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Abstract

ABSTRACT
The aim of an air-pollution model is to simulate the dispersion of air pollutants in the ambient 
atmosphere.  The impact of the air pollution from different well-known sources is studied on 
the basis of simulation results. 

The  improvements  of  the air-pollution  modelling  methodology  based  on  the  Lagrangian 
particle  dispersion  are  proposed  in  this  dissertation.  The  Lagrangian  particle-dispersion 
modelling technique has recently become a well-known air-pollution reconstruction technique 
for use over complex terrain on the local, regional and global scales. It significantly evolved 
in the past ten years and it came from research use to use for regulatory purposes.

In this dissertation the limit capacities, properties and performance of the Lagrangian particle 
dispersion model are determined and evaluated on complex terrain. Three new methods are 
proposed to improve the computational performance based on these results. The new methods 
are  developed  in  a  manner  such  that  the  original  methods  in  the air-pollution  modelling 
methodology are not modified at all. The parameters, methods and structure of the original 
air-pollution  model are preserved in their  original form and no additional  adjustments are 
performed.  The  methods  that  determine  and  optimize  the  reconstruction  of  the 
computationally  expensive air-pollution  situations  are  proposed  and  integrated  into  the 
existing air-pollution  modelling methodology.  The available computational capabilities  are 
optimally exploited by the improved methodology.

The dissertation begins with a definition of the research problems, the goals of the research 
and the working hypotheses. A summarized presentation of the relevant studies is also given 
as an argument for using the air-pollution  model  based on Lagrangian particle dispersion. 
Two complex terrain field data sets used for experiments are described in detail. The Šaleška 
region field  data  set  is  selected  for  the  presentation  and validation  of  the new,  proposed 
methods.  Additionally,  the  Zasavje region field data set is used for the validation and the 
demonstration that the proposed methods can be generally used. The introduction ends with a 
presentation  of  the  theoretical  background  where  the  basic air-pollution  terminology  is 
defined and the modelling techniques and tools used in the study are generally described.

The  evaluation  of  the  computational  efficiency  and  the  performance  of  the air-pollution 
computer  model  confirmed  the  hypothesis  that  the  quality  of  the  results  depends  on  the 
number of virtual particles used in the air-pollution situation reconstruction. The quality of the 
results does not decrease significantly when the number of particles remains above a certain 
particle number threshold. This particle number threshold depends on the size of the domain 
and the size of the cells in the domain. When the number of particles falls below the threshold 
the quality of the results starts to decrease drastically. 

The  dependency  between  the  performance  of  the air-pollution  computer  model  and  the 
number of virtual particles used in the simulations is determined by making an experimental 
simulation. In the experiment several simulation runs are performed on the Šaleška region 
field  data  set.  The  results  obtained  show  that  when  the  number  of  particles  increases 
significantly, a strong linear dependency can be determined. This means that the time used for 
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Abstract

the simulation run linearly depends only on the number of particles. 

An evaluation is made to define the minimum acceptable number of particles that is necessary 
to achieve a good air-pollution  reconstruction. In the evaluation process each result with a 
different number of used particles is compared to the reference. A comparison is performed 
by using the developed evaluation methods for ground concentration fields: the correlation 
coefficient, the root mean square error and the fractional bias.

Application of the clustering method for a reduction of the computational cost is the first 
contribution. It is made to decrease the computational cost by decreasing the number of active 
particles in the simulations. The hypothesis that the computational expenses would be reduced 
with the clustering method is confirmed, because the used computational complexity can be 
reduced by at least 50%. 

The hypothesis  that  the use of  the clustering method will  have a  minor  influence  on the 
quality of the results is only partially confirmed. The clustering method has a minor influence 
on the quality of the results only when the final number of particles after clustering in the 
domain remains above a certain particle number threshold. 

The  four  basic  parameters  of  the  clustering  method  must  be  optimally  set  to  achieve 
satisfactory results: Nsub, Nsize, mmax and Nmax. There are also some additional conclusions about 
the method: 

● According to the finally acquired results it is concluded that the hierarchical clustering 
method with additional parameters can be used in practice only for the limitation of a 
very large number of particles.  In such a case the number of particles exceeds the 
normal values because of the occurrence of extreme situations: like the failure of the 
desulphurization plant when the emissions increase by an order of magnitude or when 
a  very stable  meteorological  situation  with low winds occurs and the air  pollution 
starts to accumulate in the domain. 

● The strong limitation of the number of particles in the reconstructions during typical 
situations with the clustering method is not recommended because the quality of the 
results becomes very poor. To preserve the good quality of the results only a slight 
limitation  is  recommended.  A  comparison  of  the  original  results  and  the  results 
obtained  with  the  clustering  method  showed  that  the  results  obtained  with  the 
clustering method can become bubbled and less smooth than the original. This is the 
same effect that occurs when not enough particles are used in the reconstructions.

The cell concentration kernel density estimation method adaption is contributed to substitute 
the box counting concentration estimation method. It is used to improve the poor quality of 
the results when a smaller number of particles is used in the simulations.  To evaluate the 
performance of the contributed method and the dependence on the input parameters, several 
simulations are performed. 

In these experiments three cases of the optimal input parameters σx, σy and σz are determined 
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for the Šaleška region field  data  set  according  to the correlation with the reference:  poor 
correlation, good correlation and very good correlation. The comparisons simulation results of 
these three different optimal points show that the final optimal parameters are set from the 
example where the correlation with the original result is very good.

The final comparisons prove that the correlation coefficient and the root mean square error are 
significantly improved.  The fractional  bias comparison showed that there is practically no 
underestimations  in the results  of the advanced simulation,  which is  crucial  for long-term 
evaluations of air pollution. This final comparison proved the hypothesis that the poor quality 
of the simulation results in situations when a relatively small number of particles is used can 
be improved by using the kernel density concentration estimation method. 

The  presented  final  comparison  also  confirmed  the  hypothesis  that  the  kernel  density 
concentration estimation method can always be used to improve the quality of the results.

The Lagrangian particle-dispersion control method based on artificial neural networks also 
contributes to the control of the particle density parameter and the clustering parameter of the 
Lagrangian particle model. The rule for particle density control is the following: 

● When high emissions occur the particle density should be decreased, and when low 
emissions occur the particle density can be increased. 

● In special situations when the smallest possible particle density is used and it is still 
expected that the computational resources will be exceeded, the clustering must be 
activated  to  reduce  the  number  of  particles  from a  previous air-pollution  episode 
reconstruction.  This  is  very important  for  situations  when extreme  air  pollution  is 
expected. Such a common situation occurs in calm meteorological conditions when air 
pollution starts to accumulate in the domain for a longer time interval. 

The proposed method consists of two main subsequent methods:

● in the first step the percentage of lost particles is predicted using the artificial neural 
network based on meteorology, emissions and the situation of the air pollution at the 
end of the previous episode reconstruction. 

● in the second step the clustering parameters are determined using a decision-making 
method. 

The hypotheses  that  the algorithm to determine the computationally complex air-pollution 
situations can be based on black-box modelling techniques is confirmed by using artificial 
neural networks successfully. 
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The integration of the contributed methods into the enhanced Lagrangian particle dispersion 
model is finally proposed, where the mutual use of contributed methods is proposed to obtain 
the best possible results within the given computational resources.

The integration is realised in the enhanced Lagrangian particle dispersion (ELPD) computer 
model, which is validated for two field data sets:

● The Šaleška region - validation results show that the time used and the number of 
active  particles  are  practically  constant  in  the  simulation  run  where  the  ELPD 
computer model is used. A significant improvement of the correlation coefficient and 
the root mean square error is achieved. The fractional bias comparison showed that the 
results are not over or under estimated. 

● The Zasavje region - validation is performed to confirm that the proposed methods can 
be generally applied in various complex terrains. The results of the comparisons are 
practically  identical  to  the  results  obtained  in  the  Šaleška  region  field  data  set 
validation.  The  obtained  results  prove  that  the  use  of  an  enhanced air-pollution 
modelling methodology is recommended, not only in situations where computational 
resources  are  constrained,  but  also  in  general  to  optimally  take  advantage  of  the 
available  computational  resources. The  computational  complexity  of  all  the air-
pollution  episode reconstructions is being balanced because approximately the same 
computational time is spent for each air-pollution episode reconstruction. 

The hypothesis that controlling the number of particles in the simulation is actually preserving 
the  quality  of  results  at  a  constant  level  is  again  confirmed  during  the  evaluation  of  the 
simulation results.

The simulation results from using both field data sets proved the hypothesis that an algorithm 
based on an artificial neural network is efficient and reliable and that the goal of reducing the 
computational complexity in simulations is successfully achieved.

Keywords: air pollution modelling methodology, air-pollution  model, Lagrangian-particle  
dispersion  model,  clustering,  concentration  estimation,  kernel  density,  artificial  neural 
network, air-pollution model evaluation
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Povzetek

POVZETEK
Izboljšanje okoljskega modela za rekonstrukcijo onesnaženja v ozračju nad razgibanim 
terenom

Metodologija  modeliranja  onesnaževanja  ozračja  zajema  metode,  ki  se  uporabljajo  pri 
modeliranju  onesnaževanja.  Rezultat  modeliranja  je  model  razširjanja  onesnaženja  v 
zunanjem  zraku.  Model  se  uporablja  v  simulacijah  za  rekonstrukcijo  onesnaženja  zraka, 
katerih cilj je študija vpliva različnih virov onesnaženja na okolje.

V doktorski disertaciji je predstavljeno izboljšanje metodologije modeliranja onesnaževanja 
ozračja,  ki  temelji  na  Lagrange-vem  modelu  delcev.  Postopek  modeliranja  na  osnovi 
Lagrange-vega modela delcev predstavlja trenutno najbolj uporabno tehniko za rekonstrukcijo 
onesnaževanja ozračja nad razgibanim terenom. Izreden napredek v zadnjih desetih letih pa je 
omogočil tudi prenos njegove uporabe iz raziskovanega področja na področje zakonodaje, ki 
določa ukrepe in postopke za preprečevanje ali zmanjševanje onesnaženosti zraka iz različnih 
virov onesnaževanja.

V okviru disertacije so določene in ocenjene mejne zmogljivosti in lastnosti Lagrange-vega 
modela delcev nad razgibanim terenom. Na podlagi teh rezultatov so predstavljene tri nove 
metode  za  izboljšanje  zmogljivosti.  Nove  metode  so  dodane  k  obstoječi  metodologiji 
modeliranja  na takšen način,  da ostajajo ostale  originalne metode povsem nespremenjene. 
Parametri,  metode  in  struktura  originalnega  modela  onesnaževanja  ozračja  so ohranjeni  v 
njihovi prvotni obliki brez kakršnih koli sprememb. Dodatno so predstavljene tudi metode za 
ugotavljanje in optimizacijo rekonstrukcije računsko kompleksnih situacij onesnaženja, ki so 
vgrajene  v  obstoječo  metodologijo  modeliranja.  Z  uporabo  izboljšane  metodologije  so 
računske zmogljivosti tudi bolj optimalno izkoriščene.

V uvodu disertacije  so navedeni  opisi  raziskovalnih problemov,  cilji  raziskave in  delovne 
hipoteze. Poleg tega pa je podan tudi zgoščen pregled pomembnih študij iz raziskovalnega 
področja  razvoja  in  uporabe  modeliranja  onesnaženja  na  osnovi  Lagrange-vega  modela 
delcev.  Zelo  natančno  so  opisani  rezultati  dveh  merilnih  eksperimentov  organiziranih  v 
okolici  večjih  virov  onesnaženja  v  okviru  katerih  so  bili  zbrani  podatki  o  emisiji, 
meteorologiji in kvaliteti zunanjega zraka za določeno časovno obdobje. Rezultati merilnega 
eksperimenta  zbrani  na  področju  Zasavja  so  v  disertaciji  uporabljeni  za  predstavitev  in 
vrednotenje predlaganih metod.  Dodatno pa so rezultati  merilnega eksperimenta zbrani  na 
področju Šaleške doline uporabljeni za dodano vrednotenje metod in demonstracijo,  da je 
možno predlagane metode uporabljati na kakršnem koli razgibanem terenu. Uvod se zaključi s 
predstavitvijo teoretičnih osnov, kjer je definirana terminologija, ki se uporablja na področju 
onesnaževanja zraka,  in predstavitvijo modelirnih postopkov in orodij,  ki so uporabljeni v 
okviru te raziskave.

Vrednotenje  računske  zmogljivosti  računalniškega  modela  onesnaženja  ozračja  potrjuje 
hipotezo,  da  je  kvaliteta  rezultatov  simulacij  odvisna  od  števila  uporabljenih  navideznih 
delcev. Poleg tega pa je vrednotenje pokazalo tudi, da se kvaliteta rezultatov povečuje zelo 
počasi  potem,  ko je presežen določen prag števila  navideznih  delcev,  ki  so uporabljeni  v 
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simulacijah.  Ugotovljeno je,  da  je  ta  prag  števila  navideznih  delcev  odvisen  od  velikosti 
področja  za  katerega  se  izvaja  rekonstrukcija  in  velikosti  posameznih  celic  na  katere  je 
področje razdeljeno. V primeru padca števila navideznih delcev pod prag pa začenja kvaliteta 
rezultatov simulacij upadati zelo naglo.

Odvisnost  med  računsko  zmogljivostjo  računalniškega  modela  onesnaženja  ozračja  in 
številom  navideznih  delcev  uporabljenih  v  simulacijah  je  ugotovljena  eksperimentalno  z 
izvajanjem simulacij.  V simulacijah je bilo nekajkrat  rekonstruirano onesnaženje zraka na 
področju Šaleške doline z uporabo rezultatov merilnega eksperimenta.  Pridobljeni rezultati 
kažejo linearno odvisnost med številom uporabljenih navideznih delcev v simulaciji in časom 
izvajanja simulacije.

Za določitev minimalnega števila navideznih delcev v simulaciji, ki je potrebno za kvalitetno 
rekonstrukcijo onesnaženja zraka,  je izveden dodaten eksperiment.  V tem eksperimentu je 
vsak  rezultat  pridobljen  z  drugačnim številom navideznih  delcev  primerjan  z  referenčnih 
rezultatom. Primerjava je narejena z uporabo metod za vrednotenje rekonstruiranega polja 
talnih koncentracij in sicer s korelacijskim koeficientom, napako korena najmanjših kvadratov 
in metodo deleža odklona.

Uporaba metode rojenja (clustering) za zmanjšanje računske obremenitve predstavlja prvi 
prispevek, kjer se računska obremenitev zmanjšuje na račun zmanjšanja števila navideznih 
delcev  v simulacijah.  S  tem je  potrjena  tudi  hipoteza,  da  se  računska  obremenitev  lahko 
zmanjša z uporabo metode rojenja. Na ta način je možno računsko kompleksnost zmanjšati 
vsaj za 50%.

Samo delno pa je potrjena hipoteza, da bo imela uporaba metode rojenja minimalen vpliv na 
kvaliteto rezultatov. Hipoteza drži samo dokler je zmanjšano število navideznih delcev večje 
od  določenega  praga  števila  navideznih  delcev.  Ta  pomanjkljivost  je  bila  odpravljena  z 
uporabo druge metode za določitev prostorske koncentracije na podlagi jeder porazdelitvenih 
gostot.

Za zagotavljanje zadovoljivih rezultatov je potrebno metodi rojenja nastaviti štiri parametre: 
število rojev, velikost rojev, največjo dovoljeno maso navideznih delcev in največje dovoljeno 
število  navideznih  delcev.  Pri  uporabi  metode  pa  je  potrebno  upoštevati  še  naslednje 
zaključke in priporočila:

● Metodo rojenja je priporočeno uporabljati za zmanjševanje samo v primerih relativno 
velikega  števila  navideznih  delcev.  To so primeri,  ko nastopijo različne  ekstremne 
situacije kot so na primer: izpad čistilne naprave na odvodnikih dimnih plinov, ko se 
emisije  povišajo  za  razred  velikosti  ali  pa  v  primerih,  ko  nastane  zelo  stabilna 
meteorološka situacija in se začne akumulacija onesnaženja na izbranem področju.

● Uporaba metode rojenja za močno zmanjšanje števila navideznih delcev je neprimerna 
za praktično uporabo, ker lahko povzroči drastično zmanjšanje kvalitete rezultatov. Za 
ohranitev  kvalitetnih  rezultatov  je  priporočeno  samo  rahlo  zmanjšanje.  Primerjava 
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rezultatov z zmanjšanim številom navideznih delcev z originalnimi je pokazala,  da 
zmanjševanje lahko povzroča manj enakomerno porazdelitev koncentracij, kar je enak 
rezultat kot v primeru uporabe premajhnega števila navideznih delcev.

Prilagoditev metode za določitev prostorske koncentracije na podlagi jeder porazdelitvenih  
gostot je predlagana za nadomestitev metode za določitev prostorske koncentracije na podlagi 
štetja delcev v prostorskem elementu. Prilagojena metoda je namenjena izboljšanju rezultatov 
slabše kakovosti  v  primerih,  ko je  v  simulacijah  uporabljeno prenizko število  navideznih 
delcev.  Ocena  zmogljivosti  predlagane  metode  in  odvisnost  od  vhodnih  parametrov  je 
narejena na podlagi rezultatov simulacijskih eksperimentov.

V simulacijskih eksperimentih opravljenih za področje Šaleške doline so določeni tudi trije 
optimalni  vhodni  parametri  razpršitve  navideznih  delcev  σx,  σy in σz glede  na  vrednost 
korelacijskega koeficienta:  odlična  korelacija,  srednje  dobra korelacija  in  slaba korelacija. 
Primerjava rezultatov simulacij pridobljenih s temi tremi različnimi optimalni vhodi pokaže, 
da  so  najbolj  optimalni  vhodni  parametri  tisti,  ki  so  bili  pridobljeni  v  primeru  odlične 
korelacije.

Končna primerjava rezultatov kaže na relativno močno izboljšanje korelacijskega koeficienta 
in napake korena najmanjših kvadratov. Vrednotenje z metodo deleža odklona pa kaže, da 
praktično  ni  prišlo  do  nobenega  podcenjevanja  ali  precenjevanja  koncentracij,  kar  je  še 
posebej  pomembno  za  rekonstrukcije  onesnaževanja  zraka  za  daljše  časovno obdobje.  Ta 
končna  primerjava  tudi  potrjuje  hipotezo,  da  je  z  uporabo  metode  na  podlagi  jeder 
porazdelitvenih gostot možno izboljšati rezultate tudi v primerih, ko je kvaliteta rezultatov 
slabša  zaradi  relativno  nizkega  števila  uporabljenih  navideznih  delcev.  Poleg  tega  pa  je 
končna primerjava potrdila hipotezo, da je z uporabo metode jedra gostote porazdelitve vedno 
možno izboljšati kvaliteto rezultatov.

Regulacija  Lagrange-vega  disperzijskega  modela  delcev,  ki  temelji  na  osnovi  umetnih  
nevronskih mrež, je predlagana za vodenje parametra gostote navideznih delcev in parametra 
rojenja. Pravilo vodenja je naslednje: 

● V primeru velike emisije se gostota navideznih delcev zmanjša in v primeru nizke 
emisije se gostota navideznih delcev poveča do te mere, da skupno število navideznih 
delcev med simulacijo ne preseže vnaprej določene meje.

● V posebnih situacijah, ko je uporabljena najmanjša gostota navideznih delcev in se 
pričakuje, da bo skupno število navideznih delcev še vedno preseglo določeno mejo, 
pa se aktivira rojenje, ki dodatno zmanjša število navideznih delcev, ki se že nahajajo 
na področju rekonstrukcije. To je zelo pomembno za situacije, ko nastopijo izjemni 
primeri onesnaženja zraka, kot je na primer brezvetrje, ki traja daljše časovno obdobje 
in povzroča akumulacijo onesnaženja v domeni.

Predstavljeno metodo dejansko sestavljata dva osnovna koraka:
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● V  prvem  koraku  je  izvedena  predikcija  odstotka  izgubljenih  navideznih  delcev  z 
umetno  nevronsko  mrežo.  Vhode  v  umetno  nevronsko  mrežo  predstavljajo 
meteorološki  in  emisijski  parametri  ter  trenutna  situacija  onesnaženja  zraka  v 
področju.

● V drugem koraku pa se določita parametra gostote navideznih delcev in rojenja na 
osnovi preproste odločitvene metode.

Uporaba metode na osnovi umetnih nevronskih mrež potrjuje hipotezo, da lahko metoda za 
ugotavljanje računsko kompleksnih situacij temelji na osnovi modela črne skrinjice.

Integracija vseh treh predstavljenih metod v razširjen Lagrange-ev model delcev prestavlja 
zadnjo  izboljšavo.  Vzajemna  uporaba  predstavljenih  metod  omogoča  pridobitev  najbolj 
optimalnih rezultatov glede na razpoložljive računske zmogljivosti.

Integracija  je  izvedena  tudi  v  obliki  razširjenega  računalniškega  Lagrange-vega  modela 
delcev,  ki  je  vrednoten  na  dveh  področjih  za  katera  so  na  voljo  podatki  iz  merilnih 
eksperimentov:

● Šaleška  dolina  –  rezultati  vrednotenja  kažejo  da  sta  porabljen  računalniški  čas  in 
število navideznih delcev med simulacijskim tekom praktično konstantna pri uporabi 
razširjenega računalniškega Lagrange-vega modela delcev. Poleg tega pa se kaže tudi 
izboljšanje korelacijskega koeficienta in napake korena najmanjših kvadratov ter ni 
zaznati nobenih podcenjevanj ali precenjevanj glede na vrednotenje z metodo deleža 
odklona.

● Zasavje  –  vred  je  narejena  za  potrditev  hipoteze,  da  je  možna  splošna  uporaba 
predlaganih metod na različno razgibanih terenih. Rezultati vrednotenja so praktično 
enaki  rezultatom  vrednotenja  na  Šaleški  dolini.  Pridobljene  izkušnje  kažejo,  da 
uporaba  razširjene  metodologije  modeliranja  onesnaževanja  zraka  ni  priporočljiva 
samo za primere, kjer so računske zmogljivosti omejene, ampak tudi v splošnem za 
bolj  optimalno  izkoriščanje  računskih  zmogljivosti.  V  splošnem  je  z  uporabo 
predstavljenih  metod  računska  zmogljivost  bolj  uravnoteženo  porazdeljena  med 
rekonstrukcije posameznih epizod onesnaženja zraka

S  tem  je  potrjena  hipoteza,  da  nadzor  števila  navideznih  delcev  v  simulacijah  ohranja 
kvaliteto rezultatov na konstantnem nivoju. Poleg tega pa rezultati obeh vrednotenj potrjujejo 
tudi hipotezi, da je algoritem na osnovi umetnih nevronski mrež zanesljiv in učinkovit ter da 
je s tem cilj zmanjšanja računske kompleksnosti v simulacijah uspešno dosežen.

Ključne  besede: metodologija  modeliranja  onesnaževanja  ozračja,  model  onesnaževanja  
ozračja,   Lagrange-ev  model  delcev  razširjanja  onesnaženja,  metoda  rojenja,  določitev  
prostorske koncentracije na podlagi jeder porazdelitvenih gostot, umetne nevronske mreže,  
vrednotenje modela onesnaževanja ozračja

8



1.Introduction

1. INTRODUCTION

1.1. General introduction
The aim of an air-pollution model is to simulate the dispersion of air pollutants in the ambient 
atmosphere, and the results of the simulations are used to study the impact of the air pollution 
from certain sources on the surrounding environment. The outcomes of the studies can be 
used:

● by governmental agencies to protect and manage the quality of the ambient air1,2;

● in the engineering processes of new air-pollution facilities to reduce the impact on the 
environment by designing optimal stacks and determining the best location3,4;

● by local communities or states to protect5 and, in the worst case, also to evacuate the 
population most effectively during severe accidents involving air-borne releases6.

The development  of air-pollution  modelling techniques began at  the beginning of the 20th 

century. Perhaps the oldest and most commonly used model type is the Gaussian model7, first 
described in 1936, and subsequently updated to its more generally known form by Sutton8 in 
1947. The possibility of reconstructing air pollution with the Gaussian model is limited to the 
situation  of  stable  meteorological  conditions  over  simple  terrain.  However,  the  rapid 
development of microcomputers since the 1980s has given rise to the development of other 
air-pollution  modelling  techniques.  From among these models  the air-pollution  modelling 
technique based on the Lagrangian particle-dispersion model has become the best and most 
frequently used air-pollution  reconstruction technique for use over complex terrain on the 
local, regional and global scales9,10. Its intense development started in the early 1980s and it is 
known to be a computationally very demanding method. At the beginning, in the early 1990s, 
the method was used only on small, complex domains, where only one or a few simple air-
pollution  sources  were  present.  It  was  limited  to  research  use,  because  of  required 
computational power, which was enormous for those times.

Air-pollution modelling based on the Lagrangian particle dispersion has evolved rapidly over 
the past ten years,  and it has developed from being just a research tool to being used for 
operational regulatory purposes11,12,13. All the improvements and adjustments were carefully 
developed and evaluated on a number of field-data sets from simple to complex terrains11,14,15,

16,17,18,19,20,21,22,23,24,25. In the past ten years significant progress was also achieved in the computer 
industry,  thus  making  possible  the  use  of  Lagrangian  particle-modelling  techniques  on 
personal computers. Simple problems that could be simulated only for a short period of time 
several years ago on dedicated workstations (super computers), can these days be in a much 
more complex form and simulated for a longer period of time on personal computers.  In 
recent  years  the  general  opinion  is  that  the  technique  does  not  need  any  computational 
improvements because the time-consuming problems will be solved by the development of 
computers  with  greater  processing  power.  This  is  definitely  a  solution  for  today's 
requirements. Unfortunately, however, future requirements are expanding rapidly: the areas of 
interest are becoming wider, the resolution demands are increasing, the accuracies must be 
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better, a lower sensitivity is demanded, longer periods of time must be reconstructed, and the 
complexity  and  the  number  of  sources  and  species  are  increasing,  etc.  These  increasing 
requirements  bring  us  back  to  the  initial  problem  of  the  Lagrangian  particle-modelling 
technique, which is extremely expensive from the computational point of view. 

In this thesis the air-pollution modelling methodology based on Lagrangian particle dispersion 
is presented. Its limit capacities, properties and performance are determined and evaluated for 
a  complex  terrain.  Based  on  these  results  several  methods  are  suggested  to  improve  the 
computational performance. The new methods are developed in a manner such that the basic 
physical  properties  of  the  Lagrangian  particle-dispersion model  are  not  modified.  All  the 
parameters and methods of the model are preserved in their original form and there are no 
adjustments of the well tuned parameters. Methods to determine and simplify computationally 
expensive  situations  are  developed  and  integrated  into  the  existing  Lagrangian  particle-
dispersion model to improve the computational performance in order to optimally exploit the 
available computational capabilities. 

1.2. Definition of the research problems
Air pollution is a comprehensive term. It applies to the spreading of any chemical, physical or 
biological  agent  that  modifies  the  natural  properties  of  the  atmosphere.  Atmospheric 
dispersion models are used to present how pollutants in the ambient atmosphere disperse and, 
in some cases, how they react in the atmosphere with other atmospheric compounds. They are 
important to governmental agencies whose task is protecting and managing the quality of the 
ambient air. Several different air-pollution modelling approaches and techniques can be used 
to reconstruct the state of the atmosphere around the air-pollution sources. 

The time evolution of the air-pollution  dispersion of the emitted pollutant depends on the 
wind speed and direction, the turbulence, temperature, humidity, air pressure, solar radiation 
and  precipitations  as  well  as  on  the  terrain's  complexity.  The  meteorological  parameters 
(variables) are usually four-dimensional, which means that they depend on space and time. 
The terrain's complexity, especially the biocoenosisa, does not usually change so rapidly with 
time as the meteorological parameters,  but it  must also be considered as four-dimensional 
(4D) because it changes significantly during the seasons of year. Reconstruction of the air-
pollution  evolution  is,  in  principal,  understanding  the  meteorological  conditions  and  the 
terrain's complexity. While some of these conditions can cause high concentrations of an air 
pollutant near the surface for an extended period of time, some other conditions can decrease 
the concentration levels much more rapidly. 

Most commonly used atmospheric dispersion modelling techniques are based on the Gaussian 
plume model26,27, the Lagrangian particle-dispersion model9,12 and the Eulerian28,29 transport 
model. Approaches differ in several parameters, like scale (local, regional, global), grid size 
(from  10  m  to  200  km),  resolution,  source  type  (line,  point,  area,  volume),  pollutants, 
statistical elaboration time interval (1 hour, 1 day, etc.), topography (simple, complex) and 
others. 

a A group of interacting animals and/or plants that form a particular ecosystem
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Air-pollution models based on Lagrangian particle dispersion9,10 are generally accepted as the 
most powerful tools to model the dispersion of atmospheric pollutants in the boundary layer 
over the local scale domain. Their quality has continually improved over the past 10 years. 
Most of the improvements gradually increased the complexity of the models. This increased 
complexity  leads  to  their  main  disadvantage: air-pollution  reconstruction  based  on  the 
Lagrangian  particle-dispersion  model  can  become  computationally  very  expensive.  This 
disadvantage gets emphasized when complex terrain conditions are present. The time used for 
each air-pollution  episode reconstruction is critical when used in on-line systems as well as 
for  off-line  systems.  Both  types  of  system,  the  on-line  and  the  off-line,  are  of  specific 
importance  to  our  work.  For  an  illustration  of  the  problems  of  each  type  of  system two 
examples are given:

● A domain is 20 km x 20 km wide and 2000 m high. It is split into vertical 20 layers 
and each layer consists of 100x100 cells. The size of each cell is 200 m x 200 m x 
100m. The result of the reconstruction is concentration in each cell  of the domain. 
There is one source of air pollution (i.e., the stack from the power plant) from which 
only one species (i.e., SO2) is emitted. For the reconstruction of the air pollution over a 
period of one year at least 50 days of simulation time is spent on a high-performance 
personal computer (i.e., AMD Athlon 64 X2 Dual Core Processor 3800+, 2.01 GHz, 2 
GB of RAM). Usually, this much time is not available in practice and results with a 
lower resolution are used, which still satisfy the requirements. To accomplish this task, 
sometimes  clusters  of  computers  are  also  used,  but  the  requirements  (i.e.,  higher 
resolution, larger domains,  etc.) are increasing faster.  There is an effort to use air-
pollution  models  based  on  Lagrangian  particle  dispersion  for  long-term  statistical 
elaborations when air pollution is simulated for a very long interval of time (i.e., the 
simulation of air pollution for a one-year  time interval with a time step of half an 
hour). 

