 4.2 · 106. The wheels and their fairings aren't

taken into the 
onsideration in this test 
ase.

4.2.1 Veri�
ation

In the optimization pro
ess a 
omplete surfa
e of the fairing is optimized, but

be
ause of the bilateral symmetry of the problem, the system of equations (Eq.

(3.22)) needs to be written only for a half of the body. The ground e�e
t is

introdu
ed through another symmetry plane at the ground level. The imaginary

doublet distribution under the ground symmetry plane enables one not to in
lude

the ground surfa
e into the simulation. In 
ase of a real vis
ous �ow, the tur-

bulen
e produ
ed at the ground is in this way negle
ted, but the results of the
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potential �ow 
al
ulations aren't 
hanged be
ause of this simpli�
ation. Sin
e we

are more interested in a favourable pressure distribution and its in�uen
e on the

transition position, the same simpli�
ation is used in CFD analyses.

In this test 
ase a zero angle of atta
k is 
onsidered and sin
e the shape has

bilateral symmetry, there is no need for the wake to be modeled. A deformation

ve
tor points in dire
tion of a surfa
e normal at ea
h node position (Fig. (4.3)).

The deformation ve
tor �eld is normalized in the middle of the body and gradually

de
reases to zero toward the nose and the trailing edge of the bi
y
le. This

property is a
hieved by multiplying the normalized deformation ve
tor �eld by a

proper fun
tion, whi
h alters the deformation ve
tor �eld as

dnew =
u2(1− u)2

(1/2)4
dold, (4.5)

where the surfa
e 
oordinate 0 ≤ u ≤ 1 runs along the body surfa
e in a stream-

wise dire
tion. The nodes at the nose and the trailing edge are in this way �xed

and the length of the bi
y
le remains unaltered.

0 0.5 1 1.5 2 2.5
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Figure 4.3: Deformation ve
tor �eld s
aled by a fa
tor of 0.25.

In order for the fairing to en
lose all the me
hani
al and stru
tural parts, and

also to give the 
y
list enough spa
e inside the fairing to sit, pedal and steer,

geometri
al 
onstraints at some 
riti
al points are added to the problem. The


onstraints don't allow the surfa
e to 
ontra
t at these points, but the surfa
e is

free to expand everywhere. In the pressure re
overy region the Stratford 
riterion


onstraint (Eq. (3.35)) is used in order to prevent the �ow over the modi�ed shape

from separating. The �soft� maximum (Eq. (3.39)) is 
onstrained with a 
on
ave
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pressure re
overy 
riti
al Stratford number GM < 0.35, where a0 = 130, a1 = 0.2

and a2 = 0.01 are used. In this way the pressure re
overy region takes a shape

that allows the pressure to re
over to the freestream value in as short distan
e as

possible while remaining atta
hed.

Sin
e the pressure re
overy region starts at approximately the same stream-

wise lo
ation over the whole body surfa
e, the same 
onstant integral from Eq.

(3.36) is used for all re
overy region panels. Its value is 
omputed as an averaged

integral value over three equally spa
ed surfa
e streamlines that run from the

nose of the body to the pressure re
overy region. It is 
omputed after a few steps

of optimization (Subse
tion 3.2.3), averaged over all optimizations in this test


ase, and then used as a 
onstant at all 
omplete optimization pro
edures.

The magnitude of 
hange surfa
e fun
tion (Bézier surfa
e) is at all optimiza-

tion 
omputations 
ontrolled with 12× 7 number of 
ontrol points, unless other-

wise stated. Twelve points are in a streamwise dire
tion and seven in its transverse

dire
tion. The size of all 
ontrol points is 
ompletely un
onstrained (unde�ned

lb and ub in Eq. (3.26)).

One of the optimizations was �rst 
arried at three di�erent numbers of sur-

fa
e panels in order to 
hose a proper surfa
e mesh density for the rest of the

optimizations. Relative di�eren
es of 
ost fun
tion values between the original

and the optimized surfa
es with respe
t to the number of surfa
e panels is pre-

sented in Fig. (4.4(a)). A mesh density with NB = 720 panels is a reasonable


hoi
e, be
ause the relative di�eren
e of the 
ost fun
tion di�ers from the �ner

mesh result only by about 0.1%, the 
omputation times, on the other hand, are

redu
ed signi�
antly. Similar sear
h for an appropriate volume mesh density was

done also for the CFD analysis, where 
omputations were 
arried for an original

surfa
e at three di�erent numbers of volume 
ells 
omposing the mesh. The rel-

ative di�eren
e of for
es between all meshes and a mesh with the highest density

with respe
t to the number of 
ells is presented in Fig. (4.4(b)). A mesh with

17.3 million 
ells was 
hosen to be used at the rest of the simulations in this test


ase. With a �ner mesh, the pressure for
e 
hanges by 1.3%, whereas the fri
tion

and the lift for
e by less than 0.23%, whi
h is an a

eptable 
omputation error.

An example of a volume mesh surrounding the original surfa
e used for the

CFD analysis is shown in a top view in Fig. (4.5(a)). A body surfa
e and a

sli
e through a volume �eld are 
oloured in pressure and magnitude of velo
ity


olour s
hemes, respe
tively. Sin
e a low Reynolds number k−kL−ω turbulen
e

model with no wall fun
tions was employed for the CFD 
omputations, a very
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Figure 4.4: (a) A 
onvergen
e of a relative di�eren
e between initial 
ost

fun
tion value and its minimized value with respe
t to the body surfa
e

mesh density at optimization pro
ess. (b) A 
onvergen
e of the for
e 
oef-

�
ients with respe
t to the volume mesh density for the CFD analysis.

high density mesh had to be 
onstru
ted at the body surfa
e. Be
ause of this, 15

layers of 
ells parallel to the surfa
e shape were used to surround the whole body,

whose thi
kness smoothly in
reases with fa
tor 1.3 to the outer mesh size. A

zoomed in part of a mesh right next to the surfa
e wall 
oloured in a magnitude

of velo
ity 
olour s
heme is presented in Fig. (4.5(b)). A gradual in
rease of

velo
ity from zero at the wall to the freestream velo
ity 
an be observed, whi
h

indi
ates a proper mesh density at the wall.

(a) (b)

Figure 4.5: (a) A sli
e through a mesh in a top view, surrounding the

original surfa
e, used in the CFD analysis. (b) High density wall mesh

layers, 
oloured in magnitude of velo
ity 
olour s
heme, smoothly in
rease

to the outer mesh size.

As already stated, minimization of the 
ost fun
tion equal to the sum of pres-

sure gradient redu
es the variation of the pressure distribution in the �ow around

a body. Furthermore, giving the optimization method enough freedom to move

51



surfa
e nodes, a pressure distribution equal to undisturbed pressure p∞ should

result. In order to 
he
k if the proposed optimization method produ
es results

a

ording to this statement, an optimization without geometri
al 
onstraints was

run. The deformation ve
tor �eld pointed, only for this test, in the dire
tion

normal to the symmetry plane. The result of the optimization is presented in

Fig. (4.6(a)). The optimization method produ
ed the optimal result under the

given 
ir
umstan
es. It �attened the fairing surfa
e to 
oin
ide with the sym-

metry plane, whi
h produ
ed a freestream pressure distribution over all surfa
e

area. Consequently, a zero pressure drag and a minimal fri
tion drag, due to the

remaining of the surfa
e, was a
hieved.

