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Abstract

A panel based method for automatic optimization of aerodynamic surfaces using
pressure based functionals is presented, where a potential flow is used as a valid
approximation of the attached flow passing an arbitrary body. The optimiza-
tion is performed subject to the Stratford separation criterion and geometrical
constraints, where a favourable pressure distribution that indirectly leads to a re-
duced drag represents the solution. The minimization of functionals is done using
a sequential quadratic programming algorithm. The method is simple and has
low computational demands. Its efficiency is demonstrated in three conceptually
different test cases. In case of an optimization of a fairing, enclosing a human
powered bicycle, the drag is reduced through a postponement of the transition
from laminar to turbulent flow and the thinning of the boundary layer in the
pressure recovery region. In case of a fairing of a wing-fuselage junction on an
airplane, a minimal drag at the same amount of lift is obtained through an elimi-
nation of a massive root flow separation at moderate angle of attack, and in case
of an optimization of a bulb keel of a sailboat, a favourable pressure distribution
and consequently reduced drag is obtained simply through a smoother and on

average slower flow passing the optimized surfaces.

Key words: aerodynamics, numerical optimization, pressure based
functional, panel method, favourable pressure distribution, Stratford
criterion, laminar-turbulent transition, pressure drag, viscous drag,

boundary layer.
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Povzetek

V doktorski disertaciji je predstavljena metoda za avtomati¢no optimizacijo aero-
dinamskih povrsin s pomocjo tlacnih funkcionalov. Metoda temelji na panelni
metodi za izracun tlacnih porazdelitev, kjer je potencialni tok uporabljen kot vel-
javen priblizek prilepljenega toka, ki obteka poljubno telo. V metodi je vkljucen
tudi Stratfordov odcepitveni kriterij ter geometrijske omejitve, njen rezultat pa je
ugodna porazdelitev tlaka, ki posredno nakazuje na zmanjSanje upora telesa. Za
minimizacijo funkcionalov je uporabljen SQP algoritem. Metoda je enostavna in
zahteva malo procesorske moci. Zmogljivost metode je prikazana na treh razli¢nih
testnih primerih. Pri optimizaciji zunanje lupine vozila na ¢loveski pogon se upor
zmanjSa zaradi premika laminarno-turbulentnega prehoda proti koncu telesa in
zaradi stanjSanja mejne plasti v obmocju tlacnega okrevanja. Pri drugem testnem
primeru, optimizaciji prehoda krila na trup letala, je minimalni upor pri isti ve-
likosti vzgona pri srednje velikih vpadnih kotih dosezen z eliminacijo odcepljenega
toka na korenu krila. Pri zadnjem testnem primeru, optimizaciji kobilice jadr-
nice, pa izraCunana ugodna porazdelitev tlaka vpliva na zmanjSan upor posredno

preko enakomernejSe in v povprecju pocasnejSe porazdelitve hitrosti.

Kljuc¢ne besede: aerodinamika, numeri¢na optimizacija, tla¢ni funk-
cional, panelna metoda, ugodna porazdelitev tlaka, Stratfordov od-
cepitveni kriterij, laminarno-turbulentni prehod, tla¢ni upor, viskozni

upor, mejna plast.
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® — velocity potential, m?/s
d, internal velocity potential, m?/s
w inverse turbulent time-scale, /s
w' = angular velocity, /s

2 = solid angle
Subscripts

AN — analytical

B —  body

D = doublet

lam = laminar
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main = minimal value

new = new value

old = old value

opt — optimal

orig = original

S = source

turb = turbulent
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U = uniform

x,Y,2 = X,Y,z direction

w = wake

00 = freestream
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lower optimization variable boundary, m
nonequality constraints

right hand side of an equation
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Chapter 1
Introduction

Automatic aerodynamic optimization is an ongoing field of research. It couples
the fields of computational fluid dynamics (CFD) and numerical optimization.
In order to obtain an optimal aerodynamic shape (e.g. at minimal drag), many
flow computations are needed. A lower degree of a CFD method complexity
therefore results in a faster and more practical optimization method. Further-
more, a simpler method typically focuses on only certain aspects of the flow (e.g.

laminar-turbulent transition), which helps to focus the optimization process.

The use of calculus of variations, which is the basis of all modern aerodynamic
optimization methods, for the optimal aerodynamic shape design was explored al-
ready in 1965 by Miele [1]. Its application in optimal control theory for control of
systems governed by partial differential equations [2| was later used in compress-
ible potential flow problems |3]. Independently it was also used in aerodynamic
design via CFD by Jameson [4] who proposed to treat the design problem as a
control problem in which the control is the shape of the boundary.

A class of methods developed to study the design of nonplanar wing surfaces
concerns mostly the study of induced drag by analysing the vorticity distribution
in the Trefftz plane, a virtual plane far enough downstream from the body [5].
Such methods are also suitable for multidisciplinary approaches where further
aspects such as structural weight and viscous drag are taken into account [6-8].

Another class of methods deals with a problem of studying the two dimensional
airfoil sections |9, 10| and optimizing them for best drag at given lift. These
sections can then form the basis of more complex wing analyses.

The largest amount of work has been dedicated to optimization of full three
dimensional aerodynamic configurations. Some of the studies are presented and

described in overview papers [11-13]. A number of studies [14-17| focus on the
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full set of Navier-Stokes equations, devising methods for the calculation of ideal
shapes, and often also taking into account structural considerations. These stud-
ies require significant computational resources. A simplification of the fluid model
is therefore often desirable, and work has been done in employing the nonviscous,
Euler equations in the transonic regime [18-21|. A further reduction in the fluid
model can be performed by using potential based methods, such as the panel
method [22-27] which is a class of boundary element methods (BEM) [28-30].
Since a volume mesh surrounding the aerodynamic surface is at the panel method
replaced by a surface mesh, the problem is simplified and the optimization proce-
dure accelerated significantly. In such studies, drag is estimated using the bound-
ary layer equations via pressure distributions as supplied from the potential flow.
The fluid model can be reduced even further by using a meshless method of funda-
mental solution (MFS) which shows prominent results for potential flows |31-33].
But since the surface of the body being optimized still needs to be discretized
in order to be able to reshape, the MFS method is not very practical from the

surface optimization point of view.

In all optimization methods, once the fluid model is chosen, an optimization of
a cost function can be performed using various minimization schemes [34]. Most
commonly, schemes that require a calculation of a gradient of a cost function with
respect to surface parameters are applied, such as the quasi-Newton method.
The gradients can be calculated by direct numerical differentiation, however,
many studies employ the so called adjoint formulation, where the gradients can
be computed via a calculation of additional flow equations that correspond to
surface perturbations [14,18-20|. On the other hand, the calculation of gradients
can be avoided by choosing a method that only requires the calculation of the

functional itself. In recent years, genetic algorithms are gaining prominence [16].

The regime of interest of the present work is a low Mach number (M < 0.3),
moderate to high Reynolds number (105 < Re < 107) type of flow. In this
regime, the flow can be considered incompressible. For well designed aerodynamic
surfaces, the flow can be also well separated into the essentially inviscid region
away from the aerodynamic surface, with viscous effects being dominant only in
the thin boundary layer close to the surface (on the order of hundredths of the
typical dimension in this regime), and in the (thin) wake behind the surface. The
external flow outside the boundary layer and the wake can be therefore described
by one of the potential flow methods, the most prominent of these being the panel

method. The boundary layer flow is then dominated by the inviscid external



pressure distribution and, if there is no separation of flow present, the boundary
layer only loosely affects the external flow by increasing the effective thickness of
the present aerodynamic surface [35].

The main idea behind the present work is that the calculation of the boundary
layer may not be necessary for obtaining a low drag aerodynamic shape. As the
boundary layer flow is driven by the pressure distribution, one can tailor pressure
distribution directly in order to promote good boundary layer behaviour. The
problem can therefore be transferred from the direct calculation of drag using
boundary layer equations towards designing pressure functionals which, when
minimised, will give pressure distributions that promote favourable boundary
layer flows.

For two dimensional airfoils, a successful pressure functional that minimizes
the integral of the absolute value of the pressure gradient has already been em-
ployed [9]. A similar formulation, that depends on a surface pressure distribution
and a surface gradient of this distribution, is in present work extended to three
dimensional shapes. In order to obtain pressure distributions across the aero-
dynamic surface, in-house panel method codes were developed on the basis of a
constant doublet singularity surface distribution. The trade-off between accuracy
and simplicity was sought. The minimization of the functionals was done using
sequential quadratic programming (SQP) algorithms, which are considered to be
among the most efficient methods for solving nonlinear constraint optimization
problems [36, 37].

The main result of the present work is therefore a fast and practical method
for optimization of three dimensional low speed aerodynamic shapes. A novel
approach towards aerodynamic optimization employs a fully inviscid formulation
that promotes efficient boundary layer flow, even though an information about the
actual boundary layer flow is deliberately lost. This approach is consistent with
the typical task of an aerodynamic designer, where surface pressure distributions
are tailored manually in order to obtain smoothly varying flows.

The theory that lies behind the proposed surface optimization method is de-
scribed in Chapter 2. The method itself is presented in Chapter 3, which is
divided into two main components for the present work, the panel method and
the surface optimization. In Chapter 4, the method is tested on three fundamen-
tally different examples, such as a fairing of a human powered vehicle, a fairing
of a wing-fuselage junction at the airplane and two fairings (hull-fin and fin-bulb)

at the keel of a sailboat. The results are validated with full Reynolds averaged



Navier-Stokes (RANS) calculations.



Chapter 2

Theory

2.1 Potential Flow

A fixed finite control volume with a constant volume and surface area submerged
in a flow field with density distribution p is considered first. Since the flow is
moving through the control volume the time rate of change of mass and momen-
tum can be observed in it. If the conservation of mass and Newton’s second law is
applied to the control volume and transformed to differential form, the continuity

equation is written as

ap B

and the full Navier-Stokes equation as

v 1
0 <E LV, VV) = pf— Vp+ pvV?*V + gpuV(V - V). (2.2)

The continuity equation states that the mass can neither be created nor destroyed
or in other words the mass must be conserved. The momentum equation on the
other hand describes the time rate of change of momentum due to the sum of all
forces acting on observed control volume. The Navier-Stokes equation (Eq. (2.2))
is written in Cartesian coordinates and in this form holds true for Newtonian
fluids only. These two statements, together with the equation of state, present
the fundamental equations of aerodynamics and allow us to describe any kind of

motion of a Newtonian fluid.

The present work applies to the regime of high Reynolds number

v

v

Re (2.3)



and low Mach number

v

M = v (2.4)
flows (105 < Re < 10" and M < 0.3 for the typical cases presented in this
work), where [ and Vj represent a reference body length and the velocity of sound,
respectively. Low Mach number indicates that we are dealing with incompressible
flow where density doesn’t change with time and space. The continuity equation
(Eq. (2.1)) for incompressible or constant density fluid can therefore be written

as
V.V =0 (2.5)

High Reynolds numbers, as it will be shown next, enables one to neglect
the viscous effects in the outer region of the flow. The Navier-Stokes equation
for incompressible flow and without body forces can be written in dimensionless
form as

Sta_v* + VvVl = —viph + L grvi (2.6)

ot Re ’
where the dimensionless characteristic quantities used are Vi = [V, VI = V/V,
tt = ¢/T and p' = p/pV2, where V., represents a freestream velocity magni-
tude. The ratio between inertial and viscous forces is presented by the freestream
Reynolds number Re = V[ /v and the importance of time-dependent phenomena

by a form of the Strouhal number St = [/TV,..

All the terms in Eq. (2.6) are of order of one except the last term on the right
hand side of equation, which is for high Reynolds numbers negligible compared
to the other terms. In regions further away from solid boundaries, where velocity
approaches the freestream velocity V., of undisturbed flow, shear stress derivative
is of the order of one (V?V' ~ 1) and for high Reynolds numbers this viscous
term can be neglected. In thin layer adjacent to body surface (Fig. (2.1)), on the
other hand, the shear stress derivative can be quite substantial and the viscous
term in Eq. (2.6) becomes comparable to the other terms and can’t be neglected

even for high Reynolds numbers.

Consequently, there are two distinctive regions surrounding the body in high
Reynolds number flows [38]. In the immediate vicinity of the body there is
a thin boundary layer, where the viscous effects play a significant role in flow
development. In this region boundary layer equations [35] need to be solved in
order to obtain the shear stress distribution and corresponding friction forces.

Since the viscous effects are effectively confined in this thin boundary layer, the



ViYi=1

VI T>>1

Figure 2.1: High Re attached flow around an arbitrary body can be ap-
proximated by two distinctive regions: a boundary layer with characteristic
viscous effects and an outer potential flow region.

flow further away from the solid surface is said to be viscous free. The flow
in this outer region can therefore be described with incompressible and inviscid
aerodynamic equations whose solution provides a pressure distribution on the
boundary of the region. The same pressure distribution is felt by the observed
body since for attached flows an assumption can be made that the pressure doesn’t

change across the boundary layer [35].

A high-Reynolds number approximation is a valid assumption for numerous
problems such as low speed aerodynamics in general aviation, hydrodynamics of
marine vessels, etc. It simplifies the flow description and allows one to obtain a
pressure distribution on a body surface with less difficulty than does a Navier-
Stokes solution. Another important aspect to be considered is rotation of the
flow. A simplification of the flow description in the outer region, that will be
introduced next, allows one to write the aerodynamic equations in a form that

will be used through the remainder of present work.

As a consequence of velocity variations within the fluid, each fluid element
experiences translation, rotation and deformation while moving with the flow. Its
rotation can be effectively described by vorticity vector, which is defined through

angular velocity vector as
(=20'=VxV, (2.7)

When fluid elements rotate while moving with the flow, the flow is considered to
be rotational or V x V # 0. On the other hand, after Kelvin’s theorem [22]

DT

— =0, 2.8
which states that the time rate of change of circulation I' around a closed curve
consisting of the same fluid elements is zero, previously nonrotating ideal fluid

elements can not start rotating in the region of negligible viscous forces. This
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kind of flow is called irrotational and can be described by expression

(=VxV=0 (2.9)

The flow in the outer inviscid region can be therefore denoted as irrotational
where Eq. (2.9) holds true. Since a curl of a gradient of any scalar function
is identically zero, we can write the velocity vector as a gradient of a wvelocity

potential P as
V =V, (2.10)

where

o0 o0 o0,
ox’ Oy’ 0z

Since an irrotational flow can be described by velocity potential, it is also called

V= (V,,V,, Va) = ( (2.11)

a potential flow.

The incompressible continuity equation (Eq. (2.5)) for an irrotational fluid

can be further written as
V-V=V.V0=V=0. (2.12)

This linear elliptical differential equation is Laplace’s equation, whose solution is
a potential field. Once the velocity distribution is calculated from Eq. (2.10), the
pressure distribution on body surface needs to be obtained in order to calculate

the aerodynamic forces and moments.