● A  lot  of  effort  is  also  invested  in  the  use  of air-pollution  models  based  on  the 
Lagrangian  particle  dispersion  in  mobile  systems.  These  mobile  systems  contain 
limited computational means. In addition to the hardware configuration there is also an 
energy limitation that limits the computational performance. Such mobile systems are 
used by mobile groups of administration for civil protection and disaster relief in the 
case of accidental air-pollution  releases. As an illustration, the reconstruction of air 
pollution on a low-power mobile system can last for more than half an hour for the 
example that has been given in the previous paragraph. For the practice where the time 
between  measurements  is  half  an  hour  the air-pollution  reconstruction  is  not  fast 
enough to be declared as an on-line system.

The purpose of this thesis is to determine expensive procedures in an air-pollution  model 
based on Lagrangian particle dispersion and to consider some suggestions for how to improve 
them.  The  need  for  improvements  is  important  to  accomplish  the  efforts  that  have  been 
presented  because  the  improvements  of  the  computer  performance  cannot  match  the 
increasing requirements.
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1.3. Purpose of the research and the working hypothesis
Several  goals  and  hypotheses  are  defined  in  the  following two sections  to  overcome the 
presented research problems.

1.3.1. Goals of the research
The  main  goals  of  the  research,  considering  the  improvement  of  the  performance  of  the 
Lagrangian particle-dispersion model for use over a complex terrain are:

1. the computational complexity in simulations is going to be reduced,
2. efficient clustering algorithms to reduce the number of particles in the simulation is 

going to be applied,
3. an algorithm to determine when clustering of the particles is needed in the simulation 

cycle is going to be proposed,
4. an algorithm to control the number of particles used in the simulation to ensure a good 

result is going to be proposed,
5. a method to improve the results of the simulations when a relatively small number of 

particles are used is going to be proposed.

1.3.2. Hypotheses
The hypotheses for the improvement of the performance of the Lagrangian particle-dispersion 
model for use over complex terrain are:

1. the  computational  expenses  will  be  reduced  with  use  of  clustering  algorithms  to 
decrease the number of particles in the simulation,

2. the use of clustering algorithms to decrease the number of particles in the simulation 
will have a minor influence on the quality of the results,

3. the algorithm to determine situations when the particle number should be reduced will 
be based on a black-box modelling technique,

4. the algorithm to determine situations when the particle number should be reduced will 
be efficient and reliable,

5. the computational expenses of the simulation with a clustering algorithm will be much 
lower than the computational expenses of the original simulation,

6. the quality of the results depends on the number of particles used in the simulations,
7. controlling the number of particles in the simulation preserves the quality of the results 

at a constant level,
8. the poor quality of simulation results in the situations when a relatively small number 

of  particles  are  used  can  be  improved  by  using  the  kernel  density  concentration 
estimation method

9. the kernel density concentration estimation method can always be used to improve the 
quality of the results.
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1.4. Theoretical background

1.4.1. Air pollution
Air pollution is a comprehensive term. It applies to any chemical, physical or biological agent 
that modifies the natural composition of the atmosphere. It is the contamination of air by the 
discharging of harmful substances. Air pollution can cause health problems and it can also 
damage  the  environment  and  property30.  Air  pollutants  can  be  classified  into  two  major 
groups:

● primary  pollutants  :  are  directly  released  from  a  given  source  (such  as  carbon 
monoxide  CO,  sulphur  dioxide  SO2 or  nitrogen  oxides  NOx,  all  of  which  are  by-
products of combustion),

● secondary pollutants  : are formed in the atmosphere by subsequent chemical reactions 
involving direct  release pollutants  (a typical  example is  the formation  of ozone in 
photochemical smog).

Many researchers  and scientists  are  using different  approaches  to  model  air  pollution.  In 
general, air-pollution modelling can be classified in two major groups31, 32:

● atmospheric  dispersion  models  :  include  those  models  that  are  attempting  to 
reconstruct actual physical processes. This group will be the object of the research and 
it will be presented in detail in the following paragraphs. It consists mostly of plume-
rise models,  Gaussian models, Eulerian models, semi-empirical  models, Lagrangian 
models  and  chemical  models.  Illustration  of  a  reconstruction  of  an  air  pollution 
dispersion  using  Lagrangian-particle  atmospheric  dispersion  model  is  presented  in 
Figure 1.

● forecasting   air-pollution   models  : include those models that are attempting to forecast 
air-pollution concentrations at some precisely defined locations on an observation area 
for some time in future. In general, these types of models are not usually necessarily 
based on a dispersion mechanism. The group of forecasting models consists mostly of 
receptor  models  and  grey-box  models.  Illustration  of  an  ozone  forecasting air-
pollution model based on artificial neural network is presented in Figure 2.

13



1.Introduction

Figure 1: Illustration of a reconstruction of an air pollution dispersion using Lagrangian-
particle atmospheric dispersion model

Figure 2: Illustration of an ozone forecasting air-pollution model based on artificial neural  
network at the position of air pollution monitoring station located in Nova Gorica

1.4.2. Air-pollution dispersion
Air-pollution atmospheric dispersion (spreading) in the atmosphere is a complex process. A 
number of different approaches are used to model it. Usually, simulations are done to show 
how pollutants in the ambient atmosphere disperse and, in some cases, how they react in the 
atmosphere. The concentrations of air pollutants in the atmosphere over a modelling domain 
are reconstructed according to information about emissions and the meteorological situation.

A developed methodology for analysing and predicting  air  pollution  in  the atmosphere is 
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known by the term atmospheric dispersion modelling. It is based on a variety of mathematical 
models that simulate how air pollutants disperse in the atmosphere. 

1.4.3. Air-pollution dispersion models
Air-pollution dispersion models are also known as air-dispersion models, air-quality models, 
and  atmospheric  dispersion  models.  They are  used  for  simulations  of  the  process  of  air-
pollutants dispersion in the ambient atmosphere. Simulations are performed with computer 
programs that solve the mathematical  equations and algorithms that simulate  the pollutant 
dispersion.  The  dispersion  models  are  used  to  estimate  or  to  predict  the  downwind 
concentration of the air pollutants emitted from sources such as industrial plants and vehicular 
traffic.  Such models  are important  to governmental  agencies whose task is to protect  and 
manage the ambient air quality33. 

Air-pollution dispersion models require the input of data that includes:

● Meteorological  conditions  :  such  as  wind  speed  and  direction,  the  amount  of 
atmospheric turbulence (as characterized by what is called the "stability"), the ambient 
air temperature and the height of any inversion aloft that may be present.

● Emissions  parameters  :  such  as  source  location  and  height,  source  exhaust  stack 
diameter and exit velocity, exit temperature and mass flow rate.

● Topography description   of the area of interest where, besides the three-dimensional 
topography data of the domain, also two-dimensional land-use data of the domain is 
required.

● The  location,  height  and  width  of  any  obstructions  :  (such  as  buildings  or  other 
structures) in the path of the emitted gaseous plume.

1.4.4. The classification of air-pollution dispersion models 
The European Topic Centre on Air and Climate Change (ETC/ACC) classifies air-pollution 
dispersion  models  by  their  properties34,  while  the  U.S.  Environmental  Protection  Agency 
(EPA)  classifies  models  into  four  categories27:  preferred  and  recommended  models, 
alternative  models,  screening  tools  and  related  programs.  Because  the  ETC/ACC 
categorization is based on model properties, some selected model properties will be described 
according to the ETC/AAC categories:

● air-pollution models  :  Gaussian models, Eulerian models, Lagrangian models, plume-
rise models, chemical modules, receptor models, stochastic models or semi-empirical 
models.

● area  of  interest  :  local  (up  to  30  km),  local-to-regional  (30-300  km),  regional-to-
continental (300-3000 km) or global (hemispheric to global scale).

● release type  :  a continuous or accidental  release is defined as any spilling,  leaking, 
pumping,  pouring,  emitting,  emptying,  discharging,  injecting,  escaping,  leaching, 
dumping,  or  disposing  into  the  environment  of  a  hazardous  or  toxic  chemical  or 
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extremely  hazardous  substance  or  any  component  not  naturally  present  in  the 
atmosphere. 

● emission  sources  :  a  source  is  defined  as  any place  or  object  where  pollutants  are 
emitted from. A source can be a power plant, a factory, a dry-cleaning business, a gas 
station or a farm. Cars, trucks and other motor vehicles as well as consumer products 
and machines used in industry are also designated as sources. Sources fixed in space 
are referred to as stationary sources, whereas moving sources, such as cars or planes, 
are called mobile sources. Sources can also be classified more specifically: emissions 
from the  stack  of  a  plant  (point  source),  traffic  emissions  (line  source),  area  and 
volume sources (waste dump). Multiple sources can be treated individually.

● terrain  : An ideal dispersion, as described by the Gaussian plume dispersion model, 
rarely  occurs  in  real  applications.  The  formation  of  extraordinary  meteorological 
phenomena will usually influence the dispersion of pollutant emissions. In some cases 
of negligible deviations from the ideal there is no need to require the use of physical 
modelling  approaches.  But  when  the  formation  of  extraordinary  meteorological 
phenomena has a major influence on the dispersion of pollutants the use of physical 
modelling  approaches  should  be  invoked.  For  modelling  in  such  environmental 
conditions  the term  complex terrain is used.  Some attempts  at  defining a complex 
terrain  have  been  made  in  the  context  of  a  regulatory  framework35,36 that  will  be 
described in the next subsection 1.4.5 Complex terrain. 

1.4.5. Complex terrain
When taking a view of the world as a globe, the orography of the earth is revealed as almost 
imperceptible bulges and depressions. The most noticeable bulges that represent the highest 
mountain barriers only extend the radius of the earth by about 0.1% from its sea-level value,36 

while depressions are even less noticeable. In general it is the presence of mountains and hills 
with their endless varieties of slopes, passes and valleys  that makes the conditions for the 
formation  of  countless  extraordinary  meteorological  phenomena.  For  these  kinds  of 
environmental  situations  the  term  complex  terrain is  used  to  define  the  meteorological 
conditions that appear in the process of modelling the dispersion of pollutants. 

The term is the opposite of simple terrain, which defines the flat or very slightly rough terrain 
with the condition of a strong, stable wind speed37,38. When these conditions are not met, the 
term complex terrain is used.

Some attempts to define a complex terrain have been made in the context of a regulatory 
framework. Using the definition of 35, a site is considered to be a complex terrain if:

1. The pollutant release height is less than two times the maximum terrain height. The 
maximum terrain height in this case is defined as the difference between the highest 
level (including tree tops) and the lowest level within the larger of twenty times the 
stack height or 1 km from the source complex.

2. In addition, the slope of the terrain represented by the gradient of the terrain height 
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with distance from the source complex must be greater than 1/5.

Similarly, there are criteria that distinguish when building turbulence may influence the plume 
dispersion35. Some examples are:

1. The dispersion of material released on or near a building or structure is assumed to be 
influenced by structure-induced turbulence if the release height is less than two times 
the building height.

2. If the release height is less than two times the building height, but is equal to or greater 
than ten times the building width,  the pollutant  emission  will  be considered to  be 
outside the building-induced turbulence.

3. For  a  source  upwind  of  a  building,  the  influence  of  the  structure  on  the  plume 
dispersion will extend upwind a distance of 1.3 times the building height.

Using another definition from that EPA39, that was made for the purposes of meteorological 
monitoring  guidance  for  regulatory  modelling  applications,  the  term  complex  terrain is 
intended to  mean any site  where terrain  effects  on the meteorological  conditions  may be 
significant.  Terrain  effects  include  aerodynamic  wakes,  density-driven  slope  flows, 
channelling, flow accelerations over the crest of terrain features, etc. These flows primarily 
affect  wind-speed  and  wind-direction  measurements;  however,  temperature  and  humidity 
measurements may also be affected. The definition of significance depends on the application: 
for regulatory dispersion modelling applications, the significance is determined by comparing 
the stack-top height and/or the estimated plume height with the terrain height:

● the terrain that is below the stack-top is classified as simple terrain,

● the  terrain  between  the  stack-top  height  and  the  plume  height  is  classified  as 
intermediate terrain,

● the terrain that is above the plume height is classified as complex terrain.

The perturbations to meteorological variables caused by rugged terrain are discussed in detail 
in  the  meteorological  monograph  by  Blumen  et  al.36.There  is  also  the  description  of  the 
pollution problems that are usually thought to be more serious in complex terrain because of 
the decrease in  the wind speed and the possibility of the plume's  impact  on high terrain. 
Despite  some  exceptions  where air-pollution  problems  are  mitigated  (due  to  increased 
turbulence intensities, no decrease of the plume rise due to strong-wind conditions and the 
deflection of plumes around obstacles), there are some certain air-pollution situations that can 
lead to increased concentrations in complex terrain36:

● the plume impingement on high terrain, illustrated in Figure 3,

● the pooling in valleys, illustrated in Figure 4,

● the drainage toward population centres, illustrated in Figure 5

● the persistence due to channelling, illustrated in Figure 6.
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Figure 3: Plume impingement on high 
terrain36 Figure 4: Pooling in valleys36

Figure 5: Drainage toward population  
centres36 Figure 6: Persistence due to channelling36
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1.4.6. The Lagrangian particle-dispersion model
The Lagrangian approach is based on a description of the flow path of the fluid elements. 
They include all the models in which plumes are split into elements, such as segments, puffs 
or particles. The point-like particles are representing a trace species. de Baas et al. illustrated40 

that most particle modelling studies of air-pollution dispersion are numerical solutions of the 
Lagevin stochastic differential equation41 (1.1).

d vp t 
dt

=−T r p , t ⋅v pt u pt  (1.1)

d r pt 
dt

=v pt  (1.2)

r pt ∈Rn            ...particle position vector
v pt ∈Rn            ...particle velocity vector
T r p , t∈Rn×n    ...second-order tensor of Lagrangian time scales of speed components
u p∈Rn                ...vector of random-speed fluctuations, also called random forcing 

The use of this equation for Lagrangian air-pollution  dispersion21 is described in detail  by 
Thomson’s  theory  developed  in  1984  and  the  one  derived  from  a  subsequent  work 
accomplished  in  1987  in  his  papers23,24.  According  to  this  theory  point-like  particles  in 
computer  simulations  are  tracked on their  path  through the  atmosphere  with  this  type  of 
model  according  to  discrete  equations  (1.3)  and  (1.4)  for  each  particle.  Discretization  of 
equation (1.1) that is necessary for computer simulation is described in detail in papers by 
Thomson23,24 and Brusasca21.

v t=A r ,⋅v t b  r , (1.3)

r t=r t  [ V r v t ] (1.4)

r t ∈Rn      ...discrete particle position vector
v t∈Rn      ...discrete particle velocity vector
                 ...time step

The principle is illustrated in Figure 7. The particles are moved according to a reconstructed 
mean wind field V r  and are additionally subjected to the influence of turbulence, where 

A r , is a function determined by the atmospheric turbulence and b r , is a velocity 
randomly chosen with each time step. The turbulence effect is modelled by adding a random 
velocity to the mean motion for each particle. The random velocity derived by the Markov 
process is a function of the turbulence intensity. The concentrations of a pollutant in given 
sampling volumes are calculated by counting the particles. 
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Figure 7: Lagrangian particle model principle

The main advantages of the model are12,21: 

● the  model's  concept  largely  reflects  the  natural  phenomena  involved  in  turbulent 
diffusion,

● it eliminates numerical diffusionb,
● it always yields non-negative mass densities and is mass-conserving,
● it  can be applied to any source geometry desired for any temporal  behaviour of a 

spatially variable source,
● it can accommodate the sedimentation of heavy dust and its re-suspension,
● it can accommodate physical and linear chemical transformation processes. 

Lagrangian models perform especially very well on complex terrain on the local37, regional 
and continental42 scales.  A three-dimensional  (3D) presentation  of the simulation result  is 
shown in Figure 8, where the air-pollution situation is depicted using virtual particles.

b Numerical  diffusion  is  an unwanted diffusion  that  occurs  during computer  simulations  of  continuous  systems.  Time  and space  in 
Eulerian equations is divided into a discrete grid. Continuous differential equations of motion are discretized into the finite-difference 
equation. In general the discrete equations are more diffusive than the original differential equations. The difference that occurs between 
the real system and the simulation depends on the system that is simulated and the type of discretization that is used12, 21.
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Figure 8: Lagrangian particle model simulation result

1.4.7. Black-box modelling techniques
Several  improvements  of  the  Lagrangian  particle  model  are  going  to  be proposed in  this 
thesis. Because the improvements are also based on feedforward multilayer neural networks 
some basic theory of black-box modelling techniques is given in the following paragraphs.

System identification  is  used as a general  term for describing the mathematical  tools  and 
methods that are used to make dynamic models from measured data. In this context a dynamic 
mathematical model is a mathematical description of the input-output behaviour caused by the 
dynamics of a system or process. The main issue in system identification43,44,45 is finding a 
suitable model structure, within which a good model can be made. Prior knowledge and a 
physical insight about the system should be utilized when selecting the model structure. We 
distinguish  between  three  levels  of  prior  knowledge,  which  have  been  colour-coded  as 
follows43:

● White-box models, also known as first-principles models, are used in the case when it 
has been possible to construct a model entirely from prior knowledge and physical 
insight; the model is perfectly known.

● Grey-box  models  are  used  when  some  physical  insight  is  available,  but  several 
parameters  remain  to  be  determined  from  the  observed  data.  Two  sub-cases  are 
considered:

○ Physical modelling: a model structure can be built on physical grounds, and has a 
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certain number of parameters to be estimated from data.

○ Semi-physical modelling: a physical insight is used to suggest certain non-linear 
combinations  of  the  measured  data  signal.  These  signals  are  then  subjected  to 
model structures of a black-box character.

● Black-box  models are  used  when no physical  insight  is  available  or  used,  but  the 
chosen  model  structure  belongs  to  families  that  are  known  to  have  good 
approximation abilities.

A non-linear black-box structure for a dynamic system is a model structure that can describe 
virtually  any non-linear  dynamics43,44,45.  The  area  is  quite  diverse  and covers  topics  from 
mathematical approximation theory, via estimation theory and non-parametric regression, to 
algorithms  and  concepts  like  neural  networks,  wavelets  and  fuzzy  models.  The  system 
identification  problem  consists  of  observed  inputs  u(t) and  outputs  y(t) from a  dynamic 
system,as described in equations (1.5,1.6):

ut−1=[u 1 , u 2 , ... , u t−1]; u∈Rn (1.5)

y t−1=[ y 1 , y 2 , ... , yt−1]; y∈Rn (1.6)

The goal of a system identification is to find a relationship between past observations [ut-1,yt-1] 
and the future output p(t), as described in equation (1.7):

p t=g ut−1 , y t−1v t  (1.7)

If g(ut-1,yt-1) is considered as a good prediction of p(t), given past data, the goal is to reduce the 
additive term v(t) to as small a value as possible.

A very rich spectrum of possible model descriptions must be handled and nothing should be 
excluded  when non-linear  black-box identification  is  used.  Some  of  the  possibilities  and 
limitations are discussed in the paper by Sjöberg et al.43 This paper also has a companion 
paper by Juditsky et al.,46 which complements the material with more theoretical aspects and 
provides a more mathematically comprehensive treatment.

Feedforward multilayer perceptron neural networks
Artificial neural networks are selected for the proposed improvements because it was proven 
by Hornik et al.  that  multilayer  feedforward networks are universal approximators47. They 
have become a useful and efficient tool,  in the past ten years,  for establishing forecasting 
models in the field of air pollution. Many authors reported the successful forecasting of air 
pollution using artificial neural networks in recent years. An overview of applications is given 
by Gardner and Dorling48. Other examples of the use of black-box modelling techniques were 
presented in the paper by Grašič et al49.  In the research a perceptron neural-network-based 
model and a Gaussian process prior model for ozone-concentration forecasting for the city of 
Nova Gorica was  developed  and  evaluated.  The  methods  of  input  determination  and the 
selection of data for learning the model training process are the most crucial  steps in the 
modeling techniques based on neural networks31,32,50,49,51.
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Artificial neural networks are very often used for system identification and control because of 
their ability to learn nonlinear relationships. An introduction to artificial neural networks and 
their use for system identification and control is presented in the book by Kocijan52. In the 
book a summarized systematic classification of neural-network-based control is given with 
the illustrative example of the predictive functional control of a simple mathematical model 
where  the  process  is  described  by  a  nonlinear  differential  equation.  The  summarized 
classification is based on the paper by Agarwal53 and on the book by Nørgaard et al.54.

An artificial neural network is a mathematical model, or its computational implementation, 
developed from observations of biological neural networks. It consists of an interconnected 
group of nodes known as artificial neurons, where each node is a relatively simple (non)linear 
system. It is often created as an adaptive system that changes its structure according to the 
external or internal information that flows through the network during the learning phase52,55,

56. 

The feedforward multilayer perceptron neural network was the first developed artificial neural 
network  that  was  proved  to  be  universal  approximator  by  Hornik  et  al.47:  the  universal 
approximation theorem for neural networks states that every non-linear continuous function 
that transforms intervals  of real numbers to some output intervals  of real numbers can be 
approximated arbitrarily closely by a multi-layer perceptron with just one hidden layer. The 
theorem holds only for restricted classes of non-linear activation functions like, for example, 
the sigmoid  functions.  In practice  the feedforward neural  networks  represent  a  non-linear 
statistical data modelling tool and can be used to model complex relationships between inputs 
and outputs52,55,56. 

Artificial neural networks have become a useful and efficient tool in the past ten years for 
establishing forecasting models in the field of air pollution. The successful forecasting of air 
pollution using artificial neural networks in recent years was reported by many authors49,51,57,58,

59,60,61,62,63. An extensive overview of the applications is presented in the paper by Gardner and 
Dorling48.

The feedforward multilayer perceptron neural network consists of an interconnected system of 
nodes  (artificial  neurons  or  perceptrons),  as  presented  in  Figure  952,55,56,64.  The  nodes  are 
distributed among several standard layers: one input layer, one or several hidden layers and 
one output layer. The number of nodes in the input layer is equal to the number of inputs, and 
the number of nodes in the output layer is equal to the number of outputs. The number of 
nodes in the hidden layers is arbitrary and is usually determined by the experiences gained in 
the learning process, or other methods and approaches. Nodes in a particular layer are not 
inter-connected.  Only the  outputs  of  a  particular  layer  are  connected  over  weights  to  the 
inputs of the next layer. The information flows in only one forward direction: from the input 
nodes, through the hidden nodes and finally to the output nodes. There are no loops or cycles 
in the feedforward neural network. 
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Figure 9: The structure of a feedforward multilayer perceptron neural network64

The node (artificial neuron or perceptron) is the basic element of the feedforward multilayer 
perceptron neural network52,55,56. It is presented in Figure 10. All the inputs into the node are 
multiplied by a particular weight wi,R. The sum of all the weighted inputs and the bias b value 
is  used  as  an  input  into  activation  function  f,  which  must  always  be  normalizable  and 
differentiable.  The use of  several  non-linear  activation  functions  in  feedforward  networks 
guaranties  the  approximation  of  a  non-linear  function  on  the  basis  of  the  universal 
approximation theorem. In contrast with the use of linear activation functions only models of 
linear processes can be achieved47. Log-sigmoid and tan-sigmoid activation functions are the 
most common choice in practice, while the linear activation function is usually used in the 
output layer. The functions are presented in Figure 11.

Figure 10: Node (artificial neuron or perceptron)64
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Figure 11: Most commonly used activation functions (right is log-sigmoid, middle is tan-
sigmoid and left in linear)

A determination of the number of nodes in a hidden layer is one of the basic steps in creating 
a successful model based on a feedforward neural network. This issue has been addressed in 
the literature65. The number of nodes are usually determined with an iterative optimization 
procedure based on a selected cost function as a part of the neural network learning process. A 
possible  alternative  empirical  approach to  determining  the  number  of  hidden nodes  is  as 
follows.  For  the  start,  an  equation  (1.8)  suggested  by  the  NeuroShell266 neural  networks 
modelling tool can be used for feedforward artificial neural networks with one hidden layer.

m= io
2

 p (1.8)

m  ...number of hidden nodes
i    ...number of inputs
o   ...number of outputs
p   ...number of learning patterns

The number of hidden nodes determined by equation (1.8) depends on the number of data 
from the learning set. Usually, the learning set is very large, where a number of redundant 
data exist, and the result is an overestimated number of hidden nodes. To achieve satisfactory 
results  the number of nodes must  be decreased experimentally or learning data  should be 
selected to avoid the redundant data. The presented equation is a relatively good and simple 
method to accomplish the goal, but during the modelling process we must be aware that the 
number of hidden nodes also depends on the complexity of the process and not only on the 
number of available data. In the case of too large a number of hidden nodes the feedforward 
neural network can overfit the learning data and fails to capture the true process that generates 
the data. Also with overfitting, the generalization ability of the feedforward neural network is 
smaller. In contrast, too strong a generalization combined with losing the ability to reproduce 
details can occur when not enough hidden nodes are used.

The feedforward neural network is ready for learning when its structure is determined; the 
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transfer function types,  the number of hidden layers,  the number of hidden nodes and the 
values of the weights and biases are initialized. In a learning process a set of learning data is 
used. Because each datum consists of an input-output pair the learning process is classified as 
a supervised learning paradigm. The learning data are introduced several times to the neural 
network during the learning process. At each iteration the weights and biases are changed 
until  a  certain  input-output  relation  is  accomplished.  Learning  the  process  is  actually  an 
iterative procedure, where the values of the weights and biases are set to minimize the cost 
function. A commonly used cost function is the mean-square error, which tries to minimize 
the average error between the network's  output  and the target  value over  all  the example 
outputs of data.

A variety of learning techniques is available for a feedforward neural network where a back-
propagation algorithm was the most commonly used32,31,52,64,67 in the past. A back-propagation 
algorithm  requires  that  the  activation  function  used  by  the  nodes  (artificial  neurons  or 
perceptrons) is differentiable. There are two parameters, a learning rate and a momentum, that 
must be set before the back-propagation learning begins. The learning rate defines the rate of 
considering  the  calculated  error  during  a  current  adjustment  of  the  weight.  And  the 
momentum defines the measure of considering previous weight adjustments in the current 
weight adjustment. The consequence of the small learning rate is an unnecessary waste of 
computational time and strong increase in the possibility that the algorithm will be caught in 
local minimum. In contrast, a large learning rate can cause oscillations. Oscillations can also 
occur when too large or too small a value of momentum is used, where small values can also 
slow down the learning process. 

A back-propagation algorithm is, for some practical purposes, often too slow. However, there 
are several high-performance algorithms that can converge from ten to one hundred times 
faster64.  According  to  Matlab's  Neural  Networks  Toolbox  these  faster  algorithms  can  be 
classified into two categories. The first category is based on heuristic techniques, which were 
developed from an analysis of the performance of the standard steepest descent algorithm. It 
consist  of  two  main  heuristic  techniques:  variable  learning  rate  back  propagation and 
resilient back propagation. The second category of fast algorithms uses standard numerical 
optimization techniques68. It consists of three types of numerical optimization techniques for 
neural  network  training:  conjugate  gradient  algorithms,  Quasi-Newton  algorithms and 
Levenberg-Marquardt algorithm.

For practical purposes a  Levenberg-Marquardt optimization technique is used in this thesis. 
The optimization techniques are not an issue of this thesis, and therefore the detailed original 
description of the Levenberg-Marquardt algorithm is given in the paper by Marquardt69. The 
application of the Levenberg-Marquardt technique to neural network training is described in 
the paper by Hagan and Menhaj70. 
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1.4.8. Clustering
Improvements  of  Lagrangian  particle  model  proposed  in  this  thesis  are  also  based  on 
clustering. Some basic theory of clustering is given in the following paragraphs for better 
illustration.

Clustering is defined as the classification of patterns into groups. The word patterns can be 
used to designate observations, data items or feature vectors, while the term groups denotes 
clusters. It has been used by researchers in many disciplines and addressed in many contexts 
because of its usefulness as one of the steps in exploratory data analysis71. A typical pattern-
clustering activity involves following the steps72 depicted in Figure 12.

Figure 12: Stages in clustering72

Pattern representation refers to the number of classes, the number of available patterns, and 
the  number,  type  and scale  of  the  features  available  to  the  clustering  algorithm.  Feature 
selection is the process of identifying the most effective subset of the original features to use 
in  clustering.  Feature  extraction is  the  use  of  one  or  more  transformations  of  the  input 
features to produce salient features. Feature extraction and/or selection are optionally included 
in  pattern  representation.  Either  or  both  of  these  techniques  can  be  used  to  obtain  an 
appropriate set of features in the process of clustering.

Pattern  proximity  or  inter-pattern  similarity  is  usually  measured  by  a  distance  function 
defined on pairs of patterns. A variety of distance measures are in use. Distance measures are 
discussed in detail in the paper by Jain et al.71.