Giving the optimization method more freedom to move the surfa
e nodes

therefore produ
es a smaller 
ross se
tion of the body. If the freedom is given

through a larger number of 
ontrol points (15 × 10), while still satisfying the

geometri
al 
onstraints, a wave-like surfa
e shape results. A front view of the op-

timized surfa
e is presented in Fig. (4.6(b)). The surfa
e embra
es the 
onstraint

points (red dots in Fig. (4.6(b))), while at the same time tries to minimize the


ross se
tion of the fairing. The �amplitude� of the wave-like surfa
e is not severe,

be
ause pressure gradients also in a dire
tion perpendi
ular to the freestream are

in
orporated in the 
ost fun
tion.
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Figure 4.6: A result of an optimization with (a) no geometri
al 
onstraints

- �at surfa
e 
oin
iding with the symmetry plane, (b) larger number of 
on-

trol points - wave-like surfa
e embra
ing the geometri
al 
onstraint points

(red dots).

4.2.2 Results

The resulting optimal surfa
es were evaluated using a CFD analysis. In order

to simulate a natural transition from laminar to turbulent �ow, a very small

52



turbulen
e intensity (de�ned as the ratio of the root-mean-square of the velo
-

ity �u
tuations to the mean freestream velo
ity) I = 0.01% and turbulent vis-


osity ratio (de�ned as the ratio of turbulent to laminar (mole
ular) vis
osity)

β = 0.01 were used at the in�ow. The relative di�eren
es of drag and surfa
e

areas between original and optimal surfa
es at di�erent bias numbers and the


orresponding pressure 
oe�
ient distributions over a streamline a
ross all sur-

fa
es are presented in Fig. (4.7(a)) and Fig. (4.7(b)), respe
tively. A 
omparison

of surfa
e pressure distributions between panel method 
omputations and CFD

analyses for the original surfa
e and the optimal surfa
es at b = 0 and b = −0.2

are presented in Fig. (4.8), Fig. (4.9) and Fig. (4.10).
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Figure 4.7: (a) Relative di�eren
e of drag and surfa
e areas of all optimized

surfa
es 
ompared to the original surfa
e, 
omputed with OpenFOAM. (b)

A pressure distribution over a streamline a
ross the original and all optimal

surfa
es.

Surfa
e area used in 
oe�
ient 
al
ulations is the area of the original sur-

fa
e shape. The streamlines (green 
urve) and the geometri
al 
onstraint points

(red dots) are depi
ted in panel method 
al
ulation Figs. (4.8(a)), (4.9(a)) and

(4.10(a)). The symmetry plane at all CFD 
al
ulations (Figs. (4.8(b)), (4.9(b))

and (4.10(b))) is 
oloured in magnitude of velo
ity 
olour s
heme.

As 
an be seen from Fig. (4.7(a)), the pressure drag of solutions at all val-

ues of bias were redu
ed from 10% and up to 25%. Su
h a high pressure drag

redu
tion be
omes apparent by 
omparing surfa
e pressure distributions of the

original shape (Fig. (4.8)) and both optimal shapes (Fig. (4.9) and Fig. (4.10)).

Instead of high and low pressure lo
al regions at the original surfa
e, a mu
h

steadier pressure distribution 
an be observed for the optimized shapes. A mu
h
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Figure 4.8: Surfa
e pressure distribution of an original surfa
e 
omputed

with (a) a panel method (b) a CFD analysis.

smoother pressure distribution redu
es the amount of instabilities in the �ow,

whi
h 
onsequently also thins the boundary layer. A major 
ontribution to the

redu
tion of the pressure drag is also due to the unsatis�ed Stratford 
riterion at

the pressure re
overy region of the original surfa
e.

If a basi
 
ost fun
tion in a form of a sum of pressure gradient distribution

(Eq. (3.32)) is used, a minimization of its value produ
es a plateau-like pres-

sure distribution in a streamwise dire
tion a
ross the body (blue 
urve in Fig.

(4.7(b))). An even pressure distribution on a major part of the fairing 
an be

also observed in Fig. (4.9). If a small bias is added to the pressure gradient in a

streamwise dire
tion (Eq. (3.34)), the plateau 
hanges into a ramp-like pressure

distribution (green and red 
urves in Fig. (4.7(b))). A gradual de
rease of sur-

fa
e pressure up to the re
overy region 
an also be observed in Fig. (4.10). The

minimization would like to a
hieve as many panels with a pressure gradient value

equal to bias as possible. In this way lo
al a

eleration and de
eleration of the
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Figure 4.9: Surfa
e pressure distribution of an optimal surfa
e at b = 0.0

omputed with (a) a panel method (b) a CFD analysis.

�ow is redu
ed, but as a 
onsequen
e of the geometri
al 
onstraint points, there

are still some regional varian
es of pressure that 
an not get diminished.

How the optimization deforms the surfa
e shape in order to a
hieve the

plateau- and ramp-like pressure distribution 
an be observed in Fig. (4.11). The

�gure presents three horizontal sli
es through the �ow passing the original and

two optimal (b = 0.0 and b = −0.2) surfa
es in a top view. The sli
es lie at the

mid height of bodies and are 
oloured in magnitude of velo
ity 
olour s
heme. At

b = 0.0 (Fig. (4.11(b))) the optimization produ
ed a blunt nose and an almost


onstant body thi
kness all the way to the re
overy region, whi
h moved all the

a

eleration of the �ow to the front of the body. At b = −0.2 
ase (Fig. (4.11(
)))

a mu
h pointier nose and a gentle surfa
e shape slope behind it 
an be noti
ed.

In this way a gradual a

eleration of the �ow on �rst two thirds of the surfa
e

was a
hieved.

Another shape 
hara
teristi
 that 
an be observed in Fig. (4.11) is a smaller

maximal width of optimal bodies 
ompared to the original surfa
e. The position
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Figure 4.10: Surfa
e pressure distribution of an optimal surfa
e at b = −0.2

omputed with (a) a panel method (b) a CFD analysis.

of the maximal width is also moved forward. In this way a high trough of negative

pressure at approximately x = 1.75m of the original shape (bla
k 
urve in Fig.

(4.7(b))) is diminished and 
onsequently a shorter re
overy region a
hieved. For

both optimal surfa
es, a slightly thinner boundary layer with a faster �ow at the

re
overy region was produ
ed (Fig. (4.11)), whi
h additionally helps to redu
e the

pressure drag. At the trailing edge of the body, on the other hand, the situation


hanges. Be
ause of the larger trailing edge angle, the optimal surfa
es produ
e

slightly thi
ker boundary layer 
ompared with the original surfa
e.