In order to do that, the incompressible, inviscid and steady Navier-Stokes

equation without body forces needs to be rewritten with the help of equation

V2
V-VV = Vo Vg (2.13)

as V2
—V X (+ V= —vi—j. (2.14)

For an irrotational flow (( = 0) Eq. (2.14) can be further simplified to

VZ o op
v (7 + ;) —0, (2.15)

which holds true for a steady flow only if the expression in the parentheses is a

8



spatial constant ,

V? + % = const. (2.16)
The derived equation is called a Bernoulli’s equation. It connects magnitude of
velocity and pressure of every point in the flow, which enables one to compute the
pressure distribution directly from the velocity distribution. By comparing Eq.
(2.16) at two points in the flow, where one is at infinity, the following expression

for pressure coefficient holds true

poo _p V2
Cp= =14+ —. 2.17
P= T - |43 217)

2.2 Drag

All aerodynamic forces and moments a body situated in a fluid flow experiences

have two root causes:
e pressure surface distribution and
e shear stress surface distribution.

The fluid moving along a solid boundary acts on the body solely through these two
mechanisms. Both distributions represent an average force distribution per unit
area. The pressure distribution represents a normal stress with forces oriented
normal to the body surface, whereas shear stress acts tangential to the body
surface. By integrating them over the whole body surface, total force and moment
acting on the body can be obtained. The force can be further resolved into two
components, one in direction of a freestream called a drag, and one in direction
perpendicular to the freestream called a [ift.

There are three contributions to a total drag force: pressure drag, skin friction
drag due to shear stress, and induced drag due to lift. In this work we are
interested only in the first two contributions, even though induced drag can have
a major contribution to total drag in some cases, e.g. an airplane on take-off [39).

According to d’Alembert’s paradox [40], a completely attached inviscid flow
passing a nonlifting body with an arbitrary shape doesn’t cause drag on the body.
This can be observed by taking into consideration only the outer region of the
flow described by the potential theory (Section 2.1). As soon as viscosity in the
boundary layer is taken into consideration, viscous effects produce skin friction

and possibly also flow separation which together always produce a finite drag.



A no-slip condition at the body surface, due to a frictional force between the
surface and the fluid, causes a retarded flow right above the surface. In the region
of an adverse pressure gradient it can happen that the flow, already slowed down
by the frictional forces, may no longer sustain an increasing pressure. The flow
can stop or even reverse its direction and start moving upstream (Fig. (2.2(a))),
which causes the flow to separate from the surface and create a large wake of
recirculating flow behind the body. At the region of separated flow the pressure
drops (Fig. (2.2(b))) and can therefore no longer cancel the pressure distribution
over the reminder of the body. A result is a pressure drag force due to a flow
separation. A separated flow should be avoided since besides a large drag, it

produces also a major lift decrease or even a stall.

Figure 2.2: (a) Boundary layer velocity profiles of a separated flow, due to
adverse pressure gradient. (b) Pressure distribution on the upper side of
the airfoil of an attached (dashed) and separated flow (solid).

Over the range of Reynolds number between 10° and 107, where the main
interest of the present work lies, the external flow passing a slender body usually
experiences a laminar to turbulent boundary layer transition. Since a laminar
boundary layer has smooth and regular streamlines, whereas the motion of a flow
in a turbulent boundary layer is very irregular and full of vertices of all sizes, the

two flows have different characteristics and produce a different amount of drag.

Because of a high diffusivity of a turbulent boundary layer, the fluid elements
with higher velocity can approach the surface closer and the elements with smaller
velocity can digress further away from the surface. Turbulence therefore produces
an exchange of momentum and energy which thickens the boundary layer. A flat
plate at a zero incidence has a thickness of a laminar boundary layer according
to H. Blasius [41] proportional to the square root of a distance x along the plate

and inversely proportional to the square root of the Reynolds number (based on

10



the length of the plate c)

/2

Rei/ 2

This result presents an exact solution of the L. Prandtl’s laminar boundary layer

Stam = 5.0c'/? (2.18)

equations [38]. On the other hand, there is no pure theory to describe a turbulent
boundary layer. The thickness of the turbulent boundary layer is therefore given

approximately by [40]

LA/

_ 1/5
Opury = 0.37¢"/ P

(2.19)

The boundary layer thickness 0 is in these cases defined as a distance from the
solid surface to the point in the flow in surface normal direction n, with a velocity
magnitude equal to 99% of the freestream velocity V., (Fig. (2.3)). For the
example of a flat plate at zero incidence the relation 0., > 04, indeed holds
true for every z along the plate.

nA

I 1

turb

lam

0

Figure 2.3: A typical velocity profile in a laminar (solid) and a turbulent
boundary layer (dashed) and corresponding boundary layer thicknesses.

A high degree of mixing of fluid elements in turbulent boundary layer also
produces different velocity profiles adjacent to the body surface compared to
the laminar flow. A typical velocity profile in boundary layer before and after
transition is presented in Fig. (2.3). The turbulent boundary layer has a larger
velocity gradient (0V/0n),—o at the wall than laminar boundary layer [35] and

since a shear stress of a Newtonian fluid is directly proportional to the velocity

ov
Ty = pV (a—n)nzo, (2.20)

also the frictional stress is greater for turbulent boundary layer. By integrating

gradient

the skin friction coefficient ¢; = 7,/ % Poo V2 over the complete surface of the body,
the friction drag coefficient of the body can be calculated. In the case of a flat

plate with a length ¢ at zero incidence in a laminar boundary layer, the friction

11



drag can be expressed after [41] as

1.328
Df,lam = —1/2’ (221)
€Ec
and for a plate in a turbulent boundary layer after [40] approximately as
0.074
CDf,tu'rb = Re—é/5 (222)

The friction drag of turbulent boundary layer can be therefore much larger
than the friction drag of laminar boundary layer, in case of an attached flow
passing an arbitrary body. Due to mixing and the associated momentum transfer
the average flow velocity near the body surface is higher for turbulent flow. Fluid
elements of a turbulent flow near the body surface have more energy and can
better overcome skin friction and therefore withstand larger adverse pressure
gradients. For this reason the turbulent flow doesn’t separate from the surface
as readily as laminar flow. If the flow does eventually separate, the separated
region is smaller for the turbulent flow and consequently the pressure drop less
explicit [35]. The pressure drag of the separated turbulent boundary layer is

therefore smaller than the pressure drag of the separated laminar boundary layer.

It depends on the shape of the body or the part of the body what kind of flow
is preferred. If the body is blunt, laminar flow causes large laminar bubbles [42]
that lead to flow separation and consequently large pressure drag. For blunt
bodies turbulent flow is desired, whereas for slender bodies usually laminar flow
is preferable since its friction drag component is larger than its pressure drag
component. If there is a chance the flow will separate, e.g. at the pressure
recovery region, the transition from laminar to turbulent flow should occur right
before the separation. In this way, in order to achieve the smallest drag possible,
laminar flow with smaller skin friction is preferred in the region of favourable
pressure gradient, where the flow is usually attached, and a turbulent flow with

smaller pressure drag in the pressure recovery region.

Laminar-Turbulent Transition. An exact laminar to turbulent flow tran-
sition location is not a trivial thing to predict, since it is affected by many pa-
rameters such as Reynolds number, pressure distribution of the outer flow, the
roughness of the wall, the turbulence intensity of the outer flow, etc. In fact, the
transition doesn’t happen at a point but over a region of a finite length. Any

real flow is in one way or another subject to smaller or bigger disturbances and
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the viscosity is the factor that acts to restrain produced instabilities. Above a
certain limit of the Reynolds number, the inertial forces are so large in relation to
the viscous ones that the disturbances are not sufficiently damped and will start
to grow. The transition process starts and the flow goes through different stages
before it becomes a completely turbulent flow. The transition is most noticeable
by a great increase in the boundary layer thickness and in the wall shear stress
(Egs. (2.18) - (2.22)).

A transition that starts with two dimensional Tollmien-Schlichting waves that
are superimposed on the laminar flow is called a natural transition [35]. The basic
laminar flow is therefore distorted by the growth of the unstable two dimensional
primary instabilities that get amplified downstream in the boundary layer and
eventually transform into three dimensional secondary instabilities that lead to
A-structure formations. These are replaced by turbulent spots, which are the last

phase before the fully turbulent boundary layer develops.

If the amplitude of the turbulence intensity in the freestream is larger than
the amplitude of the two dimensional primary instabilities at the natural tran-
sition, this beginning phase of the transition can be by-passed. In case of an
intense freestream turbulence or even high degree of surface roughness, the tran-
sition starts directly with three dimensional secondary instabilities or even with

turbulent spots. This type of transition is called a by-pass transition [43-45|.

In order to postpone the transition and consequently reduce the drag of the
body, the likelihood for the formation of the instabilities in the flow should be as
low as possible. The stability theory of a laminar flow states that the curvature
of the velocity profile at the body surface is the crucial factor for the stability of
the laminar flow [35|. According to the boundary layer equation at the wall [35]

a*v dp
pv (W)nzo = %, (223)

the pressure gradient directly controls the curvature of the velocity profile and
therefore considerably influences the stability of the laminar flow. A negative
pressure gradient can lower the amount of instabilities in the flow and postpone
the transition, whereas a positive pressure gradient can not only strongly am-
plify the disturbances but even initiate the transition. Streamwise instabilities
that lead to Tollmien-Schlichting waves can be therefore controlled by using a
favourable pressure gradient and by minimizing the extent of the pressure recov-

ery region.
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If the direction of pressure gradient is inclined at an angle with respect to
the freestream direction, the boundary layer and the outer region will try to
follow different paths. If there is a rather large angle between the two directions,
the cross-flow instabilities can occur in the boundary layer that can, similar
to Tollmien-Schlichting waves, begin the transition process. A typical example
of this phenomenon is a swept wing or a rotating disk [46,47|. In order to
avoid cross-flow instabilities, the strong pressure gradient component in direction
perpendicular to the freestream should be minimized. This is another instability
source that can be controlled by using a suitable pressure gradient.

Both contributions of drag, pressure drag due to flow separation and skin
friction drag due to shear stress, are a consequence of viscosity of the fluid. Even
though the potential low doesn’t produce drag, the potential flow theory can still
be used to indirectly influence on the amount of drag through pressure distribu-
tion (as was shown in the present section), which presents the base of the surface

optimization method in the present work.

2.3 Solution of Laplace’s Equation

In order to compute a pressure distribution caused by the potential flow passing
an arbitrary body, Laplace’s equation (Eq. (2.12)), a second-order linear partial
differential equation, needs to be solved. The fact that the Laplace’s equation
is linear is particularly important, because a sum of any number of elementary
solutions is also a solution of this equation. For example if each of n separate
solutions @4, ®,, ..., P, solves Laplace’s equation, then also the sum w; ®;+woPo+
. +w, P, represents a solution, where wy, wo, ..., w, represent an arbitrary set of

real numbers.

2.3.1 Elementary Solutions

A solution composed of a surface distribution of elementary singularity solutions
also satisfies Laplace’s equation. In this way the problem reduces to finding only
the strengths of each elementary solution on the body’s surface. The problem
therefore becomes a boundary-value problem where the boundary conditions are
satisfied with proper elementary solution strengths. Since we are dealing with a
simple steady potential flow, where no viscous and compressible effects need to be

accounted, using this method is computationally much less demanding, compared

14



Figure 2.4: A two dimensional representation of (a) a source and (b) a
sink elementary solution, denoted with streamlines (lines with arrows) and
equipotential circles (dashed circles).

to methods that solve equations for the whole fluid domain V, such as e.g. finite

volume methods.

There exists a number of elementary solutions, that by definition produce
irrotational and incompressible flow and at the same time limit to zero at an
infinite distance from their origin (where the influence of the body’s presence
diminish to zero) and can be summed into a general solution. One of the examples
is a source/sink flow where all the streamlines are straight lines emanating from/
sinking into a central point (Fig. (2.4)). The potential at an arbitrary point
P in a three dimensional domain V at a distance r from the sink/source center
location is then |22]

o

by = - (2.24)
The velocity caused by this point source/sink can be obtained by using Eq. (2.10).
The velocity has only the radial component that varies inversely with distance
from the central point

V= %# (2.25)
A positive o represents a source, whereas a negative ¢ a sink. In case of a source
elementary solution the flow is introduced from a point and in case of a sink the
flow is diminishing into a point. This phenomenon violates the conservation of
mass and the point must be, in case of e.g. surface integration, excluded from

integration.

Another example of an elementary flow is a doublet flow. It is composed out of

a source and a sink a distance g apart, as depicted in Fig. (2.5(a)). The velocity
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potential at a point P, a distance r from the source-sink pair, can be obtained as

qm:—%<ﬁ—ﬁéa) (2.26)

In a limit, when the distance g between the source and the sink goes to zero,

while keeping a product go finite and equal to u, the potential goes to

@m:nm—i(mlﬂlg) (2.27)

g%i;)u 4w |I'||I'— g|

The numerator of Eq. (2.27) |r| — |r — g| goes in the limit to g cos # and denomi-
nator |r||r — g| to 72. If the doublet points in direction normal to the surface (in

direction of n), the potential can be written as

pn-r

o= T
A3

(2.28)

As in the case of a source or a sink, the doublet flow can be interpreted as a
flow being induced by a discrete doublet of a strength p placed at an arbitrary
point. Therefore, a doublet is a singularity that induces about itself the double-
lobed circular flow pattern shown in Fig. (2.5(b)). The potential can be further

rewritten to take a form of a normal derivative of a source potential as

op="Ln.-v (1) . (2.29)

A7 T

The third elementary flow example is a vorter flow, with all the streamlines
as a concentric circles about an infinite line, as sketched in Fig. (2.6(a)). The
velocity along any given circular streamline is constant but varies inversely with

a distance from the vortex line and can be expressed in cylindrical coordinates

as [22]
V= ((), _%,0) , (2.30)

where I" represents the circulation of observed vortex line aligned with the z axis.

The last example of an elementary solution, to be presented in the present
work, is a uniform flow (Fig. (2.6(b))), e.g. a uniform flow with velocity V.

oriented in the positive x direction

dy = Voo (2.31)
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gcos 0

(a) (b)

Figure 2.5: (a) A doublet elementary solution is composed out of a sink
and a source a distance g apart. (b) Streamlines (circles with arrows) and
equipotential circles (dashed circles) around a doublet of strength p in a
two dimensional representation.

VVYVYY §

(b)

Figure 2.6: (a) A cross section of a flow about a vortex of strength I
laying perpendicular to the plane of the paper and (b) a uniform flow in
direction of a freestream, denoted with streamlines (curves with arrows)
and equipotential lines (dashed lines).

A simple combination of elementary flows can already produce some basic
potential flows [22], e.g. a flow over a Rankine oval (uniform flow and a source-
sink pair), nonlifting (two dimensional doublet flow) or lifting (two dimensional

doublet and vortex flow) flow over a circular cylinder, etc.
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2.3.2 Two Dimensional Elementary Solution Distributions

In this subsection some two dimensional cases of elementary solutions distributed
along a single axis will be examined and their solution sought. At the end a
suitable distribution of singularities will be chosen in order to describe the flow

past an arbitrary body.