Grouping  or  clustering  is  a  stage  that  can  be  performed  in  a  number  of  different  ways. 
Different clustering techniques are described in the paper by Jain et al.71. According to their 
taxonomy there is, at the top level, a distinction between hierarchical (hierarchical algorithms 
find  successive  clusters  using  previously  established  clusters)  and  partitional  (partitional 
algorithms  determine  all  the  clusters  at  once)  approaches.  Hierarchical  approaches  are 
additionally divided into two basic groups:  agglomerative ("bottom-up") or  divisive ("top-
down"). Agglomerative algorithms begin with each element as a separate cluster and merge 

27

Clusters

Pattern set
(n patterns)

Feature selection
or

Feature extraction
Output

assessment
Pattern

proximity
Clustering or

Grouping
Data

abstraction



1.Introduction

them into  successively  larger  clusters.  Divisive  algorithms  begin  with  the  whole  set  and 
proceed  to  divide  it  into  successively  smaller  clusters.  The  presented  taxonomy  is  also 
supplemented  by  a  discussion  of  cross-cutting  issues  that  may  affect  all  of  the  different 
approaches,  regardless  of their  placement  in the taxonomy as:  agglomerative vs.  divisive, 
monothetic vs. polythetic, hard vs. fuzzy, deterministic vs. stochastic and incremental vs. non-
incremental.

Data abstraction is  the process  of  creating  a simple  and compact  data-set  representation. 
Simplicity  can  be either  human-oriented  or  defined from the perspective  of  an automatic 
analysis. 

Output  assessment  refers  to  a  cluster-validity  analysis.  Often this  analysis  uses a specific 
criterion of optimality but these criteria are usually arrived at subjectively. Usually a rule71 is 
followed that validity assessments are objective and are performed to determine whether the 
output is meaningful. There are three types of validation studies:

● an external  assessment of  validity  compares  the recovered structure to an a  priori 
known structure,

● an internal validation tries to determine if the structure is intrinsically appropriate for 
the data,

● a relative test compares two structures and measures their relative merit.

The vast collection of available clustering algorithms in the literature can be very confusing 
for users wanting to select an algorithm suitable for the problem at hand. According to the 
directions in the paper by Jain et al.71 the following clustering methods are selected for the 
problem of the clustering of a large amount  of patterns  into a  relatively large number of 
clusters: K-MEANS clustering algorithm, and self-organizing map (SOM - Kohonen artificial 
neural  network).  Both methods  are  described in detail  in  the review by Jain et  al.71.  The 
concept of both methods differs significantly: while the K-MEANS clustering is performed 
only in the input space, the SOM clustering is performed by transforming the data from high-
dimensional  input  space  into  low-dimensional  map  space  (usually  two  dimensional). 
Summarized descriptions of both methods are presented in the following paragraphs.

K-MEANS clustering algorithm
K-MEANS is  one of the simplest  unsupervised learning  algorithms  used for  clustering  n 
patterns into  k  clusters73.  The algorithm follows a simple way to classify a given data set 
through a certain  a priori  fixed number of  k  clusters.  It  begins by arbitrarily setting up  k 
centroids  (cluster  centres),  one  for  each  cluster,  inside  the  hyper-volume  containing  the 
pattern set. When initial centroids are defined, each pattern is assigned to the closest centroid 
(cluster centre). For each obtained cluster new centroids are recalculated using the current 
cluster memberships. After that each pattern is again assigned to the newly obtained closest 
centroid  (cluster  centre).  This  procedure  of  assigning  the  patterns  to  centroids  and 
recalculating new centroids is repeated until a convergence criterion is met. There are two 
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typical convergence criteria71: no (or minimal) reassignment of the patterns to new centroids 
or  a  minimal  decrease  in  the  squared  error  where  the  algorithm aims  at  minimizing  the 
objective function defined in equation (1.9). 

J=∑
j=1

k

∑
i=1

n

∥xi
 j −c j∥

2 (1.9)

k             ...number of centroids (cluster centres)
n             ...number of patterns
x i
 j          ...pattern assigned to j cluster

c j            ...centroid (cluster centre)
∥xi

 j−c j∥...chosen distance measure between a data point  and the centroid

The algorithm is presented in  Figure 13. Although the procedure always terminates, the  K-
MEANS clustering algorithm does not necessarily find the most optimal configuration that 
corresponds to the global objective function minimum. It is also significantly sensitive to the 
initial, randomly selected centroids (cluster centres). This effect can be reduced by performing 
it multiple times71.

Figure 13: K-MEANS clustering algorithm73

An illustration of the clustering procedure is presented in Figure 14 using a very simple two-
dimensional (2D) example. The positions of the centroids are presented using a rhombohedral 
mark and the positions of the patterns, using a dot mark. 

29

Is
convergence

criterion
met

k clusters

Pattern set
(n patterns)

Set up
initial k centroids

inside the 
hypervolume

containing the 
pattern set

Assign each
pattern to
closest 
centroid

Recompute
centroids

using the current
cluster memership

YES

NO



1.Introduction

Figure 14: Simple illustration of the K-MEANS algorithm where random initial centroids are 
moving towards final centroids of clusters until the convergence criterion is met73

The SOM clustering algorithm
A self-organizing map (SOM) is a computational method for the visualization and analysis of 
high-dimensional data71. It is also known as a Kohonen map because it was first described as 
an artificial neural network by professor Teuvo Kohonen74.

A SOM is a type of artificial  neural  network. It  is trained using unsupervised learning to 
produce a low-dimensional (typically two dimensional), discretized representation of the input 
space  of  the training  samples,  called  a  map.  The  obtained  map  preserves  the topological 
properties of the input space. The SOM is operating in two modes, like most artificial neural 
networks: 

● training builds  the  map  using  input  patterns  in  a  competitive  process,  also  called 
vector quantization;

● mapping automatically  classifies  new  patterns  that  are  introduced  to  the  SOM 
according to the map created in the training process. 

The basic components of a SOM are the nodes (or neurons). Each node is associated with a 
position in the map space and a weight vector. A weight vector is of the same dimension as 
the input data. Nodes are usually arranged in a regularly spaced hexagonal or rectangular grid 
map.  The  SOM describes  the  transformation  from a  higher-dimensional  input  space  to  a 
lower-dimensional map space: a vector from the input data set is placed on the map. It is a 
process of finding the node with the closest weight vector to the vector taken from the data 
space and to assigning the map coordinates of this node to our vector.

The main goal of learning in the SOM is to ensure that different parts of the network are 
responding similarly to certain input patterns. Before the training process begins the weight 
vectors  of  the  nodes  are  usually  initialized  to  small  random values.  During  the  training 
process a large number of input patterns that are as much as possible like the patterns that are 
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expected during mapping must be presented to the network. 

The training is a form of competitive learning74. When a training example is presented to the 
network a distance measure to all the weight vectors is computed. The node that contains the 
weight vector closest to the input pattern is determined as the best matching unit (BMU). The 
weights of the best matching unit  and the nodes that are close to it  in the SOM grid are 
adjusted towards the vector of the input pattern. The magnitude of the adjustment decreases 
with  time  and  distance  from  the  best  matching  unit.  A  node  weight  vector  is  updated 
according to equation (1.10).

W jt1=W j t j , t tx i−W jt  ; j=1 ..k , i=1 .. n ,t=1 ..m (1.10)
k          ...number of centroids (cluster centres)
n          ...number of patterns
m         ...number of iterations
W j       ...weight vector of node
x i         ...vector of input pattern
 j , t   ...neighbourhood function
t       ...monotonically decreasing learning coefficient

The neighbourhood function  Θ(j, t) is dependent on the distance measure between the best 
matching unit  and the node  j.  In the most simple form it is one for all the neurons close 
enough to the best matching unit and zero for the others. A very common choice for the 
neighbourhood  function  is  the  Gaussian  function.  Another  important  property  of  the  the 
neighbourhood function is that it shrinks with time, regardless of the functional form. At the 
beginning when the neighbourhood is broad, the self-organizing is performed on the global 
scale. After a while when the neighbourhood shrinks to just a couple of neurons the weights 
converge to local estimates. This self-organizing process is repeated for all the input patterns 
n for the number of iterations m. 

During the mapping process, there is only one winning node. The winning node represents the 
neuron whose weight vector lies closest to the input vector according to the selected distance 
measure. It is very simply determined by calculating the distance measure between the vector 
of the input pattern and the weight vector of each node. 

Clustering based on the SOM is performed in two main steps, as presented in Figure 15: in the 
first  training  step a map (usually two-dimensional) of nodes (clusters) is determined and in 
the second mapping step each input pattern is assigned to one winning node (cluster).
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Figure 15: The SOM clustering algorithm74

An illustration of the SOM clustering algorithm is presented in Figure 16 using a very simple 
two-dimensional (2D) example. The thin-dotted lines are used to show how each point from 
the input space is assigned to its best matching unit (BMU) from the map space.

Figure 16: Simple illustration of the SOM algorithm where each pattern is assigned to its  
winning node in the map space74
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1.5. Relevant studies

1.5.1. Reason for using the Lagrangian particle-dispersion model 
The majority of Slovenian air-pollution facilities are located at the bottom of basins or river 
canyons  (i.e.,  Thermal  Power  Plant  Šoštanj  in  the  Šoštanj  basin,  Thermal  Power  Plant 
Trbovlje and the Cement Factory in the Zasavje region, industrial facilities in the Ljubljana 
basin,  etc.)  surrounded  by  hills  or  mountains.  On  the  basis  of  experiences  from studies 
presented in the following paragraph air-pollution  modelling based on Lagrangian particle 
dispersion  is  better  than  other  dispersion-modelling  techniques.  It  can  provide  enough 
complete,  realistic  and  satisfactory  results  for  complex  terrain  on  a  small-scale  area  of 
interest. The specific definition of a complex terrain is given in the literature36,35,39.

Various  review  papers  on air-pollution  modelling  and  their  approaches  to  dispersion  in 
different environments are available75,76,77. Studies were done to compare different modelling 
techniques according to each other and to measurements. Comparisons were done only with 
some  of  the  available  modelling  techniques,  but  none  of  them  was  done  with  all  the 
techniques that were available at that moment. Only some of the studies will be highlighted 
according to the area of interest and their major conclusions will be presented:

● evaluations  over  simple  terrain:  Many  evaluations15,78,79,80 of  different  modelling 
techniques used for regulatory purposes over simple terrain were performed using the 
well-established and documented Model Validation Kit that has been used for a series 
of  workshops  and  conferences  on  Harmonisation  within  Atmospheric  Dispersion 
Modelling for Regulatory purposes81. The Model Validation Kit addresses the classic 
problem of  a  single  stack emitting  a  non-reactive  gas.  It  comprises  data  from the 
following  four  field  experiments  performed  on  simple  terrain  and  controlled 
environment:  Kincaid  experiment  (1980-81),  Copenhagen experiment  (1978-79), 
Lillestrøm experiment (1987) and the Indianapolis experiment (1985). 

● qualitative evaluations over complex terrain: Some model evaluations for regulatory 
purposes were performed for complex terrain where the emphasis was on a qualitative 
evaluation rather than statistical analysis like: the evaluation of the RIMPUFF model 
over complex terrain in Northern Spain by Thykier-Nielsen et al.16, the evaluation of 
the SCIPUFF model  over complex terrain in New Mexico by Cox et  al.17 and the 
evaluation of the three models  LASAT, ADMS and ONGAUSSplus over complex 
terrain of Zasavje region in Slovenia by Hirtl et al.18.

● evaluation  over  complex  terrain  in  Slovenia:  In  1991  an  experimental  measuring 
campaign was performed around the largest Slovenian thermal power plant, Šoštanj82. 
Four air-pollution  models  were compared using the measuring  campaign data  in a 
paper  presented  by  Božnar  et  al.37:  Gaussian  model,  Gaussian-hybrid  model  for 
complex  terrain,  a  Gaussian  puff  model  and  the  Lagrangian  particle  model.  The 
reconstructed concentrations from the Gaussian model for complex terrain in stable 
meteorological  conditions  were  larger  than  the  measured  ones.  Similar,  but  only 
slightly better results, were given by the Gaussian puff model because the orography 

33



1.Introduction

was  also  considered  as  an  input  to  this  type  of  model.  The  Gaussian  puff  model 
represents  a  link  between  the  Gaussian  models  and  the  more  sophisticated  three-
dimensional  (3D)  models.  It  also  uses  the  same  3D wind field  as  the  Lagrangian 
model. The obtained results were slightly better than with the Gaussian models and the 
authors suggested that it can be used for a quick analysis of simple pollution cases in a 
complex terrain. The best results were obtained with the Lagrangian 3D model, which 
proved to be a useful tool for the reconstruction of pollution episodes in very complex 
terrain and in situations with low winds or convective mixing.

● evaluation  over  complex  terrain  in  north-western  Spain:  A  comparison  of  the 
operational  Lagrangian  particle  and  adaptive  puff  models  for  plume  dispersion 
forecasting was done by Souto et al. 83. It was performed around thermal power plant 
As Pontes across the area characterized by steep hills and sea inlets bathed by the 
Atlantic Ocean. The transport and the dispersion of pollutants in the lower atmosphere 
was predicted by using both a Lagrangian particle model and an adaptive puff model 
coupled to the same mesoscale meteorological prediction model. The results of both 
models in forecasting the SO2 ground-level concentration around a coal-fired power 
plant  were  compared  under  unstable  meteorological  conditions. In  addition, 
meteorological and SO2 ground-level concentration numerical results were compared 
to field measurements provided by 17 fully automated SO2 ground-level concentration 
remote stations, nine meteorological towers and one SODAR, from a meteorological 
and air-quality monitoring network located in a circle 30km around the power plant. 
The main issue of this comparison was focused on the models' accuracy, from selected 
air-pollution  episodes.  With  the  same  meteorological  input,  during  the  episodes 
considered, the Lagrangian particle model showed a better agreement with the ground-
level concentration measurements than the adaptive puff model, especially when the 
plume impacts are sparse. Therefore, the Lagrangian particle model was shown to be 
more  suitable  to  be  applied  for  an  operational air-pollution  forecast  in  this 
environment. The authors concluded their work with an additional advantage of the 
continuous  growth  of  computers'  performance.  This  advantage  will  enable  the 
consideration  of  more  complex  solutions  in  the  Lagrangian  particle  model  in  the 
future.

● evaluation over complex terrain in Italy: Another comparison of the Gaussian model 
and  the Lagrangian  particle  model  for  regulatory applications  in  flat  and  complex 
terrain in two Italian coastal sites had been made by Brusasca et al.84. The first site was 
located near to Venice and regarded two thermal power plants (TPP) Fusina and Porto 
Marghera. It is characterised by simple terrain, the land use nearby the emissions is 
mainly of industrial or urban type and agricultural inland. The second site was located 
around  TPP  in  Vado  Ligure,  on  the  northern  Mediterranean  coast  of  Italy.  It  is 
characterised  by  very  complex  terrain:  the  climatology  is  dominated  by  the 
superposition  of  land/sea  breezes  and  slope  flows.  The  inter-comparison  of  both 
models on simple simple terrain characterised by weak space/time variations of wind 
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speed and direction gave congruous results. The areas of interest for pollutant impact 
are similar,  but the relevant  differences  were detected  in pollutant  patterns for the 
different statistical indexes prescribed by air-quality standards. In the complex terrain 
and  turbulent  conditions  the  results  obtained  by  both  modelling  approaches  were 
completely dissimilar. According to the authors, steady-state models, like the Gaussian 
model, that implement simple algorithms for complex terrain appear to be unable to 
reproduce the features of pollutant dispersion in these kinds of conditions.

1.5.2. Reason for optimising the computational efficiency of the Lagrangian particle-
dispersion model and simulation
The excessive  computational  demand  of  Lagrangian  particle-dispersion  models  represents 
their major disadvantage. With the constant quality improvements of models, their complexity 
has gradually increased, which leads to enormous requirements for computational time. Not 
much  work  has  been  published  so  far  on  the  aspect  of  saving  computational  time  in 
comparison to the large amount of work that has been published on the quality of the model's 
results. In order to speed up simulations based on Lagrangian particle-dispersion models some 
work has already been done in the field of simplifying the underlying physics, for example, by 
Hurley  and  Physick85,  Ryall  and  Maryon86,  Ermak  and  Nasstrom87.  Another  approach  to 
simplifying the computational demands  was proposed by Melheim88. The clustering method 
for different purposes was presented in his paper88 to reduce the number of equations to be 
solved in collisional particle dynamics in the Lagrangian framework. Its main idea is that only 
particles  that  interact  or  may  interact  during  the  next  global  time-step  are  integrated 
simultaneously, while particles that are far from other particles can be integrated alone. The 
clusters of particles were made of particles that interact or may interact during the next global 
time-step. The cluster-integration method was applied to the sedimentation of particles in a 
two-dimensional box. 

In  this  thesis  the  focus  will  be  on  analysing  the  efficiency  of  the  numerical  procedures 
involved in simulation procedures rather than analysing the underlying physics. Similar goals 
had been set in the contribution by Schwere et  al.,10 where some specific tasks that  waste 
computing time were outlined and three methods to reduce the computing time of these tasks 
were presented. In this thesis additional supplementary methods will be proposed. The authors 
focused on analysing and improving the efficiency of the numerical procedures involved in 
calculating the particle  trajectories,  which can be roughly split  into  three major parts:  the 
calculation  of  the  particle's acceleration,  the  generation  of  the  random numbers,  and  the 
evaluation of a time-step criterion. It was shown that a speed-up factor of two can be reached 
for a more sophisticated model,  which takes into account the skewed and inhomogeneous 
turbulence. The results were compared with the original model's results and it was shown that 
the speed-up procedures do not significantly alter the concentration patterns.
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1.5.3. Reason for using black-box modelling techniques
In this thesis a proposal to use black-box modelling techniques to optimize the computational 
efficiency  of  the  Lagrangian  particle-dispersion  models  will  be  made.  Similar  work  has 
already been done in  the  field  of  meteorological numerical  models  by Krasnopolsky and 
Chevallier89. The computational efficiency improvement of certain processes in environmental 
models was applied based on the application of generic neural networks. An approach was 
used to accelerate the calculations and improve the accuracy of the parametrization of several 
types  of  physical  processes  that  generally  require  computations  involving  complex 
mathematical expressions, including differential and integral equations, rules, restrictions and 
highly  non-linear  empirical  relations  based  on  physical  or  statistical  models.  It  has  been 
shown that neural networks can be used to replace primary parametrization schemes because 
comparable input-output response was achieved as with different mathematical expressions 
that  can  be  considered  as  an  approximation.  The  research  work  was  supported  by  the 
presentation of four, particular, real-life applications where the neural network approach was 
used.

Krasnopolsky et al.90 also presented their new approach based on a synergistic combination of 
white-box  and  black-box  modelling  within  atmospheric  models.  It  was  applied  for  the 
development of an accurate and fast approximation of an atmospheric long-wave radiation 
parametrization  for  the  NCAR  Community  Atmospheric  Model,  which  is  the  most 
computationally  consuming component  of  the  model's  physics.  The  authors  reported  a 
computational expense improvement of the neural-network-based simulation by two orders of 
magnitude (50-80 times faster than the original parametrization). A development framework 
and  practical  validation  criteria  for  the  neural  network  emulations  of  the  model  physics 
components were outlined.
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1.6. Outline of the dissertation
The dissertation begins with the introduction, where the research problems are defined and the 
purpose of the research and the working hypotheses are given. The introduction proceeds with 
the presentation of the theoretical background and ends with a summarized presentation of the 
relevant studies where the arguments for using the Lagrangian particle-dispersion model and 
for  optimizing  its  computational  efficiency  based  on  black-box modelling  techniques  are 
given.

In section 2 two field data sets used for the experiments in this thesis are described. Both were 
obtained during two  measuring campaigns performed in Slovenia over local scale areas of 
interest where complex terrain conditions are present.  The Šaleška region field data set is 
selected  to  evaluate  the  computational  efficiency  of  the  computer  an air-pollution  model 
based  on  the  Lagrangian  particle-dispersion  model  and  to  evaluate  new methods  for  the 
efficiency improvement. Improvements to the computer air-pollution  model are additionally 
evaluated on the Zasavje region field data set to demonstrate that the proposed methods to 
improve the Lagrangian particle-dispersion model can be generally used over complex terrain.

The air-pollution  modelling  methodology  based  on  the  Lagrangian  particle  dispersion  is 
described  in  section  3,  where  the  computational  efficiency  and  the  performances  of  the 
computer air-pollution model based on Lagrangian particle dispersion are also evaluated. The 
main  components  of  computer air-pollution  model  are  presented  and  discussed.  Several 
evaluation methods are developed and used in the evaluation of the performance of computer 
air-pollution  model according to the particle number density coefficient (PDNC), which is 
also  presented  and  defined  in  section  3.  The  presentation  of  the air-pollution  modelling 
methodology ends with a demonstration of a computational problem that can occur during 
different operational purposes of the computer air-pollution model. 

Three new methods to improve the computational efficiency of the computer air-pollution 
model based on Lagrangian particle dispersion are proposed in section 4, where the emphasis 
is on preserving the quality of the results. 

The  first  presented  is  the  clustering  contributed  to  decrease  the  computational  cost  by 
decreasing  the number  of  particles  in  the simulations.  A concentration-estimation  method 
based on kernel density is adapted to substitute  the box-counting concentration estimation 
method and to improve the poor quality of the results when a smaller number of particles are 
used in the simulations. To keep the number of particles in the simulations at a constant value 
a third Lagrangian particle-dispersion control method is developed, which consists of the two 
main subsequent methods. In the first step the percentage of lost particles is predicted with the 
use of an artificial neural network based on meteorology, emission and the initial situation of 
the air pollution. In the second step the clustering parameters are determined by a decision-
making method. The performances of all the developed methods are validated on the Šaleška 
region field data set.

In  section  5  all  the  proposed  methods  are  mutually  integrated  into  a  new,  enhanced, 
Lagrangian particle model. After the presentation of the integration, the performance of the 
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enhanced Lagrangian particle computer model is validated on the Šaleška region field data 
set.

The performance of the enhanced Lagrangian particle-dispersion computer model with new, 
integrated methods is validated on a Zasavje region field data set in section 6. The validation 
is  performed  to  confirm that  the  developed  methods  can  be  generally  applied  in  various 
complex  terrains.  Before  the  final  evaluation,  the  adjustments  of  the  parameters  of  the 
developed methods according to the properties of the terrain are also presented.

The thesis  ends  with the final  section 7 where the conclusions  and recommendations  are 
given. In the conclusions the results of the study and the development are summarized and 
evaluated.  The  goals  and  hypotheses  are  discussed  and  critically  evaluated.  Finally,  the 
recommendations about the possibilities to additionally improve the air-pollution  modelling 
methodology based on Lagrangian particle dispersion that occurred during the research and 
will be used in further developments and research.
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2. FIELD DATA SETS
In  the  following  sections  of  this  thesis  an air-pollution  modelling  methodology based  on 
Lagrangian  particle  dispersion  is  presented,  and  later  the  methods  to  improve  its 
computational efficiency are proposed and tested. All the experiments are performed on two 
experimental  field  data  sets  obtained  during  two  measuring  campaigns.  Both  measuring 
campaigns were  performed  in  Slovenia  over  local  scale  areas  of  interest  where  complex 
terrain conditions are present.  To evaluate  the computational  efficiency of the Lagrangian 
particle-dispersion  (LPD) computer  model  and to  validate  new methods  for  an  efficiency 
improvement, a field data set from the Šaleška region was selected. To demonstrate that the 
proposed  methods  can  be  generally  used  over  complex  terrain,  an  enhanced Lagrangian 
particle-dispersion (ELPD) computer model is validated on another field data set from the 
Zasavje region.

2.1. The Šaleška region field data set
In the following section 4.Proposed improvements in air pollution modelling methodology the 
contribution  of  proposed  methods  to improving  the  computational  efficiency of  the  LPD 
model  is  presented.  During  the  development  process  the  field  data  set is  used  for  the 
development of new methods and to compare the results of the original LPD model and the 
results  obtained  with  the  newly  proposed  methods.  To  ensure  that  the  methods  can  be 
generally used the selected field data set must spread over the area where all the complex 
terrain meteorological conditions occur.

The Šaleška region was selected as a field data set for several reasons:

● it  spreads  over  complex  orography  (basin  surrounded  by  high  hills  and  a  semi-
mountainous continuation of the Karavanke Alps) where almost all possible complex 
terrain conditions occur,

● the  database  of  ambient  measurements  is  available  from the  measuring  campaign 
organized in spring 1991

● the emissions from the three stacks of thermal power plant Šoštanj represent the main 
air-pollution  source  in  the  region  because  desulphurization  facilities  were  not  yet 
installed during the measuring campaign performed in spring 1991.

2.1.1. Terrain description
The area of the investigation extends across the Šaleška valley, which is situated in the north-
eastern part of Slovenia, as presented on the left side of Figure 1791. The central part of the 
Šaleška valley is a plain north of the river Paka, with an average altitude of three hundred 
metres above sea level. The basin is surrounded by isolated hills on the south, and by the 
semi-mountainous  continuation  of  the  Karavanke  Alps  on  the  west,  north  and  east,  as 
presented on the right side of Figure 17. Two small towns are located in the basin: Šoštanj had 
approximately 3 000 inhabitants, Velenje about 24 000 and about 9 000 people lived in the 
villages around 82,92 during the measuring campaign organized in spring 1991.
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Due to the complex orography,  as presented on right side of  Figure 17, and unfavourable 
climatic conditions (thermal inversion in the basin), very high concentrations of SO2 occur, 
especially during the winter. The Šaleška valley represents a typical case of complex terrain36 

by  all  the  criteria  given  in  the  subsection  1.4.5.Complex  terrain.  There  are  certain air-
pollution  situations  that  lead  to  increased  concentrations  in  the  complex  terrain:  plume 
impingement on high terrain depicted in Figure 18, pooling in the valleys depicted in Figure
19, drainage towards the population centres depicted in  Figure 20 and persistence  due to 
channelling depicted in Figure 21. On the left side of the presented figures the complex terrain 
phenomenon is illustrated, in the middle the three-dimensional presentation of a phenomenon 
that occurred over the area is encircled and on the right side the impact of the phenomenon at 
the ground-level concentration is presented. The Veliki Vrh hill located to the south of the 
power  plant  is  the  nearest  high-terrain  obstacle.  The  plume  impingement  on  the  hill  is 
encircled in the middle of Figure 18 and an increased ground-level concentration caused by 
the phenomenon is shown on the right side. In Figure 19 the pooling in the valleys between 
isolated hills on the south of the domain is presented, where on the right side of the figure the 
increased  ground-level  concentration  in  the  valley  far  from the  power  plant  is  presented. 
Figure 20 represents the drainage of the air pollution towards the town of Velenje, where on 
the right side of the figure an increased ground-level concentration is present, downwind from 
the power plant towards the town. The persistence of the increased ground-level concentration 
due  to  channelling  caused  by the  topography (a  chain  of  hills)  on  the  south-west  of  the 
Šaleška valley is presented on the right side of Figure 21.

Figure 17: Location of the Šaleška region in Slovenia on the left91 and the topography of the 
region on the right
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Figure 18: Plume impingement on high terrain – an example from the Šaleška region

Figure 19: Pooling in the valleys – an example from the Šaleška region
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Figure 20: Drainage toward population centres – an example from the Šaleška region

Figure 21: Persistence due to channelling – an example from the Šaleška region
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2.1.2. Experimental measuring campaign
To evaluate the performance of the selected Lagrangian particle-dispersion model, data from a 
measuring campaign performed from 15th of March to 5th of April 1991 across the Šaleška 
region is used. The measuring campaign was performed as the joint effort of three institutions: 
ENEL-CRAM and CISE from Milano in Italy and the Jozef Stefan Institute from Ljubljana in 
Slovenia. The database from the measuring campaign was published and distributed on floppy 
disks in order to be available for further processing and research. The contents of the floppy 
disks are available as part of the final report82,92. In this campaign, organised during the spring 
of 199182,92, the concentrations of SO2 higher than 1 mg/m3 were measured at surrounding 
stations and all of them were caused by the high emissions from the three stacks of a thermal 
power plant that did not have desulphurization plants installed at that time. The data obtained 
during that measuring campaign can thus be used as a tracer experiment, because all other 
local  sources  of  emission  can  be  neglected.  The  database  was constructed  from different 
measurement sources, like the Environmental Informational System (EIS) of the Šoštanj TPP, 
one mobile Doppler SODAR, DIAL and an automatic mobile laboratory. 

2.1.3. Sources of emission
The main source of air  pollution in the Šaleška valley is the Šoštanj thermal power plant 
(TPP), presented in Figure 22. It is located in the centre of the domain and it has three stacks 
that  are  100  m,  150  m  and  230  m  high.  During  the  measuring  campaign  in  1991  the 
desulphurization facilities were not yet installed. It was estimated that emissions were about 
100 000 tons of SO2 and 12 400 tons of NOX per year  38,82,92.  The power plant's pollutant 
emission concentration and the flux data, smoke temperature and exit velocity were measured 
by the emission station82,92.  For  evaluating  the results  of the simulation  runs  in  following 
section only the emission of SO2 from the 100-m stack (named Stack123) is used as the source 
of emissions. 
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Figure 22: Thermal power plant Šoštanj

2.1.4. Automatic environmental measuring system
The EIS (Environmental  Information  System)  of  Šoštanj  TPP consisted of six  stationary, 
automated, environmental measuring stations, located around the power plant, as presented in 
Figure 23. At all the stations the wind velocity and direction, the air temperature, the relative 
humidity  and  the  SO2 concentrations  were  measured.  At  some  of  the  stations,  other 
parameters were also measured, such as the global solar radiation, the precipitation, the air 
pressure and the other pollutant concentrations (NOX and O3).