A smoother �ow in�uen
es also the amount of the fri
tion drag. A favourable

pressure distribution delays the formation of the instabilities, whi
h postpones

the transition from laminar to turbulent �ow (Fig. (4.12)). The original and

two optimized surfa
es (b = 0.0 and b = −0.2) are 
oloured in inverse turbulent

time-s
ale ω [56℄ 
olour s
heme (denoted as omega in Fig. (4.12)), where a step in

a value of ω indi
ates the point of transition. An average lo
ation of a transition

is in the 
ase of a b = 0.0 optimal surfa
e at approximately the same longitudinal

56



(a)

(b)

(
)

Figure 4.11: A horizontal sli
e through the �ow passing the (a) original

surfa
e, (b) optimal surfa
e at b = 0.0 and, (
) optimal surfa
e at b = −0.2.
The sli
es lie at the mid height of bodies.

distan
e x as in the 
ase of an original shape. An in
rease of skin fri
tion drag

of an optimal surfa
e at b = 0.0 is therefore a 
onsequen
e of an in
rease of the

surfa
e area. The 
orrelation of the two quantities is in this 
ase obvious from

Fig. (4.7(a)). At smaller bias numbers, on the other hand, the postponement of

the transition impa
ts the amount of fri
tion drag by a larger extent than the


hange of the surfa
e area. The average lo
ation of transition for the optimal
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surfa
e with b = −0.2 (Fig. (4.12(
))) is noti
eably moved ba
k to the end of the

fairing 
ompared to the original shape. Its skin fri
tion drag is, mostly be
ause

of this reason, redu
ed by 7% (Fig. (4.7(a))).

At this test 
ase it was shown, that proposed optimization method 
an be

su

essfully used at redu
ing a drag for
e of a sleek body having an atta
hed

�ow. The optimization produ
es a mu
h smoother pressure distribution, whi
h

thins down the boundary layer and redu
es the pressure drag. A favourable pres-

sure gradient over a major part of the surfa
e that postpones the transition and


onsequently redu
es the amount of the fri
tion drag, is possible by in
orporating

an amount of streamwise pressure gradient bias into the 
ost fun
tion.

4.3 Test Case No. 2: Wing-Root Separation

An optimization of a fairing that modi�es the shape of the wing-fuselage jun
tion

is treated in this 
ase. A shape of a wing-fuselage 
on�guration was modeled, for

whi
h it was anti
ipated that it has problems with wing root �ow separation as a


ause of a wing-fuselage �ow interferen
e. With this test 
ase it will be shown that

the proposed surfa
e optimization 
an be used to eliminate this massive root �ow

separation. Moreover, the resulting surfa
es have similar features as proposed

by numerous papers on the topi
 [59�62℄, that is, a smoother surfa
e blending

of a wing to a fuselage instead of a sharp 
orner jun
tion, slight indenting of a

fuselage over and under the wing, and a 
hord-wise extended wing leading and

trailing edge in the root region.

The outer part of the wing experien
es a freestream �ow angle of atta
k

de
reased by the indu
ed angle, as a 
onsequen
e of a �nite wing. On the other

hand, the root part of the wing in reality feels an in
reased angle of atta
k, be
ause

of the 
ylindri
al shape of the fuselage. At a moderate freestream angle of atta
k,

the �ow a

elerates around the fuselage in the verti
al dire
tion and experien
es

the highest velo
ity right at the wing (for a mid wing-fuselage 
on�guration).

Be
ause of this in
rease in the verti
al 
omponent of velo
ity, the root of the

wing �ies at an e�e
tive angle of atta
k that is greater than the freestream one.

This 
auses the �ow to separate more readily even at moderate freestream �ow

angles of atta
k and at relatively smaller angles than the rest of the wing. Sin
e

the �ow separation at the wing root propagates in a delta shape along the wing

and the fuselage, it in
reases the drag substantially and 
an even redu
e the

responsiveness of the airplane 
ontrol surfa
es [63℄. This e�e
t should therefore
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)

Figure 4.12: Surfa
e distribution of inverse turbulent time-s
ale ω [56℄ for

(a) original surfa
e, (b) optimal surfa
e at b = 0.0 and, (
) optimal surfa
e

at b = −0.2.

be avoided.

Even though the main goal of the se
ond test 
ase is to eliminate the wing

root separation, the 
ase is evaluated also at an angle o� atta
k equal to zero.

As it will be shown in this se
tion, the optimization in 
ase of α = 0 redu
es the

pressure drag, but slightly in
reases the skin fri
tion drag due to the in
rease of

the surfa
e areas.
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4.3.1 Veri�
ation

The evaluated geometry has a bilateral symmetri
al shape. The airfoil used at

the wing design is on the other hand not symmetri
al. In order to simplify the

model, the tail isn't taken into 
onsideration. Its absen
e has little in�uen
e on

the solution, sin
e its lo
ation is far from the fairing.

The 
ase is 
onsidered as a lifting problem, where both the wing and the

fuselage, be
ause of their nonsymmetry and/or �nite angle of atta
k, produ
e

some amount of lift. This is why there is a wake modeled behind the whole body,

but the Kutta 
ondition is satis�ed only on wing's trailing edge. For the fuselage,

the assumption is made that it doesn't shed vorti
ity into the wake, whi
h results

in a 
onstant doublet wake strength. The wake has a shape of an in
lined �at

plane that is leaving the trailing edge of the body along the wing's trailing edge

bise
tor plane and extends approximately thirty wing-
hord distan
es behind the

body. The surfa
es of the body and the wake are dis
retized into NB and NW

panels, respe
tively. The surfa
e mesh, where only the beginning of the wake

is depi
ted, is presented in (Fig. (4.13)). The panels are 
oloured in doublet

strength distribution for a zero angle of atta
k 
ase. The wake doublet strength


learly shows its linear relationship to the bound 
ir
ulation strength (Eq. (2.46)).

Sin
e the fuselage produ
es less lift 
ompared to the root of the wing, its bound


ir
ulation must be, a

ording to Kutta-Joukowski theorem, smaller, whi
h means

also a smaller absolute value of a doublet strength. A similar relationship 
an be

written for the wingtip where the lift distribution goes to zero. As it 
an be seen

in Fig. (4.13), at the end of the wing the doublet strength also goes to zero. On

the other hand, the maximum absolute value of doublet strength lies at the wing

span lo
ation with the maximum lift.

Sin
e the main interest is eliminating the separation, the basi
 
ost fun
tion

(Eq. (3.32)) together with the Stratford separation 
riterion (Eq. (3.35)) is used

in an optimization analysis. The Stratford 
onstraint for the pressure re
overy

region has, in this 
ase, a signi�
ant role in removing the separated �ow. Even

though a slightly higher 
riti
al Stratford number (Eq. (3.35)) of 0.50 is used to

assure the 
onvergen
e, favourable results are still a
hieved and will be presented.

In this 
ase a0 = 50 is used in order to 
ompute GM (Eq. (3.39)). Sin
e the

pressure re
overy region starts at di�erent streamwise lo
ations on the fairing

surfa
e, a linearly de
reasing value of the integral from Eq. (3.36) is used for

re
overy region panels, where the maximum is at the fuselage and the minimum
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Figure 4.13: Body and wake doublet distribution at α = 0◦, 
omputed with

panel method. Only a part of the wake is presented.

at the wing. The minimal integral value is 
omputed as an integral over the

streamline at the wing-fairing jun
tion that runs from the point right above the

stagnation point to the pressure re
overy region. The maximal integral value is

on the other hand 
omputed as an integral over the streamline that runs from

the nose of the fuselage to the pressure re
overy region on the fairing-fuselage

jun
tion. They are 
omputed after a few steps of optimization (Subse
tion 3.2.3),

averaged over all optimizations at the same angle of atta
k and used as a 
onstant

at all 
omplete optimization pro
edures at the same angle of atta
k.

In all optimization 
omputations, unless otherwise stated, 12 × 4 number of


ontrol points in order to 
ompute the magnitude of 
hange surfa
e fun
tion (Eq.