If a two dimensional source distribution o(x) along the z axis is examined
(Fig. (2.7(a))), the velocity in y direction at an arbitrary point, as a sum of the
influence of all discrete elementary sources laying in points zo (two dimensional
form of Eq. (2.25)), has a form of

_i xzalﬁ—y Zz
Ve =5 [ oto); i (2.32)

T2+ P

In a limit, where y goes to zero, the integral goes to zero at all values of x except
at * = xg, therefore only points o(xg) contribute to the integral. That is why
o(z) can be moved out of the integral in Eq. (2.32) and replaced by o(xy). The
integration limits can now be pulled to infinity in both directions and the result
doesn’t change. The y component of velocity, when y is limiting towards zero

from the positive or the negative direction, can be therefore written as

V,(z,04) = lim @/w Y dz. (2.33)

The result is after integration simply [22]

V,(z,0£) = g—j(x,Oj:) = i@. (2.34)

For an arbitrary surface source distribution, the result can be rewritten as a

difference between normal derivatives of external and internal potential

009,
U_an on’

(2.35)

where subscript ¢ indicates the limit to surface from under the surface and no

subscript the limit to surface from above the surface.

A two dimensional doublet distribution along the x coordinate pointing in
y direction (Fig. (2.7(b))) produces at an arbitrary point a velocity potential
®(x,y) that can be expressed as a sum of the influence of all discrete elements

laying in points 2y (two dimensional form of Eq. (2.28)) as
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L[ (z) y
x
a (r — x0)? + 9?2

O(z,y) = dzx. (2.36)

—5 ;
This potential has a similar form as the y component of velocity resulting as a
presence of a source distribution (Eq. (2.32)) and also has a similar solution.
When approaching y = 0 from positive or negative direction, a jump in potential
is created, that can be written as
___p(x)

O(x,04) = :FT. (2.37)

Strength of a doublet can be therefore expressed as a potential difference in points

right under and above the surface as

Velocity V,. can be further computed as

Lpa)

0P
Va(a, 0) = o (, 0) = =t

o (2.39)

Since a normal derivative of potential is zero at the body’s surface, a doublet

distribution results only in tangential flow at the surface of the body.
A two dimensional vortex distribution (x) can be treated in a similar manner

(Fig. (2.7(c))). The component of velocity in z direction at an arbitrary point
can be expressed as a sum of the influence of all discrete elements laying in points
zo (Eq. (2.30)) as

Ve(z,y) = S /rz v(x)(#dx. (2.40)

21 Jo, x — x0)? + y?

In a similar manner as at the last two examples, the tangential velocity component
right above and right under the surface can be computed as
0P V(z)

Va(r, 0%) = - (2, 04) = £ 2. (2.41)

For an arbitrary surface vortex distribution, the result can be rewritten as a

difference between tangential derivatives of external and internal potential as

_0_@_8@
7_01' oxr

(2.42)

By comparing Eq. (2.39) and Eq. (2.41), it can be observed, that the doublet
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distribution can replace the vortex distribution such that

v(z) = — et (2.43)

A combination of body surface doublet distribution that induces only the
tangential component of velocity right at the surface, source distribution that
induces a normal velocity jump across the surface together with a freestream flow
looks like a good combination to model a flow around an arbitrary body. For
wake modeling only doublet distribution is suitable, because it correctly considers
a potential jump when crossing the wake, which will be presented in the next
subsection. Additional distribution of vortices is in both cases redundant since it

is equivalent to doublet distribution.

Yy Y y
o0 e Y(o)
X, X, x X, X2 x X, X, x
(a)

(b) (c)

Figure 2.7: (a) Source, (b) doublet and (c) vortex distribution along z axis.

2.3.3 Kutta Condition

Let us now consider an arbitrary lifting body, e.g. a wing, and observe the
irrotational flow passing the body on a cross-section plane parallel to the plane
of symmetry and perpendicular to span direction at some chosen span location
(Fig. (2.8)). If the velocity vector is integrated over a curve lying on observed
plane starting from the point right under the wake going around the body and
finishing at a point right above the wake, the bound circulation of the wing is

calculated as

b b b
F:/V~ds:/ vq>-ds:/ dd = &, — D, (2.44)

a

Since the wake itself is composed of free vorticity that advects into the flow as a
surface emanating from the trailing edge of the wing, it must be excluded from
the integration, otherwise the Eq. (2.10) for the potential flow doesn’t hold true.
The bound circulation is therefore equal to a potential difference in points right

above and right under the wake. In the case without a wake, the two potentials
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cancel each other, and circulation is zero. According to Kutta-Joukowski theorem
L = p VoI (2.45)

there clearly needs to be a wake present in order to model a lifting surface.

Figure 2.8: A path of integration, in order to calculate the bound circu-
lation, around an arbitrary wing from point a to point b coinciding with
a cross-section plane perpendicular to span direction at some chosen span
location. The Kutta condition is denoted at the trailing edge of the wing.

By comparing Eq. (2.38) and Eq. (2.44), a linear dependence between the
strength of a doublet that models the wake and the bound circulation at an

arbitrary span position can be observed
I'=—p. (2.46)

Since the potential flow is defined up to a constant (Eq. (2.10)), there is an
infinite number of possible theoretical potential low solutions corresponding to
the infinite choices for values of I'. In real life a wing at each angle of attack
produces a single value of lift. That is why a condition is needed that will give
the correct circulation around a particular lifting body at fixed circumstances and
in this way one particular solution out of all possible.

This condition comes from the fact that a steady flow is smoothly leaving
the upper and the bottom surfaces at the trailing edge (TE) of the lifting body.
In a case of a finite angle trailing edge a stagnation line is induced along the

trailing edge, whereas in the case of a cusped trailing edge an equal velocity
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vector (in direction and magnitude) for both flows, coming from the upper and
bottom surface, can be observed. For both types of the trailing edge the vorticity
along the edge is according to Eq. (2.7) zero and the Kutta condition can be

summarized with a single expression (Fig. (2.8)) as

yre = 0. (2.47)

By applying just stated Kutta condition in doublet and vorticity distribution
relation (Eq. (2.43)), where z direction goes along the wake, it can be seen that
the doublet strength must be constant along the wake in the streamwise direction

or puy = const. at an arbitrary span location.

The same result can be demonstrated by looking at the problem from another
perspective. It doesn’t matter at which point along the wake at a chosen spanwise
position the integration of velocity around the body is started (Eq. (2.44)). As
long as the starting vortex is excluded from integration, the same amount of
circulation will always be embraced, which denotes the same potential difference
in points right above and under the wake. The wake isn’t a solid surface, that is
why it can’t produce lift and therefore according to Kutta-Joukowski there are no
bound vortices in the wake. The wake is composed only from free vortices whose
strength is preserved along the wake in the streamwise direction. The amount of
circulation that is released into the wake at some point along the body’s span,

comes from the upper and the lower surface right at the trailing edge
Fw =Tuw — Tiow (2.48)

or after Eq. (2.46)
w = Hup — Hlow- (249)

If Kutta-Joukowski condition is now written for the free vortex distribution ~yy,
in the wake as
pV X vy = 0, (2.50)

a condition for the wake shape can be derived as
yw || V. (2.51)

Free vortices are therefore according to this linear theory parallel to the flow

streamlines and continue to infinity. In real life though, the vortices influence
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on each other and together with the external flow influence introduce additional

nonlinear effects, such as wake roll-up [22| and vortex breakup [48].
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Chapter 3

Method

In this chapter, a surface optimization method applied in all test cases (Chapter
4) is presented. First, a classic first-order panel method is summarized after J.
Katz and A. Plotkin [22|. Next, an electrostatic analogy of a surface integral over
a panel doublet distribution is introduced. This analogy is then used in order
to write a novel form of a panel method, a tool for surface potential distribution
calculation. A model of a wake and a method for a velocity, pressure and pressure
gradient distribution calculation is presented at the end of the first section.

In the second section, a complete procedure of surface optimization is pre-
sented, how the transformation of an initial surface is described and implemented,
what are the cost functions being minimized in order to obtain optimal results

and finally, which constraints are being used at different test cases.

3.1 Panel Method

3.1.1 The Problem

The present work deals with a steady incompressible potential flow in a volume
V with an outer boundary S, enclosing an arbitrary body with surface Sg and
possibly also a wake surface Sy, behind the body. The problem is treated in
a body fixed coordinate system. The velocity and pressure distributions are
obtained by the Laplace’s equation (Eq. (2.12)) and Bernoulli’s equation (Eq.
(2.17)), respectively. The problem is a boundary-value problem, where boundary
conditions need to be defined.

Because of the inviscid property of the fluid in the potential flow, the no-slip
condition on the solid surface isn’t satisfied. Furthermore, since the flow can’t

physically penetrate into the body, the velocity vector must be tangent to the

25



surface and consequently only the normal component of velocity equals zero at
the solid surface boundary

V.-n=VPd-n= — —
nVnan

0, (3.1)

where n is a vector normal to the body’s surface. On the other hand, the distur-
bance in the flow created by the presence of the body should decay with distance
r from the body. At domain’s outer region (r — oo) the following limit must
hold true

lim (Vo — V) =0. (3.2)

r—o0
Far away from the body, toward infinity, the flow therefore approaches the uniform
freestream condition. But since an inviscid potential flow is being dealt with, the
wake doesn’t vanish far from the body. Because of this, the limit Eq. (3.2) doesn’t

hold true in the immediate vicinity of the wake on domain’s outer region.

3.1.2 Classic First-Order Panel Method

Total potential at an arbitrary point P in the observed domain ) as a consequence
of a source and a doublet distribution on the surface of the body and the wake
can be constructed after J. Katz and A. Plotkin [22] as a sum of a perturbation

potential ®* and a freestream potential &, as
O(P) = ¢*(P) + Pos(P), (3-3)

or

O(P) = /S (®p(P) + ds(P))dS + / Op(P)dS + Po(P).  (3.4)

Sw
The wake is modeled by a thin doublet sheet and the body by a doublet and a
source surface distribution. Physical surface normals n always point out of the
observed volume, therefore out of the volume V on boundary S, and into the

body on surface Sg. The freestream potential has a form of
Poo = Voo u® + Voo gy + Vio 22 (3.5)
Introducing Egs. (2.24) and (2.29) for &g and ®p into Eq. (3.4) results in

(ID(P):i/ un-V ! alS—i o ! dS + . (3.6)
4 Sp+Sw r 4 Sg r
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In order to solve this main potential equation the boundary conditions need to
be satisfied. The outer boundary condition at surface S, (Eq. (3.2)) requires the
derivative of perturbation potential to go to zero due to a small reach of body’s

influence on the freestream and large distance from the body.
Vo*|s, =0. (3.7)

In other words, velocity should be equal to freestream velocity far from the body.
Again, this holds true at the whole outer region S, except in the immediate
vicinity of the wake. According to Eqgs. (2.24) and (2.29), both elementary

solutions already satisfy this boundary condition.

On the other hand, the Neumann boundary condition on the observed body’s
surface Sp (Eq. (3.1)) states that the flow can not go into the solid body and, as

a consequence, the normal component of velocity is zero
V(@ +d,) n=0. (3.8)

Now that boundary conditions to the problem are specified, a unique solution
still can’t be obtained. There is an infinite number of different source and doublet
distribution combinations that satisfy these boundary conditions (Egs. (3.7) and
(3.8)). An arbitrary choice therefore has to be made in order to define a desirable
combination of elementary solutions and solve the Eq. (3.6). There are also some
physical considerations that need to be dealt with in the problem. For example
the right amount of circulation around the body needs to be assured in order
to model a lifting body. This is achieved by properly modeling the wake and
incorporating the Kutta condition (Eq. (2.49)) at the trailing edge.

If the boundary Sp is enclosed, then as a consequence of Neumann boundary
condition (Eq. 3.8), the potential inside the body without internal singularities
can be a constant

®; = const. (3.9)

An equivalent statement says that velocity inside the body equals zero V®; =
V; = 0. With the help of this observation a Dirichlet boundary condition can be
set in terms of the potential inside the body. The inner potential can be then

expressed as

O,(x,y, 2) ! /s ) un-V (1) alS—4i o (1) dS+®., = const. (3.10)
B+Sw

A r T Jsp r
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Both, the Neumann and Dirichlet boundary conditions equivalently state that
normal component of velocity on body’s surface must be zero.

Besides choosing different source/doublet combinations in order to satisfy
boundary conditions, one must also choose an appropriate constant for inner
potential in order to find a solution of Eq. (3.10). As it will be shown next,
an inner potential that is not a constant can also be chosen. Following J.
Katz and A. Plotkin [22]|, the inner potential can be set to freestream poten-
tial ; = ®f 4+ ¢, = P, which reduces Eq. (3.10) to the simpler form

(e o (Nasco e

47 Sp+Sw r i Sg r

A difference between normal derivatives of a total potential outside and inside
the body is defined according to Eq. (2.35) as a source strength. Considering that
the freestream potential is a constant and that a positive normal vector points
into the body, the expression for the source can be simplified as
_8_<I>_0(I>i_8<1>*_8(133

on  On on on

—0

(3.12)

Since ®F = 0 everywhere inside the body also 0®f/0n = 0 on Sp holds true. If
the Neumann boundary condition (Eq. (3.8)) is rewritten as 0®*/0n = —n -V,

the source strength can be written as
c=n-V. (3.13)

Even though a freestream potential that is not a constant is chosen as an inner
potential, the Neumann boundary condition (Eq. (3.8)) is still satisfied if the
source distribution is defined according to Eq. (3.13).

The source distribution is now chosen and since the freestream distribution
for a particular problem is usually known, the doublet distribution is left to be
defined. After calculating the body surface doublet distribution that satisfies
the boundary condition, the solution is still unique only for a nonlifting body.
For a lifting surface the wake doublet distribution needs to be defined as well.
As was shown in the previous chapter, the wake doublets can be expressed with
body doublets through a Kutta condition (Eq. (2.49)), which assures the correct
amount of lift force the flow induces on the body.

The surface of the body and the wake should now be discretized into Npg
body surface panels and Ny, wake surface panels, respectively (Fig. (3.1)). The
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Dirichlet boundary condition (Eq. (3.11)) must be specified for a collocation
point, which lies right under the centroid of each body panel. Therefore, for each

one of Np collocation points, the following statement holds true
NB NW
1 1 1 1
Z—/ un-V(—)dS+Z—/ ,un-V(—)dS
1 47 Sp.k r i1 47 Sw.i r
Np
1 1
—Z—/ a(—)dSzO.
o A Jsp T

An integral over each individual panel is computed first, where p, o and n are

(3.14)

doublet strength, source strength and surface normal of each infinitesimally small
surface dS, respectively. Each panel’s centroid is a distance r away from the
corresponding collocation point. The next step is a summation of contributions
of all the panels in order to take into account the influence of the whole doublet
and source surface distribution in one collocation point. An assumption can be
now made, that each panel has a constant doublet and/or source distribution

over its surface. Eq. (3.14) can be rewritten as

Np Nw Np
> Cowpe+ Y Chipi — Y Bjroy =0, (3.15)
k=1 i=1 k=1

for each collocation point j. All panel integrals are replaced by coefficients C, Cj;

and Bjj, where indices k and 7 run over all the body and wake panels, respectively.