The measuring parameters monitored at each automatic measuring stations are presented in 
Table 1. The real measured meteorological data from the measuring system will be used for 
the air-dispersion simulations.
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Figure 23: Locations of the automatic measuring stations across the Šaleška region

Table 1: Measuring parameters monitored across the Šaleška region
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Figure 24: Ambient automatic measuring stations Šoštanj (upper-left) and Zavodje (upper-
right), SODAR (lower-left) and DIAL (lower-right)82

2.1.5. Situation selection from the Šaleška region field data set

A database of measurements is available for the full duration of the measuring campaign, that 
is from 15th of March until 5th of April 1991. A situation that lasted from 1st of April 1991 at 
20:00 until 2nd of April 1991 at 20:00 was selected, and it will be outlined because of its 
complexity. This complexity makes it very difficult to reconstruct and represents the greatest 
challenge  to  all air-pollution  reconstruction  modelling  techniques.  It  will  be  used  for  the 
development  and testing  of  new methods  to  improve  the  computational  efficiency of  the 
Lagrangian modelling methodology in the following section.

SODAR measurements  performed  during the  selected  period  and  presented  in  Figure  25 
reveal that the wind speeds were very low and the wind changed course in all directions very 
rapidly. The arrows on the Figure 25 represent horizontal wind component at different heights 
above the SODAR. The three dimensional behaviour of the reconstructed plume presented in 
Figure 26 illustrates that the plume spread in all directions over a short period of time. This 
could  also  be  supported  by  the  SODAR  measurements,  which  are  at  each  presented 
reconstructed  interval  in  Figure  26 consistent  with  the  measurements  in  Figure  25.  The 
reconstructed intervals were chosen to present the spreading of the air pollution in all possible 
directions.  At the beginning of the selected interval,  short  calm meteorological  conditions 
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occurred, which caused the accumulation of air pollution in the domain. The air pollution was 
accumulating during the whole night and morning. The accumulated air pollution was diluted 
in the afternoon, when the wind from the east strengthened. For the reconstruction, powerful 
computational resources were required. This complexity will be used for the development of 
new methods to improve the computational  efficiency of the LPD model presented in the 
following sections.

Figure 25: SODAR measurements performed in the Šaleška valley
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Figure 26: Plume spreading in all directions across the Šaleška valley
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2.2. Zasavje region field data set
For a demonstration of the universality,  namely the validation,  of the developed methods 
presented  in  the  following  sections  of  this  dissertation  and  for  a  demonstration  of  the 
efficiency of the ELPD computer model described in the following section 5.Integration of
the proposed improvements in the computer model a field data set is used that is available 
from another  measuring  campaign  performed  in  2005-2006 over  the  Zasavje  region.  The 
selected  field  data  set's  domain  spreads  over  the  area  where  all  the  complex  terrain 
meteorological conditions are even more expressed than in the Šaleška region field data set 
presented in the previous section.  The Zasavje region was selected as a field data set for 
several reasons:

● it spreads over a complex topography (deep valley surrounded with high hills),
● it has two major air-pollution  sources located there: a cement factory and a thermal 

power plant,
● a  database  of  ambient  measurements  is  available  from  the  measuring  campaign 

performed from September 2005 till September 2006.

2.2.1. Terrain description
The Zasavje region is located in the central  part of Slovenia.  It  extends over hilly terrain 
nearby the Sava river canyon in an area between the basin of Ljubljana and the Panonian 
lowland. The region's location is shown  in  Figure 2793, where the regional townships from 
west  to  east  direction  are:  Litija  (approximately  6  500  inhabitants),  Zagorje  ob  Savi 
(approximately  6  600  inhabitants),  Trbovlje(approximately  18  000  inhabitants),  Hrastnik 
(approximately 7 000 inhabitants) and Radeče (approximately 2 000 inhabitants). 

Figure 27: Location of the Zasavje region in Slovenia93 and the topography of the region

The high pollution of the area is caused by high emissions, but it is also emphasized by the 
local micro-climatological conditions (low wind speeds, calm situations and strong thermal 
inversions)  as  the  area  is  a  highly  complex  terrain  (canyon  with  steep  slopes  up  to 
approximately 45 deg., several valleys perpendicular to the main canyon, hills with a relative 
height  over  1000m).  There  are  certain air-pollution  situations  that  lead  to  increased 
concentrations  in  the  complex  terrain,  as  described  in  subsection  1.4.5.Complex  terrain: 
plume impingement  on high terrain  depicted  in  Figure 28,  pooling in  valleys  depicted  in 
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Figure 29, drainage towards the population centres depicted in Figure 30 and persistence due 
to the channelling depicted in Figure 31. The plume impingement on Kum hill on the south 
from the centre  of the domain  is  presented in the middle  of  Figure 28 and the increased 
ground-level concentration caused by the phenomenon is shown on the right side. In Figure
29 the pooling in the valleys transverse to the Sava river canyon is presented, where on the 
right side of the figure the increased ground-level concentration in all the regional towns is 
presented. Figure 30 represents the drainage of the air pollution towards the town of Hrastnik, 
where on the right side of the figure an increased ground-level concentration is present. The 
persistence of the increased ground-level concentration due to the channelling caused by the 
topography (upwards of the Sava river canyon) towards the town of Zagorje is presented on 
the right side of Figure 31.

Figure 28: Plume impingement on high terrain – an example from the Zasavje region
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Figure 29: Pooling in the valleys – an example from the Zasavje region

Figure 30: Drainage towards population centres – an example from the Zasavje region

51



2.Field data sets

Figure 31: Persistence due to channelling – an example from the Zasavje region

2.2.2. Experimental measuring campaign
In  the  recent  past  the  Zasavje  region  was  facing  serious  air  pollution.  An  experimental 
measuring  campaign  for  regulatory  purposes94 was  done  to  reconstruct  the  current air-
pollution  situation  in  the  area,  to  quantify  the  expected  reduction  of  SO2 pollution  by 
desulphurisation plants and to model the future scenarios (a new, planned gas-powered TPP). 
One year  of  on-line  meteorological,  air  pollution  and emission  data  was  analysed  in  the 
measuring campaign. Across the area of interest it was mainly SO2 and NO2 pollution that 
exceeded the regulation limits. 

The  Zasavje  region  therefore  represents  a  field  data  set  for  the  evaluation  of  dispersion 
modelling in complex terrain95. In the area there is intense monitoring of the meteorological 
parameters (including one SODAR profile) ambient concentrations (9 stations) and one on-
line emission station on the existing TPP stack. The on-line measured emission and ambient 
data for a one-year time interval from 1st of September 2005 until 1st of October 2006 were 
used to reconstruct the air-pollution situation across the area.

2.2.3. Sources of emission
The major sources of air pollution over the Zasavje region are a thermal power plant and a 
cement factory, both located near the town of Trbovlje near the Sava river (see Figure 32 and 
Figure 33).  High air-pollution  periods were present, especially during the winter inversions. 
The major source of the air pollution was a 360-m-high smoke-stack of the thermal power 
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plant, where coal rich with sulphur from a local mine is burned. The situation in the area was 
drastically improved by the installation of a wet desulphurisation plant in September 2006, 
after which the emissions from the smoke-stack dropped down to approximately 10% of the 
previous emissions.

For  evaluation  purposes,  artificially  generated  high-level  emission  data  is  used  in  the 
following sections for the air-dispersion simulations, where a virtual source of emission is 
placed in the centre of the domain. The measured data can be used in this study only, because 
both the main air-pollution facilities are in the middle of purchasing an environmental license 
and publishing the data could cause some procedural problems.

Figure 32: Thermal power plant Trbovlje (left) and Cement factory Trbovlje (right)

2.2.4. Automatic environmental measuring system
There are two automatic environmental measuring systems located across the Zasavje region. 
The first system is owned by the Environmental agency of the Republic of Slovenia. Its code 
name  is  ANAS and it  consists  of  three  environmental  measuring  stations  in  the  Zasavje 
region, represented by the green colour in Figure 33: Trbovlje, Zagorje and Hrastnik.

The second system is under the control of the thermal power plant . Its code name is EIS TET 
and it consists of seven environmental measuring stations, represented by a light blue colour 
in  Figure  32:  Kovk,  Kum,  Dobovec,  Prapretno,  Ravenska  vas,  Lakonca  and Mrzlica.  To 
measure the wind profile there is also an automatic SODAR measuring station installed near 
the thermal power plant, represented by a blue colour in Figure 33. The measuring parameters 
monitored on each of the automatic measuring stations are presented in  Table 2.  The real, 
measured meteorological data from the measuring system will be used for the air-dispersion 
simulations.
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Figure 33: Locations of the sources and the automatic measuring stations across the Zasavje 
region

Table 2: Measuring parameters monitored across the Zasavje region
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Air temperature x x x x x
Relative humidity x x x x x
Global solar radiation x x
Wind x x x x x
Dust PM10 x
SO2 x x x x
NO x
NO2 x

x
O3 x

Air temperature x x x x x
Relative humidity x x x x x
Global solar radiation x x x
Wind x x x x x
Dust PM10 x x
SO2 x x x
NO x
NO2 x

x
O3 x x x

Kovk Dobovec Kum Ravenska 
vas Prapretno

NOx

Lakonca Trbovlje Zagorje Hrastnik Mrzlica

NOx
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Figure 34: Ambient automatic measuring stations at Ravenska vas (upper-left), Dobovec 

(upper-right), Zagorje (lower-left) and SODAR (lower-right)

2.2.5. Situation selection from the Zasavje region field data set
A database of measurements is available for the full duration of the measuring campaign, i.e., 
from the 1st of September 2005 until the 1st of October 2005. A situation that lasted from the 
14th of October 2005 at 00:00 until the 16th of October 2005 at 00:00 was selected because of 
its  complexity.  This  complexity  demands  greater  computational  resources  for  the 
reconstruction.  It  is  used  for  the  validation  of  the  contributed  methods  presented  in  the 
following sections of this thesis and to demonstrate the efficiency of the enhanced Lagrangian 
particle-dispersion  model,  described  in  the  following  section.  The  SODAR measurements 
performed on the 14th of October 2005 are presented in Figure 35 and on the 15th of October 
2005 in  Figure 36.  The arrows on the figures represent the horizontal  wind component at 
different heights above the SODAR.  The three-dimensional behaviour of the reconstructed 
plume presented in Figure 37 is consistent with SODAR measurements and it illustrates that 
the  plume  spread  in  all  directions  during  this  period  of  time.  The  results  reveal  that  a 
relatively strong wind from the west was present over the domain until the morning of the 
14th of October 2005. In the morning the wind slowly changed its direction from the opposite 
side and remained relatively constant until the evening of the 14th of October, when calm 
conditions occurred. After the occurrence of the conditions the calm persisted for practically 
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the whole of the following day, the 15th of October 2005, which caused the accumulation of 
air pollution in the domain. The accumulation of air pollution is very well presented in the 
lowest three 3D presentations of the plume in  Figure 37. A lot of computational time was 
used for this reconstruction because the number of active particles almost reached the limit of 
the available computational resources during the calm.

Figure 35: SODAR measurements performed in the Zasavje region on the 15h of October  
2005
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Figure 36: SODAR measurements performed in the Zasavje region on the14h of October 2005
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Figure 37: Three-dimensional representation of a plume spreading in all directions the 
across Zasavje region
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3. LAGRANGIAN-PARTICLE AIR-POLLUTION MODELLING METHODOLOGY
An air-pollution model is the final result of the modelling process and is used in simulations 
to reconstruct the air pollution over selected domains of interest. In the following subsections 
of this section air-pollution modelling and the simulation process are described as well as the 
air-pollution  (AP) model based on Lagrangian particle dispersion (LPD), according to the 
terminology used in a series of books  Air pollution modeling and it application by Kluwer 
Academic/Plenum Publishers96.

3.1. Air-pollution modelling
Air-pollution  modelling  is  generally  a  cyclic  process,  as  presented  in  Figure  38.  The 
presentation is created on the basis of a description of the general modelling process97. air-
pollution  modelling is defined as an attempt to describe the functional relation between the 
emissions and the occurring concentrations96 in the surroundings. It can give us a relatively 
complete and consistent description, which also includes an analysis of the causes (emissions 
sources)  that  lead  to  measured  concentrations.  The  modelling  in  general  begins  with  the 
definition of the problem. In air-pollution  modelling this phase represents the determination 
of the area of interest, which usually consists of major air-pollution sources in the centre of 
the domain. Its width is determined according to the purpose of the application and is usually 
defined by legislation.

When the area of interest is determined, measured data from the domain is collected. From 
this collection of measured data a field data set is created. The field data set consists of all the 
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available emission data, the meteorological data and the topographical data. When some data 
is not available some measurement estimations can be used. The quality and quantity of data 
is defined by the selected air-pollution model. While some models for simple terrain require a 
relatively simple data set (i.e., in the most simple case only the emission data and the wind 
measurements at only one position near the source) other models for complex terrain require a 
relatively  large  and  precise  set  of  data  (i.e.,  detailed  topographical  data,  meteorological 
measurements in several positions spread across the area with the vertical wind profile and the 
precise emission data).

The model's  construction  is  based on the application,  the terrain and the available  model 
concepts.  It consists of several  steps, presented in  Figure 39. There are two results of the 
model  construction  phase:  the  air  pollution  mathematical  model  and  the  air  pollution 
computer  simulation  model.  In  this  thesis,  for  the air-pollution  mathematical  model  a 
simplified  term,  air  pollution  (AP)  model,  is  used  and  for  the air-pollution  computer-
simulation model the term air pollution (AP) computer model is used.

 

In the first step the existence of the AP model that can satisfy the requirements of the purpose 
is checked. If it does not already exist, I.e., an AP model that satisfies these requirements, in a 
set of available air-pollution models (i.e., the Lagrangian particle, the Eulerian, the Gaussian, 
etc.) a new AP model is constructed. Otherwise, the selected AP model can be modified to 
satisfy the requirements. In the next step a parametrization of AP model is performed, where 
the parameters of the model are determined according to the selected area of interest. 
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For simple terrain and steady-state conditions, simple models with a relatively small number 
of  inputs  are  used,  while  for  complex  terrain  conditions  advanced  models  are  used.  The 
Lagrangian particle atmospheric dispersion model is generally accepted as the best, recently 
known, atmospheric dispersion model for use over complex terrain at the local, the regional 
and  the  global  scales9,10.  A  large  number  of  the  model's  parameters  must  be  determined 
according to the selected area of interest, the available measured data and the application.

In the final step of the model's construction the AP computer model is finally designed to be 
used in a computer simulation. The AP computer-model design consists of three main steps: 
creating an atmospheric dispersion computer module, creating an input module that is used to 
pre-process and transform the input data into a suitable form for the atmospheric-dispersion 
computer module and creating an output module that is used to transform the output data into 
a suitable form for presentations and archiving.

In the next phase of the modelling the simulation is performed to verify and validate the 
constructed  model.  If  the  verification  fails  the  modelling  process  returns  to  the  model 
modification. When the model's behaviour becomes acceptable, the validation begins. If the 
model is not suitable for its purpose, the collection of additional data or the filtering of data is 
performed  and  the  model  is  reconstructed  according  to  new  inputs.  When  the  model  is 
accepted for its purpose the consistency with the real air-pollution dispersion is evaluated. If 
the model meets the defined requirements of the application the modelling process ends and 
the model is ready to be used for an application.

The air-pollution model's application is the final phase of the air-pollution modelling process. 
The simulation is used to reconstruct air-pollution  situations over a selected area of interest 
according to different practical purposes: air-pollution  assessment of the existing sources of 
emissions  in  the  domain,  the  planning  of  new  industrial  facilities  in  the  domain,  or  for 
emergency warning systems in the case of accidental releases of air pollutants.

3.2. Air pollution simulation
Air-pollution simulation is used to reconstruct the air-pollution situation over the selected area 
of interest (domain) for the selected period of time. air-pollution situation is an air pollution 
that usually lasts for some defined period of time. It is determined by concentrations of certain 
species (i.e. SO2) over area of interest.  The period of time for the reconstruction is usually 
split into several equally long episodes of air pollution, as presented in Figure 40, where one 
simulation run consists  of several  air-pollution-episode reconstructions.  For the regulatory 
purposes  the  duration  of  one  air-pollution  episode  should  be  equal  to  the  meteorological 
measuring time interval of half an hour98,99. Each air-pollution-episode reconstruction usually 
consists of three main steps, presented in Figure 41.

The statistical elaboration of an air-pollution  situation is performed for different periods of 
time,  defined  by  legislation,  where  several  sub-sequential air-pollution  episodes  are 
reconstructed. The number of reconstructed air-pollution  episodes depends on the length of 
the time interval for a statistical elaboration, i.e., for the elaboration of the air pollution of one 
day,  48 air-pollution  episodes  must  be  reconstructed  (1  episode  per  ½  hour).  The 
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reconstruction of one episode is made by performing one simulation run with the air-pollution 
model. During the simulation process the air-pollution  model reconstructs the air pollution 
over the selected area of interest by considering the given topography of the domain and the 
available  measurements  of  the  meteorological  and  emission  data.  The  results  of  the air-
pollution  reconstruction are produced for the visualization and statistical elaboration at the 
end of the simulation.

Figure 40: Simulation run

Figure 41: Reconstruction of a single air-pollution episode
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3.3. Air-pollution model
The most often result of air-pollution modelling process for complex terrain domains is an air-
pollution (AP) model based on Lagrangian particle dispersion (LPD) because it is generally 
accepted as the best recently known air-pollution reconstruction model at the local, regional 
and global scales9,10. 

The AP model consists of the main components, as presented in Figure 42. The main structure 
of the air-pollution model remains the same for all the research purposes of this thesis and it is 
not described in detail. Also, the main components of the air pollution are not described in 
detail because they are not the subject of this thesis. Except for the LPD model,  which is 
described  in  subsection  1.4.6.The  Lagrangian  particle-dispersion  model.  Detailed 
descriptions can be found in the literature11,14,19,20,21,22,23,24,84,100,101,102,103. 

Outputs

Inputs
Meteorological

model Lagrangian
particle

dispersion
(LPD)
model

Emission
model

3D turbulence
reconstruction

model

3D wind
reconstruction

model

AIR POLLUTION MODEL

Figure 42: Air pollution model based on Lagrangian particle dispersion model

Inputs

There are several inputs that must be available for an AP model based on LPD:

● topography data of the area of interest, which consists of 3D topography data and a 
map of the land use,

● current meteorological data measured at  several different  locations,  equally spread 
over the area of interest,  which consists of the basic meteorological parameters (air 
temperature, relative humidity, air pressure, solar radiation, precipitations, wind speed 
and wind direction), the vertical wind profile and the vertical temperature profile,

● current emission data  from all known sources of emission over the area of interest, 
which consists of a relatively detailed description of the emission sources, like their 
position, height and diameter,  exit temperature and velocity of the emitted gas and 
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emission rate,

● initial state of air pollution in the domain, which consist of a description of the already 
dispersed air  pollution,  this  input  is  optional  and when it  is  not  available  a  clean 
atmosphere over the domain is assumed.

Outputs

There are two main outputs of the AP model based on LPD:

● the final state of the air pollution in a domain that consists of air pollution dispersed 
from emission sources and the additionally dispersed initial air pollution

● the 3D grid of concentrations in the domain where the domain is split into a 3D grid of 
equally distributed cells, where the concentration for each cell is determined by the AP 
model.

3.4. Air-pollution computer model
The air-pollution  (AP)  computer  model  scheme  presented  in  Figure  43 does  not  differ 
significantly from the AP model scheme. The presented description is based on the actual AP 
computer model that  is designed according to the presented Lagrangian particle-modelling 
methodology. For all the practical experiments in this dissertation the AP computer model 
AriaIndustrie, designed by ARIANET s.r.l., is used as the base into which the modifications 
are built. The selected AP computer model uses the LPD computer model Spray , described in 
the user's manual103 and the paper11 by Tinarelli et al. 

Figure 43: air-pollution computer model

The AP computer model consists of three main components, presented in Figure 4311,14,103. The 
Input module modifies and generates the input data to be in an appropriate input form for the 
Lagrangian  particle  dispersion  (LPD)  computer  model.  When  the  inputs  are  a  prepared 
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simulation  using the  LPD computer  model  is  executed.  At  the end of  the  simulation  the 
outputs of the model are processed by the Output module, which generates results according 
to the requirements of the application that the AP computer model was designed for, i.e., for 
on-line systems or for off-line elaborations. The present AP computer model does not include 
the computational improvements proposed by Schwere et al.10.

The following data must be available for the Input module:

● topography data of the area of interest where besides the 3D topography data (Digital 
Elevation Model) of the domain also 2D Corine Land Cover data of the domain (map 
of the land use based on the interpretation of satellite images) is required,

● meteorological data measured at several different locations, equally spread over the 
area of  interest,  where besides  the air  temperature,  relative  humidity,  air  pressure, 
solar radiation, precipitations, wind speed and wind direction as well as the vertical 
wind  profile  from  SODAR  and  the  vertical  temperature  profile  from  RAS  are 
required,

● emission data  from all known sources of emission over the area of interest,  where 
each source of emission is described by static (position, height and diameter of source) 
and dynamic  (exit  temperature  and velocity  of emitted  gas,  emission rate  in kg/s) 
parameters.

For  the  simulation  with  the  LPD computer  model,  besides  inputs  prepared  by  the  Input  
module, also the initial state of the air pollution in the domain must be available and several 
simulation  run parameters  (settings)  must  be  defined.  When the  LPD computer  model  is 
finished the outputs  of the  model  are  processed by the  Output  module. According to  the 
different practical purposes, the module can generate results like:

● 2D ground concentration fields in the form of ASCII files or pictures,

● 3D presentation of plume with particles,

● ground level wind field presentations,

● others  according  to  the  demands  of  the  application  that  the  modelling  system  is 
designed for.

General modules of the computer air-pollution model are described in detail in the proceeding 
subsections. 

3.4.1. Input module
There are several inputs that must be prepared before the air-pollution episode reconstruction 
with the AP computer model is performed11,14,103. Some of the inputs are constant, like terrain 
elevation,  locations of measuring stations and emissions sources, and some can vary with 
time, like the meteorological and emission parameters. The input processing and preparation 
is done in several sub-steps, as presented in Figure 44.
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Figure 44: Sub-steps in processing and preparing model inputs

A database of the last meteorological conditions needs to be created. It must consist of the 
measured  meteorological  data  from  automatic  measuring  stations  across  the  modelling 
domain and also of the SODAR and RAS measuring data. 

There must also be a database about the current emission parameters created. It must consist 
of the current source positions and the amount of emitted species for each source must be 
provided. In the experimental model from the validation kits described in the previous section 
only one species type is used: sulphur dioxide (SO2).

The topography data  consist  of  the 3D topography data  (Digital  Elevation  Model)  of the 
domain  and the  2D Corine  Land Cover  data  of  the  domain.  The  topography description 
consists  of  a  2D  grid  of  cells.  This  also  means  that  the  resolution  of  the  topography 
description depends on the size of one grid cell (i.e., if the domain is 20x20 km wide and 
consist  of  100x100  cells,  the  size  of  one  cell  is  200x200  m)  which  represents  the  final 
resolution of the inputs and indirectly also the final resolution of the outputs. From this data 
two-dimensional arrays of the roughness length z0, albedo and Bowen Ratio (the ratio between 
the sensible and the latent heat fluxes over the portion of the terrain represented by the grid 
cell) are generated and given as the input to the LPDM. A time series of local meteorological 
data covering the whole episode period must be supplied, containing solar radiation fluxes, air 
temperatures close to the ground, and vertical temperature gradients. All this information is 
used by the parametrization schemes104 to build the Surface Layer and Boundary Layer scale 
parameters over each grid cell (i.e., the Mixing Height hmix, the friction velocity, the Monin 
Obukhov length L, and the convective velocity scale). The vertical profiles of the turbulence 
variables are then generated using stability-dependent similarity relationships105.

When meteorological, emission and topographic databases are prepared, a special ADSO102 

database must be constituted. The ADSO is a specific database for atmospheric flows and 
pollutant dispersion over a complex terrain with the following capabilities:

● handling topography at different scales, 

● use  of  many types  of  vertical  coordinates,  specific  to  meteorology (most  of  them 
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terrain-following),

● dealing  simultaneously  with  3D  vector  fields  (wind  field)  and  3D  scalar  fields 
(temperature), 

● handling  several  types  of  sensors,  at  different  locations  and  reporting  at  different 
times,

● permitting special processing for particular sensors (e.g.: SODAR, SF6 tracer, aircraft, 
etc.).

ADSO incorporates  some functions  of  the  GIS (Geographical  Information  System),  some 
DBMS (DataBase Management System) functions, but it is very much oriented towards the 
production of 3D fields for wind, turbulence and pollutant concentration in the atmosphere.

The constitution of the ADSO database triggers the constitution of a special database used as 
an  input  into  the  wind  reconstruction  system.  The  3D  wind  field  modelling  system 
reconstructs a three-dimensional wind field in the defined domain. A special application is 
used afterwards to extract only the ground wind field from the reconstructed 3D wind field.

Within the selected AP computer model AriaIndustrie used for experiments in this thesis, the 
diagnostic non-divergent model MINERVE102 is mainly used for this scope. In the selected AP 
computer  model  the outputs from other wind field and turbulence simulators,  such as the 
prognostic non-hydrostatic meteorological code RAMS106, can also be used. 

The initial state of the air pollution should also be available as an input into the proceeding 
step.  Usually,  the  final  state  of  the  air  pollution  from the  previous  air-pollution  episode 
reconstruction is used. If the initial state of the air pollution is not available the initial state 
without air pollution is assumed.

3.4.2. Lagrangian particle-dispersion computer model
The  Lagrangian  particle-dispersion  (LPD)  computer  model is  a  three-dimensional  model 
designed to  simulate  the  airborne  pollutant  dispersion14.  A conceptual  model  of  the  LPD 
computer model is presented in Figure 45. The initial air-pollution situation consists of a set 
of particles that already exists in the domain (particles that were emitted in the previous air-
pollution episodes). The emission data is used to generate new particles. The number of new 
particles and the mass of the new particles are inversely dependent; for the same emission a 
larger number of lighter particles or a smaller number of heavier particles can be released. 
The  number  of  particles  is  controlled  by the  PDNC parameter  (defined  and described  in 
details in the following subsection 3.6.Determination of acceptable simulation results). Other 
properties of the new particles (i.e., initial velocity, initial position, etc.) are also determined 
according to the emission data. When the simulation of the dispersion of the particles (new 
and existing) in the domain is finished, the output of model is the final air-pollution situation 
and the 3D grid of concentrations103. The final air-pollution situation has the same form as the 
initial air-pollution situation, so that it can be used in the next air-pollution reconstruction as 
an input.  The 3D grid of  concentrations  is  determined by box-counting the concentration 
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estimation  (described  and  discussed  in  detail  in  the  following  subsection  4.2.Method  for
estimation of a cell concentration based on kernel density).

The  LPD  computer  model  is  able  to  take  into  account  the  spatial  and  temporal 
inhomogeneities  of  both  the  mean  flow  and  the  turbulence103.  Using  this  model  the 
concentration fields generated by a point, linear, area or box sources can be simulated. The 
behaviour  of  the  airborne  pollutant  is  simulated  through  “virtual  particles”,  whose  mean 
movement is determined by the local wind and the dispersion is determined by the velocities 
obtained as a solution of Lagrangian stochastic differential equations.  Different parts of the 
emitted plumes are therefore exposed to different atmospheric conditions, which allows more 
realistic  reproductions  of  the  complex  phenomena  (low  wind  speed  conditions,  strong 
temperature inversions, flow over topography, presence of terrain discontinuities such as land-
sea or urban-rural) that are hard or impossible to simulate with more traditional approaches 
like the Gaussian approach11. For the experiments performed in this thesis the LPD computer 
model Spray,103 designed by ARIANET s.r.l., is used. 

Figure 45: Lagrangian particle-dispersion (LPD) computer model

The  LPD  computer  model simulates  the  air-pollution  dispersion  inside  a  computational 
domain,  bounded  on  the  upper  side  by  a  horizontal  plane  and  on  the  lower  one  by  an 
orographic function  zg(x,y) that  is computed through a bilinear interpolation of the Digital 
Elevation Model, given on a two-dimensional grid and defined by the user11,14,103. Thomson’s 
1987  scheme  with  Gaussian  random forcing24 has  been  adopted  to  describe  the  particle-
velocity fluctuations and to generate the average concentrations at  the ground at the same 
horizontal  resolution as used by meteorological reconstructions. The LPD computer model 
takes into account both the cross-correlations between all the Cartesian components of the 
turbulent  velocities  and  the  vertical  skewness11.  The  mean  flow  is  represented  by  wind 
vectors,  defined  on  three-dimensional  grids  in  a  terrain-following  reference  system  x,y,s 
where the vertical coordinate s is defined, as follows, in equation (3.1).
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s=
z−zg

z top−z g
(3.1)

z   ...Cartesian vertical coordinate
z top ...domain top level
zg  ...topography height about sea level

The wind at the particle positions is linearly interpolated using the values at the neighbouring 
points given on this grid14,103. The turbulent velocities u'x, u'y and u'z are updated on the fixed 
Cartesian  reference  frame.  Data  representing  the  turbulence  are  described  by  three-
dimensional arrays in the x,y,s system. The plume rise undergone by the hot-stack plumes is 
simulated by means of Anfossi’s formulation,101 which takes into account the horizontal and 
vertical variations of both the mean wind and the atmospheric stability103.