(3.28)) is used, of whi
h twelve are around the fairing in a streamwise dire
tion

and four are in a spanwise dire
tion. All 
ontrol points are slightly 
onstrained

(lb = −0.4m and ub = 0.4m in Eq. (3.26)) in order to prevent 
oin
iden
e of

nodes and also to assure a physi
ally a

eptable surfa
e shape.

The deformation ve
tor of ea
h node on the fairing that is being optimized

points in the spanwise dire
tion (Fig. (4.14)), whi
h preserves the geometry of

the wing. Ve
tors in nodes, that lie 
lose to the leading edge of the wing point in

dire
tion of the leading edge, whereas ve
tors that lie 
lose to the trailing edge

point parallel to the trailing edge dire
tion. Ve
tors are normalized, but on the

half of the fairing 
loser to the fuselage (0 ≤ u ≤ 0.5) multiplied by a de
reasing

fun
tion (Eq. (4.5)) in order to remain tangential to the �xed fuselage surfa
e.

In order to a
hieve a proper pre
ision of the results, the optimization of a


ase at a moderate angle of atta
k (α = 8◦) has been run at three di�erent
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Figure 4.14: Pat
h that is being optimized (grey panels) and its deformation

ve
tor �eld s
aled by a fa
tor of 0.125 (red ve
tors).

surfa
e mesh densities. After a 
omparison of a relative di�eren
e between the

initial value of the 
ost fun
tion and its �nal 
onverged value for di�erent mesh

densities (Fig. (4.15(a))), a mesh with a number of panels equal to NB = 1150

was 
hosen for all optimization 
omputations. In this way the results di�er from

the �ner mesh results only by a few tenths of a per
ent, but the 
omputation

times are redu
ed signi�
antly.

All optimization results at all 
hosen angles of atta
k together with the orig-

inal surfa
e shape have been veri�ed in a CFD analysis using the OpenFOAM

program. A proper volume mesh density had to be 
hosen also for the CFD anal-

ysis. An air�ow around one of the optimal surfa
es at an angle of atta
k equal to

8◦ with three di�erent mesh densities has been simulated. A relative di�eren
e

of pressure and fri
tion drag 
oe�
ient and lift 
oe�
ient between simulations

with di�erent mesh density and a simulation with the highest mesh density is

presented in Fig. (4.15(b)). From the �gure it 
an be seen that the 
ase with

approximately �ve million 
ells is a reasonable 
hoi
e for the simulation, sin
e all

the 
oe�
ients 
hange less than 0.2% if the mesh gets re�ned even further. The

same number of 
ells was used at the rest of the simulations in this test 
ase.

Sin
e a high Reynolds number Spalart-Allmaras turbulen
e model was used, a

value of y+ [64℄ was also 
he
ked after 
hoosing the mesh density. A y+ surfa
e

distribution together with a sli
e through a mesh 
oin
iding with the symmetry

plane is presented in Fig. (4.16). The values of y+ 
on�rm an appropriate surfa
e

mesh density 
hoi
e.
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Figure 4.15: (a) A 
onvergen
e of a relative di�eren
e between initial 
ost

fun
tion value and its minimized value, with respe
t to the body surfa
e

mesh density at optimization pro
ess. (b) A 
onvergen
e of the for
e 
oef-

�
ients with respe
t to the volume mesh density at CFD analysis.

Figure 4.16: y+ surfa
e distribution and a sli
e through a mesh of a 
on-

verged simulation of an air�ow around one of the optimized surfa
es at 8◦

angle of atta
k.
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4.3.2 Results

The optimization of the fairing has been run at di�erent 
ombinations of two

angles of atta
k, α1 = 0◦ and α2 = 8◦. The sum of 
ost fun
tion values at both

angles has been weighted a

ording to equation

(1− w) · Fα1
+ w · Fα2

. (4.6)

If the weight w is equal to zero, the 
ase is being optimized only at an angle

of atta
k α1, whereas if the weight is one, only the α2 
ase is being optimized.

Besides zero and one, three additional weights have been used in this work, 0.25,

0.5 and 0.75.

First, the optimized surfa
es at weights w = 0 and w = 1 have been sought,

where the original surfa
e was used as an initial 
ondition of the optimization

pro
ess. These two optimized surfa
es were then used as an initial 
ondition at

the rest of the values of weight w. Therefore, there are two families of solutions.

One where the initial surfa
e was the optimal surfa
e at α1 (w = 0) and the other

with the initial surfa
e being the optimal surfa
e at α2 (w = 1).

All optimized surfa
e shapes at all values of weight together with the original

surfa
e have then been evaluated with CFD analysis. The relative di�eren
e

of pressure, fri
tion and total drag between the original and optimal shapes is

at angle of atta
k α1 = 0◦ presented in Fig. (4.17(a)) and at α2 = 8◦ in Fig.

(4.17(b)).

The two families of solutions are presented with the same 
olour, but with

a di�erent line style. Solutions that have a w = 0 optimal shape as an initial


ondition are 
onne
ted with a solid line to their initial 
ondition, and solutions

with a w = 1 optimal shape as an initial 
ondition are 
onne
ted with a dash-dot

line to their initial 
ondition.

At both angles of atta
k, the solution w = 0 and the solutions that derive

from it have smaller pressure and total drag, but larger fri
tion drag 
ompared to

the solution w = 1 and solutions with w = 1 as an initial 
ondition. It 
an be also

seen from Fig. (4.17), that all solutions have larger fri
tion drag 
ompared to the

original shape. In order to �nd an explanation for the fri
tion drag in
rease after

the optimization, the surfa
e areas of the whole body (fuselage, wing and fairing)

of all solutions have been plotted in Fig. (4.17) in order to 
ompare them with

the fri
tion drag. It 
an be seen from the �gures, that the two relative di�eren
es

have a good 
orrelation at α1 = 0◦ and a poor one at α2 = 8◦. The di�eren
e
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Figure 4.17: Relative di�eren
e of drag and surfa
e area of all optimized

surfa
es 
ompared to the original surfa
e, 
omputed with OpenFOAM at

angle of atta
k equal to (a) α1 = 0◦ and (b) α2 = 8◦.

between the relative in
rease of the area and the fri
tion drag is at α1 smaller

than 0.3%, whereas at α2 approximately 3%. The fri
tional 
omponent of the

drag at zero angle of atta
k therefore in
reases mainly be
ause of the in
rease of

the wetted surfa
e.

On the other hand, at moderate angles of atta
k, where the separation o

urs

at the wing root region, the in
rease of the area only slightly in�uen
es the amount

of the fri
tion drag. At the separated region, the �ow velo
ity at the surfa
e is
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small or 
an even have an opposite dire
tion. After optimization, the �ow is

atta
hed to the surfa
e, its velo
ity at the surfa
e signi�
antly in
reases, whi
h

produ
es the major part of the fri
tion drag in
rease.

Even though the fri
tion is ampli�ed at all optimized shapes, the thinning

of the boundary layer, as a result of the pressure gradient minimization, still

in�uen
es the amount of total drag at both angles of atta
k by a larger extent.

The boundary layer and the wake are mu
h thinner at α2 = 8◦ be
ause of the

reatta
hment of the �ow, whi
h results in more than 20% of de
rease in pressure

drag and 
onsequently in more than 16.5% of de
rease in total drag for w = 0

solution and all of its three derivatives.