Figure 3.1: Discretization of the body and the wake surface into Ng body
panels and Ny, wake panels, respectively. All body and wake panels have
constant doublet and/or source distribution over their surfaces. The collo-
cation point (red dot) lies right under the centroid (black dot) of each body
panel.

If the source strengths are selected according to Eq. (3.13), then coefficients
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Bjj, are known and can be moved to the right hand side (RHS) of the equa-
tion. Since there is Ng body doublet strengths and Ny, wake doublet strengths,
together Np 4+ Ny unknowns, and only Np equations, one for each collocation
point, the Kutta condition (Eq. (2.49)) needs to be applied in order to connect
the body and wake doublets. According to Kutta condition, each wake doublet

can be expressed in terms of the body trailing edge doublets as

Hi = Hiup — Hilow, (316)

where f; ., is a doublet on the upper and i 5, on the lower side of the body
surface at the trailing edge, both neighbours of the corresponding wake doublet.

The influence of each wake panel can therefore be written as
Cjip; = Cji(ﬂiﬂm - :U’i,low)' (3.17)

If Egs. (3.17) are inserted into Eq. (3.15), then a new set of coefficients can
be introduced as A;; = Cji, if body panel is not at the trailing edge and as
Ajr = Cj, £ Cj;, if body panel is at the trailing edge.

In this way, the number of unknowns becomes equal to the number of equa-

tions. System of equations can now be written as

Np Np
k=1 k=1

In short, each panel has a constant doublet and/or source distribution which
causes a change of potential in an arbitrary point P in the observed volume. If a
potential at the point P, as an influence of the whole body and wake, is sought,
each panel’s distribution needs to be integrated first and the influence of all the

panels summed afterwards.

3.1.3 Electrostatic Analogy

A simpler method that can be used in order to compute a potential at an arbi-
trary point P as a consequence of a presence of a body leans on an analogy to
electrostatics. According to the analogy, the electrostatic potential at a point P
is, as a consequence of a panel with a constantly distributed electric dipole over
its surface, proportional to the solid angle of observed panel looking from the
point P [49].
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If a doublet distribution replaces the electric dipole distribution, a velocity
potential instead of an electrostatic potential can be computed. A potential in
j-th collocation point as a consequence of i-th panel is therefore proportional to
the doublet strength f; of the panel multiplied by the solid angle Q;; (Fig. (3.2))

at which the point sees this panel
(3.19)

Since panels with a constant doublet distribution are considered in present work,
the electrostatic analogy represents a major simplification to the problem. More-
over, it can be applied to panels of an arbitrary shape.

A Dirichlet boundary condition in a form of a constant inner potential (Eq.

(3.9)) is used, where a value of zero is chosen as the constant
B; = O 4 Dy = 0. (3.20)

In this way, a body source distribution is redundant, which additionally simplifies
the method. Of course, any other constant different from zero, could also be used.
This would only shift the doublet distribution by a constant, but the results for

the external potential would remain the same.

Figure 3.2: Solid angle €2j; of a panel with a constant doublet surface dis-
tribution p;, looking from the collocation point P;.

If the freestream potential is written as an integral of a freestream velocity
q)oo,j = Voo’xl'j + Vooyyyj + Voo,zzj = RHSj, (321)

the base system of equations of the problem can be expressed by combining Eqs.
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(3.19) - (3.21) as

1

After computing the doublet distribution as a solution of the system of equations
(Eq. (3.22)), where additionally the Kutta condition needs to be considered
based on the procedure described with Eqgs. (3.16) and (3.17), all distributions
are known, all boundary conditions are satisfied and the potential ® at any point
in the observed volume V can be defined. Since a body surface velocity, pressure,
and gradient of a pressure distributions are in pursuit, a special interest lies in

the value of the potential in each panel centroid.

3.1.4 Wake

An inviscid outer flow is considered as a valid approximation for computing a
surface pressure distribution of an attached flow passing a body, but in order
to define the potential distribution around the lifting body, the viscosity at its
trailing edge can’t be neglected. A finite viscosity is incorporated in the prob-
lem through Kutta condition (Subsection 2.3.3) and consequently through an
nonphysical surface behind the body called a wake.

In the case where a part of the body has no clear trailing edge, e.g. a wing-
fuselage configuration, two different wake sections should be used |50|. Behind
the wing, a wake denoted as wake A is used. Its doublet strength distribution
is defined through the Kutta condition. For the fuselage, on the other hand, an
assumption can be made that it doesn’t shed vorticity into the wake. The doublet
distribution of the wake behind the fuselage, wake B, must be therefore, according
to Eq. (2.43), constant in the spanwise direction. These wake B doublets must
also have the strength equal to their first neighbour in the wake A, otherwise
there would be a finite vortex in the region of the fuselage-wing junction. Wake
A therefore has doublets that are variable in the spanwise direction and constant
in the streamwise direction (Subsections 2.3.2 and 2.3.3), whereas wake B has a
constant distribution of doublets.

A decision has been made to always use the shape of the wake as a flat plane,
therefore neglecting wake roll-up, leaving the trailing edge of the lifting body at
an angle cutting the trailing edge angle in half - along bisecting plane. In this
way, the same shape of the wake can be used for all angles of attack. Since the
surface pressures are insensitive to the angle of inclination of the wake [51], this

approximation gives solutions that are essentially as accurate as can be expected
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from the potential low assumption. In true nature, the wake is far from the body
eventually dissipated by viscous and turbulent effects (vortex breakup). That is
why, a reasonable length of the wake should sufficiently describe the real case. In
all test cases in present work, the wake therefore extends approximately thirty
lifting-body chord lengths behind the body.

3.1.5 Velocity, Pressure, and Gradient of a Pressure Dis-

tributions

Since we are dealing with a potential flow, the velocity at the body surface is not
equal to zero and is tangent to the surface. Velocity vector of i-th body panel in
its centroid point can be computed from its own potential and the potential of its
neighbours. An arbitrary panel is a neighbour of the panel i if they share an edge
and if an angle between their normals is less that 60°, as it was chosen. Since
quadrilateral panels are chosen for this work, the maximal number of neighbours
each panel has is four. At sharper edges, e.g. at a wing trailing edge, there are

only three neighbours, and at some corners even just two neighbours.

If centroids of all the neighbours, where the potentials are calculated, are
projected on i-th panel’s local coordinate system (Fig. (3.3)), then i-th panel’s
potential ®; together with its neighbours’ potentials can be used to construct a
linear approximation. The potential at an arbitrary point in the vicinity of the

centroid ¢ can be expressed as

0P 0P

where x; and y; represent the local coordinates and expressions (0®/0x) and
(0®/0y) the velocity components in this coordinate system. If expression Eq.
(3.23) is evaluated at projected centroid of each neighbour, the unknown gradients

can be computed with a weighted least square method, where the minimum

o [ S (o (5) v (5) o) | a0

is sought. The system of equations that needs to be solved in order to compute
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velocity components in local coordinate system for i-th panel is then
Do wiTy Y Wiy (00 /0x), > wi (P — ;)

D WY D Wiy (09/9y), > wi (5 — @)y,
(3.25)
The weight w; is chosen to be reciprocal square distance between j-th and i-th
centroid point in global coordinate system (Fig. (3.3)). Neighbours that are
closer to i-th centroid have a greater influence on the result and vice versa. The
solution of Eq. (3.25) represents, after a transformation to a global coordinate

system, a velocity surface distribution V.

i

Figure 3.3: i-th panel with its four neighbours. Black dots denote centroids,
whereas red dots denote their projection on i-th local coordinate system.

The surface pressure distribution, or more precisely the dimensionless pres-
sure coefficient distribution, can be computed in the next step from the velocity
surface distribution using Bernoulli’s equation (Eq. (2.17)). Information about
the gradient of a pressure distribution over the body surface is also needed, since
it is used for the calculation of a cost function that is being minimized during
surface optimization. The gradient of a pressure is computed from the pressure
distribution in a similar manner to the computation of the velocity from the

potential.
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3.2 Surface Optimization

In this section, a procedure of surface shape transformation is described that takes
place during surface optimization. Next, the cost functions are presented that
are used in present work in order to obtain a favourable pressure distribution.
Optimization constraints that enable increased control of surface transformation
are introduced at the end of this section.
A mathematical expression that describes the optimization problem can be
written as
nec(k) <0
mkin F(k) such that { ec(k) =0 (3.26)
b <k < ub.

Here, the optimization variables k, that minimize the cost function F'(k) under
different constraints are in pursuit. nec(k) and ec(k) are nonequality and equal-
ity constraints, while [b and ub represent the lower and the upper optimization
variable boundaries, respectively.

Surface optimization can be done for the whole body, or just for a part of its
surface, called a patch. During the whole body optimization the complete body
surface is free to change, whereas during the optimization of a selected surface
patch, only the patch can take a new shape and the rest of the body has a fixed

surface.

3.2.1 Bézier Surface and Deformation Vector Field

As it was already stated, the surface of the observed body is meshed with quadri-
lateral panels. A point common to all neighbouring panels lying around it is
called a node. This meshed original surface represents an initial condition for
the surface optimization. The shape of the patch is changed by moving its node
points according to the deformation vector field and magnitude of change surface
function. Deformation vector field sets the direction and additionally the fixed
share of shift for each node. Magnitude of change surface function on the other
hand sets the varying share of node shift and is defined by a Bézier surface |52].

Bézier surface is therefore used only to describe the magnitude of the trans-
lation of our patch and not to describe its surface directly. A Bézier surface
multiplied by a deformation vector field d is added to the original patch and
together they form a new shape, which is depicted in Fig. (3.4). For a position
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of an arbitrary node 7 the following equation then holds true
Tinew = Tiold + h(uza Uz')di> (327)

where 0 < u; < 1 and 0 <wv; < 1 represent surface coordinates of 7-th node on the
patch and h(u;, v;) a scalar value of a Bézier surface. r; is a position of i-th node
in global Cartesian coordinate system. The Bézier surface h(u, v) that is used to
translate all the nodes on the patch parametrized with surface coordinates (u,v)
is defined as o
h(u,v) = > B (u)B}"(0)ki, (3.28)
i=1 j=1

where one of the Bernstein polynomials is

n—1

B'"(u) = (Z - 1)ui—l(1 — )" (3.29)

with binomial coefficient as

n—1\  (n—1)!
<i_ 1) S =Dl —a) (3.30)

Indices ¢ and j run through all the n x m scalar control points k; ;, that represent

the optimization variables. With a proper value of each control point a minimal
cost function can be achieved and therefore an optimal patch shape designed.
From the stated it can be seen, that only a small number of variables is needed
to smoothly change the shape of the original surface, instead of a few hundreds
or even thousands in order to shift each node separately.

If all control points are equal to zero, then also the values of Bézier surface
in all the nodes are zero and the patch preserves its shape. The same result
can be observed if the deformation vector is zero. Since a shift of each node
is controlled in two ways, different shape features can be assured. With Bézier
surface a smooth patch shape change is achieved, whereas with a proper choice
of the deformation vector field e.g. a tangency to the fixed surface around the
patch can be preserved. Since a deformation vector field, instead of a Bézier
surface, is used in order to preserve the tangency, a smaller number of control
points is needed and a patch is able to take a more dynamic shape close to its
edge. A smaller number of control points consecutively means a computationally

less demanding problem.

A direction of deformation d is defined for every node in advance and it doesn’t
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Figure 3.4: Each node on the surface (i-th node depicted in blue colour) is
during optimization process transformed in space by adding to its position
vector r; a deformation vector d; (red vector field) multiplied by a value of
the Bézier surface h(u,v) (its control points k are depicted in green colour)
at that position.

change during the optimization. On the other hand, for the Bézier surface control
points, since they are optimization variables, only the initial values are defined

at the beginning of the optimization process.

In the present work, a case dependent deformation vector field is used, since
a nature of each case is different. In general, a deformation vector field must
give enough freedom for the patch to take an optimal shape, but it still needs
to properly constrain and direct the translation of nodes in order to achieve
physically reasonable results. In some cases a deformation in direction of a surface
normal is a good choice, e.g. it enables a bluff body to expand and contract in
all directions, but it usually needs to be constrained in order not to push the
surfaces together. Although this reduces the influence of a body on the flow and
consequently the drag, the zero-cross-section solution is physically not acceptable.
On highly curved surfaces a deformation in normal direction can also result in an

intersection of panels, which additionally leads to some numerical problems.

A tangency to the fixed surface around the patch can be preserved by mul-
tiplying a normalized deformation vector field by a function that tangentially
descends to zero at the patch edge. Away from the edge, this function should

have a value of one, so that the amount of deformation in this region is controlled
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mainly by the Bézier surface. A proper deformation vector field choice is, as was
stated, of great importance in order to achieve optimal results without problems

during optimization.

3.2.2 Cost Functions

According to the potential flow theory, the flow passing an arbitrary body doesn’t
produce drag (Section 2.2). Because of this reason, the proposed optimization the-
ory can be used to minimize drag only in an indirect way, e.g. through a surface
pressure distribution. A functional or a combination of functionals (cost func-
tion) should therefore be used, which will, when minimized, produce a favourable
pressure distribution.

A minimization of a cost function in a form of an integration of a pressure

gradient across the body’s surface
F = / IVC,|dS (3.31)

smoothens the pressure distribution |9], which prevents unnecessary fluctuations

of the flow velocity. In a discretized form the cost function can be written as

F =Y |VG, S (3.32)

where S; is a surface area of i-th panel. As it will be shown in Chapter 4, a
minimization of a cost function in a form of Eq. (3.32) results in a plateau-like
pressure distribution in a streamwise direction across the body. At the leading
edge of the body, the pressure quickly drops to the plateau pressure value and at
the pressure recovery region it quickly increases back to the freestream pressure.
In this way a minimal amount of acceleration and deceleration of the flow is
achieved, which reduces instabilities in the boundary layer and can lead to a
thinner boundary layer.

Why the minimization of Eq. (3.32) leads to a plateau-like pressure distribu-
tion can be best seen in a two dimensional case, where the integral of the pressure

gradient can be written as

/15

where C),; represent pressure coefficient values in points with zero pressure gra-

dv =Y " |Cpi = Cpisl, (3.33)
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dient. Imagine now a pressure distribution around an airfoil, where only the
upper side of the shape is being optimized with a fixed lift force constraint (Fig.
(3.5(a))). It is clear that the sum in Eq. (3.33) reaches the minimal value when
the maximal C), ,,, is obtained. Since the surface under the pressure distribution
curve must remain constant because of the fixed lift force constraint, the optimal
pressure distribution on the upper side of the airfoil must obtain a plateau-like
shape with a plateau pressure value at maximal C, ., (Fig. (3.5(b))). Even
though test cases in present work (Chapter 4) don’t have fixed lift force con-
straint, the surface under the pressure distribution curve, because of the geomet-
rical constraints and the nature of the deformation vector field, is still constrained

and a finite maximal C), ,,;, exists.