The selected LPD computer model takes as its input a time series of three-dimensional wind 
fields over a complex topography, generated by an external meteorological code in a binary 
format11,14,103. The source parameters and the run options must be prepared by the user and the 
Input  module.  Multiple  point,  linear  or  areal  sources  can  be  configured,  each  emitting 
different non-reactive chemical species. The total number of particles is selected by the user, 
where  the  PDNC parameter  (defined  and  described  in  detail  in  the  following  subsection 
3.6.Determination of acceptable simulation results) can be controlled and the particle mass 
for each species is, during the computer simulation, automatically calculated as a function of 
the emission characteristics. 

3.4.3. Output module
The 3D concentration fields of each species used in the simulation for different levels above 
the ground are reconstructed from data about particle positions. After that a special database 
for a graphical tool that generates the graphical presentation is created. From this database the 
presentations  of  the  surface  wind  streams,  the  ground  concentrations  and  the  three-
dimensional representation of particles are generated. Typical results from this step will be 
used and presented in the following sections. The sub-steps in the processing of the results are 
presented in Figure 46.

Figure 46: Sub-steps in the interpretation of the results
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3.5. Evaluation methods
The  proposed  methods  presented  in  Section  4  contribute  into  the  existing  air-pollution 
modelling  methodology  and  integrated  into  the  enhanced Lagrangian  particle  dispersion 
model to make it possible to obtain the same reliable results with a shorter computational time 
. To evaluate the quality of the simulation results performed with the AP computer model 
based on the LPD several evaluation methods are contributed, based on adjustments to the 
existing evaluation methods81,107,78,108,18. The result of one air-pollution episode reconstruction 
is  a 3D concentration field,  out of which only the 2D ground-level  concentration field  (a 
matrix of size MxN grid cells) is relevant to this study. Two 2D ground concentration levels 
are presented in Figure 47: the left is obtained with a larger number of particles than the right.

To estimate the quality of the result of each air-pollution episode reconstruction the reference  
concentration  field needs  to  be  defined.  It  is  common  practice109 that  this  reference 
concentration field is obtained by using a very large number of particle trajectories for the full 
three-dimensional model simulation. In our case the reference concentration field is a two-
dimensional ground-level field. It is the result of the air-pollution episode reconstruction with 
the  highest  possible  number  of  used  particles  according  to  the  available  computational 
resources  (i.e.,  for  the  performed  experiments  about  3,000,000  particles  are  used  for  the 
reconstruction of one air-pollution episode, which is almost 10 times more than for usual 
applications). All the other results of each simulation are compared to this defined reference 
concentration field using several statistical analysis methods.

A simple example is presented in  Figure 47 where the left concentration field is taken as a 
reference. The quality of the right concentration field can be estimated by comparing it with 
the  left  reference  concentration  field.  The  comparison  can  be  performed  by  using  the 
proposed evaluation method described in the following paragraphs.

Figure 47: Example of similar 2D ground concentration fields
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3.5.1. Correlation coefficient

The correlation coefficient110 is calculated according to equation (3.2). It is a number between 
-1 and 1. If there is no relationship between the reconstructed concentration field and the 
reference concentration field, the absolute value correlation coefficient is 0 or very close to 0. 
As  the  strength  of  the  relationship  between  the  reconstructed  concentration  field  and the 
reference  concentration  field  increases,  so  does  the  absolute  value  of  the  correlation 
coefficient. A perfect fit gives a coefficient of 1 and a strong negative linear correlation gives 
a coefficient of -1. Thus, the higher is the absolute value of the correlation coefficient, the 
better are the results. It is very important that the absolute values must be compared to when 
the correlation is evaluated (i.e. A -0.9 correlation is a significantly better correlation than 
-0.1).
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(3.2)

N        ... number of grid cells in east-west direction in 2D plane near the surface
M        ... number of grid cells in north-south direction in 2D plane near the surface
Cn , m     ...concentration at grid cell {m,n} of reconstructed concentration field
Cn , m ,ref ...concentration at grid cell {m,n} of reference concentration field

3.5.2. Fractional bias
The fractional  bias is a measure of the performance recommended by the U.S. EPA. The 
general expression is given in equation (3.3), as defined in a paper by De Haan109. The mean 
reconstructed concentration is defined by equation (3.4) and the mean reference concentration 
by equation (3.5). It was selected because it has two desirable features. First, the fractional 
bias is symmetric and bounded; the values for the fractional bias range between -2.0 (extreme 
over-prediction)  to  +2.0  (extreme  under-prediction).  Second,  the  fractional  bias  is  a 
dimensionless number, which is convenient for comparing the results from studies involving 
different concentration levels. The values that are equal to -0.67 are equivalent to an over-
prediction by a factor of two, while the values that are equal to +0.67 are equivalent to an 
under-prediction by a factor of two. Model predictions with a fractional bias close to 0.0 are 
relatively free of bias. 

FB=
C ref −C 

0.5 C ref C  (3.3)
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C=
∑
n=1

N

∑
m=1

M

Cn ,m

N⋅M
(3.5)

N   ... number of grid cells in east-west direction in 2D plane near the surface
M   ... number of grid cells in north-south direction in 2D plane near the surface
C    ...mean reconstructed concentration
C ref ...mean refrence concentration

3.5.3. Root mean square error 
The root mean square error (RMSE) is a very often used measure of the difference between 
values predicted by a model or an estimator and the reference values from the phenomenon 
being modelled or estimated. These differences are also called residuals. The RMSE of an 
estimated concentration field C, with respect to the “true” concentration field Ctrue, is defined 
as the square root of the mean squared error defined in equation (3.6). 

RMSE= 1
N⋅M ∑

n=1

N

∑
m=1

M

Cn , m ,ref −Cn , m
2 (3.6)

N        ... number of grid cells in east-west direction in 2D plane near the surface
M        ... number of grid cells in north-south direction in 2D plane near the surface
Cn , m     ...concentration at grid cell {m,n} of reconstructed concentration field
Cn , m ,ref ...concentration at grid cell {m,n} of reference concentration field
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3.6. Determination of acceptable simulation results
The  theory  of  the  Lagrangian  approach  as  described  in  subsection  1.4.6.The  Lagrangian
particle-dispersion model, and is based on tracking the flow path of the point-like particles. 
Each particle that represent a trace species is tracked on its path through the atmosphere with 
this type of model according to equations (1.3) and (). The particles are moved according to 
the  reconstructed  mean  wind  field  and  are  additionally  subjected  to  the  influence  of 
turbulence. The required computational complexity is according to two equations (1.3) and () 
proportional to the total number of particles used in the simulation because the number of 
equations to be solved increases with the number of particles. 

The quality of the simulation results performed with an AP computer model based on the 
LPD depends on the number of particles used in simulation.  In theory,  the use of a large 
number  of  particles  should  ensure  good  results.  In  the  paper  written  by  Graham  and 
Moyeed111 an investigation was preformed and an approach was presented to determine how 
reliable  the  results  from  Lagrangian  simulations  actually  are.  According  to  the 
recommendations from the paper the number of particles must be increased by two orders of 
magnitude if the precision is to be increased by one order of magnitude. But in practice, the 
number of particles is limited by the computer resources and the duration of the simulation. A 
larger  number  of  particles  usually  needs  more  time  for  the  simulation  and  a  greater 
computational cost. 

An experiment was made to determine how the AP computer model based on LPD depends 
on the total number of particles emitted in the air. Several simulation runs were performed for 
the the same time interval. At each simulation the number of particles was doubled but the 
meteorological and emission conditions are the same. The absolute number of particles in the 
domain varies during the simulation because it depends on the emission and meteorological 
conditions.  For the presentations  of the results a parameter  PNDC  is defined by equation 
(3.7), which is used to denote the Particle Number Density Coefficient. The defined parameter 
is  proportional  to  the  number  of  particles  N emitted  during  the  simulation  for  a  certain 
emission. When the value of the PNDC is high a larger number of lighter particles are emitted 
(higher resolution),  and when the value is  low, a smaller  number  of heavier  particles  are 
emitted (lower resolution) for the same amount of emitted specie. The parameter is inversely 
proportional to the parameter resolution, as defined in equation (3.8). 

The parameter  resolution is used in the AP computer model to define the number and the 
mass of the emitted particles for a certain amount of emitted species (i.e., for the emission of 
1kg/s of SO2 1 virtual particle is emitted in each time step of the simulation for resolution=1 
or 10 virtual particles are emitted in each time step for resolution=0.1). 

PNDC ∝N (3.7)

PNDC= 1
resolution (3.8)
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To determine the dependence of the efficiency of the AP computer model according to the 
particle  number  density  coefficient  (PDNC)  an  experiment  was  made  where  several 
simulations  are  performed  on the Šaleška  region  field  data  set air-pollution  situation  that 
lasted from 1st of April 1991 at 20:00 until 3rd of April 1991 at 00:00. The computational 
times used for each air-pollution  episode reconstruction of each simulation are presented in 
the graph on the upper part of Figure 48 and on the lower part the dependence of the full time 
used for each simulation to the number of particles is shown. The presented results show that 
a very weak dependence of time used on the  PDNC is observed when a small  number of 
particles  is  used  for  the  reconstruction,  but  when  the  number  of  particles  significantly 
increases, a strong linear dependency can be determined. In the following figures the time 
used for each air-pollution  episode reconstruction, additionally determined for each of three 
basic modules of the AP computer model, is shown. The absolute time used within the Input  
module is presented in  Figure 49, where no dependency is observed between the time used 
and the  PDNC. It is practically constant during all the air-pollution  episode reconstructions 
for all the cases of the PDNC. In Figure 50 the time used within the LPD computer model is 
presented. The results show a strong linear dependency on the time used and the number of 
particles used for the air-pollution  episode reconstruction. This linear dependency becomes 
very strongly emphasized in the full time used for the air-pollution episode when a very large 
number of particles are used for the reconstruction (very large  PDNC). This shows that the 
time used for a simulation run linearly depends only on the number of particles. In Figure 51 
the dependency of the time used within the Output module is presented. The result shows that 
when a small  PDNC is used, there is almost no dependency between the time used and the 
PDNC,  because  the  time  used  is  practically  constant.  But  when  the  number  of  particles 
exceeds a certain limit, a strong linear dependency occurs. This linear dependency has a lower 
impact on the full time for one air-pollution episode reconstruction than the dependency of the 
LPD computer model because the measured values are one order of magnitude lower. 
From the  point  of  view  of  the  time  spent  for  each  simulation  run  an  optimal  value  of 
PDNC=2 is selected. The optimal value has been selected according to the time that is spent 
to reconstruct the air pollution over the area of interest for a time period of one year. For the 
selected  optimal  point  where  1.53  hours  are  spent  for  the  reconstruction  of  one  day, 
approximately 23 days are spent for the reconstruction of one year, which is still acceptable in 
practice.
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Figure 48: Full time used within the AP computer model (Input module+LPD model+Output  
module) simulations with different PDNC
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Figure 49: Time used within the Input module for each simulation with different PDNC

Figure 50: Time used within the computer LPD model for each simulation with different  
PDNC

Figure 51: Time used within the Output module for each simulation with different PDNC
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An evaluation of each result with a different number of used particles is performed to define 
the  minimum  acceptable  PDNC that  is  necessary  to  achieve  a  good  air-pollution 
reconstruction.  Methods that  are  described  in  detail  in  subsection  3.5.Evaluation  methods 
were used for the evaluations.  To estimate the quality of the result of air-pollution episode 
reconstruction the reference concentration field is defined: a ground level concentration two-
dimensional  field,  which is  the result  of  one air-pollution  episode reconstruction  with the 
highest number of used particles where the  PDNC value was set according to the available 
computational  resources  PDNC=10 (resolution=0.1). Within  this  maximum  value  of  the 
PDNC approximately  3,000,000  particles  are  used  in  each air-pollution  episode 
reconstruction. All the other results of each air-pollution episode reconstruction are compared 
to this defined reference concentration field using several statistical analysis methods.

The  results  of  the  first  comparison  are  presented  in  Figure  52 where  the  correlation 
coefficient between the reconstructed concentration field and the reference concentration field 
exponentially increases to some certain number of particles used in the simulation. When this 
point is reached, the increase in the number of particles has almost no influence on the quality 
of  the  results.  So  in  practice  the  use  of  a  too  large  number  of  particles  results  in  an 
unnecessary consumption of computational power and wasting of the computational time. It is 
estimated  from the graph presented on the  left  side of  Figure  52 that  the results  are  not 
improving  significantly  after  the  correlation  factor  is  greater  than  0.8.  So  in  practice  the 
results that correlate with the original result above the factor of 0.8 are completely acceptable.

The results of the second comparison are presented in Figure 53, where the root mean square 
error between  the  reconstructed  concentration  field  and  the  reference  concentration  field 
exponentially decreases to some constant value of 0. Again, it is estimated from the graph 
presented in  Figure 53 that the results are not improving significantly after the root mean 
square reaches  some threshold value,  which in our example is 15.  So the results  that  are 
distant from the original result, below the threshold value are acceptable in practice.

The results of the third comparison, where the fractional bias is used for the evaluation, are 
presented in Figure 54. All the average results are almost completely free of bias according to 
the definition.  The fractional  bias  variability  decreases  with a higher  resolution  when the 
number of particles increases. The value can be used to approximately estimate whether the 
result is in accordance with the original or is it completely under or over estimated.

From the point of view of the evaluated results the optimal value of PDNC=5 can be selected. 
Unfortunately this value is not acceptable in practice. For this value of  PDNC=5 where 3,8 
hours are spent for the reconstruction of one day, approximately 58 days are needed for the 
reconstruction of one year. The time spent for a reconstruction of the air pollution for one year 
is too high for practical purposes.
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Figure 52: Correlation coefficient

Figure 53: Root mean square error

Figure 54: Fractional bias
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The ground-level concentration results for one of the reconstructed air-pollution episodes on 
1st of April 1991 at 23:30 that are used for the comparisons are presented in Figure 55. In the 
upper  left  corner  is  the  result  when  the  highest  number  of  particles  is  used  (reference 
concentration field, high PDNC) in simulation run and in the lower right corner is the result 
when the smallest number of particles is used (low PDNC). It can be seen that with the higher 
number of particles the ground concentration distribution is more smoothly dispersed than 
with the smaller number of particles.

Figure 55: Ground-level concentration results of air-pollution episode reconstruction on 1st 

of April 1991 at 23:30 used for a comparison
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3.7. Air-pollution computer model limitations
In this subsection the computational problems that can appear during the simulation within the 
AP computer model based on the LPD are demonstrated. The problems are directly related to 
the occurrence of situations with a large number of active particles. There are two kinds of 
computational problems that can occur due to the different operational purposes of the AP 
computer model:

● during the  off-line air-pollution  reconstruction simulations it often happens that the 
number of active particles exceeds the available computer resources

● during the on-line air-pollution reconstruction simulations the available computational  
time can be exceeded when a too large number of active particles occurs.

In  both listed situations  the  simulation  must  be interrupted  when the number  of particles 
exceeds the limitations and the reconstruction of the current air-pollution episode is lost. And 
several proceeding air-pollution episode reconstructions are also corrupted due to the loss of 
the previous air-pollution situation, especially in low-wind situations when the accumulation 
of air pollution in the domain occurs. 

The problem that occurs around the computational constraints of the AP computer model is 
illustrated  with  an  example.  A  situation  from  the  field  data  set  described  in  subsection 
2.1.5.Situation selection from the Šaleška region field data set that lasted from the 1st of April 
1991 at  20:00 until  3rd of  April  1991 at  00:00 was selected  for  a  demonstration.  For the 
selected  time  interval  two  simulations  were  performed  to  reconstruct  the  air-pollution 
episodes: 

● in the first original simulation the maximum allowed number of active particles in the 
domain is set to a value of 500,000 ,which ensured that the current number of particles 
in each air-pollution episode is not exceeded,

● in the second constrained simulation the maximum allowed number of active particles 
was set to a value of 200,000, where it is expected that the current number of particles 
in at least one air-pollution episode is constrained.

The  results  of  both  simulations  are  presented  in  Figure  56,  where  the  number  of  active 
particles of each air-pollution episode reconstruction is compared between the  original and 
the constrained simulation. The maximum number of active particles of 200,000 is reached at 
a reconstruction of the air-pollution episode 00:30, where during the reconstruction of the air-
pollution  episode the emission is  interrupted  and cut  down to keep the number  of active 
particles  beyond  the  limit.  In  the  next  two  proceeding  episodes  at  01:00  and  01:30  the 
situation repeats and the final number of active particles is again constrained according to the 
restriction on account of cutting down the emission during the simulation. As a consequence, 
the reconstruction of a proceeding air-pollution episode begins with a corrupted previous state 
of air pollution in the domain, which is underestimated due to the particle number constraint 
and part of the information is lost. 
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To evaluate the results of the constrained simulation several comparisons were performed, 
where  the  first  comparison  is  between  the  unconstrained  and  the  reference  simulation 
(Original in  blue  colour)  and  the  second  is  between  the  constrained  and  the  reference 
simulation  (Constrained in  red  colour).  The  comparison  of  the  correlation  coefficient 
presented  in  Figure  57 shows that  the  limitation  begins  at  the  reconstruction  of  the  air-
pollution episode 00:30,  where first  significant  drop in the correlation  is  determined.  The 
same result is observed during the root mean square error comparison presented in Figure 58. 
The fractional bias presented in Figure 59 shows that the results obtained after the limitation 
are underestimated, which is expected because of the limitation of the emitted particles and 
consequentially not properly simulating the highest values. 

All  the comparisons  show that  all  the proceeding  reconstructed  air-pollution  episodes  are 
severely  corrupted  and the important information is lost. Reconstructed concentrations are 
lower than they would be obtained in the case where the limitations would not have occurred. 
Several air-pollution  episodes  must  be  reconstructed  in  the  proceeding  of  the  simulation 
before  the  lost  information  is  negligible.  The  problem is  even more  severe  in  low wind 
conditions because several more proceeding episodes must be reconstructed to recover from 
the constrained situation than in strong wind conditions.

Figure 56: Comparison of the number of particles in the unconstrained and constrained 
simulation
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Figure 57: Correlation coefficient of the unconstrained and constrained simulation results  
compared to the reference simulation results

Figure 58: Root mean square error of the unconstrained and constrained simulation results  
compared to the reference simulation results
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Figure 59: Fractional bias of the unconstrained and constrained results compared to the 
reference simulation results
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4. PROPOSED IMPROVEMENTS IN AIR POLLUTION MODELLING 
METHODOLOGY
Three new methods to improve the computational efficiency are described in this section. The 
main advantage of these methods is that the basic physical properties of Lagrangian particle 
dispersion (LPD) model are not modified at all. All the parameters and methods of the air-
pollution modelling methodology are preserved in their original form and no adjustments to 
the well-developed methodology are required. All the methods are proposed independently 
and can be separately  integrated  into the existing air-pollution  modelling  methodology to 
improve  the  computational  performances  to  optimally  exploit  the  available  computational 
capabilities. 

The  first  presented  method  is  clustering,  adopted  to  decrease  the  computational  cost  by 
decreasing the number of particles in the simulations. 

The  concentration  estimation  method  based  on  the  kernel  density  represents  the  second 
proposed method. It is adapted to substitute for the box-counting concentration estimation 
method and to improve the poor quality of the results when a smaller number of particles are 
used in the simulations. 

To control  the  Lagrangian  particle  dispersion  (LPD) and the  clustering  algorithm a  third 
method  is  contributed.  It  consists  of  two main  subsequent  methods.  In  the  first  step  the 
percentage of lost particles is predicted with the use of an artificial neural network based on 
the meteorology, the emission and the situation of air pollution at the end of previous episode 
reconstruction.  In the second step the clustering parameters are determined by a decision-
making method. 

For  each  contributed  method  an  algorithm  is  designed  that  is  used  for  the  software 
development  of  a  computer  programme.  All  the  methods  are  transformed  into  computer 
programs to verify their performance. The performance of methods presented in this section 
are verified on the Šaleška region field data set.

4.1. Clustering method

4.1.1. Introduction

In  practice  the  number  of  particles  is  constrained  by  the  computer  resources  and  the 
acceptable duration of the simulation. A larger number of particles usually results in more 
time being used for the simulation and to a greater computational cost. The clustering method 
to decrease the computational cost while preserving the quality of results is described in this 
section.

The number of particles in the area of interest during the simulation varies. It increases due to 
the emissions of new particles (species) from a different source in the area and decreases due 
to different meteorological conditions, especially the wind, which pushes the particles out of 
the domain. A smaller number of particles is also achieved due to their exposure to dry and 
wet  deposition.  In  the  current  AP computer  model  the user  can  influence  the  number  of 
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particles only through the emission from sources where the same emission can be simulated 
with a smaller number of particles by increasing the weight of the emitted particles. From the 
presented experiment in the previous subsection 3.6.Determination of acceptable simulation
results it was determined that this can be performed only to a certain level. When that level is 
reached the quality of the results begins to decline drastically. 

During the first simulation experiments an idea occurred to control the maximum number of 
particles in the domain by modifying the current air-pollution  modelling methodology with 
the use of clustering methods generally, described in subsection 1.4.8.Clustering. This means 
that certain particles are joined according to some rules into new, heavier particles. These new 
particles  are  introduced  into  the  domain  and  the  old,  lighter  particles  are  removed.  The 
properties of the new particles are composed of the properties of the old, lighter particles. In 
this  way the total  number  of particles  in the domain (the area of interest)  is significantly 
reduced and therefore the reconstructions of the proceeding air-pollution  episodes (after the 
clustering) is significantly less computationally demanding. 

The  concept  of  the  clustering  method  is  presented  in  Figure  60,  where  the  conventional 
clustering  is  assumed.  Within  the  conventional  clustering  method  concept  the  number  of 
clusters  is  equal  to  the  maximum  allowed  number  of  particles.  The  particles  are  joined 
together only in clusters, which consist of more than one particle.

The clustering method for different purposes was already used, by Melheim and presented in 
his paper,88 to reduce the number of equations to be solved in particle dynamics. The main 
idea is that only particles that interact or may interact during the next global time-step are 
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Figure 60: Conventional clustering method concept where initial particles are clustered into 
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integrated  simultaneously,  while  the particles  that  are  far  from the other  particles  can  be 
integrated alone. The cluster integration method was proposed in order to perform numerical 
simulations  of collisional  particle  dynamics  in the Lagrangian framework.  The clusters  of 
particles were made of particles that interact or may interact during the next global time-step. 
The cluster  integration method was applied to the sedimentation of 5000 particles in two-
dimensional box. A significant speed-up was reported at a factor of three orders of magnitude 
in the dilute regime and two orders of magnitude in the dense regime. 

Clustering  methods  were  proved  to  be  a  very  effective  tool  also  for  environmental 
applications  by  Mlakar  and  Božnar50 in  a  cluster  analysis  of  wind  fields  and  SO2 

concentrations based on the Kohonen neural network. The method was used for compressing 
a  huge  database  of  wind  measurements  in  order  to  find  correlations  between  winds  and 
pollutant concentrations. 

According  to  the  recommendations  from  the  literature71,  available  clustering  tools  and 
practical  experiences50 a  clustering  software  has  been  developed  that  incorporates  two 
methods: the Kohonen neural network or the K-means clustering algorithm. A software has 
been developed in the C++ programming language using Qt112 development tools and an Open 
Source  Clustering  library113 for  C++  developed  by  the  Laboratory  of  DNA  Information 
Analysis, Human Genome Centre, Institute of Medical Science, University of Tokyo. 

4.1.2. Clustering criteria

The term feature is used for observations, data items or feature vectors. In this case the feature 
is a property of particles where each particle is described by its mass, position and velocity. 
The features must be defined to be used in a clustering process. Feature selection is a process 
where the optimal subset of features is selected. This can be achieved by eliminating those 
features that are redundant or do not contain enough relevant information for the clustering 
process114. According to the procedures described in the literature32,57 a heuristic determination 
of the features for clustering is made. For a heuristic determination of the features all the facts 
about  the  patters  and  the  task  domain  must  be  known in  advance.  In  our  case  detailed 
information about the particles is given in the user's manual  of the selected AP computer 
model AriaIndustrie, which is based on the LPD computer model Spray103.

From preliminary tests of the used clustering tools on large sets of data it was determined that 
not  more  than  four  features  should  be  used  in  the  clustering  process  because  of  the 
constrained computational resources and the available computational time. In our case it is 
expected that the time used for the clustering should be smaller than the additional time used 
for the air-pollution episode reconstruction with the original particles in comparison to the 
clustered particles. In contrast it is the only reasonable solution to perform simulations with a 
large number of particles. From the set of all the features several features were determined to 
have less relevant information for the clustering process:

● the mass  of each species,  because all  particles  have the same mass when they are 
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introduced into domain through emission.

● “plume rise” parameters because they are related to the 'plume rise' effect of the hot 
plume  to  which  the  particle  initially  belongs.  After  a  certain  time  the  plume-rise 
mechanism is switched off and the properties become irrelevant for the simulation. 
The particles  that  are  emitted  at  the same time have equal  values of “plume rise” 
parameters, so the “plume rise” parameters and age are practically redundant.

● the velocity of the particle because the particles that are relatively close to each other 
also have similar velocity that depends on the velocity of wind. So the velocity and 
position are practically redundant.

So, finally, the selected features are:

● x, y and z position in the domain

● age a of the particle.

To compare the similarity of a input pattern and a cluster centre (centroid or weight vector of 
the  node)  a  distance  measure  must  be  defined.  According  to  recommendations  from the 
literature71 the Euclidean distance is selected as defined in equation (4.1). 

d i , c=∥x i−xc∥
2∥yi− yc∥

2∥z i−zc∥
2∥a i−ac∥

2 (4.1)

d i , c          ...distance between particle i and cluster centre c
xi , y i , z i   ...position of particle i
ai             ...age of particle i
xc , y c , zc  ...position components of cluster centre j
a c             ...age component of cluster centre j

4.1.3. Implementation
After the feature selection has been completed a clustering software is being developed and 
designed to be integrated into the existing LPD computer  model.  At the end of each air-
pollution  episode  reconstruction  a  file  is  created  where  the  final air-pollution  situation  is 
described. In this file the position and properties of each particle at the end of simulation run 
are  saved.  This  file  is  used  as  the  input  into  the  proceeding air-pollution  episode 
reconstruction  to  define  the  initial  state  of  the  air  pollution  at  the  beginning  of  the  next 
reconstruction. The clustering software is developed to intercept this file, reduce the number 
of particles in this file with the clustering method, and pass the modified file back to the LPD 
computer model for the next proceeding air-pollution episode reconstruction. 

In the file where the air-pollution  situation is  saved,  each particle  is described by several 
properties:

● x, y and z position in the domain,

● age a of the particle,

● “plume rise” parameters,
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● mass of the particle,

● velocity of the particle.

When the  integration  has  been  completed  a  first  experiment  is  made  to  analyse  the  new 
computational performance of the clustering application and modified LPD computer model 
with an integrated clustering application.  Figure 61 presents highlighted modification of the 
LPD computer model scheme that is presented in previous section in Figure 45.

In this experimental simulation an air-pollution situation containing about 200,000 particles is 
used. This large set of particles is clustered several times into a different number of clusters. 
The time used for clustering with both used clustering methods according to the final number 
of clusters is presented on a graph depicted in Figure 62. The results of the clustering where 
the SOM algorithm was used are presented with a green colour and the right results where the 
K-MEANS algorithm was  used  are  coloured  in  red.  Additional  parameters  for  the  SOM 
algorithm were set to ensure reliable results: the number of iterations to Niter=50 and the initial 
learning rate  α=0.02. No additional parameters were set to the K-MEANS algorithm. The 
time used for the clustering is linearly dependent on the number of clusters within the SOM 
algorithm  and  exponentially  is  dependent  within  the  K-MEANS  algorithm,  which  was 
expected from the theory about both clustering techniques.
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The presented results of the experiment show that for practical purposes the clustering of a 
large dataset into more than 5 clusters is unsuitable. The main idea was to directly cluster the 
initial,  for  example  200,000 particles,  into about  20,000 particles,  as  shown  in  Figure 60 
where  the  conventional  clustering  concept  is  illustrated.  This  is  unachievable  in  practice, 
especially when the K-MEANS algorithm is used, while using the SOM algorithm the result 
can be achieved, but its quality would not be sufficient. To overcome the deficiency of the 
presented  clustering  application  it  will  be  upgraded,  based  on  the  developed  hierarchical 
clustering algorithm described in the proceeding subsection.

4.1.4. Hierarchical clustering method
To achieve a high computational efficiency, the clustering is performed hierarchically, where 
a  large  number  of  particles  is  clustered  into  several  large  clusters.  Each  large  cluster  in 
afterwards sub-clustered into several clusters and so on is the clustering performed until small 
sub-clusters with particles that really belong together are obtained. At the end of the clustering 
procedure the obtained small sub-clusters are joined into new particles. 

The concept of the hierarchical clustering method is illustrated in  Figure 63 using a simple 
example. In the first stage of clustering all the particles are grouped into two clusters. The 
particles of each cluster are in the second step again grouped into two clusters. This process of 
grouping particles of a cluster into two sub-clusters is performed for several clustering stages 
until the number of particles in each sub-cluster is less than or equal to two particles. Finally, 
the  particles  in  each  sub-cluster  are  joined  into  new particles.  In  this  basic  method  two 
parameters are used to control the clustering process:

● Nsub, sub-cluster count, which defines into how many sub-clusters the current cluster 
will be separated, for practical purposes the value of this parameter should not exceed 
a value of 4,
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Figure 62: Dependence of the time used for clustering according to the number of clusters
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● Nsize, cluster size, which defines the maximum number of particles that can be joined 
together (of how many small particles should a new larger particle consist).