The ex
eptions at zero angle of atta
k are the w = 1 solution and its two 
loser

derivatives at w = 0.5 and w = 0.75. The optimized shape of these solutions

bulked up on the upper front region of the fairing, whi
h redu
ed the re
overy

region behind the new bulge and assured an atta
hed �ow. At zero angle of atta
k,

on the other hand, this bulge in
reased the re
overy region, whi
h thi
kened the

boundary layer and produ
ed more pressure drag than the original surfa
e.

It is also interesting to note that the optimized shape at w = 1 for the angle

of atta
k α2 = 8◦ is poorer than the solution at w = 0 and all of its derivatives.

Sin
e the problem has at least two lo
al minima solutions, the 
hoi
e of an initial


ondition plays an important role at optimization pro
ess.

Comparing pure drag data does not, however, reveal the whole pi
ture. It

must also be determined how the optimization e�e
ts the lift for
e. The data for

three di�erent surfa
e shapes has been presented on the polar plot in Fig. (4.18).

Besides the original shape, an optimal shape with a minimal total drag at both

angles of atta
k (w = 0.75, initial 
ondition at w = 0) and an optimal shape

at w = 1 have been 
hosen to be 
ompared. A surfa
e area used in 
oe�
ient


al
ulations is the area of a planform of the original wing stret
hed tangentially to

the symmetry plane at the middle of the fuselage. The dots in the �gure denote

the drag and the lift 
oe�
ients at angles of atta
k equal to 0

◦
, 6

◦
and 8

◦
. For the

original surfa
e additional simulations have been run at angles of atta
k equal to

7

◦
and 9

◦
, but the data for the latter angle is o� the plot. A �t with a polynomial


urve of degree of four for ea
h data group was added to the �gure, where data

only at the smaller three angles of atta
k was used on the original surfa
e. It 
an

be seen from the Fig. (4.18), that the drag of the original shape dramati
ally

in
reases and the lift de
reases at angles greater than 7

◦
(CD > 0.058). At these

angles the massive separation o

urs, whi
h 
ompletely 
hanges the air�ow over
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Figure 4.18: Polar plots for an original and two 
hosen optimal surfa
e

shapes. The data at di�erent angles of atta
k is �tted with a polynomial


urve of degree of four.

the fairing. At the optimized shapes, on the other hand, no separation o

urs.

Even though the polar of the w = 1 solution is shifted to higher drag 
oe�-


ients 
ompared to the other two surfa
es, it is also shifted to higher lift 
oe�-


ients. By 
omparing the polar 
urves in the Fig. (4.18) it 
an be stated, that

the solution at w = 1 produ
es the least drag of the three at the same amount of

lift. Although the w = 0.75 solution has the smallest drag at all observed angles

of atta
k, the w = 1 solution is still a preferred one to be used on the airplane due

to its better polar. The fa
t that at the same lift a smaller drag 
an be a
hieved

is the most important a
hievement at the surfa
e optimization of a lifting body.

A 
omparison of a surfa
e pressure distribution between the panel method


omputations and the CFD analysis for the original surfa
e and the optimal sur-

fa
e at w = 0.75 (initial 
ondition is a solution at w = 0) at zero angle of atta
k

are presented in Fig. (4.19) and Fig. (4.20), respe
tively. Pressure distribu-

tions obtained with the panel method and CFD 
al
ulations are 
omparable even

though a mu
h 
oarser surfa
e mesh is used at the former method. The surfa
e

optimization produ
ed an indent fairing at the fuselage-wing jun
tion, as 
an be

seen from the shape of the white line in Fig. (4.20). Sin
e the �ow is a

elerated

around the wing and at the same time around the fuselage, an unne
essary high

speed �ow is a
hieved at the original fairing, whi
h 
auses an additional amount

of drag (Se
tion 2.2). This e�e
t is redu
ed at the optimized surfa
e, where a

slightly larger pressure is a
hieved at the observed region. The drag redu
tion
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Figure 4.19: Surfa
e pressure distribution of an original surfa
e 
omputed

with (a) a panel method and (b) a CFD analysis at zero angle of atta
k.


an be observed in Fig. (4.17(a)).

The pressure distributions for the same two surfa
e shapes and additionally

also for the optimized shape at the w = 1, 
omputed with the panel method

and CFD 
al
ulations, but this time all at the angle of atta
k equal to 8◦, are

presented in Fig. (4.21), Fig. (4.22), and Fig. (4.23), respe
tively.

The pressure distributions between the panel method and the CFD analysis

are again 
omparable, with an ex
eption of the original shape around the fairing.

The panel method predi
ts a smooth and atta
hed potential �ow (Fig. (4.21(a))),
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Figure 4.20: Surfa
e pressure distribution of an optimal shape at w = 0.75
with an initial 
ondition of a w = 0 shape, 
omputed with (a) a panel

method and (b) a CFD analysis at zero angle of atta
k.

whereas the CFD analysis 
al
ulates a huge separation at the wing-fuselage jun
-

tion (Fig. (4.21(b))). A bundle of streamlines, 
oloured in a magnitude of velo
ity


olour s
heme, is added to all CFD analysis �gures in order to emphasize the im-

provement of the optimized surfa
es with respe
t to the original one at the 8

◦
of

angle of atta
k. For the original shape the streamlines deta
h from the surfa
e

already at the beginning of the wing, very 
lose to the leading edge. At both op-

timized shapes, on the other hand, the streamlines remain atta
hed all the way
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Figure 4.21: Surfa
e pressure distribution of an original surfa
e 
omputed

with (a) a panel method and (b) a CFD analysis at angle of atta
k equal

to 8

◦
.

to the trailing edge and only a small separation 
an be observed. Despite some

separation, the �ow is smoothly passing a major part of the body. The aerody-

nami
s of the airplane are improved, as 
an be seen also from Figs. (4.17(b)) and

(4.18).

At all the CFD 
al
ulation �gures a sli
e, 
oin
iding with the symmetry plane,

with a velo
ity magnitude distribution is added. At some �gures also a white line

on the surfa
e in a spanwise dire
tion is added in order to have a better per
eption
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Figure 4.22: Surfa
e pressure distribution of an optimal shape at w = 0.75
with an initial 
ondition of a w = 0 shape, 
omputed with (a) a panel

method and (b) a CFD analysis at angle of atta
k equal to 8

◦
.

of the surfa
e shape. The shape of the fairing at the bottom side is qualitatively

the same for all optimal 
ases. The surfa
e at the fuselage is slightly indented


ompared to the original shape (Fig. (4.24)), whi
h slows down the �ow and

helps to improve the 
hara
teristi
s of the fairing.

At this test 
ase it was shown that the proposed optimization 
an be used to

get rid of the massive separation in the wing root region. In this way, a signi�
ant

redu
tion of drag is a
hieved. Whether the shape will indent in the fuselage in
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Figure 4.23: Surfa
e pressure distribution of an optimal shape at w = 1
with an initial 
ondition of an original shape, 
omputed with (a) a panel

method and (b) a CFD analysis at angle of atta
k equal to 8

◦
.

order to de
elerate the �ow or bulge out in order to redu
e the re
overy region

depends primarily on the shape used for the initial 
ondition. In this work two

families of solutions were en
ountered, whi
h proves the importan
e of the initial


ondition in the optimization pro
ess.
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Figure 4.24: Surfa
e pressure distribution of (a) an original shape and (b)

an optimal shape at w = 0.75 with an initial 
ondition of a w = 0 shape,


omputed with a panel method at an angle of atta
k equal to 8

◦
.