A A
_C[') _Cp
-Cpmin-
-Cpmin
S = const. S = const.
0 x> 0 x>

(a) (b)

Figure 3.5: Two dimensional pressure distribution over the upper side of
(a) an airfoil and (b) its optimal distribution.

If a parameter b, called a bias, is added to the pressure gradient in the stream-

wise direction as

F =Y V(ViC =)+ (V.G S, (3.34)

the minimization will try to achieve a streamwise pressure gradient value equal
to b on as many panels as possible. An appropriate value of bias will change the
plateau-like region of a pressure distribution to a ramp-like distribution, which
will gradually accelerate the flow as far back to the end of the body as possible.
A favourable pressure gradient therefore postpones the transition and may also
prevent the flow separation.

As can be seen from Eq. (3.34), a gradient of a pressure surface distribution
is composed out of a streamwise component and its transverse component. Since
the latter is responsible for introducing a cross-flow instabilities into the boundary

layer, the sum of both components should be minimized. The pressure distribu-
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tion becomes therefore smoother in all directions. In all test cases of present
work both components have been treated equally regarding the minimization of
the cost function, as per Eq. (3.34).

Introduced cost functions should have after minimization a positive impact
on the amount of instabilities in the boundary layer, but nevertheless, additional
steps should be taken in order to properly design also the pressure recovery region.
In next subsection a criterion will be introduced as a constraint, that considers

especially this part of the surface.

3.2.3 Constraints

Stratford criterion. In some cases the pressure recovery region can be so severe
that the flow detaches from the body surface and tremendously increases the drag.
In order to prevent this from happening a Stratford criterion 53] is additionally
incorporated as a constraint during optimization process.

The Stratford criterion is a rather simple method to estimate a point where
the laminar or turbulent flow will detach from the body surface on the basis of
the Reynolds number, the pressure distribution and the gradient of the pressure
distribution. It is a conservative criterion that predicts the separation just a bit
before the methods based on the full boundary layer equations |54]. Even though
it is a simple and easy to implement method, it still enables one to compute
a pressure distribution that is everywhere on the edge of the separation, which
permits a maximum extent of laminar flow and a rapid pressure recovery region.

Since the laminar and the turbulent flows have different characteristics, the
criterion forms for both flows also differ. In case of a flow transition right before

the recovery region, the Stratford criterion for separation of a turbulent flow

2
dCp [ 106 \*" 035, 2L <0
oo EE (Y00 B
z 0.39, 22 >0

da?

but with a “history” of a laminar flow

Tm 1% 5
T = / ( ) dr + (x — x), (3.36)
0 Vmax

should be used. 2’ in Eq. (3.36) represents an effective length of the boundary

layer, where the integral takes into consideration what happened to the flow along

the body’s surface up to the beginning of the pressure recovery. Cj is a canonical
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pressure coefficient
% Cp — Cpmi
C=1- — —p i (3.37)
P V2 - Cp min

max )

whose derivative is

dc,  14v 1 dG, 59
dr Vpaw dr 1 —Cpopin dv '

a2’ is an effective boundary length that goes along the body in a streamwise

direction, x,, is a value of a streamwise coordinate indicating the beginning of
the pressure recovery, and C), i, and V4, are the corresponding minimal pressure
and maximal velocity magnitude, respectively. Reynolds number is constructed
from the maximal velocity V., and effective length z’.

The Stratford criterion (Eq. (3.35)) is valid only for canonical pressure coef-
ficients C}, < 4/7. For larger numbers it doesn’t hold true, but it can still serve
as a reference. The criterion was used at all recovery regions of the present work,
even if there is an absence of a theoretical justification of its validity.

There are two different critical values of a Stratford number G, at which the
flow suppose to separate, depending on the shape of the pressure recovery region
(Eq. (3.35)). For a concave recovery 0.35 is used and for a convex 0.39.

The aim of this constraint is to keep the Stratford number of each panel
under this critical value, but since the number of constraints should be as small
as possible in order to shorten the computation time, each panel shouldn’t be
constrained separately.

Moreover, neither should a single panel with the maximal Stratford number be
constrained. If only one panel with currently the largest number is constrained,
only that panel will receive attention during an optimization step, in order to
be put under constraint. But in the next step some other panel could have the
largest number and that one will be in the spotlight. During the optimization
process jumping from panel to panel can occur, which can bring some convergence
problems. To avoid this problems, the best way is to constrain an average of a
few panels with the largest Stratford numbers. The function that is therefore put

under constraint is
| G (r)e0(Gmaz=G(r) gy
S

Gy = oy (3.39)
B

G nae 18 the maximal Stratford number and the parameter ay defines how many
panels with largest Stratford numbers are taken into consideration. The bigger

the parameter ag > 0 the smaller number of panels will influence on the number
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Gr. The number G, is always smaller compared to the maximal panel Stratford
number, except in a limit, when ag — oo, they are equal. In this way all the Strat-
ford number peaks scattered through the patch will be smoothly and gradually
put under constraint and fewer problems with convergence should occur.

The Stratford number patch distribution is in the first test case (Section 4.2)

weighted also with a “soft” Heaviside function of pressure as

Gi,old

Gi,new = s
I+ exp ()

(3.40)

so that the region with maximal pressure, such as at the trailing edge, isn'’t
taken into consideration during the optimization. At the trailing edge region
the flow leaves the body into the wake and can produce a short high pressure
impulse. Since it is not possible to get rid of this anomaly, it is better to ignore
it, otherwise the optimization can spend a lot of time optimizing that region and
at the end diverge or produce unusable results. This procedure is, because of
some convergence problems, omitted at the latter two test cases (Sections 4.3
and 4.4).

Another modification of the Stratford criterion is introduced into the method
because of some convergence problems at the final stage of the optimization. The
optimization is first run with parameters x,,, Cp min and V.. (Eqgs. (3.36)-(3.38))
defined at each iteration successively. After a few iterations of optimization, when
the method finds an approximate optimal shape and these parameters settle down,
the optimization is deliberately stopped. Parameters z,,, C, nin and V,,q, defined
at the last iteration and the integral in Eq. (3.36) calculated considering also these
parameters are then used as constants at the complete optimization procedure.
These parameters therefore don’t vary from iteration to iteration any more, but
remain fixed through the whole optimization. Without this simplification, the
solution tends to diverge in some cases. For the sake of generality, the same
simplification is used in all test cases. In cases without convergence problems the
method is verified to produce identical solutions with or without this modification.

Geometrical constraints. One way of controlling the amount of modifica-
tion of a patch is by bounding the size of control points of Bézier surface (Eq.
(3.28)) that defines the change of the patch shape. Since there is a small number
of control points, their size has an influence on a wider region of the patch. In
some cases a very local control of shape modification is needed, usually because

of some packaging problems, but also in other applications, e.g. to maintain the
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shape of a trailing or leading edge. These geometrical constraints are therefore

useful at controlling the exact magnitude of translation at some chosen points

and in this way preventing the surface to contract or indent at those points.
The Stratford criterion (Eq. (3.35)) and these geometrical constraints are

introduced into optimization process as nonequality nonlinear constraints (Eq.

(3.26)).
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Chapter 4

Results

In this chapter, a convergence analysis of the panel method with an example of a
sphere is made first. Next, the results of proposed surface optimization analysis
on three conceptually different test cases are presented and evaluated with results

obtained by CFD analysis. All three test cases originate from real world cases.

At all test cases, the body surface was first meshed using a program called
Salome, which is an open-source software that provides a generic platform for
pre- and post-processing for numerical simulation. This original mesh was then
used as an initial condition for the surface optimization process, for which a
program was written in Matlab environment. During this process a Matlab’s
function called fmincon, which uses a superlinear convergent sequential quadratic
programming method (SQP) with an active-set method as a quadratic program-
ming subproblem solver |34], has been used in order to find a minimum of a
constrained nonlinear multivariable cost function. A solution of the subproblem
is then used for a line search procedure [55] for a new major iteration. Function
fmincon therefore requires predefined initial estimate and boundaries of all opti-
mization variables, and pointers to the code of the cost function and all possible

constraints that are used at each iteration of the optimization process.

CAD models were then constructed from the optimized surface meshes and
together with the original surfaces put into the CFD analysis in order to evaluate
the results. For CFD computations a finite volume program called OpenFOAM
with its RANS solver for incompressible and viscous flows, simpleFoam, was used.
The meshes for this purpose were constructed with the snappyHexMesh subrou-

tine.

In the first test case, where a laminar-turbulent transition plays an important

role, a k—ky —w turbulence model |56] was used in order to predict the location of
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transition. In the remaining two cases the simpler one equation Spalart-Allmaras
turbulence model |57| was used, because it has already shown good performance
in junction flows [58]. All the CFD computations were run to full convergence,
which was determined by the flattening of all residuals (at values smaller than

1075) and forces.

4.1 Panel Method Verification

The proposed panel method is verified using an example of a potential flow pass-
ing a sphere. In order to reduce the computation time, the case is considered
as a symmetrical problem, where only a half of a sphere surface is discretized
into different number of quadrilateral panels Ng. The system of equations (Eq.
(3.22)) is in this way halved, but the second half of the sphere with symmetrical
doublet distribution is still taken into consideration. The inflow is parallel to the
symmetry plane that cuts the sphere on two halves. The property of a symmetry
plane is that none of the streamlines can cross it and that the streamline that
starts on this plane at the inflow will stick to it all the way around the body and

onwards.

At each number Npg a relative difference between panel method results and

analytical solution for a potential

R3
Gy (r,0) = Vo cosb <7’ + ﬁ) (4.1)

and a velocity surface distribution

. R?
Vo an(r,8) = =V siné (1 + ﬁ) (4.2)

is computed as
3o Si |Pi = (Pan)il
30 Sil (P an)il

(4.3)

and

SV S Vi — (Vo,an)il .
SVE S (Vo.an)i

Each summation runs over all the panels with surface areas S;. Each analytical so-

(4.4)

lution is, the same as panel method results, computed in centroid of corresponding

panel. Sphere radius and inlet velocity are chosen as R =1 and V, = (1,0,0).
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It can be seen from Fig. 4.1(a) that the relative difference between the com-
puted and the analytical solution is inversely proportional to the number of panels
Np. With increasing number of panels, the panel method converges to the ana-
lytical solution. On the other hand the time of computation (c. time) increases
faster than N3 in this case. A decision has to be made as to what is a reasonable
number of panels in order to acquire results with a satisfactory accuracy, but at
the same time not to increase the computation time excessively.

An example of computed velocity surface distribution where a half of a sphere
is discretized into Np = 578 panels is presented in Fig. 4.1(b). The inflow travels
from the left to the right side of the figure. Since a potential flow without viscosity
effects is applied, the velocity surface distribution at the impact side equals the
one at the recovery region. The force acting on the sphere is therefore equal to

zero (d’Alembert paradox).

T T 15
o0 | + Eq. (4.3) ] G N .
Vi N
0 Eq (4.4)
x c. time- 107 2[s]
1| —0.62- N5"%®
- = -0.34- N5

Figure 4.1: (a) A relative difference between computed and analytical so-
lution of a potential and a velocity surface distribution for a sphere and
an indicated computation time with respect to the number of panels Ng.
(b) Velocity surface distribution over a sphere discretized into N = 578
panels.

4.2 Test Case No. 1: Laminar-Turbulent Transi-
tion

In the first test case an optimization of a surface of a human powered vehicle
is treated (Fig. 4.2). Besides rolling resistance of the tyres, the fairing of this
bicycle (propelled by a person lying inside) causes all the drag of the vehicle.
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An optimization of the shape of the fairing should therefore notably improve the

bicycle performance.

Figure 4.2: A bicycle propelled by a person lying inside a completely closed
fairing.

The bicycle is usually driven under small cross-wind conditions, and since its
shape is slender, the flow stays attached. The major component of a drag force
is therefore skin friction, where the laminar-turbulent transition location plays a
significant role on its size (Section 2.2). In order to reduce the skin friction drag,
the laminar flow needs to be promoted as far back to the end of the bicycle as
possible.

A favourable surface pressure distribution is therefore in pursuit, that will
gradually accelerate the flow as long as possible and in a pressure recovery region
not just prevent the flow from separation, but also thin the boundary layer. With
a smoother pressure distribution, a smaller pressure drag can be attained. An
average speed of the bicycle is 90km /h and its length is 2.5m, which means that
it is driven approximately at Re = 4.2 - 105, The wheels and their fairings aren’t

taken into the consideration in this test case.

4.2.1 Verification

In the optimization process a complete surface of the fairing is optimized, but
because of the bilateral symmetry of the problem, the system of equations (Eq.
(3.22)) needs to be written only for a half of the body. The ground effect is
introduced through another symmetry plane at the ground level. The imaginary
doublet distribution under the ground symmetry plane enables one not to include
the ground surface into the simulation. In case of a real viscous flow, the tur-

bulence produced at the ground is in this way neglected, but the results of the
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potential flow calculations aren’t changed because of this simplification. Since we
are more interested in a favourable pressure distribution and its influence on the
transition position, the same simplification is used in CFD analyses.

In this test case a zero angle of attack is considered and since the shape has
bilateral symmetry, there is no need for the wake to be modeled. A deformation
vector points in direction of a surface normal at each node position (Fig. (4.3)).
The deformation vector field is normalized in the middle of the body and gradually
decreases to zero toward the nose and the trailing edge of the bicycle. This
property is achieved by multiplying the normalized deformation vector field by a

proper function, which alters the deformation vector field as

u?(1 —u)?

(1/2)*

where the surface coordinate 0 < u < 1 runs along the body surface in a stream-

dnew = dold, (45)

wise direction. The nodes at the nose and the trailing edge are in this way fixed

and the length of the bicycle remains unaltered.
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Figure 4.3: Deformation vector field scaled by a factor of 0.25.

In order for the fairing to enclose all the mechanical and structural parts, and
also to give the cyclist enough space inside the fairing to sit, pedal and steer,
geometrical constraints at some critical points are added to the problem. The
constraints don’t allow the surface to contract at these points, but the surface is
free to expand everywhere. In the pressure recovery region the Stratford criterion
constraint (Eq. (3.35)) is used in order to prevent the flow over the modified shape

from separating. The “soft” maximum (Eq. (3.39)) is constrained with a concave

49



pressure recovery critical Stratford number G, < 0.35, where ay = 130, a; = 0.2
and as = 0.01 are used. In this way the pressure recovery region takes a shape
that allows the pressure to recover to the freestream value in as short distance as
possible while remaining attached.

Since the pressure recovery region starts at approximately the same stream-
wise location over the whole body surface, the same constant integral from Eq.
(3.36) is used for all recovery region panels. Its value is computed as an averaged
integral value over three equally spaced surface streamlines that run from the
nose of the body to the pressure recovery region. It is computed after a few steps
of optimization (Subsection 3.2.3), averaged over all optimizations in this test
case, and then used as a constant at all complete optimization procedures.