The hierarchical clustering method based on the SOM and K-MEANS clustering algorithms is 
presented in  Figure 64 and the recursive clustering function used in basic method in  Figure
65.

In practice, when a large dataset of 200,000 particles is used, it is expected that when the 
parameters are, for example:

● Nsub=2; Nsize=2; the result consists of approximately 100,000 particles,

● Nsub=3;  Nsize=2; the  result  consists  again  of  approximately  100,000  particles,  the 
computational time is shorter, but more memory resources are used,

● Nsub=2; Nsize=4; the result consists of approximately 50,000 particles.

The term approximately is used because the final size of the dataset is not dived exactly by a 
factor of 4 when the Nsize parameter is 4. The Nsize parameter defines only the upper limit of the 
particles that a new particle consist of, which means that the new particle can be constructed 
from 1, 2, 3 or 4 particles in this example. When, for example, two particles are far away from 
other but close enough one to another, the clustering algorithm on the first level these two 
particles  joins  into  a  new  particle,  while  the  remaining  dataset  of  particles  is  being 
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Figure 63: Illustration of the hierarchical clustering method concept where the final number 
of clusters is obtained in several clustering stages, in each clustering stage the particles in 
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additionally clustered. So, the final number of particles can only be approximately estimated, 
because the exact final number of particles depends on the current distribution of the particles 
in the domain. 

Figure 64: Flow chart of the hierarchical clustering-method implementation where particles  
are clustered by calling the recursive clustering function and two parameters are used
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Figure 65: Flow chart of the recursive clustering function implementation which is called 
recursively until the number of particles in obtained sub-clusters is less than Nsize

Based on the presented hierarchical clustering method a software is designed and integrated 
into the  LPD computer  model  for the validation  of  the method.  Several  simulations  with 
different clustering parameters have been performed to test the performance of the developed 
method and to determine the influence of the clustering algorithm on the quality of the results. 
To  determine  the  quality  of  the  results  a  comparison  to  the  reference  ground-level 
concentration  fields  are  made  according  to  the  developed  methods  described  in  detail  in 
subsection 3.5.Evaluation methods. For all the simulations only the results obtained by the K-
MEANS clustering  algorithm are presented because  the results  obtained  by the SOM are 
practically the same.

In  Figure 66 the result of the time used within the Lagrangian particle-dispersion computer 
model (LPDM) and in Figure 67 the time used within the Clustering module are presented for 
air-pollution episode reconstructions with the different clustering parameters Nsub and Nsize. In 
all the presented simulations the particles have been emitted with the parameter  PDNC=2. 
Comparisons show that with the increase of the values of the clustering parameters, the time 
used for the simulation and the clustering decreases. The results also show that the time used 
for the clustering only depends on the dispersion of the particles and very little on the number 
of  particles.  The  two  peaks  in  Figure  67 are  the  results  of  changing  the  meteorological 
conditions when the wind started to change its direction and the particles become widely 
dispersed over  the  domain,  as  presented  in  Figure  26 from the subsection  2.1.5.Situation
selection from the Šaleška region field data set.

93

Set of particles N
sub

Cluster set of particles into
N

sub
 number of sub-sets of particles

using SOM or K-MEANS clustering method

N
size

Join particles of sub-set into
a new cluster particle and

define its properties 
Return from function Add a new cluster particle

into a set of cluster particles

For each 
sub-set of particles

do

Is size of
sub-set of particles

larger than
N

size

Call recursive clustering function
to cluster a sub-set of particles 

Set of
cluster particles

No

Yes



4.Proposed improvements in air pollution modelling methodology

Figure 66: Time used within the LPDM according to the different clustering parameters 
(Nsub=variable, Nsize=variable)

Figure 67: Time used within the clustering module according to the different clustering 
parameters (Nsub=variable, Nsize=variable)

In  Figure 68 a correlation factor, in  Figure 69 a root mean square error and in  Figure 70 a 
fractional  bias  are  presented.  Qualitative  comparisons  to  the  reference  concentration  field 
show that the results are more correlated when certain meteorological conditions appear in the 
domain. The trend of the correlation coefficient of the simulations performed with clustering 
compared  with  the  correlation  coefficient  trend  of  the  optimal  simulation  is  strongly 
correlated. The correlation coefficient of the clustering simulations is much worse because the 
number of particles is strongly reduced due to the clustering algorithm. Also, the results of the 
root  mean  square  error  and  the  fractional  bias  are  significantly  worse,  especially  for  the 
simulations  where  the  Nsize and  Nsub parameters  have  lower  values.  The  ground  level 
concentrations  for  several  intervals  where the correlation  between the  results  is  good are 
presented in Figure 71, where a relatively strong wind from the south-east is present. Fewer 
correlated  results  are  obtained  when  other  meteorological  conditions  appeared.  Several 
intervals  where  the  correlation  is  poor  are  presented  in  Figure  72,  where  calm  weather 
occurred and the air pollution started to accumulate in the domain. On both presentations in 
Figure 71 and in Figure 72 it is clear that the number of particles is approximately inversely 
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proportional to the parameter Nsize.

Figure 68: Correlation coefficient for different clustering parameters

Figure 69: Root mean square error for different clustering parameters

Figure 70: Fractional bias for different clustering parameters
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Comparisons show that when the parameter  Nsize increases, the time used for the simulation 
and clustering decreases. This is because the number of particles in the simulation becomes 
increasingly  reduced  when  more  particles  are  joined  together.  With  the  increase  of  the 
parameter Nsize the quality of the results also decreases. 

Amplification of parameter Nsub reflects in an increase of the used computational time. This is 
expected because of the results presented in Figure 62, where it is determined that clustering 
in more clusters results in more computational time being used. 

Figure 71: Good correlation between the original and hierarchical clustering results
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Figure 72: Poor correlation between the original and hierarchical clustering results

4.1.5. Hierarchical clustering method with additional parameters

Previously  obtained  results  show that  the  reduction  of  particles  by  this  clustering  is  too 
intense, which is reflected in the poor quality of the results. So, the next idea is to reduce after 
each air-pollution episode reconstruction the number of particles in the domain only to some 
defined  maximum  number.  The  clustering  method  is  improved  by  adding  the  additional 
parameter  Nmax, which defines the upper limit of the final number of particles. If the current 
number of particles is not exceeded, none of the particles is joined and replaced with a new 
particle. In this new, advanced algorithm only those clusters of particles are joined into a new 
particle, which are closer to each other according to a distance measure.

Another additional parameter  mmax is introduced into the new hierarchical clustering method 
with additional parameters that excludes the particles from clustering that exceed a certain 
mass. This parameter is provided to exclude the hypothetical growth of very large and heavy 
particles, which can lead to physical nonsenses. 
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The concept of the hierarchical clustering method with additional parameters is illustrated in 
Figure 73 using a simple example. Before the clustering begins the particle with a mass larger 
than 4 is  excluded from the clustering process.  In the first  stage of the clustering all  the 
particles are grouped in two clusters. The particles of each cluster are, in the second step, 
again grouped into two clusters. This process of grouping particles of a cluster into two sub-
clusters is performed for several clustering stages until the number of particles in each sub-
cluster in less than or equal to two particles. Finally, only those particles in each sub-cluster 
are joined into new particles that are close enough according to the defined distance metrics. 
The number of particles joined together depends on the defined maximum number of final 
particles. In this example only three pairs of particles are joined together.

The final, hierarchical clustering method with additional parameters is presented in Figure 74, 
while the recursive clustering function remained the same as that presented in Figure 65.
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Figure 73: Illustration of the hierarchical clustering method concept with additional  
parameters where the large particle is not involved in clustering and only the closest  

particles are joined together to satisfy the maximum number of requested final particles
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Figure 74: Flow chart of implementation of hierarchical clustering method with additional  
parameters where parameter mmax excludes heavy particles from clustering and parameter 

Nmax reduces the number of particles that must be joined into new particles

Based on the presented, hierarchical clustering method with additional parameters, a software 
has  been  designed  and  integrated  into  the  LPD  computer  model  for  a  validation  of  the 
method. With an advanced software clustering the previous experimental simulations have 
been repeated with constant parameters  Nsize=2,  Nsub=5 and mmax=0.1,  while the parameter 
Nmax was  changing.  For  all  the  simulations  only  the  results  obtained  by  the  K-MEANS 
clustering algorithm are presented because the results obtained by the SOM are practically the 
same. 

In  Figure 75 a result  of the time used within the Lagrangian particle-dispersion computer 
model (LPDM) and in Figure 76 the time used within the Clustering module are presented for 
all the experimental simulations. The obtained results show that the used computational time 
is inversely proportional to to the parameter  Nmax, which is used to constrain the maximum 
number  of  particles  in  the  result  of  a  simulation.  But  because  another  parameter  mmax is 
introduced  into  the  advanced  algorithm  to  prevent  the  constitution  of  abnormally  large 
particles the computational time cannot be significantly reduced with a parameter Nmax after a 
certain threshold is reached. Figure 55 shows that the decrease of the parameter  Nmax under 
values of 25,000 maximum particles does not have any significant effect on the computational 
time. 
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Figure 75: Time used within the LPDM for different clustering parameters (Nsub=2, Nsize=5, 
mmax=0.1, Nmax=variable)

Figure 76: Time used within the clustering module for different clustering parameters 
(Nsub=2, Nsize=5, mmax=0.1, Nmax=variable)

In  Figure 77 a correlation factor, in  Figure 78 a root mean square error and in  Figure 79 a 
fractional bias are presented with a different set of parameters Nmax. The correlation coefficient 
and the root mean square error are inversely proportional to the parameter  Nmax. The results 
obtained  with  the  hierarchical  clustering  algorithm  with  additional  parameters  are  better 
correlated  to  the  reference  than  in  the  case of  using the  hierarchical  clustering  algorithm 
without  additional  parameters,  mainly  due  to  the  parameter  mmax,  which  prevents  the 
construction of abnormally large particles. The improvement is also reflected in the fractional 
bias, which is slightly scattered around zero values. 
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Figure 77: Correlation coefficient for different clustering parameters

Figure 78: Root mean square error for different clustering parameters
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Figure 79: Fractional bias for different clustering parameters

The  ground-level  concentrations  for  several  intervals  where  the  correlation  between  the 
results is good are presented in  Figure 80, and the less well correlated results are shown in 
Figure  81.  From both  figures  it  can  be seen that  the  results  obtained  with  the  clustering 
algorithm are bubbled and less smooth than the original.

Figure 80: Well-correlated results between original and hierarchical clustering method 
with additional parameters
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Figure 81: Weakly correlated results between original and hierarchical clustering 
method with additional parameters

4.1.6. Discussion
The  clustering  method  is  proposed  for  an air-pollution  modelling  methodology  based  on 
Lagrangian  particle  dispersion.  It  was  adopted  to  decrease  the  computational  cost  by 
decreasing  the  number  of  active  particles  in  the  simulations  and therefore  to  prevent  the 
system shut down in the cases where otherwise an overflow of particles would be reached. 
From the proposed clustering method and results of its validation we can conclude that four 
basic parameters must be optimally set to achieve satisfactory results:

● Nsub: Higher values of parameter are reflected in an increase of the used computational 
time. It is concluded not to use values larger than 4, for practical purposes a value of 2 
is chosen.

● Nsize:  When  the  parameter  Nsize is  increased,  the  time  used  for  the  simulation  is 
decreased, but with the increase of the parameter also the quality of results decreases. 
The optimal value of 2 is chosen from the obtained results, but the value should not 
exceed a number of 10 to ensure the quality of the results.

● mmax: A  parameter  is introduced  into  the  clustering  algorithm  to  prevent  the 
hypothetical  growth of very large and heavy particles,  which can lead to  physical 
absurdities. Its value depends on the mass of the emitted particles. In our example, 
where the emitted particles' weight is 0.01 kg, the parameter is set to 0.1 kg, which 
means that not more that 10 initially emitted particles can be joined into new particles.
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● Nmax: The computational time used is inversely proportional to the parameter Nmax. But 
because  another  parameter  mmax is used by the  advanced algorithm to  prevent  the 
constitution  of  abnormally  large  particles  the  computational  time  cannot  be 
significantly  reduced  with  the  parameter Nmax  after  reaching  a  certain  threshold. 
From the results it was clear that decrease the of the parameter Nmax under the values of 
25,000 maximum particles does not have any significant effect on the computational 
time.

According to the finally acquired results presented in the figures, the hierarchical clustering 
method with additional parameters can be used in practice only for the limitation of a very 
large  number  of  particles,  when  the  number  of  particles  exceeds  abnormal  values  when 
extreme situations occur, for example:

● failure  of  the  desulphurization  plant  when  the  emissions  increase  by  an  order  of 
magnitude,

● when very stable meteorological situations occur, where low winds are present and the 
air pollution starts to accumulate in the domain.

A severe limitation of the number of particles in the reconstructions at typical situations with 
the clustering method is not recommended because the quality of the results becomes very 
poor. To preserve the good quality of the results only a slight limitation is concluded. It is 
suggested  that  another  method  should  be  integrated  into  the  current  modelling  system to 
improve the final results. A comparison of original results and the results obtained with the 
clustering  algorithm  showed  that  the  results  obtained  with  the  clustering  algorithm  are 
bubbled and less smooth than the original. The same effect occurs when not enough particles 
are  used  in  the  reconstructions.  The  results  could  be  improved  according  to  the 
recommendations  from  the  research  work  of  De  Haan,109 where  point-like  air  pollution 
concentrations at certain locations were reconstructed with the AP model based on the LPD 
and smoothed with the use of a kernel density concentration estimation. The concentration 
estimation  methods  based  on  the  kernel  density  provide  smooth  results  and  are  not 
computationally expensive. The presented principle by De Haan is adapted and adjusted in the 
next subsection to be used for the reconstruction of the concentrations of each cell  in the 
domain, especially to improve the quality of the reconstruction of a two-dimensional ground-
concentration field. It is integrated into the air-pollution  modelling methodology to improve 
results obtained with the hierarchical clustering method with additional parameters.
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4.2. Method for estimation of a cell concentration based on kernel density

4.2.1. Introduction
In air-pollution  modelling  the  methodology  based  on  the  Lagrangian  particle  dispersion 
concentrations are estimated by counting the particles in a cell that has a rectangular shape. 
The term “box counting”  is  used in  the  literature  to  denote  this  concentration  estimation 
method. A study was performed by De Haan,109 where the effects of the different size and 
position of the boxes on the estimated point concentration was investigated. The outcomes of 
the study showed that if the boxes size are small, the concentration distribution becomes very 
noisy,  having  a  large  variance,  and  that  if  the  sizes  of  the  boxes  are  too  large,  the 
concentration  becomes  over  smoothed,  having  a  large  bias.  To  minimise  the  sum of  the 
variance and the bias, the kernel estimation method was proposed as an alternative, which 
also allows the number of particles to be reduced by an order of magnitude as compared to 
predictions made by the box counting method. The most important parameter of the kernels, 
the bandwidth, was outlined and its value was determined from the standard deviations of the 
particle  position  distribution.  In  the  study  six  different  kernel  shapes  were  compared: 
Gaussian, Epanechnikov, bi-weight, tri-weight, quad-weight and quint-weight. For the near 
source point-like estimations the tri-weight kernel approach was recommended, and for the 
intermediate to far-field point-like estimations the quad-weight kernel was recommended. 

The  presented  study  by  De  Haan109 was  focused  on  point-concentration  estimations.  For 
regulatory purposes the ground-level  concentrations  for a  certain  area of  interest  must  be 
reconstructed.  The  focus  must  be  extended  from  point  concentration  estimations  to  cell 
concentration estimations. Usually, the area of interest is split into a grid of rectangular boxes 
or cells,  and for each cell  at  ground level  the concentration is  estimated  by counting the 
particles  caught  in  a  certain  cell.  When not  enough particles  are  used  in  the  Lagrangian 
simulation, the concentrations between the neighbouring cells can become very different and 
the concentration distribution becomes very noisy over the area. This effect is illustrated in 
the subsection 3.6.Determination of acceptable simulation results. From the obtained results it 
can been seen that the results become bubbled and less smooth when a smaller number of 
particles are used for the simulation. Because less heavier particles are released during the 
simulation, the concentrations in certain cells become very high, while the concentrations in 
neighbouring  cells  are  zero.  From the  point  of  view of  an  inexperienced  observer  some 
erroneous conclusions could be made, like, for example, that only half of the village or town 
has been exposed to air pollution. A similar effect is also faced when clustering is introduced 
to the LPD computer model to reduce the computational expense.

A method for the concentration estimation is proposed in the following sub-sections to reduce 
the presented effect. The method is complementary to clustering. It can be used independently 
to  improve  the  results  when  not  enough  particles  are  used  in  the  simulation.  Another 
possibility is a combination with the clustering method when the number of particles after the 
clustering process is significantly reduced.
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4.2.2. Development of a method for a a cell concentration estimation

Theoretical background
To improve the results of the ground-level concentration estimations a method proposed by 
De  Haan  is  adopted  and  expanded  from  the  point-concentration  estimations  to  the  cell-
concentration  estimations109.  In  the  study  by  De  Haan109 a  quad-weight  kernel  was 
recommended as being optimal, but the results of the other kernels were not falling behind 
significantly. The cell-concentration estimation method presented in this thesis is based on a 
Gaussian density kernel. A comparison of the different kernels is not a matter for this study; it 
was already addressed in the study by De Haan109.

The cell-concentration  estimation  method algorithm begins  with the definition  of  a  three-
dimensional Gaussian function for each particle in the area of interest. The integration over 
the area below the kernel of each three-dimensional Gaussian function approximately equals 
the mass of the particle that belongs to that Gaussian function, as defined in equation (4.2). 
The standard deviation in each direction of the three-dimensional Gaussian is a function of the 
age of the particle  and also of its  mass,  as defined in equation (4.3).  This dependence is 
determined from the assumption that the older particles should be spread across the area more 
widely and also heavier particles should also be more spread because they could be a product 
of several particles joined by the clustering process. The position of each three-dimensional 
Gaussian function is placed into a domain with its centre equal to the position of the particle 
as defined in equation (4.4).

∫
−3 x

3 x

∫
−3 y

3 y

∫
−3 z

3 z 1
2 x

1
2 y

1
2 z

e
−

1
2 x−x0

 x 
2

−
1
2 y− y0

 y 
2

−
1
2 z−z 0

 z 
2

≈m p (4.2)

i= f t p , m p; i=x , y , z (4.3)
x0=x particle; y0= yparticle ; z0=z particle (4.4)

m p ...mass of particle
t p  ...age of particle

In practice, the above equations mean that a particle was modified from a point-like shape to 
the shape of a bubble with a mass more densely concentrated around its centre. The obtained 
three-dimensional  Gaussian  functions  or  bubbles  are  in  the  process  of  area  concentration 
estimation spread between several cells of the domain according to its position, mass and age, 
and not only to one cell as in the simple box counting method. 

For an illustration of distributing a Gaussian function into several cells, a one-dimensional 
example is used. A one-dimensional example is presented in this subsection because of its 
simplicity and because it can be easily applied in two or three dimensions. A distribution of a 
one-dimensional Gaussian function between cells in one dimension is presented in Figure 82. 
The mass of a single particle that is distributed into the cell  ci is defined by equation (4.5), 
where erf() is used to denote an error function or a cumulative distribution function.
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mc i
= 1
2

∫
i⋅w

i1 ⋅w

e
−

1
2 x−x0

 x 
2

=erf i1⋅w−erf i⋅w (4.5)

erf  ...cumulative distribution function
w      ...width of the cell

And when the above example is extended into a three-dimensional form the equation (4.6) is 
obtained.

mc i , j , k
=mc i

⋅mc j
⋅mck (4.6)

For practical  purposes the mass that  extends over the area of  3σ is neglected because the 
integral  has  very  low  values  and  its  contribution  to  the  sum  of  masses  in  each  cell  is 
negligible. Computation would only increase the computational expense, but the effect on the 
final result is very small. 

In the box counting method the concentration in each cell is estimated by adding the masses 
of the particles positioned in the cell and divided by the sum of the volume of the cell, as 
defined in equation (4.7).

c c i , j , k
=
∑

S
m p

V i , j , k

(4.7)

S             ...set of particles at position of cell i , j , k 
V i , j , k       ...volume of cell i , j , k 
m p           ...mass of particle from set S

In  the  kernel-density  estimation  method  the  mass  of  each  particle  is  distributed  between 
several cells around the position of the particle and these partial masses of each particle are 
summed in each cell  and dived by the volume of the cell  to obtain the concentration,  as 
defined in equation (4.8).
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Figure 82: Distribution of a one-dimensional Gaussian function between cells in one 
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c c i , j , k
=
∑

O
mci , j , k

V i , j , k

(4.8)

O      ...set of particles around the position of cell i , j , k 
mc i , j , k

 ...part of mass of particle from set O

Figure 83: Illustrated comparison of box counting and cell concentration estimation method 
based on a kernel density

For example, when only one particle in a two-dimensional domain is present, as shown on the 
left side of Figure 83, the calculated concentration in the case of the box counting estimation 
method affects only one cell, as presented in the middle of Figure 83. And in the case of the 
cell estimation method based on kernel density the mass of the particle is spread between the 
neighbouring cells smoothly, as presented on the right side of Figure 83. It is expected that the 
advanced  kernel  density  estimation  method  performs  especially  well  when the  particle  is 
positioned near the border of the cell,  where it is obvious that the estimated concentration 
between the neighbouring cells should not be sharp, as presented in Figure 83.

Ground reflection
A special treatment of the particles that are close to the ground is made to prevent the loss of 
part of the mass of a particle that falls below the ground level due to the kernel function. The 
basic principle is presented in Figure 84. It is based on the idea of taking the dispersion from a 
punctual release near an impermeable boundary. In this case the situation with one release and 
boundary  is  equivalent  to  another  with  two  releases  (original  and  virtual  release  that  is 
actually the original release reflected over the boundary) and no boundary26. In our case the 
ground level represents a typical impermeable boundary. For each particle near the ground an 
additional virtual particle is introduced below the ground. It is actually the original particle 
reflected over the ground level. For example, the contribution of one particle to the ground 
concentration  consists  of  its  original  position  and of  its  virtual  reflection  as  presented  in 
Figure 84. What actually goes below the ground due to the kernel function is taken back by 
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means of a reflected particle, whose quantity above the ground is the same as the quantity 
previously lost below the ground.

Figure 84: Consideration of a particle near the ground where the final ground level  
concentration consists of a contribution from the original particle and its reflected (folded)  

virtual particle
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Implementation
The  software  for  a  ground-level  concentration  estimation  based  on  the  kernel  density  is 
developed in the C++ programming language using the Qt112 development tools and the open 
source mathematical library GSL115 for the C++ developed in the GNU project coordinated by 
the Free Software Foundation Inc.. The application is developed to reconstruct the ground-
level concentrations, where the height of the ground-level layer is set as an input parameter. 
The software is  developed and designed to be integrated into the existing LPD computer 
model. Figure 85 presents highlighted modification of the LPD computer model scheme that 
is presented in previous section in Figure 45.

There are several inputs that must be provided before the software can be executed:

● final air-pollution situation described in the file generated by the AP computer model 
at the end of each simulation run. In this file the position and the properties of each 
particle at the end of the simulation run is saved. This file is also named the restart  
file.  In  this  file  each  particle  is  described  by  several  properties,  among  the  most 
important for the concentration estimation are the x, y and z positions of the particle in 
the domain, the age of the particle, and the mass of each particle.

● topography, which contains the orography of the domain defined by the altitude of 
each ground cell in meters above sea level.

● σx, σy and σz are the parameters that define the initial value for spreading in the x (west-
east), y (north-south) and z (vertical) directions.
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Figure 85: LPD computer model with integrated the kernel-density cell concentration 
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● the h parameter defines the height of the ground-level layer.

The  three-dimensional  domain  is,  in  the air-pollution  computer  model,  split  into  a  three-
dimensional grid of cells, which are evenly distributed in the horizontal x and y directions, 
while  in  the  vertical  direction  the  distribution  is  performed  using  the  terrain-following 
coordinates, as defined in the AP computer model manual,103 where the spatial coordinates are 
x, y and s. The transformation from Cartesian coordinates is defined by equations (4.9, 4.10, 
4.11), where zt defines the top of the domain and zg the altitude of the ground level above sea 
level.  In the terrain-following reference  system, the surface is  not  a horizontal  plane,  but 
follows the topographical profile. The s constant planes at higher levels also tend to reproduce 
the topography below, but this effect decreases when moving far from the ground level. The 
s=1 level represents a horizontal plane. 

x=x (4.9)

y= y (4.10)

s=
z−zg  x , y

 z t−z g x , y (4.11)

4.2.3. Evaluation of the developed density kernel concentration estimation
To validate and evaluate the performance of the developed application and the dependence on 
the input parameters, several simulations were performed and the results are compared to the 
original reference ground concentration field, as defined in detail in subsection 3.5.Evaluation
methods. Simulations are performed on a Šaleška region field data set air-pollution situation 
that lasted from 1st of April 1991 at 20:00 to 3rd of April 1991 at 00:00. 

The first simulation was performed to generate reference ground concentration fields for all 
the reconstructed air-pollution episodes. To accomplish this task, the particle number density 
coefficient is set to the maximum possible value of  PDNC=10.0 according to the available 
computational resources. The results of the time used for the first simulation are presented in 
Figure 50. After that a second simulation is performed, where the particle number density is 
decreased to the optimal value of PDNC=0.25, which is determined the point of view of time 
spent for the simulation. The optimal value has been selected according to the time that is 
spent to reconstruct the air pollution over the area of interest for the time period of one year. 
For the selected optimal point where 0,23 hours are spent for the reconstruction of one day, 
approximately 3,5 hours are spent for the reconstruction of one year, which is really quick in 
practice. A comparison of the results for the first and the second simulations presented in 
Figure 50 shows that significantly less computational time is used for the second simulation. 
Unfortunately,  but as expected,  the consequence of this profit  is the very poor correlation 
presented in Figure 52 and the large root mean square error presented in Figure 53.

To improve the poor results the developed kernel density concentration application is used. 
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But  before  the  simulation  is  performed  with  the  advanced  AP  computer  model,  several 
experiments are made to determine the optimal input parameters σx, σy and σz for the selected 
Šaleška region field data set. In all experiments the horizontal parameters  σx and σy are set 
equally.  In  all  the  presentations  of  the  results  both  parameters  are  presented  as  a  single 
independent parameter σx,y, while the second independent parameter is vertical σz. 

In  the  performed  experiments  three  cases  of  optimal  inputs  into  the  kernel  density 
concentration application are determined. Each case represents the optimal inputs of σx, σy and 
σz for a single simulated time interval. Three of the used simulated time intervals are selected 
according to the obtained results of the correlation coefficient presented in Figure 52.

A poor correlation coefficient is obtained at  the simulated time interval  at  13:30 hour.  in 
Figure 87 the results of the comparisons between the reference and “kernel density estimated” 
ground concentrations are presented. For the comparisons different “kernel density estimated” 
ground concentrations were used, where the ground concentration field was estimated with 
different  input  parameters.  The  dependence  of  the  correlation  according  to  the  horizontal 
input parameters σx,y is presented in the first graph of Figure 87. The second graph presents the 
root mean square error, and the third graph fractional bias. Each curve on the graphs presents 
the dependence for one vertical input σz value. From the obtained results we can see that the 
correlation increases  and the root mean square error decreases  to some optimal  values of 
σx,y=250 and  σz=20.  The  optimal  point  is  determined  where  the  correlation  coefficient 
between the reference and the estimated ground concentration reaches its highest value. After 
the optimal point is reached the correlation starts to decrease and the root mean square error 
starts  to  increase.  The  comparisons  also  show  that  with  the  larger  values  of  the  input 
parameters the fractional bias slightly decreases, and then slowly converges to a constant, 
which  gives  slightly  underestimated  results.  With  the  comparisons  of  fractional  bias  the 
optimal input parameters cannot be estimated, but the results give us the assurance that at 
optimal values of the inputs the results will be reliable. In  Figure 86, besides the reference 
ground concentration, three examples of “kernel density estimated” ground concentrations are 
also presented: the over-smoothed, optimal and the under-smoothed.
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Figure 86: Examples of density kernel concentration estimations for a poor correlation at the 
simulated time interval 13:30
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Figure 87: Comparisons of the density kernel concentration estimations for a poor 
correlation at the simulated time interval 13:30
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A good correlation coefficient is obtained at  the simulated time interval at  08:30 hour. In 
Figure 89 the results of the comparisons between the reference and “kernel density estimated” 
ground concentrations are presented. The dependence of the correlation is presented on the 
first graph of Figure 89, the second graph presents the root mean square error, and the third 
graph the fractional bias. From the obtained results we can see that the trend in the results is 
the same as that obtained in the previous case, only that different optimal values of σx,y=200 
and  σz=20 are determined. In  Figure 88, besides the reference ground concentration, three 
examples of “kernel density estimated” ground concentrations are also presented: the over-
smoothed, the optimal and the under-smoothed.

Figure 88: Examples of the density kernel concentration estimations for a good correlation at  
a simulated time interval 08:30
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Figure 89: Comparisons of the density kernel concentration estimations for a good 
correlation at a simulated time interval 08:30
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A very good correlation coefficient is obtained at the simulated time interval at 23:30 hour. In 
Figure 91 the results of the comparisons between the reference and “kernel density estimated” 
ground concentrations are presented. The dependence of the correlation is presented in the 
first graph of  Figure 91, the second graph presents the root mean square error and the third 
graph the fractional bias. From the obtained results we can see that the trend of the results is 
the same as obtained in the previous case, only that different optimal values of σx,y=150 and 
σz=20 were determined. In Figure 90, besides reference ground concentration, three examples 
of “density kernel estimated” ground concentrations are also presented: the over-smoothed, 
the optimal and the under-smoothed.