4.4 Test Case No. 3: High Reynolds Number

In the last test 
ase, the bulb keel of a sailboat is treated. More spe
i�
ally, the

two fairings between the hull and the �n and between the �n and the bulb are

optimized. This test 
ase distinguishes itself from the previous 
ases by having a

greater Reynolds number. Even though a typi
al velo
ity is small 
ompared to

previous 
ases, be
ause of the water as a medium of the �ow, the Reynolds number

is equal to or greater than 107. Large Re numbers 
ause an earlier transition than

do smaller Re numbers, whi
h means that turbulent �ow is present more or less

throughout the whole surfa
e area. Be
ause of this, the amount of wetted area
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and the surfa
e velo
ity should be kept as small as possible in order to redu
e

the drag.

4.4.1 Veri�
ation

The body has a bilateral symmetri
al shape whi
h is preserved during surfa
e

optimization. The problem is treated at small angles of atta
k, α = 4◦ and

smaller, where typi
al 
ruise takes pla
e. Only the surfa
e of the hull under

the waterline is taken into 
onsideration, where the water level is 
onsidered

as a symmetry plane. The waves aren't taken into a

ount. The roll angle of

the sailboat, as a 
onsequen
e of the for
e in the sails, is also not taken into


onsideration in this work.

Sin
e most of the �ow is turbulent in this test 
ase, its velo
ity should be

as small as possible and unne
essary a

elerations and de
elerations should be

avoided. That is why a basi
 
ost fun
tion (Eq. (3.32)) is used, whi
h 
auses

almost an uniform pressure distribution and in this way the smallest negative

pressure.

In all optimization 
omputations 14× 6 number of 
ontrol points are used to


ompute the magnitude of 
hange of the surfa
e fun
tion (Eq. (3.28)). 14 are

used in the streamwise dire
tion around ea
h of the two fairings and 6 are used

in the spanwise dire
tion. All 
ontrol points are slightly 
onstrained (lb = −1.0m

and ub = 1.0m in Eq. (3.26)) in order to prevent 
oin
iden
e of nodes and also

to assure a physi
ally a

eptable surfa
e shape.

Deformation ve
tors of all nodes of both fairings that are being optimized

point in dire
tion parallel to the spanwise dire
tion of the �n (Fig. (4.25)), whi
h

preserves the geometry of the �n. Ve
tors in nodes, that lie 
lose to the leading

edge of the �n point in dire
tion of the leading edge, whereas ve
tors that lie 
lose

to the trailing edge point parallel to the trailing edge dire
tion. Deformation

ve
tor �eld of both jun
tions are normalized on both jun
tion halves 
lose to

the �n, but gradually de
rease to zero (Eq. (4.5)) toward the hull and the bulb,

respe
tively. In this way both pat
hes remain tangential to �xed surfa
es.

A Stratford 
riterion (Eq. (3.35)) is used in order to prevent the �ow sepa-

ration in the pressure re
overy region. Sin
e the pressure re
overy has a 
onvex

shape, a value of 0.39 is used as a 
riti
al Stratford number in order to 
onstrain

the value of GM (Eq. (3.39)). In this 
ase a0 = 100 is used in order to 
ompute

GM (Eq. (3.39)). Sin
e the pressure re
overy region starts at di�erent streamwise
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(a) (b)

Figure 4.25: Pat
hes, (a) hull-�n and (b) �n-bulb fairing, that are being

optimized (grey panels) and their deformation ve
tor �elds s
aled by a

fa
tor of 0.25 (red ve
tors).

lo
ations on the body, a linearly de
reasing value of the integral from Eq. (3.36)

is used for re
overy region panels at both fairings. Maxima are at the hull and

the bulb and minima at the �n. The minimal integral value of the upper fairing is


omputed as an integral over the streamline at the �n-fairing jun
tion that runs

from the point right next to the stagnation point (on the pressure su
tion side) to

the pressure re
overy region. The maximal integral value is, on the other hand,


omputed as an integral over the streamline that runs from the nose of the hull

to the pressure re
overy region on the fairing-hull jun
tion. Similar integration

is done for the �n-bulb fairing. All integrals are 
omputed after a few steps of

optimization (Subse
tion 3.2.3), averaged over all optimizations at the same angle

of atta
k and used as a 
onstant at all 
omplete optimization pro
edures at the

same angle of atta
k.

The wake is modeled behind the �n, but stret
hes also behind the hull and

the bulb. The Kutta 
ondition is met only along the trailing edge of the �n.

For the hull and the bulb the assumption is made that they don't shed vorti
ity

into the wake, with the ex
eption of a single vortex at the end of the bulb (outer

edge of the wake). The doublet distribution in the wake behind them is therefore


onstant. The wake 
oin
ides with the symmetry plane of the body at all observed

angles of atta
k and it stret
hes approximately thirty �n 
hord lengths behind

the body. A body and a wake doublet distribution, where only a part of the

wake 
an be seen, is for the original shape at 4

◦
angle of atta
k presented in Fig.

(4.26).

A surfa
e optimization of a 
ase at an angle of atta
k equal to 4

◦
has been
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Figure 4.26: Body and wake doublet distribution at α = 4◦, 
omputed with

a panel method. Only a part of the wake is presented.

run at three di�erent surfa
e mesh densities. After a 
omparison of the relative

di�eren
e between the initial value of the 
ost fun
tion and its �nal 
onverged

value for di�erent mesh densities (Fig. (4.27(a))), a mesh with a number of panels

equal to NB = 1780 has been 
hosen for all optimization 
omputation. Compared

to the �ner mesh, the 
omputation times are in this way redu
ed signi�
antly and

the results di�er only for a few tenths of a per
ent.

For the CFD analysis a proper volume mesh density also had to be 
hosen.

For one of the optimal shapes the �ow passing the surfa
e at angle of atta
k equal

to 4◦ has been simulated with three di�erent mesh densities. A relative di�eren
e

of pressure and fri
tion drag 
oe�
ient and lift 
oe�
ient between simulations

with di�erent mesh densities and a simulation with the highest mesh density is

presented in Fig. (4.27(b)). The 
ase with approximately 11 million 
ells is a

reasonable 
hoi
e for the simulation, sin
e by re�ning the mesh even further, all

the 
oe�
ients 
hange for less than 0.4%. The same mesh density was used at

the rest of the simulations of the sailboat keel. Sin
e a high Reynolds number

Spalart-Allmaras turbulen
e model was used, the same as at the airplane test


ase, a value of y+ was 
he
ked after 
hoosing the mesh density. A y+ body

surfa
e distribution is presented in Fig. (4.28). A sli
e through a mesh 
oin
iding

with the symmetry plane is added to the �gure. A proper mesh density at the

surfa
e is 
on�rmed by the values of y+.
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Figure 4.27: (a) A 
onvergen
e of a relative di�eren
e between initial 
ost

fun
tion value and its minimized value, with respe
t to the body surfa
e

mesh density at optimization pro
ess. (b) A 
onvergen
e of the for
e 
oef-

�
ients with respe
t to the volume mesh density at CFD analysis.