The magnitude of change surface function (Bézier surface) is at all optimiza-
tion computations controlled with 12 x 7 number of control points, unless other-
wise stated. Twelve points are in a streamwise direction and seven in its transverse
direction. The size of all control points is completely unconstrained (undefined
[b and ub in Eq. (3.26)).

One of the optimizations was first carried at three different numbers of sur-
face panels in order to chose a proper surface mesh density for the rest of the
optimizations. Relative differences of cost function values between the original
and the optimized surfaces with respect to the number of surface panels is pre-
sented in Fig. (4.4(a)). A mesh density with Np = 720 panels is a reasonable
choice, because the relative difference of the cost function differs from the finer
mesh result only by about 0.1%, the computation times, on the other hand, are
reduced significantly. Similar search for an appropriate volume mesh density was
done also for the CFD analysis, where computations were carried for an original
surface at three different numbers of volume cells composing the mesh. The rel-
ative difference of forces between all meshes and a mesh with the highest density
with respect to the number of cells is presented in Fig. (4.4(b)). A mesh with
17.3 million cells was chosen to be used at the rest of the simulations in this test
case. With a finer mesh, the pressure force changes by 1.3%, whereas the friction
and the lift force by less than 0.23%, which is an acceptable computation error.

An example of a volume mesh surrounding the original surface used for the
CFEFD analysis is shown in a top view in Fig. (4.5(a)). A body surface and a
slice through a volume field are coloured in pressure and magnitude of velocity
colour schemes, respectively. Since a low Reynolds number £ — k; —w turbulence

model with no wall functions was employed for the CFD computations, a very
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Figure 4.4: (a) A convergence of a relative difference between initial cost
function value and its minimized value with respect to the body surface
mesh density at optimization process. (b) A convergence of the force coef-
ficients with respect to the volume mesh density for the CFD analysis.

high density mesh had to be constructed at the body surface. Because of this, 15
layers of cells parallel to the surface shape were used to surround the whole body,
whose thickness smoothly increases with factor 1.3 to the outer mesh size. A
zoomed in part of a mesh right next to the surface wall coloured in a magnitude
of velocity colour scheme is presented in Fig. (4.5(b)). A gradual increase of
velocity from zero at the wall to the freestream velocity can be observed, which

indicates a proper mesh density at the wall.

U Magnitude U Magnitude
%5 05 075 P

(a) (b)

Figure 4.5: (a) A slice through a mesh in a top view, surrounding the
original surface, used in the CFD analysis. (b) High density wall mesh
layers, coloured in magnitude of velocity colour scheme, smoothly increase
to the outer mesh size.

As already stated, minimization of the cost function equal to the sum of pres-
sure gradient reduces the variation of the pressure distribution in the flow around

a body. Furthermore, giving the optimization method enough freedom to move
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surface nodes, a pressure distribution equal to undisturbed pressure p,, should
result. In order to check if the proposed optimization method produces results
according to this statement, an optimization without geometrical constraints was
run. The deformation vector field pointed, only for this test, in the direction
normal to the symmetry plane. The result of the optimization is presented in
Fig. (4.6(a)). The optimization method produced the optimal result under the
given circumstances. It flattened the fairing surface to coincide with the sym-
metry plane, which produced a freestream pressure distribution over all surface
area. Consequently, a zero pressure drag and a minimal friction drag, due to the
remaining of the surface, was achieved.

Giving the optimization method more freedom to move the surface nodes
therefore produces a smaller cross section of the body. If the freedom is given
through a larger number of control points (15 x 10), while still satisfying the
geometrical constraints, a wave-like surface shape results. A front view of the op-
timized surface is presented in Fig. (4.6(b)). The surface embraces the constraint
points (red dots in Fig. (4.6(b))), while at the same time tries to minimize the
cross section of the fairing. The “amplitude” of the wave-like surface is not severe,
because pressure gradients also in a direction perpendicular to the freestream are

incorporated in the cost function.
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Figure 4.6: A result of an optimization with (a) no geometrical constraints
- flat surface coinciding with the symmetry plane, (b) larger number of con-

trol points - wave-like surface embracing the geometrical constraint points
(red dots).

4.2.2 Results

The resulting optimal surfaces were evaluated using a CFD analysis. In order

to simulate a natural transition from laminar to turbulent flow, a very small
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turbulence intensity (defined as the ratio of the root-mean-square of the veloc-
ity fluctuations to the mean freestream velocity) I = 0.01% and turbulent vis-
cosity ratio (defined as the ratio of turbulent to laminar (molecular) viscosity)
B = 0.01 were used at the inflow. The relative differences of drag and surface
areas between original and optimal surfaces at different bias numbers and the
corresponding pressure coefficient distributions over a streamline across all sur-
faces are presented in Fig. (4.7(a)) and Fig. (4.7(b)), respectively. A comparison
of surface pressure distributions between panel method computations and CFD
analyses for the original surface and the optimal surfaces at b = 0 and b = —0.2
are presented in Fig. (4.8), Fig. (4.9) and Fig. (4.10).

original
—b=0.0
——b=-01
—*— Area 0.3F : —b=-02 :
_03 i 1 L i T T Il
-0.2 -0.1 0 0 0.5 1 15 2 25
b x
(a) (b)

Figure 4.7: (a) Relative difference of drag and surface areas of all optimized
surfaces compared to the original surface, computed with OpenFOAM. (b)
A pressure distribution over a streamline across the original and all optimal
surfaces.

Surface area used in coefficient calculations is the area of the original sur-
face shape. The streamlines (green curve) and the geometrical constraint points
(red dots) are depicted in panel method calculation Figs. (4.8(a)), (4.9(a)) and
(4.10(a)). The symmetry plane at all CFD calculations (Figs. (4.8(b)), (4.9(b))
and (4.10(b))) is coloured in magnitude of velocity colour scheme.

As can be seen from Fig. (4.7(a)), the pressure drag of solutions at all val-
ues of bias were reduced from 10% and up to 25%. Such a high pressure drag
reduction becomes apparent by comparing surface pressure distributions of the
original shape (Fig. (4.8)) and both optimal shapes (Fig. (4.9) and Fig. (4.10)).
Instead of high and low pressure local regions at the original surface, a much

steadier pressure distribution can be observed for the optimized shapes. A much
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Figure 4.8: Surface pressure distribution of an original surface computed
with (a) a panel method (b) a CFD analysis.

smoother pressure distribution reduces the amount of instabilities in the flow,
which consequently also thins the boundary layer. A major contribution to the
reduction of the pressure drag is also due to the unsatisfied Stratford criterion at

the pressure recovery region of the original surface.

If a basic cost function in a form of a sum of pressure gradient distribution
(Eq. (3.32)) is used, a minimization of its value produces a plateau-like pres-
sure distribution in a streamwise direction across the body (blue curve in Fig.
(4.7(b))). An even pressure distribution on a major part of the fairing can be
also observed in Fig. (4.9). If a small bias is added to the pressure gradient in a
streamwise direction (Eq. (3.34)), the plateau changes into a ramp-like pressure
distribution (green and red curves in Fig. (4.7(b))). A gradual decrease of sur-
face pressure up to the recovery region can also be observed in Fig. (4.10). The
minimization would like to achieve as many panels with a pressure gradient value

equal to bias as possible. In this way local acceleration and deceleration of the
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Figure 4.9: Surface pressure distribution of an optimal surface at b = 0.0
computed with (a) a panel method (b) a CFD analysis.

flow is reduced, but as a consequence of the geometrical constraint points, there
are still some regional variances of pressure that can not get diminished.

How the optimization deforms the surface shape in order to achieve the
plateau- and ramp-like pressure distribution can be observed in Fig. (4.11). The
figure presents three horizontal slices through the flow passing the original and
two optimal (b = 0.0 and b = —0.2) surfaces in a top view. The slices lie at the
mid height of bodies and are coloured in magnitude of velocity colour scheme. At
b= 0.0 (Fig. (4.11(b))) the optimization produced a blunt nose and an almost
constant body thickness all the way to the recovery region, which moved all the
acceleration of the flow to the front of the body. At b = —0.2 case (Fig. (4.11(c)))
a much pointier nose and a gentle surface shape slope behind it can be noticed.
In this way a gradual acceleration of the flow on first two thirds of the surface
was achieved.

Another shape characteristic that can be observed in Fig. (4.11) is a smaller

maximal width of optimal bodies compared to the original surface. The position
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Figure 4.10: Surface pressure distribution of an optimal surface at b = —0.2
computed with (a) a panel method (b) a CFD analysis.

of the maximal width is also moved forward. In this way a high trough of negative
pressure at approximately z = 1.75m of the original shape (black curve in Fig.
(4.7(b))) is diminished and consequently a shorter recovery region achieved. For
both optimal surfaces, a slightly thinner boundary layer with a faster flow at the
recovery region was produced (Fig. (4.11)), which additionally helps to reduce the
pressure drag. At the trailing edge of the body, on the other hand, the situation
changes. Because of the larger trailing edge angle, the optimal surfaces produce
slightly thicker boundary layer compared with the original surface.

A smoother flow influences also the amount of the friction drag. A favourable
pressure distribution delays the formation of the instabilities, which postpones
the transition from laminar to turbulent flow (Fig. (4.12)). The original and
two optimized surfaces (b = 0.0 and b = —0.2) are coloured in inverse turbulent
time-scale w [56] colour scheme (denoted as omega in Fig. (4.12)), where a step in
a value of w indicates the point of transition. An average location of a transition

is in the case of a b = 0.0 optimal surface at approximately the same longitudinal
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Figure 4.11: A horizontal slice through the flow passing the (a) original
surface, (b) optimal surface at b = 0.0 and, (c) optimal surface at b = —0.2.
The slices lie at the mid height of bodies.

distance x as in the case of an original shape. An increase of skin friction drag
of an optimal surface at b = 0.0 is therefore a consequence of an increase of the
surface area. The correlation of the two quantities is in this case obvious from
Fig. (4.7(a)). At smaller bias numbers, on the other hand, the postponement of
the transition impacts the amount of friction drag by a larger extent than the

change of the surface area. The average location of transition for the optimal
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surface with b = —0.2 (Fig. (4.12(c))) is noticeably moved back to the end of the
fairing compared to the original shape. Its skin friction drag is, mostly because
of this reason, reduced by 7% (Fig. (4.7(a))).

At this test case it was shown, that proposed optimization method can be
successfully used at reducing a drag force of a sleek body having an attached
flow. The optimization produces a much smoother pressure distribution, which
thins down the boundary layer and reduces the pressure drag. A favourable pres-
sure gradient over a major part of the surface that postpones the transition and
consequently reduces the amount of the friction drag, is possible by incorporating

an amount of streamwise pressure gradient bias into the cost function.

4.3 Test Case No. 2: Wing-Root Separation

An optimization of a fairing that modifies the shape of the wing-fuselage junction
is treated in this case. A shape of a wing-fuselage configuration was modeled, for
which it was anticipated that it has problems with wing root flow separation as a
cause of a wing-fuselage flow interference. With this test case it will be shown that
the proposed surface optimization can be used to eliminate this massive root flow
separation. Moreover, the resulting surfaces have similar features as proposed
by numerous papers on the topic [59-62|, that is, a smoother surface blending
of a wing to a fuselage instead of a sharp corner junction, slight indenting of a
fuselage over and under the wing, and a chord-wise extended wing leading and
trailing edge in the root region.

The outer part of the wing experiences a freestream flow angle of attack
decreased by the induced angle, as a consequence of a finite wing. On the other
hand, the root part of the wing in reality feels an increased angle of attack, because
of the cylindrical shape of the fuselage. At a moderate freestream angle of attack,
the flow accelerates around the fuselage in the vertical direction and experiences
the highest velocity right at the wing (for a mid wing-fuselage configuration).
Because of this increase in the vertical component of velocity, the root of the
wing flies at an effective angle of attack that is greater than the freestream one.
This causes the flow to separate more readily even at moderate freestream flow
angles of attack and at relatively smaller angles than the rest of the wing. Since
the flow separation at the wing root propagates in a delta shape along the wing
and the fuselage, it increases the drag substantially and can even reduce the

responsiveness of the airplane control surfaces [63|. This effect should therefore
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Figure 4.12: Surface distribution of inverse turbulent time-scale w [56] for
(a) original surface, (b) optimal surface at b = 0.0 and, (c¢) optimal surface
at b = —0.2.

be avoided.

Even though the main goal of the second test case is to eliminate the wing
root separation, the case is evaluated also at an angle off attack equal to zero.
As it will be shown in this section, the optimization in case of e = 0 reduces the
pressure drag, but slightly increases the skin friction drag due to the increase of

the surface areas.
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4.3.1 Verification

The evaluated geometry has a bilateral symmetrical shape. The airfoil used at
the wing design is on the other hand not symmetrical. In order to simplify the
model, the tail isn’t taken into consideration. Its absence has little influence on

the solution, since its location is far from the fairing.

The case is considered as a lifting problem, where both the wing and the
fuselage, because of their nonsymmetry and/or finite angle of attack, produce
some amount of lift. This is why there is a wake modeled behind the whole body,
but the Kutta condition is satisfied only on wing’s trailing edge. For the fuselage,
the assumption is made that it doesn’t shed vorticity into the wake, which results
in a constant doublet wake strength. The wake has a shape of an inclined flat
plane that is leaving the trailing edge of the body along the wing’s trailing edge
bisector plane and extends approximately thirty wing-chord distances behind the
body. The surfaces of the body and the wake are discretized into Np and Ny,
panels, respectively. The surface mesh, where only the beginning of the wake
is depicted, is presented in (Fig. (4.13)). The panels are coloured in doublet
strength distribution for a zero angle of attack case. The wake doublet strength
clearly shows its linear relationship to the bound circulation strength (Eq. (2.46)).
Since the fuselage produces less lift compared to the root of the wing, its bound
circulation must be, according to Kutta-Joukowski theorem, smaller, which means
also a smaller absolute value of a doublet strength. A similar relationship can be
written for the wingtip where the lift distribution goes to zero. As it can be seen
in Fig. (4.13), at the end of the wing the doublet strength also goes to zero. On
the other hand, the maximum absolute value of doublet strength lies at the wing

span location with the maximum lift.

Since the main interest is eliminating the separation, the basic cost function
(Eq. (3.32)) together with the Stratford separation criterion (Eq. (3.35)) is used
in an optimization analysis. The Stratford constraint for the pressure recovery
region has, in this case, a significant role in removing the separated flow. Even
though a slightly higher critical Stratford number (Eq. (3.35)) of 0.50 is used to
assure the convergence, favourable results are still achieved and will be presented.
In this case ap = 50 is used in order to compute Gy (Eq. (3.39)). Since the
pressure recovery region starts at different streamwise locations on the fairing
surface, a linearly decreasing value of the integral from Eq. (3.36) is used for

recovery region panels, where the maximum is at the fuselage and the minimum
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Figure 4.13: Body and wake doublet distribution at o = 0°, computed with
panel method. Only a part of the wake is presented.

at the wing. The minimal integral value is computed as an integral over the
streamline at the wing-fairing junction that runs from the point right above the
stagnation point to the pressure recovery region. The maximal integral value is
on the other hand computed as an integral over the streamline that runs from
the nose of the fuselage to the pressure recovery region on the fairing-fuselage
junction. They are computed after a few steps of optimization (Subsection 3.2.3),
averaged over all optimizations at the same angle of attack and used as a constant
at all complete optimization procedures at the same angle of attack.