Figure 90: Examples of the density kernel concentration estimations for a very good 
correlation at a simulated time interval 23:30
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Figure 91: Comparisons of the density kernel concentration estimations for a very good 
correlation at a simulated time interval 23:30
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After the three different optimal input values for the different correlation coefficients have 
been determined, for each optimal point one simulation is performed by using the improved 
AP computer model. In Figure 92 the comparisons of the simulation results are presented. The 
black  curve  represents  the  results  of  the  simulation  performed  with  the  optimal  value  of 
PDNC=0.25, where  the  ground  concentrations  were  estimated  with  the  “box-counting” 
method, while the red, blue and green curves represent the simulations made with the kernel 
density  concentration  estimation  method.  All  three  graphs  prove  that  the  correlation 
coefficient and the root mean square error are significantly improved, while the fractional bias 
comparison  showed  that  there  is  practically  no  underestimations  in  the  results.  The 
comparisons of the three different optimal points show that the final optimum point is taken 
from an example where the correlation with the original result is very good. The other two 
obtained optimal points that gave some slightly better or slightly worse results.

119



4.Proposed improvements in air pollution modelling methodology

Figure 92: Final comparison of the results obtained with the original box-counting 
concentration estimation method and the results of the density kernel concentration 

estimation method with different parameters
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4.2.4. Discussion
In this subsection a new, advanced kernel density cell concentration estimation is proposed to 
improve  the  results  of  the  “box  counting”  ground-level  concentration  estimations.  The 
contributed  method  is  adopted  according  to  a  method  proposed  by  De  Haan,  where  the 
expansion from the point concentration estimations to the cell concentration estimations is 
made. An adaptation of the method is presented in detail in this subsection.

The  Lagrangian  particle-dispersion  model  estimates  the  ground-level  concentrations  by 
counting the particles in cell that has a rectangular volume. The term box counting is used in 
the literature to denote this concentration estimation method. In a study performed by De 
Haan109, the kernel density estimation method was proposed as an alternative, where the focus 
was  on  point  concentration  estimations.  But  for  regulatory  purposes  the  ground-level 
concentrations  for a certain  area of interest  must be reconstructed.  An additional  study is 
performed in this subsection to extend the focus from the point concentration estimations to 
the cell concentration estimation. 

To validate the method and to determine the dependency of the quality of results according to 
different input parameters, several experimental simulations were performed and the results 
are compared to the reference ground concentration field. The simulations were performed on 
the Šaleška region field data set situation that lasted from 1st of April 1991 at 20:00 until 3rd of 
April 1991 at 00:00. Before the simulations were performed with the AP computer model 
based on the improved LPD computer model, several experiments were made to determine 
the optimal  input parameters  σx,  σy and σ for the field  data set  domain.  In the performed 
experiments three cases of optimal inputs into the kernel density concentration application 
were determined  and presented:  the  over-smoothed,  the  optimal  and the  under-smoothed. 
After  the three different  optimal  input  values  for  the different  correlation  coefficients  are 
determined,  for  each  optimal  point  one  simulation  is  performed  with  the  improved  AP 
computer model. The comparisons of the three different optimal points show that the final 
optimal point is set from the case where the correlation with the original result is very good. 
The other two obtained optimal points give some slightly better or worse results. The final 
comparisons  prove  that  the  correlation  coefficient  and  the  root  mean  square  error  are 
significantly improved, while the fractional bias comparison showed that there is practically 
no underestimations in the results, which is crucial for long-term evaluations of air pollution.
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4.3. Lagrangian particle-dispersion control

4.3.1. Introduction
When the number of particles  in a single air-pollution  reconstruction episode exceeds the 
computational resources, the simulation process is interrupted and the reconstruction of the 
proceeding air-pollution episode begins without a consideration of the previous air-pollution 
situation. When such a problem occurs, the high air-pollution situation reconstruction can be 
lost. A clustering method is proposed to reduce the number of active particles that enter into 
the single air-pollution  reconstruction episode as the initial  state  of the air  pollution.  The 
number of new, active particles that are released during a single air-pollution reconstruction 
episode  can  be  calculated  from the  PDNC (particle  density  number  coefficient)  and  the 
emission  during  the  episode.  To  reconstruct  a  single air-pollution  episode  correctly  the 
emission cannot be changed. To avoid an excess of computational resources in a single air-
pollution  reconstruction  episode  the  PDNC should  be  controlled:  when  a  high  emission 
occurs, the PDNC should be decreased, and when a low emission occurs, the PDNC can be 
increased. 

Proposed concept of LPD model control is presented on  Figure 93. It is also compared to 
original concept where PDNC is not controlled during the simulation. The control is based on 
a model constructed of feedforward neural network and it's main idea is to change  PDNC 
parameter during the simulation to avoid the excess of computational resources.

Figure 93: Simple illustration of proposed concept of LPD model control

Control of the PDNC can depend on the number of active particles from the reconstruction of 
a previous air-pollution  episode reconstruction and the emission in the current air-pollution 
episode reconstruction.  To improve  the control of the  PDNC an estimation of number  of 
active particles that are lost during the proceeding air-pollution  reconstruction episode can 
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also be used:

● if  many active  particles  are  lost  out  of  the domain  during  the  simulation  a  larger 
PDNC should be used because more new active particles can be released to simulate 
the same amount of emission,

● if a very small number of active particles are lost out of the domain, a smaller PDNC 
should  be  used  because  fewer  new  particles  can  be  released  to  ensure  that  the 
computational resources will not be exceeded.

In special situations when the smallest possible PDNC is used, and it is still expected that the 
computational  resources  will  be  exceeded,  the  clustering  must  be activated  to  reduce  the 
number of particles from a previous air pollution. This is very important for situations when 
extreme air pollution is expected. Such situations occur very often in calm meteorological 
conditions when the air pollution starts to accumulate in the domain for a longer time interval. 
In practice this is achieved by setting the Nmax parameter of the clustering method to a value 
that  is  lower  than  the  number  of  particles  from  the  previous air-pollution  episode 
reconstruction. To control the described PDNC and Nmax clustering parameters a Lagrangian 
particle dispersion (LPD) control method is proposed, as presented in Figure 94. It consists of 
two main subsequent methods. In the first step the percentage of lost particles is predicted 
based on the meteorology, the emission and the situation of the air pollution at the end of the 
previous episode reconstruction. In the second step the PDNC and Nmax clustering parameters 
are determined by a decision-making method. The development of both methods is presented 
in the following subsections.

Figure 94: LPD model control method which consists of two main steps: forecast of  
percentage of lost particles and control of PDNC and clustering based on decision-making 

method

The  improved  LPD computer  model  scheme  with  the  integrated  LPD control  module  is 
presented in Figure 95 where also clustering module is included in scheme.
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4.3.2. Method for forecasting the percentage of lost particles

The  estimation  of  the  percentage  of  lost  active  particles  during  the  current air-pollution 
reconstruction  episode  is  determined  with  an  artificial  neural  network.  Artificial  neural 
networks are selected because it  was proven by Hornik et  al.  that  multilayer  feedforward 
networks are universal approximators47. 

They have become a useful and efficient tool in the past ten years for establishing forecasting 
models in the field of air pollution. Many authors reported the successful forecasting of air 
pollution using artificial neural networks in recent years. An overview of applications is given 
by Gardner and Dorling48. 

Formulation of the model's output
The output of the lost particles' number prediction method is the percentage of particles that is 
lost during the proceeding air-pollution reconstruction episode, as defined by equation (4.12). 
The  number  of  particles  that  are  emitted  in  one air-pollution  episode  reconstruction  is 
eliminated from the output to ensure that the output represents only the percentage of lost 
particles that were already in the domain at the beginning. The loss of the particles that are 
emitted in the air-pollution episode reconstruction is not included in the model's output. The 
output is limited to values from 0% to 100%, where the value of 0% defines that no particles 
are lost, and the value of 100%, that all particles are lost.
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Figure 95: LPD computer model with integrated LPD control module and clustering module
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pl=
N begin−N end−N emi

N begin
100% (4.12)

N begin ...number of particles at the begining of air pollution episode reconstruction
N end ...number of particles at the end of air pollution episode reconstruction
N emi ...number of emitted particles in one air pollution episode reconstruction
pl    ...percentage of lost particles

Selection of learning data for construction of model based on feedforward neural network
To achieve good generalising capabilities for the model a data selection must be performed to 
create the learning set used in the learning process and to create the testing set used for the 
test  generalization  of  the  created  model.  The  learning  set  consists  of  the  training  and 
validation datasets. The validation dataset consists of a randomly selected 10% of the data 
from the original learning set and it is used during the learning process to periodically test the 
feedforward neural network performance using the validation (unknown) dataset to determine 
the generalization capabilities. The final network is the one that gives the smallest error on the 
validation set and not on the training set. 

The selected data used for the learning process should represent all the typical situations that 
can  occur.  It  must  be  ensured  that  the  learning  set  contains  all  the  essential  information 
needed for predicting the percentage of lost  particles,  which appear during the simulation 
performed with the original LPD model.

Usually,  a large learning dataset  is available,  which contains a large number of redundant 
data.  When such a  situation  occurs the selection  of suitable  data  should be performed to 
significantly  reduce  the  amount  of  data  that  results  in  significant  reduction  of  the 
computational cost.  A selection of data for the learning can also improve the generalising 
capabilities of the networks and subsequently the quality of the predictions. Several advanced 
methods for data selection to reduce the large learning dataset were developed and described 
by different authors: Cachin116 and Munro117presented pedagogical data selection strategies, 
where the data for the learning set are selected during the learning process, and Božnar118 

presented two different strategies where one is based on the meteorological knowledge and 
the other on the Kohonen neural networks clustering capabilities.

In the following paragraph an example of data selection for learning will be presented. The 
dataset obtained during the simulation performed by the  model benchmark kit is relatively 
small, which shows that no advanced data selection is needed for reducing the learning set.

The lost particles' number prediction method is constructed from the data obtained from input 
and output parameters of the simulations that are performed on a Šaleška region field dataset 
air-pollution situation that lasted from 16th of March 1991 at 00:00 until 5th of April 1991 at 
00:00, where all the available 913 data are taken. Due to the relatively small dataset all the 
available  data  are  used  for  the  learning  and testing  procedures.  The  emission  is  set  to  a 
constant value during the complete simulation for a better identification and a comparison of 
the episodes with high air pollution. Because the number of active particles is used for the 
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presentation  of  the  complexity  of  the  current air-pollution  episode  (a  larger  number  of 
particles in the domain represents a more complex situation) the variability of the emission is 
removed to simplify the development of the method and the presentation of the results. In 
each air-pollution episode a reconstruction of 3780 new, active particles are released into the 
domain from the source of the air pollution. The number of active particles after each air-
pollution  episode  reconstruction  are  presented  on  the  graph  in  Figure  96.  The  results 
presented show that some episodes of high air pollution over the domain occurred when the 
number of active particles significantly increases. From the number of active particles the 
percentage  of  lost  particles  in  each air-pollution  episode  (pl)  is  determined  according  to 
equation  (4.12).  It  is  presented  in  Figure  97,  which  is  consistent  with  Figure  96:  in  the 
episodes with a low air pollution when strong wind conditions are present, all the particles 
(100 %) are lost from the domain and in the episode with a high air pollution when the low 
wind conditions occurred, fewer particles (< 100%) are lost from the domain. In the most 
critical situations less than 10% of the particles are lost.
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Figure 96: Number of active particles used to represent the complexity of the reconstructed 
air-pollution episodes
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Figure 97: Percentage of lost particles during the proceeding air pollution reconstruction

For creating the neural network for the prediction of the percentage of lost particles the data 
records from the 1st of April 1991 at 00:00 until 5th of April 1991 at 00:00 have been excluded 
and used for the test set, while all the rest of the data have been used for the learning set, as 
presented at the bottom of Figure 97. The learning set has been divided randomly into a 10% 
set used for validation and the rest has been used for the training algorithm during the model's 
construction.

The inputs selection is a very important and sophisticated procedure within the development 
of  the model119.  Each air-pollution  episode reconstruction  is  based on meteorological  and 
emission data.  The number of particles before and the air-pollution  episode reconstruction 
depends in our case only on the meteorological data, since the emission has been set to a 
constant value. The meteorological data used for the reconstructions is presented in subsection 
2.1.The  Šaleška  region  field  data  set, here  the  data  from  the  automatic  environmental 
measuring system is described in detail.

According to the procedures described in the literature32,57 a heuristic determination of the 
inputs  is  made;  the  inputs  are  selected  according  to  the  modeller’s  knowledge  of  the 
phenomenon. In a process of input selection the optimal subset of the inputs is selected from 
the input space. This is achieved by eliminating those inputs that are redundant or do not have 
a relevant influence on the number of active particles114. 

The finally selected inputs are:

1. the ground-level wind fluctuation, defined as the ratio between the vector wind speed 
and the scalar wind speed, the value of 1.0 signifies no fluctuation, the values near 0.0 
signify a strong fluctuation (where the measured wind data from the Veliki Vrh station 
are selected for the development of the method),
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2. the ground-level vector wind speed (where the measured wind data from the Veliki 
Vrh station are used),

3. the  geostrophical  vector  wind  speed (where  the  measured  horizontal  vector  wind 
speed from SODAR at a height of 350 m is used),

4. the percentage of lost particles in the episode two steps before

5. the percentage of lost particles in the episode one step before.

Construction of a model for forecasting the percentage of lost particles
After the inputs selection is made, the model is constructed using the training and validation 
sets of data. The finally constructed multilayer perceptron neural network (MPNN) consists of 
one hidden layer constructed of 10 neurons and one output layer constructed of 1 neuron. The 
neurons in the hidden layer are based on a tangent-sigmoid activation function and the neuron 
in the output layer is based on a linear activation function.

The MNPP is implemented using Matlab’s Neural Network Toolbox64 and it is trained using 
the Levenberg-Marquardt70 method.

For each selected input a contribution factor is determined to have a rough measure of the 
importance of the input in predicting the network's output relative to the other inputs in the 
same network. The equation for calculating the contribution factor (4.13) is obtained from the 
definition66: “The contribution factor is the sum of the absolute values of the weights leading 
from a  particular  variable”  to  the  first  layer  of  hidden  neurons.  The  higher  value  of  the 
contribution factor signifies the higher contribution to the prediction, but it is very important 
to notice that the contribution factors for different networks cannot be compared. A special 
caution is given after  the definition66:  “The value of the contribution factor should not be 
considered as gospel when deciding whether to include a variable in the network. The neural 
nets are capable of finding data among the variables when none of the variables themselves 
are highly correlated to the answers. Obviously, if a certain variable is highly correlated with 
the answer, the variable will have a high contribution factor”.

CF i=∑
n=1

N

∣ IW i , n∣ (4.13)

CF ...contribution factor
IW ...input weight
i     ...index of input feature
n    ...index of neuron in first layer
N   ...number of neurons in first layer

The obtained values of the contribution factors are presented in Figure 98. A comparison of 
the contribution factors shows that the percentage of lost particles in the last two episodes 
have the highest contribution to the model's output, while other input features have only a 
slightly smaller contribution. 
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Figure 98: Contribution factors of the selected input features

Model validation
When a model has been constructed a simulation is performed on a learning set of data. The 
scatter plot between the measured and the predicted number of active particles is presented in 
Figure  99.  The  correlation  coefficient  between  the  measured  and  predicted  values  was 
r=0.97, the root mean square error was RMSE=8.7 and the fractional bias was FB=0.

Figure 99: Scatter plot of the results of the simulation performed on the learning dataset

After the validation of the model on the learning data set another validation is performed on 
an independent  validation set  that  is  not used during the learning period.  The scatter  plot 
between the measured and the predicted number of active particles is presented in Figure 100, 
and in Figure 101 a comparison is made on a time scale. The correlation coefficient between 
the measured and predicted values is r=0.95, the root mean square error is RMSE=7.33 and 
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the  fractional  bias  is  FB=-0.01.  The  correlation  factor  is  lower  in  accordance  with  the 
correlation obtained in the learning process, which is the result of a relatively small learning 
dataset. Also, the root mean square error increases, but not significantly, while the fractional 
bias remains practically zero.

Figure 100: Scatter plot of results of the simulation performed on the validation dataset
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Figure 101: Time-scale comparison of the measured and predicted number of active particles
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4.3.3. The PDNC and clustering control method

A control module is proposed to control the number of active particles during the current air-
pollution  episode  reconstruction  around  the  optimal  range  determined  by  the  available 
computational resources. The inputs into the module are:

● the number of particles at the end of the previous air-pollution reconstruction episode 
(Initial number of active particles), 

● the  predicted  percentage  of  lost  particles  at  the  end  of  the  previous air-pollution 
reconstruction episode provided by the Particle number prediction method (Predicted  
percentage of lost initial active particles)

● the  number  of  particles  that  will  be  emitted  during  the  proceeding air-pollution 
episode reconstruction (Number of particles from the proceeding emission).

The method provides two outputs:

● the first controls the clustering by setting the Nmax parameter

● the second controls the PDNC parameter of the LPDM.

The method is presented in Figure 102. In the first step of the procedure the optimal PDNC is 
determined  to  keep  the  predicted  number  of  active  particles  in  the  range  of  available 
computational resources, as defined in equation (4.14). 

PDNC=
N max−N init⋅1− plost 

N emi , learn
⋅PDNC ref (4.14)

PDNC    ...particle density number coefficient
N max       ...maximum allowed number of particles according to computational resources
N init        ...initial number of particles from previous air pollution episode reconstruction
plost        ...predicted percentage of lost number of particles
N emi , ref   ...number of particles from following emission if reference PDNC is used 
PDNC ref ...reference PDNC

If  the  determined  PDNC exceeds  the  maximum acceptable  PDNC,  the  optimal  PDNC is 
reduced to the maximum acceptable PDNC. The maximum acceptable PDNC is exceeded in 
strong wind conditions, when most of the particles from the previous air-pollution  episode 
reconstruction is quickly lost out of the domain and almost all the computational resources 
become available only for the particles that are emitted in the current air-pollution  episode 
reconstruction.  The  clustering  of  particles  from  the  previous air-pollution  episode 
reconstruction is unnecessary.

If  the  determined  PDNC exceeds  the  minimum acceptable  PDNC,  the  optimal  PDNC is 
reduced to the minimum acceptable  PDNC. The minimum acceptable  PDNC is exceeded in 
low wind conditions,  when most  of  the  particles  from the  previous air-pollution  episode 
remains  in  the  domain  during  the  current air-pollution  episode  reconstruction.  To  avoid 
exceeding the computational resources, the clustering must be activated to reduce the number 
of  particles  from the  previous  air  pollution.  The  input  parameter  Nmax into  the  clustering 
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procedure is set according to equation (4.15). When the clustering is finished the number of 
particles  from the  previous air-pollution  episode  reconstruction  is  decreased  to  the  Ncontrol 

number of particles.

N max=N control−
PDNC min

PDNC ref
⋅N emi , ref (4.15)

N max       ...limit parameter of the clustering method
N control    ...maximum allowed number of particles according to computational resources
N emi , ref   ...number of particles from following emission if reference PDNC is used 
PDNC min...minimum PDNC
PDNC ref ...reference PDNC
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Figure 102: PDNC and clustering control method procedure where optimal PDNC and 
clustering parameters are determined according to initial number of particles, predicted 
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4.3.4. Discussion
A method  is  proposed in  this  subsection  to  avoid  situations  where  the  number  of  active 
particles  during  some air-pollution  episode  reconstructions  exceeds  the  computation 
resources.  The  result  of  such  an  overload  is  an  interrupted  simulation  process  and  the 
reconstruction of the proceeding air-pollution episode begins with a corrupted, or in the worst 
case without a consideration of the previous, air-pollution  situation.  The high air-pollution 
situation episode reconstruction can be lost when such a problem occurs.

The contributed method controls the clustering parameter Nmax and the input parameter PDNC 
of the LPD model.  The rule for the  PDNC control  is  the following:  when high emission 
occurs the  PDNC should be decreased, and when a low emission occurs the  PDNC can be 
increased.  In  special  situations,  when  the  smallest  possible  PDNC is  used  and  it  is  still 
expected that computational resources will be exceeded, the clustering must be activated to 
reduce the number of particles from the previous air pollution. In practice this is achieved by 
setting the Nmax parameter of the clustering method to a value that is lower than the number of 
particles  from the  previous air-pollution  episode  reconstruction.  To  control  the  described 
PDNC and Nmax clustering parameters a LPD control method is proposed. It consists of two 
main subsequent methods. In the first step the percentage of lost particles is predicted, based 
on the meteorology,  the emission  and the  situation  of  the  air  pollution  at  the  end of  the 
previous episode reconstruction. In the second step the PDNC and Nmax clustering parameters 
are determined by a decision-making method. 

A method for the estimation of the percentage of lost active particles at the end of the current 
air-pollution  reconstruction  episode  is  constructed  by  an  artificial  neural  network.  It  is 
proposed to use its predictions as the input to the control method that is developed to avoid 
exceeding the computational resources in a single air-pollution  reconstruction episode. The 
prediction method is developed on the dataset obtained from the full duration of a simulation 
performed to reconstruct air-pollution  episodes over the Šaleška valley in spring 1991. The 
data for the last four days of the measuring campaign are excluded and used for the test set, 
while all the rest of the data are used for the learning set. In the important and sophisticated 
procedure  of  input  selection  a  heuristic  determination  of  the  inputs  is  made.  The  finally 
selected  inputs  were:  ground  wind  fluctuation,  ground  vector  wind  speed,  geostrophical  
vector  wind  speed, percentage  of  lost  particles  in  the  episode  two  steps  before  and  the 
percentage of lost particles in the episode one step before. The constructed model is tested on 
an independent test set that is not used during the learning period. The correlation between the 
measured  and  predicted  values  in  test  simulation  was  weaker  than  during  the  learning 
simulation  due  to  the  relatively  small  set  of  available  data.  But  the  results  are  still  very 
satisfactory for the simple control of the PDNC to ensure that the computational resources are 
not exceeded during the air-pollution episodes' reconstructions.

A decision-making method is proposed to control the number of active particles during the 
current air-pollution  episode  reconstruction  around  the  optimal  range  determined  by  the 
available  computational  resources.  The  inputs  into  the  module  are:  the  number  of  active 
particles  at  the  end  of  the  previous air-pollution  reconstruction  episode,  the  predicted 
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percentage of lost  particles  at  the end of the previous air-pollution  reconstruction and the 
number  of  particles  that  are  emitted  during  the  proceeding air-pollution  episode 
reconstruction. The module provides two outputs, where the first controls the Nmax clustering 
parameter and the second controls the  PDNC parameter of the LPD model.  The complete 
method is  integrated  in  the advanced AP computer  model  and validated  in  the following 
Section 5.
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5. INTEGRATION OF THE PROPOSED IMPROVEMENTS IN THE COMPUTER 
MODEL

5.1. Enhanced Lagrangian particle-dispersion computer model
Three new methods are proposed in previous subsections to be used for the improvement of 
the air-pollution modelling methodology based on the Lagrangian particle-dispersion model: 
4.1.Clustering method,  4.2.Method for  estimation  of  a cell  concentration  based on kernel
density and 4.3.Lagrangian particle-dispersion control.

To achieve the best computational performances and to successfully avoid situations when the 
computational resources could be overloaded, all three new proposed methods are integrated 
into the new, enhanced Lagrangian particle-dispersion (ELPD) model, as presented in Figure
103. The improvements are emphasized in Figure 103 with a red colour. It is possible to use 
only one of the proposed methods, but it is suggested to use the contributed methods together 
to obtain the best possible results.

Figure 103: Enhanced Lagrangian particle-dispersion model structure

On the basis of the presented ELPD model in Figure 103 the existing LPD computer model is 
enhanced, as presented in  Figure 104. The new modules of the ELPD computer model are 
presented in a red colour.
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5.Integration of the proposed improvements in the computer model

Figure 104: Enhanced Lagrangian particle-dispersion computer model

LPD control module
A control module is the centre of the integration and it is used to control the number of active 
particles  during  the  current air-pollution  episode  reconstruction  around the  optimal  range 
determined by the available computational resources, defined by the parameter  Ncontrol. The 
inputs into the module are the current meteorological conditions, the emission and the number 
of active particles at the end of the previous air-pollution reconstruction episode. The module 
provides  two  outputs,  where  the  first  controls  the  Clustering  method by  setting  the  Nmax 

parameter  and the second controls  the  PDNC of  Lagrangian particle  model.  The module 
consists of two main subsequent algorithms. In the first step the percentage of lost particles is 
predicted with the use of an artificial neural network based on the meteorology, the emission 
and the situation of the air pollution at the end of the previous episode reconstruction. In the 
second step the clustering parameters are determined by a decision-making algorithm. 

An algorithm for the estimation of the percentage of lost particles at the end of current air-
pollution  reconstruction episode is realised with an artificial neural network.  To achieve the 
best possible results it is recommended to determine the parameters of the module for each 
complex terrain separately, because of their dependence on the domain size and the shape and 
position of the ground stations and the SODAR.  The inputs into the algorithm are:  ground 
wind fluctuation, ground vector wind speed, geostrophical vector wind speed, percentage of  
lost particles in episode two steps before and percentage of lost particles in episode one step  
before. The output of the model is the estimated percentage of lost active particles at the end 
of the current air-pollution episode reconstruction.
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Clustering module
A clustering module is proposed to control the maximum number of particles in the domain 
where certain particles are joined according to some rules into new, heavier particles. The 
new,  heavier  particles  are  introduced  into  the  domain  and  the  old,  lighter  particles  are 
removed. The properties of the new particles are composed of the properties of the old, lighter 
particles. To achieve satisfactory results with the clustering algorithm, four basic parameters 
must  be  set  to  the  optimal  values  that  were  recommend  in  the  subsection  4.1.Clustering
method where  the  method  is  also  described  in  detail:  Nsub=2,  Nsize=5,  mmax=0.1 and 
Nmax={determined by LPD control module}.  The input into the clustering module is a file 
containing the previous air-pollution  situation reconstruction and the output is the modified 
file where the number of particles is decreased according to the instructions from the Control  
method. This modified file is used to describe the initial state of the air pollution over the 
domain and is used as the input into the existing LPD computer model.

Density Kernel Concentration Estimation module
The air-pollution modelling methodology based on the Lagrangian particle-dispersion model 
estimates the ground-level concentrations by counting the particles in a cell. A new, advanced 
density kernel concentration estimation method is proposed to improve the results of the “box 
counting” ground-level concentration estimations. Before the reconstructions are performed 
with the advanced AP computer model, several experiments must be made to determine the 
optimal input parameters  σx, σy and σz.  It is recommended that several air-pollution  episode 
reconstructions  are  performed  with  the  maximum  acceptable  PDNC and  again  with  the 
minimum acceptable PDNC. When the results of both simulations are available a comparison 
is  made  to  obtain  correlation  coefficients  between  the  results.  An air-pollution  episode 
reconstruction where the correlation is very good should be taken and used to set the optimal 
values of the input parameters, as presented in subsection 4.2.Method for estimation of a cell
concentration  based  on  kernel  density. The  optimal  values  are  determined  by  using  the 
density kernel concentration estimation method with different input parameters  σx, σy and σz 

on a air-pollution episode reconstruction with the maximum acceptable PDNC. Each result is 
compared with an air-pollution episode reconstruction with the minimum acceptable  PDNC. 
Those  input  parameters  where  the  highest  correlation  is  achieved  are  finally  used  as  the 
optimal input parameters.
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5.2. Air-pollution simulation with an enhanced Lagrangian particle-dispersion 
computer model
The air-pollution episode reconstruction based on the original LPD computer model consists 
of three main steps, as already presented in  Figure 41. Due to new, integrated modules a 
single air-pollution  episode reconstruction changed according to the presentation in  Figure
105, where additional time is spent for the LPD control, clustering and the kernel density cell 
concentration estimations.

Figure 105: A single air-pollution episode reconstruction by the ELPD computer model
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5.3. Validation of the enhanced air-pollution computer model
The advanced computer APM based on the enhanced LPD computer model presented in the 
previous subsection is validated in this subsection. All the parameters of the ELPD computer 
model  are  determined  during  the  demonstrations  of  new  methods  in  previous  section 
4.Proposed  improvements  in  air  pollution  modelling  methodology. To  demonstrate  and 
validate the performances of the integrated methods, three simulation runs for the selected 
Šaleška region field data set air-pollution  situation are performed and compared with each 
other:

● the reference  simulation run is  performed using the original  LPD computer  model 
where the maximum acceptable  PDNC=20 is used, usually in practice such a high 
PDNC parameter is not used because the computational complexity can sometimes fall 
outside the computational capabilities and also there is not enough time available (in 
the on-line system for each ½ hour the air-pollution episode reconstruction less than ½ 
hour is  available  and in the off-line system for the assessment  of the air-pollution 
situation for a one-year long elaboration much less than one-year of time available),

● the optimal simulation run is performed by using the original LPD computer model 
where the optimal PDNC=2 is used,

● the advanced simulation  run that  is  performed with the improved ELPD computer 
model, where the PDNC is controlled in the range from the minimum acceptable value 
of 0.04 and the maximum acceptable value of 10.