Figure 4.28: y+ surfa
e distribution and a sli
e through a mesh of a 
on-

verged simulation of an air�ow around one of the optimized surfa
es at 4◦

angle of atta
k.

4.4.2 Results

Similar to the previous test 
ase, the optimization of both fairings has been run

at three di�erent 
ombinations of two angles of atta
k, α1 = 0◦ and α2 = 4◦,

where the Eq. (4.6) has been used to 
ompute the weighted sum. Again, if w = 0

or w = 1, the 
ase is optimized only at the 0

◦
or 4

◦
angle of atta
k, respe
tively.
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If w = 0.5, an optimal surfa
e with a minimal sum of pressure gradient at both

angles of atta
k together is being sear
hed. The original surfa
e was used as an

initial 
ondition at all weights. For w = 0.5 
ase di�erent initial 
onditions were

tried, but the optimization always 
onverged to the same solution. The fairings

were optimized su

essively. The upper fairing, that was optimized �rst, was used

afterwards for the optimization of the bottom fairing. Sin
e the pat
hes are more

than 1.5m apart in the spanwise dire
tion, a negligible error was made be
ause

of this.

Ea
h of the optimized surfa
es was evaluated with a CFD analysis. The

relative di�eren
es of for
es and surfa
e area values with respe
t to the simulation

results of the original shape are presented in Fig. (4.29). Compared to the original
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Figure 4.29: Relative di�eren
e of drag and surfa
e area of all optimized

surfa
es 
ompared to the original surfa
e, 
omputed with OpenFOAM at

angle of atta
k (a) α1 = 0◦ and (b) α2 = 4◦.

shape, the total drag was redu
ed for all solutions. The smallest drag at both

angles of atta
k, 
an be observed at w = 1 solution. For α1 (Fig. (4.29(a)))

the total drag is redu
ed by 0.5% and for α2 (Fig. (4.29(b))) by approximately

0.43%. Even though the redu
tions of the drag are a few tenths of a per
ent


ompared to the original shape, the numbers are still notable, be
ause of the

large absolute value of the total drag. In Fig. (4.29) the relative 
hanges of the


omplete body drag are presented. The per
entage of the relative redu
tion of

drag for only the fairings is mu
h higher, sin
e they 
over only 11% of the total

body surfa
e. Besides that, approximately one third of the surfa
e is due to the

�n, whi
h doesn't 
hange the shape during optimization. Be
ause of this, even

though the relative redu
tion of the total drag of the whole body has the same

78



order of magnitude as the mesh density error (Fig. (4.27(b))), the results are still

signi�
ant.

The absolute value of the fri
tion drag is about 14 times larger than the pres-

sure drag at zero angle of atta
k and 5 times larger than at an angle of atta
k

equal to 4

◦
. Even though the pressure drag at α1 redu
ed by more than 3% for

all solutions, the total drag still hardly ex
eeded the −0.5% 
hange, be
ause of

the large 
ontribution of the fri
tion drag. Similar situation 
an be observed at

α2, where the pressure drag for w = 0.5 and w = 1 examples even in
reased 
om-

pared to the original surfa
e. The minimization of the fri
tion drag 
omponent

is therefore in this test 
ase mu
h more important 
ompared to the pressure drag

in order to optimize the shape of the surfa
e. The surfa
e area of body after

ea
h optimization 
hanged for less than one tenth of a per
ent 
ompared to the

original body (Fig. (4.29)). The redu
tion of the surfa
e area is therefore not the

primary reason for fri
tion drag redu
tion. The major 
ontribution goes to the

smoother and on average slower �ow around an optimized surfa
e.

During sailing, the sailboat rolls by an angle at whi
h the moments produ
ed

by the wind in the sails and by the weight in the bulb equalize [65℄. Sin
e

typi
ally the sailboat also slightly drifts at an leeway angle (α angle at this test


ase), as a 
onsequen
e of the wind, a lift for
e on the �n is generated, whi
h

o�ers an additional roll angle 
ontrol of the sailboat. The lift for
e therefore a
ts

in dire
tion perpendi
ular to the streamwise and spanwise dire
tion of the �n.

Polar 
urves of the original and all optimized surfa
es are presented in Fig. (4.30),

where also the 
hange of the lift 
oe�
ient 
an be observed as a 
onsequen
e of

the optimization. A surfa
e area used in 
oe�
ient 
al
ulations is an area of the

planform of the �n, 
ut at the hull, and stret
hed tangentially to the middle of

the bulb.

The dots in the �gure denote the drag and the lift 
oe�
ients at angles of

atta
k equal to 0

◦
, 3

◦
and 4

◦
. A �t with a polynomial 
urve of degree of four for

ea
h data group is added to the �gure. From the Fig. (4.30) it 
an be seen, that

all optimized surfa
es have besides smaller drag also larger lift 
oe�
ient at all

angles of atta
k greater than zero. The polar 
urves therefore shift in a favourable

dire
tion. The solution at w = 1 has the smallest drag at all lift 
oe�
ients, whi
h

makes it the one to use at the real 
ase. The solution at w = 0.5 almost 
oin
ides

with the optimal one, whi
h is also in agreement with the data from the Fig.

(4.29).

A 
omparison of a surfa
e pressure distributions between the panel method

79



−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

CL

C
D

 

 

Original

y = 0.0159x4 + 0.0746x2 + 0.0732

w = 0.0

y = 0.0110x4 + 0.0738x2 + 0.0730

w = 0.5

y = 0.0281x4 + 0.0712x2 + 0.0728

w = 1.0

y = 0.0254x4 + 0.0713x2 + 0.0728

Figure 4.30: Polar plots for an original and optimal surfa
e shapes. The

data at di�erent angles of atta
k is �tted with a polynomial 
urve of degree

of four.


omputations and the CFD analysis for the original surfa
e and the optimal

surfa
e at w = 1 are at zero angle of atta
k presented in Fig. (4.31) and Fig.

(4.32) and at 4

◦
angle of atta
k in Fig. (4.33) and Fig. (4.34), respe
tively.

The �gures are presented from the pressure �su
tion side� view. In all CFD


omputation �gures a sli
e, 
oin
iding with the symmetry plane, with a velo
ity

magnitude distribution and a white line on the surfa
e in a spanwise dire
tion

is added in order to have a better per
eption of the �ow passing the body and

the surfa
e shape, respe
tively. The pressure distributions 
omputed with the

panel method are as in the previous two test 
ases (nonseparated �ow examples)


omparable with the CFD analysis. The surfa
e optimization produ
ed an indent

surfa
e at the sides of the hull-�n fairing (e.g. Fig. (4.32(b))), similar to the

airplane test 
ase at zero angle of atta
k (e.g. Fig. (4.20(b))). Sin
e the �n and

the hull have mu
h more slender shape 
ompared to the wing and the fuselage

from the previous test 
ase, the a

eleration around the fairing is not so intense

and as a 
onsequen
e, the indent is not so severe. At the leading and trailing edge,

on the other hand, the surfa
e bulged. The sharp 
orner between the �n and the

hull 
hanged into a smooth surfa
e transition, whi
h is additionally presented in

the body front view in Fig. (4.35). The interferen
e of the hull and the �n on the

�ow passing the fairing is in this way redu
ed, whi
h stabilizes and slows down

the �ow and indire
tly redu
es the drag.
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Figure 4.31: Surfa
e pressure distribution of an original surfa
e 
omputed

with (a) a panel method and (b) a CFD analysis at zero angle of atta
k.
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Figure 4.32: Surfa
e pressure distribution of an optimal shape at w = 1.0,

omputed with (a) a panel method and (b) a CFD analysis at zero angle of

atta
k.
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Figure 4.33: Surfa
e pressure distribution of an original surfa
e 
omputed

with (a) a panel method and (b) a CFD analysis at 4

◦
angle of atta
k.
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Figure 4.34: Surfa
e pressure distribution of an optimal shape at w = 1.0,

omputed with (a) a panel method and (b) a CFD analysis at 4

◦
angle of

atta
k.
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Figure 4.35: Front view of the pressure surfa
e distribution of the �n-hull

fairing at 4

◦
angle of atta
k 
omputed with the panel method for (a) original

surfa
e and (b) optimized surfa
e at w = 1.