In all optimization computations, unless otherwise stated, 12 x 4 number of
control points in order to compute the magnitude of change surface function (Eq.
(3.28)) is used, of which twelve are around the fairing in a streamwise direction
and four are in a spanwise direction. All control points are slightly constrained
(Ib = —0.4m and ub = 0.4m in Eq. (3.26)) in order to prevent coincidence of
nodes and also to assure a physically acceptable surface shape.

The deformation vector of each node on the fairing that is being optimized
points in the spanwise direction (Fig. (4.14)), which preserves the geometry of
the wing. Vectors in nodes, that lie close to the leading edge of the wing point in
direction of the leading edge, whereas vectors that lie close to the trailing edge
point parallel to the trailing edge direction. Vectors are normalized, but on the
half of the fairing closer to the fuselage (0 <« < 0.5) multiplied by a decreasing
function (Eq. (4.5)) in order to remain tangential to the fixed fuselage surface.

In order to achieve a proper precision of the results, the optimization of a

case at a moderate angle of attack (o = 8°) has been run at three different
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Figure 4.14: Patch that is being optimized (grey panels) and its deformation
vector field scaled by a factor of 0.125 (red vectors).

surface mesh densities. After a comparison of a relative difference between the
initial value of the cost function and its final converged value for different mesh
densities (Fig. (4.15(a))), a mesh with a number of panels equal to Ng = 1150
was chosen for all optimization computations. In this way the results differ from
the finer mesh results only by a few tenths of a percent, but the computation
times are reduced significantly.

All optimization results at all chosen angles of attack together with the orig-
inal surface shape have been verified in a CFD analysis using the OpenFOAM
program. A proper volume mesh density had to be chosen also for the CFD anal-
ysis. An airflow around one of the optimal surfaces at an angle of attack equal to
8° with three different mesh densities has been simulated. A relative difference
of pressure and friction drag coefficient and lift coefficient between simulations
with different mesh density and a simulation with the highest mesh density is
presented in Fig. (4.15(b)). From the figure it can be seen that the case with
approximately five million cells is a reasonable choice for the simulation, since all
the coefficients change less than 0.2% if the mesh gets refined even further. The
same number of cells was used at the rest of the simulations in this test case.
Since a high Reynolds number Spalart-Allmaras turbulence model was used, a
value of y* [64] was also checked after choosing the mesh density. A y* surface
distribution together with a slice through a mesh coinciding with the symmetry
plane is presented in Fig. (4.16). The values of y* confirm an appropriate surface

mesh density choice.
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Figure 4.15: (a) A convergence of a relative difference between initial cost
function value and its minimized value, with respect to the body surface
mesh density at optimization process. (b) A convergence of the force coef-
ficients with respect to the volume mesh density at CFD analysis.
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Figure 4.16: y* surface distribution and a slice through a mesh of a con-
verged simulation of an airflow around one of the optimized surfaces at 8°
angle of attack.
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4.3.2 Results

The optimization of the fairing has been run at different combinations of two
angles of attack, a; = 0° and ay = 8°. The sum of cost function values at both

angles has been weighted according to equation
(1—w)-F,, +w-F,,. (4.6)

If the weight w is equal to zero, the case is being optimized only at an angle
of attack ay, whereas if the weight is one, only the as case is being optimized.
Besides zero and one, three additional weights have been used in this work, 0.25,
0.5 and 0.75.

First, the optimized surfaces at weights w = 0 and w = 1 have been sought,
where the original surface was used as an initial condition of the optimization
process. These two optimized surfaces were then used as an initial condition at
the rest of the values of weight w. Therefore, there are two families of solutions.
One where the initial surface was the optimal surface at oy (w = 0) and the other
with the initial surface being the optimal surface at oy (w = 1).

All optimized surface shapes at all values of weight together with the original
surface have then been evaluated with CEFD analysis. The relative difference
of pressure, friction and total drag between the original and optimal shapes is
at angle of attack a; = 0° presented in Fig. (4.17(a)) and at as = 8° in Fig.
(4.17(b)).

The two families of solutions are presented with the same colour, but with
a different line style. Solutions that have a w = 0 optimal shape as an initial
condition are connected with a solid line to their initial condition, and solutions
with a w = 1 optimal shape as an initial condition are connected with a dash-dot
line to their initial condition.

At both angles of attack, the solution w = 0 and the solutions that derive
from it have smaller pressure and total drag, but larger friction drag compared to
the solution w = 1 and solutions with w = 1 as an initial condition. It can be also
seen from Fig. (4.17), that all solutions have larger friction drag compared to the
original shape. In order to find an explanation for the friction drag increase after
the optimization, the surface areas of the whole body (fuselage, wing and fairing)
of all solutions have been plotted in Fig. (4.17) in order to compare them with
the friction drag. It can be seen from the figures, that the two relative differences

have a good correlation at a; = 0° and a poor one at gy = 8°. The difference
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Figure 4.17: Relative difference of drag and surface area of all optimized
surfaces compared to the original surface, computed with OpenFOAM at
angle of attack equal to (a) a; = 0° and (b) ay = 8°.

between the relative increase of the area and the friction drag is at a; smaller
than 0.3%, whereas at a, approximately 3%. The frictional component of the
drag at zero angle of attack therefore increases mainly because of the increase of
the wetted surface.

On the other hand, at moderate angles of attack, where the separation occurs
at the wing root region, the increase of the area only slightly influences the amount

of the friction drag. At the separated region, the flow velocity at the surface is
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small or can even have an opposite direction. After optimization, the flow is
attached to the surface, its velocity at the surface significantly increases, which
produces the major part of the friction drag increase.

Even though the friction is amplified at all optimized shapes, the thinning
of the boundary layer, as a result of the pressure gradient minimization, still
influences the amount of total drag at both angles of attack by a larger extent.
The boundary layer and the wake are much thinner at ay = 8° because of the
reattachment of the flow, which results in more than 20% of decrease in pressure
drag and consequently in more than 16.5% of decrease in total drag for w = 0
solution and all of its three derivatives.

The exceptions at zero angle of attack are the w = 1 solution and its two closer
derivatives at w = 0.5 and w = 0.75. The optimized shape of these solutions
bulked up on the upper front region of the fairing, which reduced the recovery
region behind the new bulge and assured an attached flow. At zero angle of attack,
on the other hand, this bulge increased the recovery region, which thickened the
boundary layer and produced more pressure drag than the original surface.

It is also interesting to note that the optimized shape at w = 1 for the angle
of attack ap = 8° is poorer than the solution at w = 0 and all of its derivatives.
Since the problem has at least two local minima solutions, the choice of an initial
condition plays an important role at optimization process.

Comparing pure drag data does not, however, reveal the whole picture. It
must also be determined how the optimization effects the lift force. The data for
three different surface shapes has been presented on the polar plot in Fig. (4.18).
Besides the original shape, an optimal shape with a minimal total drag at both
angles of attack (w = 0.75, initial condition at w = 0) and an optimal shape
at w = 1 have been chosen to be compared. A surface area used in coefficient
calculations is the area of a planform of the original wing stretched tangentially to
the symmetry plane at the middle of the fuselage. The dots in the figure denote
the drag and the lift coefficients at angles of attack equal to 0°, 6° and 8°. For the
original surface additional simulations have been run at angles of attack equal to
7° and 9°, but the data for the latter angle is off the plot. A fit with a polynomial
curve of degree of four for each data group was added to the figure, where data
only at the smaller three angles of attack was used on the original surface. It can
be seen from the Fig. (4.18), that the drag of the original shape dramatically
increases and the lift decreases at angles greater than 7° (Cp > 0.058). At these

angles the massive separation occurs, which completely changes the airflow over
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Figure 4.18: Polar plots for an original and two chosen optimal surface
shapes. The data at different angles of attack is fitted with a polynomial
curve of degree of four.

the fairing. At the optimized shapes, on the other hand, no separation occurs.

Even though the polar of the w = 1 solution is shifted to higher drag coeffi-
cients compared to the other two surfaces, it is also shifted to higher lift coeffi-
cients. By comparing the polar curves in the Fig. (4.18) it can be stated, that
the solution at w = 1 produces the least drag of the three at the same amount of
lift. Although the w = 0.75 solution has the smallest drag at all observed angles
of attack, the w = 1 solution is still a preferred one to be used on the airplane due
to its better polar. The fact that at the same lift a smaller drag can be achieved

is the most important achievement at the surface optimization of a lifting body.

A comparison of a surface pressure distribution between the panel method
computations and the CFD analysis for the original surface and the optimal sur-
face at w = 0.75 (initial condition is a solution at w = 0) at zero angle of attack
are presented in Fig. (4.19) and Fig. (4.20), respectively.  Pressure distribu-
tions obtained with the panel method and CFD calculations are comparable even
though a much coarser surface mesh is used at the former method. The surface
optimization produced an indent fairing at the fuselage-wing junction, as can be
seen from the shape of the white line in Fig. (4.20). Since the flow is accelerated
around the wing and at the same time around the fuselage, an unnecessary high
speed flow is achieved at the original fairing, which causes an additional amount
of drag (Section 2.2). This effect is reduced at the optimized surface, where a

slightly larger pressure is achieved at the observed region. The drag reduction
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Figure 4.19: Surface pressure distribution of an original surface computed
with (a) a panel method and (b) a CFD analysis at zero angle of attack.

can be observed in Fig. (4.17(a)).

The pressure distributions for the same two surface shapes and additionally
also for the optimized shape at the w = 1, computed with the panel method
and CFD calculations, but this time all at the angle of attack equal to 8°, are
presented in Fig. (4.21), Fig. (4.22), and Fig. (4.23), respectively.

The pressure distributions between the panel method and the CFD analysis
are again comparable, with an exception of the original shape around the fairing.

The panel method predicts a smooth and attached potential flow (Fig. (4.21(a))),
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Figure 4.20: Surface pressure distribution of an optimal shape at w = 0.75
with an initial condition of a w = 0 shape, computed with (a) a panel
method and (b) a CFD analysis at zero angle of attack.

whereas the CFD analysis calculates a huge separation at the wing-fuselage junc-
tion (Fig. (4.21(b))). A bundle of streamlines, coloured in a magnitude of velocity
colour scheme, is added to all CFD analysis figures in order to emphasize the im-
provement of the optimized surfaces with respect to the original one at the 8° of
angle of attack. For the original shape the streamlines detach from the surface
already at the beginning of the wing, very close to the leading edge. At both op-

timized shapes, on the other hand, the streamlines remain attached all the way
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Figure 4.21: Surface pressure distribution of an original surface computed
with (a) a panel method and (b) a CFD analysis at angle of attack equal
to 8°.

to the trailing edge and only a small separation can be observed. Despite some
separation, the flow is smoothly passing a major part of the body. The aerody-
namics of the airplane are improved, as can be seen also from Figs. (4.17(b)) and
(4.18).

At all the CFD calculation figures a slice, coinciding with the symmetry plane,
with a velocity magnitude distribution is added. At some figures also a white line

on the surface in a spanwise direction is added in order to have a better perception
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Figure 4.22: Surface pressure distribution of an optimal shape at w = 0.75
with an initial condition of a w = 0 shape, computed with (a) a panel
method and (b) a CFD analysis at angle of attack equal to 8°.

of the surface shape. The shape of the fairing at the bottom side is qualitatively
the same for all optimal cases. The surface at the fuselage is slightly indented
compared to the original shape (Fig. (4.24)), which slows down the flow and

helps to improve the characteristics of the fairing.

At this test case it was shown that the proposed optimization can be used to
get rid of the massive separation in the wing root region. In this way, a significant

reduction of drag is achieved. Whether the shape will indent in the fuselage in
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Figure 4.23: Surface pressure distribution of an optimal shape at w = 1
with an initial condition of an original shape, computed with (a) a panel
method and (b) a CFD analysis at angle of attack equal to 8°.

order to decelerate the flow or bulge out in order to reduce the recovery region
depends primarily on the shape used for the initial condition. In this work two
families of solutions were encountered, which proves the importance of the initial

condition in the optimization process.
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Figure 4.24: Surface pressure distribution of (a) an original shape and (b)
an optimal shape at w = 0.75 with an initial condition of a w = 0 shape,
computed with a panel method at an angle of attack equal to 8°.

4.4 Test Case No. 3: High Reynolds Number

In the last test case, the bulb keel of a sailboat is treated. More specifically, the
two fairings between the hull and the fin and between the fin and the bulb are
optimized. This test case distinguishes itself from the previous cases by having a
greater Reynolds number. Even though a typical velocity is small compared to
previous cases, because of the water as a medium of the flow, the Reynolds number
is equal to or greater than 107. Large Re numbers cause an earlier transition than
do smaller Re numbers, which means that turbulent flow is present more or less

throughout the whole surface area. Because of this, the amount of wetted area
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and the surface velocity should be kept as small as possible in order to reduce
the drag.

4.4.1 Verification

The body has a bilateral symmetrical shape which is preserved during surface
optimization. The problem is treated at small angles of attack, a = 4° and
smaller, where typical cruise takes place. Only the surface of the hull under
the waterline is taken into consideration, where the water level is considered
as a symmetry plane. The waves aren’t taken into account. The roll angle of
the sailboat, as a consequence of the force in the sails, is also not taken into
consideration in this work.

Since most of the flow is turbulent in this test case, its velocity should be
as small as possible and unnecessary accelerations and decelerations should be
avoided. That is why a basic cost function (Eq. (3.32)) is used, which causes
almost an uniform pressure distribution and in this way the smallest negative
pressure.

In all optimization computations 14 x 6 number of control points are used to
compute the magnitude of change of the surface function (Eq. (3.28)). 14 are
used in the streamwise direction around each of the two fairings and 6 are used
in the spanwise direction. All control points are slightly constrained (/b = —1.0m
and ub = 1.0m in Eq. (3.26)) in order to prevent coincidence of nodes and also
to assure a physically acceptable surface shape.

Deformation vectors of all nodes of both fairings that are being optimized
point in direction parallel to the spanwise direction of the fin (Fig. (4.25)), which
preserves the geometry of the fin. Vectors in nodes, that lie close to the leading
edge of the fin point in direction of the leading edge, whereas vectors that lie close
to the trailing edge point parallel to the trailing edge direction. Deformation
vector field of both junctions are normalized on both junction halves close to
the fin, but gradually decrease to zero (Eq. (4.5)) toward the hull and the bulb,
respectively. In this way both patches remain tangential to fixed surfaces.