The surfa
e of the �n-bulb fairing went through similar 
hanges during op-

timization, but in a mu
h smaller extent. The surfa
e of the original fairing

apparently already had a shape 
lose to the optimal one.
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Chapter 5

Con
lusion

A novel method for automati
 optimization of aerodynami
 surfa
es using pres-

sure based fun
tionals is presented in this work. For this purpose, potential �ow

is used as a valid approximation of the atta
hed �ow passing over an arbitrary

body. The out
ome of the method is a favourable pressure distribution that in-

dire
tly results in a redu
ed drag. The minimization of a 
ost fun
tion is done

using a sequential quadrati
 programming algorithm.

The proposed panel method that is used to 
ompute pressure distribution is

�rst validated using an example of a potential �ow passing a sphere. The relative

di�eren
e between the panel method solution and the analyti
al solution is shown

to be inversely proportional to the number of panels the surfa
e is dis
retized into.

The proposed optimization method is then used in three 
on
eptually di�erent

test 
ases. All 
ases are evaluated with results obtained by CFD analysis.

In the 
ase of optimization of a fairing, en
losing a human powered vehi
le,

it is shown that the transition from laminar to turbulent �ow is delayed and the

boundary layer at the pressure re
overy region is thinned. In this way, the total

drag of the bi
y
le is redu
ed by more than 10%. In the se
ond test 
ase, where

the fairing of the wing-fuselage jun
tion on an airplane is optimized, a massive

root �ow separation at moderate angle of atta
k is eliminated. The total drag at

angle of atta
k equal to 8

◦
is redu
ed by more than 16.5%. Even though a great

importan
e of the initial 
ondition is shown in this 
ase, the shape of the fuselage

at the fairing is still in most optimization results indent in order to de
elerate the

�ow. The resulting surfa
e shape resembles similar test 
ases in the literature,

as was presented in Chapter 4. The last test 
ase represents an optimization of

a bulb keel of a sailboat, where both fairings (hull-�n and �n-bulb) are being

treated. In this high Re 
ase the total drag is redu
ed by 0.5% and 0.43% at
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0

◦
and 4

◦
angle of atta
k, respe
tively. The primary reason for redu
tion is a

smoother and on average slower �ow around optimized surfa
es.

With the proposed method, satisfa
tory results 
an be obtained su
h that

lower drag on the aerodynami
 surfa
es 
an be anti
ipated. The method is 
on-


eptually simple and 
omputationally low demanding. Even though a stru
tured

mesh is used in present work, the method 
an be equivalently used also with

an arbitrary unstru
tured mesh, whi
h enables one to rearrange the panels in

order to redu
e their number. Beside geometri
al 
onstraints and Stratford 
ri-

terion other 
onstraints 
an be easily in
orporated into the method su
h as e.g.

a �xed wing lift, wing bending moment, surfa
e area et
. This favourable pres-

sure distribution based method 
an also be extended to reshape e.g. a wing in

order to produ
e a maximal lift 
oe�
ient or even a sho
k-free surfa
e [40℄ in


ase of a transoni
 �ight. The method therefore enables one to ta
kle di�erent

aerodynami
 problems with minor modi�
ations.

On the other hand, the method still has some limitations that need to be

adopted su
h as a need for a prede�ned pat
h and deformation ve
tor �eld, a

possibility of interse
tion of panels during the optimization pro
ess and a la
k

of information about the drag for
e. The latter drawba
k 
onsequently means a

need for a CFD evaluation of ea
h optimization result in order to estimate the

for
e with whi
h the �ow a
ts on the body. A logi
al upgrade of the method is

therefore an introdu
tion of the boundary layer equations into the method, whi
h

enables one to dire
tly estimate displa
ement thi
kness and drag for
e [35℄. The

latter 
an be then used as an additional fun
tional that in a 
ombination with

existing pressure based fun
tionals o�er an even wider spe
trum of possible 
ost

fun
tions that need to be further resear
hed and tested.

Pressure distribution resulting from the optimization pro
ess using the exist-

ing method 
an be simply explained as is shown in present work. By upgrading

the method, on the other hand, one needs to realize that the 
on
eptual simpli
-

ity of the method and 
onsequently the understanding of results is being lost.

Moreover, the drag 
omputed with the boundary layer equations rely on the

exa
tness of the turbulen
e model in
orporated in the equations, whereas the

pressure distribution is largely model independent.

Even though the results of the present method represent an improvement

regarding the pressure distribution and 
onsequently the drag for
e of the body,

it would be also interesting to 
ompare them with other optimization methods.

Original 
ontributions in the present dissertation are
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- A novel three dimensional potential �ow optimization method where pres-

sure based fun
tionals are used to shape optimal aerodynami
 surfa
es.

- Fun
tionals are found that, when minimized, redu
e the growth of the

Tollmien-S
hli
hting waves and 
ross-�ow instabilities and 
onsequently

promote laminar boundary layer.

- An implementation of the Stratford separation 
riterion as a 
onstraint

in the three dimensional optimization pro
edure using a "soft" maximum

prin
iple and Heaviside pressure fun
tion weight.

- A new prin
iple of reshaping the aerodynami
 surfa
e where a 
onstant

deformation ve
tor �eld multiplied by the variable Bézier surfa
e is added

to the original shape and where the Bézier surfa
e 
ontrol points represent

also the optimization variables.

The advan
ement of the s
ien
e and engineering as a 
onsequen
e of this

dissertation is therefore:

- A fast, automati
, 
on
eptually simple, and 
omputationally low demanding

optimization method that 
an be used already in the preliminary phase of

air
raft design.

- The method enables one to design aerodynami
 surfa
es that promote lam-

inar boundary layers and prevent �ow separation in the pressure re
overy

regions together with di�erent geometri
al 
onstraints.

- The usage and the e�
ien
y of this simple method was shown on di�erent

test 
ases taken from real life engineering appli
ations.

During authors graduate studies a paper with a related topi
 was published

in the Journal of Air
raft

- Andreja²i£, M., and Veble, G., �Shape Optimization of Nonplanar Lifting

Surfa
es and Planar-Nonplanar Break Points,� Journal of Air
raft, Vol. 50,

No. 3, 2013, pp. 798-806.

The present work will be submitted as a paper to the Journal of Air
raft as

- Andreja²i£, M., and Veble, G., �Optimization of Aerodynami
 Surfa
es us-

ing Pressure Based Fun
tionals.� (Will be submitted in 2014)
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