A Stratford criterion (Eq. (3.35)) is used in order to prevent the flow sepa-
ration in the pressure recovery region. Since the pressure recovery has a convex
shape, a value of 0.39 is used as a critical Stratford number in order to constrain
the value of Gy (Eq. (3.39)). In this case ag = 100 is used in order to compute

G (Eq. (3.39)). Since the pressure recovery region starts at different streamwise
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Figure 4.25: Patches, (a) hull-fin and (b) fin-bulb fairing, that are being
optimized (grey panels) and their deformation vector fields scaled by a
factor of 0.25 (red vectors).

locations on the body, a linearly decreasing value of the integral from Eq. (3.36)
is used for recovery region panels at both fairings. Maxima are at the hull and
the bulb and minima at the fin. The minimal integral value of the upper fairing is
computed as an integral over the streamline at the fin-fairing junction that runs
from the point right next to the stagnation point (on the pressure suction side) to
the pressure recovery region. The maximal integral value is, on the other hand,
computed as an integral over the streamline that runs from the nose of the hull
to the pressure recovery region on the fairing-hull junction. Similar integration
is done for the fin-bulb fairing. All integrals are computed after a few steps of
optimization (Subsection 3.2.3), averaged over all optimizations at the same angle
of attack and used as a constant at all complete optimization procedures at the

same angle of attack.

The wake is modeled behind the fin, but stretches also behind the hull and
the bulb. The Kutta condition is met only along the trailing edge of the fin.
For the hull and the bulb the assumption is made that they don’t shed vorticity
into the wake, with the exception of a single vortex at the end of the bulb (outer
edge of the wake). The doublet distribution in the wake behind them is therefore
constant. The wake coincides with the symmetry plane of the body at all observed
angles of attack and it stretches approximately thirty fin chord lengths behind
the body. A body and a wake doublet distribution, where only a part of the
wake can be seen, is for the original shape at 4° angle of attack presented in Fig.
(4.26).

A surface optimization of a case at an angle of attack equal to 4° has been
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Figure 4.26: Body and wake doublet distribution at av = 4°, computed with
a panel method. Only a part of the wake is presented.

run at three different surface mesh densities. After a comparison of the relative
difference between the initial value of the cost function and its final converged
value for different mesh densities (Fig. (4.27(a))), a mesh with a number of panels
equal to Ng = 1780 has been chosen for all optimization computation. Compared
to the finer mesh, the computation times are in this way reduced significantly and
the results differ only for a few tenths of a percent.

For the CEFD analysis a proper volume mesh density also had to be chosen.
For one of the optimal shapes the flow passing the surface at angle of attack equal
to 4° has been simulated with three different mesh densities. A relative difference
of pressure and friction drag coefficient and lift coefficient between simulations
with different mesh densities and a simulation with the highest mesh density is
presented in Fig. (4.27(b)). The case with approximately 11 million cells is a
reasonable choice for the simulation, since by refining the mesh even further, all
the coefficients change for less than 0.4%. The same mesh density was used at
the rest of the simulations of the sailboat keel. Since a high Reynolds number
Spalart-Allmaras turbulence model was used, the same as at the airplane test
case, a value of y was checked after choosing the mesh density. A y™ body
surface distribution is presented in Fig. (4.28). A slice through a mesh coinciding
with the symmetry plane is added to the figure. A proper mesh density at the

surface is confirmed by the values of y™.
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Figure 4.27: (a) A convergence of a relative difference between initial cost
function value and its minimized value, with respect to the body surface
mesh density at optimization process. (b) A convergence of the force coef-
ficients with respect to the volume mesh density at CFD analysis.

Figure 4.28: y* surface distribution and a slice through a mesh of a con-
verged simulation of an airflow around one of the optimized surfaces at 4°
angle of attack.

4.4.2 Results

Similar to the previous test case, the optimization of both fairings has been run
at three different combinations of two angles of attack, a; = 0° and ay = 4°,
where the Eq. (4.6) has been used to compute the weighted sum. Again, if w =0

or w = 1, the case is optimized only at the 0° or 4° angle of attack, respectively.
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If w = 0.5, an optimal surface with a minimal sum of pressure gradient at both
angles of attack together is being searched. The original surface was used as an
initial condition at all weights. For w = 0.5 case different initial conditions were
tried, but the optimization always converged to the same solution. The fairings
were optimized successively. The upper fairing, that was optimized first, was used
afterwards for the optimization of the bottom fairing. Since the patches are more
than 1.5m apart in the spanwise direction, a negligible error was made because
of this.

Each of the optimized surfaces was evaluated with a CFD analysis. The
relative differences of forces and surface area values with respect to the simulation

results of the original shape are presented in Fig. (4.29). Compared to the original
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Figure 4.29: Relative difference of drag and surface area of all optimized
surfaces compared to the original surface, computed with OpenFOAM at
angle of attack (a) a; = 0° and (b) ay = 4°.

shape, the total drag was reduced for all solutions. The smallest drag at both
angles of attack, can be observed at w = 1 solution. For oy (Fig. (4.29(a)))
the total drag is reduced by 0.5% and for ay (Fig. (4.29(b))) by approximately
0.43%. Even though the reductions of the drag are a few tenths of a percent
compared to the original shape, the numbers are still notable, because of the
large absolute value of the total drag. In Fig. (4.29) the relative changes of the
complete body drag are presented. The percentage of the relative reduction of
drag for only the fairings is much higher, since they cover only 11% of the total
body surface. Besides that, approximately one third of the surface is due to the
fin, which doesn’t change the shape during optimization. Because of this, even

though the relative reduction of the total drag of the whole body has the same
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order of magnitude as the mesh density error (Fig. (4.27(b))), the results are still
significant.

The absolute value of the friction drag is about 14 times larger than the pres-
sure drag at zero angle of attack and 5 times larger than at an angle of attack
equal to 4°. Even though the pressure drag at «; reduced by more than 3% for
all solutions, the total drag still hardly exceeded the —0.5% change, because of
the large contribution of the friction drag. Similar situation can be observed at
a9, where the pressure drag for w = 0.5 and w = 1 examples even increased com-
pared to the original surface. The minimization of the friction drag component
is therefore in this test case much more important compared to the pressure drag
in order to optimize the shape of the surface. The surface area of body after
each optimization changed for less than one tenth of a percent compared to the
original body (Fig. (4.29)). The reduction of the surface area is therefore not the
primary reason for friction drag reduction. The major contribution goes to the
smoother and on average slower flow around an optimized surface.

During sailing, the sailboat rolls by an angle at which the moments produced
by the wind in the sails and by the weight in the bulb equalize [65]. Since
typically the sailboat also slightly drifts at an leeway angle (v angle at this test
case), as a consequence of the wind, a lift force on the fin is generated, which
offers an additional roll angle control of the sailboat. The lift force therefore acts
in direction perpendicular to the streamwise and spanwise direction of the fin.
Polar curves of the original and all optimized surfaces are presented in Fig. (4.30),
where also the change of the lift coefficient can be observed as a consequence of
the optimization. A surface area used in coefficient calculations is an area of the
planform of the fin, cut at the hull, and stretched tangentially to the middle of
the bulb.

The dots in the figure denote the drag and the lift coefficients at angles of
attack equal to 0°, 3° and 4°. A fit with a polynomial curve of degree of four for
each data group is added to the figure. From the Fig. (4.30) it can be seen, that
all optimized surfaces have besides smaller drag also larger lift coefficient at all
angles of attack greater than zero. The polar curves therefore shift in a favourable
direction. The solution at w = 1 has the smallest drag at all lift coefficients, which
makes it the one to use at the real case. The solution at w = 0.5 almost coincides
with the optimal one, which is also in agreement with the data from the Fig.
(4.29).

A comparison of a surface pressure distributions between the panel method
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Figure 4.30: Polar plots for an original and optimal surface shapes. The
data at different angles of attack is fitted with a polynomial curve of degree
of four.

computations and the CFD analysis for the original surface and the optimal
surface at w = 1 are at zero angle of attack presented in Fig. (4.31) and Fig.
(4.32) and at 4° angle of attack in Fig. (4.33) and Fig. (4.34), respectively.

The figures are presented from the pressure “suction side” view. In all CFD
computation figures a slice, coinciding with the symmetry plane, with a velocity
magnitude distribution and a white line on the surface in a spanwise direction
is added in order to have a better perception of the flow passing the body and
the surface shape, respectively. The pressure distributions computed with the
panel method are as in the previous two test cases (nonseparated flow examples)
comparable with the CFD analysis. The surface optimization produced an indent
surface at the sides of the hull-fin fairing (e.g. Fig. (4.32(b))), similar to the
airplane test case at zero angle of attack (e.g. Fig. (4.20(b))). Since the fin and
the hull have much more slender shape compared to the wing and the fuselage
from the previous test case, the acceleration around the fairing is not so intense
and as a consequence, the indent is not so severe. At the leading and trailing edge,
on the other hand, the surface bulged. The sharp corner between the fin and the
hull changed into a smooth surface transition, which is additionally presented in
the body front view in Fig. (4.35). The interference of the hull and the fin on the
flow passing the fairing is in this way reduced, which stabilizes and slows down

the flow and indirectly reduces the drag.

80



U Magnitude
1.3
.2

(b)

Figure 4.31: Surface pressure distribution of an original surface computed
with (a) a panel method and (b) a CFD analysis at zero angle of attack.
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Figure 4.32: Surface pressure distribution of an optimal shape at w = 1.0,
computed with (a) a panel method and (b) a CFD analysis at zero angle of
attack.
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Figure 4.33: Surface pressure distribution of an original surface computed
with (a) a panel method and (b) a CFD analysis at 4° angle of attack.
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Figure 4.34: Surface pressure distribution of an optimal shape at w = 1.0,
computed with (a) a panel method and (b) a CFD analysis at 4° angle of
attack.
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Figure 4.35: Front view of the pressure surface distribution of the fin-hull

fairing at 4° angle of attack computed with the panel method for (a) original
surface and (b) optimized surface at w = 1.

The surface of the fin-bulb fairing went through similar changes during op-

timization, but in a much smaller extent.

apparently already had a shape close to the optimal one.
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Chapter 5
Conclusion

A novel method for automatic optimization of aerodynamic surfaces using pres-
sure based functionals is presented in this work. For this purpose, potential flow
is used as a valid approximation of the attached flow passing over an arbitrary
body. The outcome of the method is a favourable pressure distribution that in-
directly results in a reduced drag. The minimization of a cost function is done

using a sequential quadratic programming algorithm.

The proposed panel method that is used to compute pressure distribution is
first validated using an example of a potential flow passing a sphere. The relative
difference between the panel method solution and the analytical solution is shown
to be inversely proportional to the number of panels the surface is discretized into.
The proposed optimization method is then used in three conceptually different

test cases. All cases are evaluated with results obtained by CFD analysis.

In the case of optimization of a fairing, enclosing a human powered vehicle,
it is shown that the transition from laminar to turbulent flow is delayed and the
boundary layer at the pressure recovery region is thinned. In this way, the total
drag of the bicycle is reduced by more than 10%. In the second test case, where
the fairing of the wing-fuselage junction on an airplane is optimized, a massive
root flow separation at moderate angle of attack is eliminated. The total drag at
angle of attack equal to 8° is reduced by more than 16.5%. Even though a great
importance of the initial condition is shown in this case, the shape of the fuselage
at the fairing is still in most optimization results indent in order to decelerate the
flow. The resulting surface shape resembles similar test cases in the literature,
as was presented in Chapter 4. The last test case represents an optimization of
a bulb keel of a sailboat, where both fairings (hull-fin and fin-bulb) are being
treated. In this high Re case the total drag is reduced by 0.5% and 0.43% at
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0° and 4° angle of attack, respectively. The primary reason for reduction is a
smoother and on average slower flow around optimized surfaces.

With the proposed method, satisfactory results can be obtained such that
lower drag on the aerodynamic surfaces can be anticipated. The method is con-
ceptually simple and computationally low demanding. Even though a structured
mesh is used in present work, the method can be equivalently used also with
an arbitrary unstructured mesh, which enables one to rearrange the panels in
order to reduce their number. Beside geometrical constraints and Stratford cri-
terion other constraints can be easily incorporated into the method such as e.g.
a fixed wing lift, wing bending moment, surface area etc. This favourable pres-
sure distribution based method can also be extended to reshape e.g. a wing in
order to produce a maximal lift coefficient or even a shock-free surface [40] in
case of a transonic flight. The method therefore enables one to tackle different
aerodynamic problems with minor modifications.

On the other hand, the method still has some limitations that need to be
adopted such as a need for a predefined patch and deformation vector field, a
possibility of intersection of panels during the optimization process and a lack
of information about the drag force. The latter drawback consequently means a
need for a CFD evaluation of each optimization result in order to estimate the
force with which the flow acts on the body. A logical upgrade of the method is
therefore an introduction of the boundary layer equations into the method, which
enables one to directly estimate displacement thickness and drag force [35]. The
latter can be then used as an additional functional that in a combination with
existing pressure based functionals offer an even wider spectrum of possible cost
functions that need to be further researched and tested.

Pressure distribution resulting from the optimization process using the exist-
ing method can be simply explained as is shown in present work. By upgrading
the method, on the other hand, one needs to realize that the conceptual simplic-
ity of the method and consequently the understanding of results is being lost.
Moreover, the drag computed with the boundary layer equations rely on the
exactness of the turbulence model incorporated in the equations, whereas the
pressure distribution is largely model independent.

Even though the results of the present method represent an improvement
regarding the pressure distribution and consequently the drag force of the body,
it would be also interesting to compare them with other optimization methods.

Original contributions in the present dissertation are
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A novel three dimensional potential flow optimization method where pres-

sure based functionals are used to shape optimal aerodynamic surfaces.

- Functionals are found that, when minimized, reduce the growth of the
Tollmien-Schlichting waves and cross-flow instabilities and consequently

promote laminar boundary layer.

- An implementation of the Stratford separation criterion as a constraint
in the three dimensional optimization procedure using a "soft" maximum

principle and Heaviside pressure function weight.

- A new principle of reshaping the aerodynamic surface where a constant
deformation vector field multiplied by the variable Bézier surface is added
to the original shape and where the Bézier surface control points represent

also the optimization variables.

The advancement of the science and engineering as a consequence of this

dissertation is therefore:

- A fast, automatic, conceptually simple, and computationally low demanding
optimization method that can be used already in the preliminary phase of

aircraft design.

- The method enables one to design aerodynamic surfaces that promote lam-
inar boundary layers and prevent flow separation in the pressure recovery

regions together with different geometrical constraints.

- The usage and the efficiency of this simple method was shown on different

test cases taken from real life engineering applications.

During authors graduate studies a paper with a related topic was published

in the Journal of Aircraft

- Andrejagi¢, M., and Veble, G., “Shape Optimization of Nonplanar Lifting
Surfaces and Planar-Nonplanar Break Points,” Journal of Aircraft, Vol. 50,
No. 3, 2013, pp. 798-806.

The present work will be submitted as a paper to the Journal of Aircraft as

- Andrejagi¢, M., and Veble, G., “Optimization of Aerodynamic Surfaces us-
ing Pressure Based Functionals.” (Will be submitted in 2014)
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