In all the following presentations the results of the reference simulation are coloured in black, 
the results of the  optimal simulation are coloured in  blue, and the results of the  advanced 
simulation are coloured in red.
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Figure 106: Number of active particles after each air pollution episode reconstruction

The number  of  particles  at  the  end of  the  reconstruction  of  each air-pollution  episode  is 
presented  in  Figure  106.  A  comparison  with  the  following  Figure  107 shows  a  linear 
dependence between the time used and the number of active particles. The figure shows that 
the active particle number in the first and second simulation is strongly dependent on the 
current  meteorological  conditions,  while in the third controlled simulation it  is practically 
constant. 
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Figure 107: Comparison of time used for reconstructions of the air-pollution episodes

The results of the time used for each simulation run are presented in Figure 107. The figure 
shows that the time used in the first  and second simulation runs strongly depends on the 
current meteorological conditions, where the low-wind meteorological conditions occur in the 
middle of the selected time period and last until the end of the simulation. While in the third 
controlled case where the ELPD computer model is used, the time used for each air-pollution 
episode reconstruction is practically constant during the whole simulation run.

Figure 108: Comparison of full time used

A comparison of the full time used for each simulation run is presented in  Figure 108. The 
results show that the full time used within the advanced simulation run is decreased by one 
order  of  magnitude  compared  to  the  reference  simulation  and  by  approximately  30% 
compared to the optimal simulation run.
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Figure 109: Comparison of PDNC during the evaluation simulation

Figure  109 shows  the  PDNC of  each air-pollution  episode  reconstruction  for  all  the 
simulation runs. In the case of the reference simulation run and the optimal simulation run it 
was set to a constant value, while in the advanced simulation run it was determined by the 
control  module.  At  the  beginning  a  smaller  value  of  the  PDNC  is  used  due  to  the  high 
emission  and  the  calm meteorological  conditions.  And  when  the  emission  decreases  and 
stronger wind conditions appear in the second part of simulation run, higher PDNC values are 
used. 

Figure 110: Comparison of the number of active particles before and after clustering
In Figure 110 the number of particles at the end of each air-pollution episode reconstruction 
and the number of particles after clustering are also presented. Where the values differ the 
clustering is activated. The results show that clustering is activated only in a few situations 
and when it is activated the number of reduced particles is relatively small according to the 
number of all the particles. But the final influence of the clustering is crucial when there is no 
other way to prevent the abnormal increase in the number of particles. Such a situation can 
occur in a calm meteorological situation when the air pollution accumulates in the domain.
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Figure 111: Correlation coefficient comparison between the results of the reference 
simulation and the optimal and advanced simulation results

Figure 112: Average correlation-coefficient comparison

Figure 111 shows the correlation coefficient between each optimal and advanced simulation 
result and the reference simulation results are presented. The results of the comparisons show 
a significant improvement in the correlation coefficient when the ELPD computer model is 
used, which can also be observed in Figure 112, where the average correlation coefficients for 
all the simulation episode results are presented.
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Figure 113: Root mean square error comparison between the results of the reference 
simulation and the optimal and advanced simulation results

Figure 114: Average root mean square error comparison
Figure  113 presents  the  root  mean  square  error  between  each  optimal  and  advanced 
simulation result and the reference simulation results. The results of the comparisons show 
that during high air pollution a lower value of the root mean square error is achieved with the 
optimal simulation. The difference is compensated in the second part of the simulation when 
the root  mean square error  in  the advanced simulation  is  50% lower than in  the optimal 
simulation. The same results are obtained in Figure 114, where the average root mean square 
error  of  the  advanced  simulation  run  result  is  approximately  the  same  as  the  optimal 
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simulation results.

Figure 115: Fractional bias comparison between the results of the reference simulation and 
the optimal and advanced simulation results

Figure 116: Average fractional bias comparison
Comparison  of  the  fractional  bias  presented  in  Figure  115 shows  that  the  results  of  the 
simulation with the ELPD computer model are very slightly underestimated in the first part of 
the simulation, where the limitation process occurred. According to Figure 116 the results of 
the  average  values  show  that there  is  practically  no  under  or  over  estimations  of 
concentrations.
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5.4. Discussion
To avoid situations where computational resources could be overloaded and to achieve the 
best  computational performance the integration of three new contributed methods into the 
existing air-pollution  modelling methodology based on the Lagrangian particle dispersion is 
proposed:  LPD  control  method,  clustering  method  and density  kernel  concentration  
estimation method. Based on the proposed advanced air-pollution modelling methodology all 
the presented methods are realised and integrated into the new enhanced Lagrangian particle 
dispersion (ELPD) computer model.

The performance of the advanced AP computer model based on the ELPD computer model 
with integrated new modules are demonstrated on a selected Šaleška region field data set air-
pollution  situation.  The parameters  of the ELPD computer  model  that  are  used are  those 
already determined during the demonstrations of the new contributed methods in previous 
sections. Three simulations for the selected situation are performed and compared with each 
other: the reference simulation with the original LPD computer model, where the maximum 
acceptable  PDNC was used, the optimal simulation with the original LPD computer model, 
where the optimal  PDNC is  used,  and the advanced simulation  with the ELPD computer 
model, where the PDNC is controlled. 

The  results  of  the  comparisons  show that  the  time  used  and  the  particle  number  in  the 
reference and optimal simulations strongly depended on the current meteorological conditions 
and the emission rate, while in the advanced simulation it is practically constant. A significant 
improvement of the correlation coefficients is achieved by using the ELPD computer model. 
Also, the fractional bias comparison showed that there is practically no underestimations in 
the results of the advanced simulation, which is crucial for any long-term evaluations of air 
pollution.  The  obtained  results  show  that  the  use  of  the  ELPD  computer  model  is 
recommended, not only in situations where the computational resources are constrained, but 
also in general to optimally take advantage of the available computational resources.
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6. VALIDATION OF THE ENHANCED LAGRANGIAN PARTICLE-DISPERSION 
COMPUTER MODEL

6.1. Introduction
All the proposed methods in the previous sections are validated on a complex terrain  field 
data  set air-pollution  situation that  is  based  on  an  experimental  measuring  campaign 
performed over the Šaleška region. To evaluate the performance of the new, advanced AP 
computer model with the integrated new methods and to confirm that the proposed methods 
can be generally applied in various complex terrain systems, an evaluation was performed on 
a  field data set based on an experimental measuring campaign performed over the Zasavje 
region, which is introduced in subsection 2.2.Zasavje region field data set. For the evaluation 
a  typical  complex  terrain air-pollution  situation  is  selected,  which lasted from the 14th of 
October 2005 at  00:00 until  the 16th of October 2005 at  00:00.  The selected air-pollution 
situation is described in detail in subsection 2.2.5.Situation selection from the Zasavje region
field data set.

6.2. Determination of the parameters for the lost particle number prediction method 
The parameters of the method for estimating the percentage of lost particles at the end of the 
current air-pollution reconstruction episode are readjusted. The new parameters of the method 
for each complex terrain must be determined because the domain size and shape can be very 
different. To achieve the best possible results it  is recommended to determine the method 
parameters for each complex terrain separately. 

The optimal parameters of the method are determined from the data obtained from the input 
and output parameters of the simulations that are performed on the Zasavje region field data 
set air-pollution situation that lasted from the 1st of September 2005 at 00:00 until the 1st of 
October 2006 at 00:00, where 16177 data are available. A relatively large set of data is fully 
used  for  the  neural  network  construction.  The  emission  is  a  constant  value  during  the 
complete simulation, where 3780 particles are emitted in each air-pollution  episode from a 
single source. The number of active particles after each air-pollution episode reconstruction is 
presented in the graph in  Figure 117. The presented results show that some episodes of the 
strong air pollution over the domain occurred when the number of active particles strongly 
increased. From the number of active particles the percentage of lost particles in each air-
pollution  episode (output) is determined according to equation  (4.12) defined in subsection 
4.3.2.Method for forecasting the percentage of lost particles. It is presented in  Figure 118, 
which is consistent with Figure 117: in the episodes with low air pollution, when strong wind 
conditions are present, all the particles (100 %) are lost from the domain and in the episode 
with a high air pollution, when low wind conditions occurred, fewer particles (< 100%) are 
lost from the domain. In the most critical situations, fewer than 10% of the particles are lost.

Logs from the 1st of September 2005 at 00:00 until the 15th of October 2005 at 00:00 are 
excluded for the determination of the optimal parameters and used for the test set, while all 
the rest of the data are used for the learning set. The learning set is divided randomly into a 
10% set used for validation, and the rest are used for the training algorithm during the model 
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construction.

Figure 117: Number of active particles used to represent the complexity of reconstructed air-
pollution episodes

Figure 118: Percentage of lost particles during the proceeding air-pollution reconstruction

The inputs are modified only according to the different available measurements, but generally 
they remain the same:

1. ground wind fluctuation (measured wind data from Kovk station),

2. ground vector wind speed (measured wind data from Kovk station),

3. geostrophical  vector  wind  speed (measured  horizontal  vector  wind  speed  from 
SODAR at a height of 350 m),
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4. percentage of lost particles in the episode two steps before

5. percentage of lost particles in the episode one step before.

After  the inputs are selected,  the model  parameters  are determined using the training and 
validation datasets. Finally,  the constructed multilayer  perceptron neural  network (MPNN) 
consists of one hidden layer, constructed of 10 neurons, and one output layer, constructed of 1 
neuron. The neurons in the hidden layer are based on a tangent-sigmoid activation function 
and the neuron in the output layer is based on a linear activation function.

The MNPP is implemented using Matlab’s Neural Network Toolbox64 and it is trained using 
the Levenberg-Marquardt70 method.

For each selected input a contribution factor is determined to have a rough measure of the 
importance of the input in predicting the network's output relative to the other input features 
in the same network. For calculating the contribution factor an equation (4.13) was used from 
subsection 4.3.2.Method for forecasting the percentage of lost particles.

The obtained values of the contribution factors are presented in Figure 119. A comparison of 
the  contribution  factors  shows  that  the  geostrophical  vector  wind  speed  has  the  highest 
contribution to the model's output. The second-highest contribution is from the percentage of 
lost particles one step before, while the other input features contribute only slightly less to the 
model's output. 

When the parameters are determined, a simulation is performed on the learning set of data. 
The scatter plot between the measured and predicted number of active particles is presented in 
Figure 120. The correlation coefficient between the measured and predicted values is r=0.94,  
the root mean square error is RMSE=8.98 and the fractional bias is FB=0.00.
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Figure 120: Scatter plot of the results of the simulation performed on a training dataset

Another simulation is also performed on an independent validation data set that is not used 
during the learning process to evaluate the model. The scatter plot between the measured and 
predicted number of active particles is presented in  Figure 121. The correlation coefficient 
between  the  measured  and  predicted  values  is  r=0.95,  the  root  mean  square  error  is 
RMSE=8.07 and the fractional bias is FB=0.02. The obtained results are similar to the results 
obtained during the development of the method, which is as expected.

Figure 121: Scatter plot of the results of the simulation performed on a testing dataset
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In  Figure 122 a special comparison is made on a time scale for the selected period of time 
from the 14th of October 2005 at 00:00 until the 16th of October at 00:00.

6.3. Determination of the parameters for the density kernel concentration estimation 
method
The kernel density concentration estimation method represents a very important method for 
an advanced air-pollution modelling methodology based on LPD. It is integrated to improve 
the results of the “box counting” ground-level concentration estimations.  To determine the 
input parameters of the density kernel concentration estimation module several  simulation 
runs are performed and the results are compared to the reference ground concentration field, 
as defined in detail in subsection 3.5.Evaluation methods. The simulations are performed on 
the Zasavje region field data set air-pollution  situation  that lasted from the 14th of October 
2005 at 00:30 until the 16th of October 2005 at 00:00.

The first simulation is performed to generate the reference ground concentration fields for all 
the simulated time intervals in the validation situation. To accomplish this task, the particle 
number density coefficient is set to the maximum possible value of PDNC=20, according to 
the available computational resources. The results of the time used for the first simulation run 
are presented in  Figure 126 (black curve).  After that,  the second simulation  is  performed 
where the particle number density is decreased to a value of PDNC=0.33. A comparison of 
the results  for the first  (black curve) and the second (blue curve) simulation run are also 
presented in  Figure 126, showing that significantly less computational time is used for the 
second  simulation  run.  Unfortunately,  the  consequence  of  this  profit  is  a  very  poor 
correlation, presented in Figure 130 (blue curve), the large root mean square error is presented 
in  Figure 132 (blue curve) and the scattered fractional bias is presented in  Figure 134 (blue 
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curve).

Several experiments were performed to determine the optimal input parameters  σx,  σy and σz 

for the validation field data set air-pollution  situation. In all the experiments the horizontal 
parameters σx and σy are set to be the same. In all presentations of the results both parameters 
are presented as a single independent parameter σx,y, while the second independent parameter 
is vertical σz. The conclusions of subsection 4.2.Method for estimation of a cell concentration
based on kernel density show that the optimal inputs of σx, σy and σz can be obtained from a 
single air-pollution  episode  reconstruction,  where  the  correlation  with  the  reference 
reconstruction  is  very  good.  According  to  the  obtained  comparison,  the  results  of  the 
correlation coefficient presented in Figure 130 a good correlation coefficient is obtained at a 
simulated time interval at the air-pollution episode of the 15th of October 2005 at 04:30 hour. 
In   the results of the comparisons between the reference and kernel density the estimated 
ground concentrations are presented. The dependence of the correlation is presented on the 
first graph of Figure 124; the second graph presents the root mean square error and the third 
graph the fractional bias. From the obtained results we can see that the trend of the results is 
the same as those obtained in the previous case, only that different optimal values of σx,y=150 
and  σz=20 are determined. In  Figure 123 three examples of the “density kernel estimated” 
ground concentrations are also presented: over-smoothed, optimal and under-smoothed.
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Figure 123: Examples of density kernel concentration estimations at simulated time interval n 
15th of October 2005 at 04:30
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Figure 124: Comparisons of the density kernel concentration estimations for the good 
correlation for the air-pollution episode reconstruction on 15th of October 2005 at 04:30
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6.4. Evaluation of results
When  all  the  parameters  of  the  advanced  AP  computer  model  are  determined,  three 
simulation runs for the selected situation are performed and compared with each other:

● the reference simulation run is performed using the original LPD computer model, 
where the maximum acceptable PDNC=10 is used,

● the  optimal  simulation  run  is  performed  using  the  original  LPD computer  model, 
where the optimal PDNC=0.33 is used, which is determined from the point of view of 
the time spent for the simulation. The optimal value has been selected according to the 
time that is spent to reconstruct the air pollution over the area of interest for a time 
period of one year.  For the selected  optimal  point  where 1 hours  is  spent  for  the 
reconstruction of one day, approximately 15 days are spent for the reconstruction of 
one year, which is still acceptable in practice. 

● the  advanced  simulation  run  is  performed  using  the  new ELPD computer  model, 
where the  PDNC is controlled in the range from the minimum acceptable value of 
0.04 and the maximum acceptable value of 2.0.

In all the following presentations the results of the reference simulation run are coloured in 
black, the results of the  optimal simulation run are coloured in  blue, and the results of the 
advanced simulation run are coloured in red.
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Figure 125: Number of active particles after each air pollution episode reconstruction

The number  of  particles  at  the  end of  the  reconstruction  of  each air-pollution  episode  is 
presented  in  Figure  125.  A  comparison  with  the  following  Figure  126 shows  a  linear 
dependence between the time used and the number of active particles. Again, the figure shows 
that the active particle number in the first and second simulation runs strongly depended on 
the  current  meteorological  conditions,  while  in  the  third  controlled  simulation  run  it  is 
practically constant.
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6.Validation of the enhanced Lagrangian particle-dispersion computer model

Figure 126: Comparison of the time used for the reconstructions of air-pollution episodes

The results of the time used for each simulation are presented in Figure 126. The figure shows 
that  the  time  used  in  the  first  and  second  simulations  strongly  depends  on  the  current 
meteorological conditions, where low-wind meteorological conditions occurred in the middle 
of the selected  time period and lasted until  the end of the simulation.  While  in the third 
controlled case, where the advanced AP computer model is used, the time used for each air-
pollution episode reconstruction was practically constant during the whole simulation. 

Figure 127: Comparison of full time used

A comparison of the full time used for each simulation run is presented in  Figure 127. The 
results show that the full time used within the advanced simulation run is decreased by one 
order of magnitude compared to the reference simulation and slightly higher compared to the 
optimal simulation run.
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6.Validation of the enhanced Lagrangian particle-dispersion computer model

Figure 128: Comparison of the PDNC during the evaluation simulation

Figure 128 shows the PDNC of each air-pollution episode reconstruction for all simulations. 
In the case of the reference simulation and the optimal simulation it is set to a constant value, 
while in the advanced simulation it is determined by the control module. At the beginning of 
the advanced simulation run relatively high values of the  PDNC are used due to the strong 
wind conditions, but when calm wind conditions occur, relatively small values of the PDNC 
are used to maintain the number of particles in the domain around the controlled value.

Figure 129: Comparison of number of active particles before and after clustering

In Figure 129 the number of particles at the end of each air-pollution episode reconstruction 
and  the  number  of  particles  after  clustering  are  presented.  Where  the  values  differ  the 
clustering is activated. The result shows that clustering is activated only in a few situations 
and when it is activated the number of reduced particles was relatively small, according to the 
number of all the particles.
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6.Validation of the enhanced Lagrangian particle-dispersion computer model

Figure 130: Correlation coefficient comparison between the results of the reference 
simulation and the optimal and advanced simulation results

Figure 131: Average correlation coefficient comparison

In Figure 130 a correlation coefficient between each simulation and the reference simulation 
results are presented. The results of the comparisons show a significant improvement in the 
correlation  coefficient  when the  ELPD computer  model  is  used.  The  same conclusion  is 
obtained  in  Figure  131,  where  the  average  correlation  coefficients  for  all  the  simulation 
results are presented.
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6.Validation of the enhanced Lagrangian particle-dispersion computer model

Figure 132: Root mean square error comparison between the results of the reference 
simulation and the optimal and advanced simulation results

Figure 133: Average root mean square error comparison
In Figure 132 a root mean square error between each simulation and the reference simulation 
are presented. The results of the comparisons show a significant decrease in the  root mean 
square error when the new ELPD computer model is used. The same results are obtained in 
Figure 133, where the average root mean square error of the controlled simulation results is 
reduced by almost 50% compared to the optimal simulation results.

160

0,00

5,00

10,00

15,00

20,00

25,00

0,00

23,01

13,43

Average root mean square errorRMSE

14.10.05 00:00
14.10.05 12:00

15.10.05 00:00
15.10.05 12:00

16.10.05 00:00

0,00

5,00

10,00

15,00

20,00

25,00

30,00
Root mean squre error

Reference 
(PDNC=10)
Optimal 
(PDNC=0,33)
Advanced 
(PDNC=controlled)

Reconstructed air pollution episode

RMSE



6.Validation of the enhanced Lagrangian particle-dispersion computer model

Figure 134: Fractional bias comparison between the results of the reference simulation and 
the optimal and advanced simulation results

Figure 135: Average fractional bias comparison
According  to  Figure  135 the  fractional  bias  of  the  advanced  simulation  results  can  be 
practically neglected for all the results. The comparison of the fractional bias presented in 
Figure 134 shows that the results of the simulation with the new ELPD computer model are 
very slightly underestimated in the second part of the simulation, where the limitation process 
occurred. 
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6.Validation of the enhanced Lagrangian particle-dispersion computer model

6.5. Discussion
The validation of an advanced AP computer model based on an enhanced LPD is contributed 
in this section to confirm that the proposed new methods in this dissertation can be generally 
applied in various complex terrain systems. The performance of the new, advanced, enhanced 
LPD computer model with integrated new modules is evaluated on the Zasavje region field 
data  set air-pollution  situation.  Before  the  evaluation  is  performed  the  parameters  of  the 
particle number prediction module  and the  density kernel concentration estimation module 
are  determined  to  achieve  the  best  possible  results.  It  is  recommended  to  determine  the 
parameters for each complex terrain separately,  because the domain size and shape can be 
very different.

When  all  the  parameters  of  the  enhanced LPD  computer  model  are  determined,  three 
simulation  runs  for  the selected  situation  are  performed and compared  to  each other:  the 
reference simulation by the original LPD computer model, where the maximum acceptable 
PDNC is  used,  the  optimal  simulation  by  the  original  LPD  computer  model,  where  the 
optimal  PDNC is  used,  and the advanced simulation  by the new ELPD computer  model, 
where the PDNC is controlled. 

The results of the comparisons prove that the methods proposed can be generally applied in 
various complex terrain systems. It is shown that the time used and the active particle number 
in the reference and optimal simulations is strongly dependent on the current meteorological 
conditions,  while  in  the  advanced  simulation  it  is  practically  constant.  A  significant 
improvement  of the correlation coefficient  and the root mean square error is  achieved by 
using the ELPD computer model,  while the fractional bias comparison showed that there is 
practically no underestimations in the results of the advanced simulation. 

The obtained results show that the use of an advanced air-pollution modeling methodology is 
recommended, not only in situations where computational resources are constrained, but also 
in  general  to  optimally  take  advantage  of  the  available  computational  resources.  The 
computational complexity of all the air-pollution episode reconstructions is being balanced in 
the  advanced air-pollution  modeling methodology  based  on  the  ELPD  model  because 
approximately  the  same  computational  time  is  spent  for  each air-pollution  episode 
reconstruction.
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7. CONCLUSIONS AND RECOMMENDATIONS
The  topic  of  this  dissertation  is  an air-pollution  modelling  methodology  based  on  the 
Lagrangian particle dispersion (LPD). The limit capacities, the properties and the performance 
of the air-pollution (AP) computer model are determined and evaluated on a complex terrain. 
The used AP computer  model  is designed, based on the presented air-pollution  modelling 
methodology.  Several  methods  are  suggested  to  improve  the  computational  performance, 
based on the results of the evaluation of the AP computer model. 

The  new methods  are  developed  in  a  manner  such  that  the  original  methods  in  the air-
pollution  modelling methodology are not modified at all. The parameters, methods and the 
structure of the original AP model are preserved in their original form and no adjustments are 
made to the well developed air-pollution model based on LPD. The methods that determine 
and optimize the reconstruction of the computationally expensive air-pollution situations are 
proposed  and  integrated  into  the  existing air-pollution  modelling  methodology.  The 
computational performance is improved in such a manner that the available computational 
capabilities are optimally exploited. 

The dissertation begins with an introduction, where the research problems, goals and working 
hypotheses  are  given.  To evaluate  achieved  results  and  to  confirm the  given  hypotheses 
several evaluation methods are proposed in section 3.

In section 3 the sixth hypothesis is confirmed, saying that the quality of the results depends on 
the number of particles used in the air-pollution  episode reconstruction. The quality of the 
results does not change significantly when the number of particles remains above a certain 
particle number threshold. This particle number threshold depends on the size of the domain 
and the size of the cells in the domain. When the number of particles falls below the threshold 
the quality of the results starts to decrease drastically. 

The dependency of  the performance  of the AP computer  model  according  to  the particle 
number  density  coefficient  (PDNC)  is  determined  by  making  an  experimental  simulation 
where several simulation runs are performed on Šaleška region field data set. The presented 
results show that a very weak dependence of time used on PDNC is observed when a small 
number  of  particles  are  used  for  the  reconstruction,  but  when  the  number  of  particles 
significantly increases, a strong linear dependency can be determined. This means that the 
time used for a simulation run linearly depends only on the number of particles. 

To define the minimum acceptable  PDNC that is necessary to achieve a good air-pollution 
reconstruction  the  evaluation  of  each  result  with  a  different  number  of  used  particles  is 
evaluated with the developed evaluation methods. The results of the correlation coefficient  
comparison show an exponential increase to some particular number of particles used in the 
simulation. When this point is reached, the increase in the number of particles has almost no 
influence  on the  quality  of  the  results.  So,  in  practice,  the use of  too large  a  number  of 
particles  yields  an  unnecessary  consumption  of  computational  power  and  a  wasting  of 
computational time. It is finally concluded that in practice the results that correlate with the 
original result above a factor of 0.8 are completely acceptable. The results of the root mean 
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square error show an exponential decrease to some constant value of 0. Again, it is estimated 
that the results do not improve significantly after a certain threshold value is reached. The 
results of the fractional bias comparison are almost completely free of bias according to the 
definition.  From the  value of  the  fractional  bias  it  cannot  be  exactly  estimated  when the 
results are acceptable in practice, because there does not exist a certain value when the results 
are not any more acceptable. But the fractional bias comparison can be used to approximately 
estimate whether the result is in accordance with the original or is it completely under or over 
estimated.

The first presented method is clustering, which contributed to a decrease in the computational 
cost by decreasing the number of active particles in the simulations. The presentation of the 
clustering method is concluded with the recommendations about the optimal setting of the 
four basic parameters used to achieve satisfactory results: Nsub, Nsize, mmax and Nmax. According 
to  the finally  acquired  results  it  is  concluded  in  section  4 that  the  hierarchical  clustering 
method with additional parameters can be used in practice only for the limitation of a very 
large number of particles, when the number of particles exceeds normal values when extreme 
situations occur, like failure of the desulphurization plant,  when emissions increase by an 
order of magnitude, or when very stable meteorological situations occur, where low winds are 
present and the air pollution starts to accumulate in the domain. A strong limitation on the 
number of particles in the reconstructions during typical situations with the clustering method 
is not recommended, because the quality of the results becomes very poor. To preserve the 
good quality of the results  only a slight limitation is  recommended.  A comparison of the 
original  results  and  the  results  obtained  with  the  clustering  method  show that  the  results 
obtained with the clustering method can become bubbled and less smooth than the original, 
which is the same effect that occurs when not enough particles are used in the reconstructions. 

In  section  4  the  first  hypothesis  that  computational  expenses  would  be  reduced  with  the 
clustering method is confirmed, because the used computational complexity can be reduced 
by at least 50%. 

The second hypothesis that the use of the clustering method will have a minor influence on 
the  quality  of  the  results  is  only partially  confirmed.  The  clustering  method  has  a  minor 
influence on the quality of results only when the final number of particles after clustering in 
the domain remains above a certain particle number threshold. 

The cell concentration estimation method based on the kernel density is proposed in section 4 
to  substitute  the  box counting  concentration  estimation  method  and  to  improve  the  poor 
quality  of  the  results  when a  smaller  number  of  particles  is  used  in  the  simulations.  To 
evaluate  the  performance  of  the  contributed  method  and  the  dependence  on  the  input 
parameters, several simulations are performed and the results are compared to the reference 
ground concentration  field. Several  experiments  are  made  to  determine  the  optimal  input 
parameters  σx,  σy and σz for the Šaleška region field data set. In the performed experiments 
three cases of optimal inputs into the density kernel concentration application are determined 
and presented: over-smoothed, optimal and under-smoothed. After the three different optimal 
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input values for the different correlation coefficients are determined, for each optimal point 
one simulation run is performed with the improved AP computer model. The comparisons of 
the three different optimal points show that the final optimal point is set from the case where 
the correlation with the original result is very good. The other two obtained optimal points 
gave some slightly better or worse results. 

The final comparisons prove that the correlation coefficient and the root mean square error 
significantly improved. With this final comparison the eight hypothesis that the poor quality 
of the simulation results in the situations when a relatively small number of particles are used 
can be improved by using the kernel density concentration estimation method is confirmed. 

The presented final comparison also confirms the ninth hypothesis, that the kernel density 
concentration estimation method can always be used to improve the quality of the results.

To control the PDNC parameter and clustering parameter Nmax of the LPD computer model a 
third method is proposed in this thesis. The rule for the PDNC control is the following: when 
a high emission occurs the PDNC should be decreased, and when a low emission occurs the 
PDNC can be increased. In special situations when the smallest possible PDNC is used, and it 
is still  expected that the computational resources will be exceeded, the clustering must be 
activated to reduce the number of particles from previous air pollution. This is very important 
for situations when extreme air pollution is expected. Such a common situation occurs in calm 
meteorological  conditions  when the air  pollution starts  to accumulate  in the domain for a 
longer time interval. 

The method consists of two main subsequent methods. In the first step the percentage of lost 
particles  is  predicted  with  the  use  of  an  artificial  neural  network,  based  on  the  the 
meteorology, the emission and the situation of the air pollution at the end of previous episode 
reconstruction.  In the second step the clustering parameters are determined by a decision-
making method. 

The  third  and the  fourth  hypotheses  are  confirmed  in  section  5  and section  6.  The  third 
hypothesis is saying that the algorithm to determine the situations when the particle number 
should be reduced is based on a black-box modelling technique. And the fourth hypothesis is 
saying that the algorithm to determine  the situations  when the particle  number should be 
reduced is efficient and reliable.

In section 5 the seventh hypothesis is confirmed: controlling the number of particles in the 
simulation  is  actually  preserving the quality  of  results  at  a  constant  level.  The results  of 
comparisons  show that the time used and the active particle  number in the reference and 
optimal simulation runs strongly depends on the current meteorological conditions and the 
emission rate, while in the advanced simulation run they are practically constant. A significant 
improvement  of the correlation coefficient  and the root mean square error is achieved by 
using the ELPD computer model, while the fractional bias comparison showed that the results 
are not over or under estimated. A final comparison of the results of the verification show that 
time  used  for  the  advanced  simulation  run  is  reduced  by  30% compared  to  the  optimal 
simulation  run,  where  also  the  correlation  coefficient  of  the  results  is  increased  by  15% 
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compared to the optimal simulation results. 

The performance of the new, advanced AP computer model is validated on the Zasavje region 
field data set in section 6. The validation is performed to confirm that the proposed methods 
can be generally applied in various complex terrains. When all the parameters of the ELPD 
computer model are determined according to field data set properties, three simulations for 
the selected situation are performed and compared to each other. 

The results of the comparisons show that the time used and the active particle number in the 
reference and optimal simulations strongly depend on the current meteorological conditions, 
while in the advanced simulation it is practically constant. Again, a significant improvement 
of correlation coefficient and the root mean square error is achieved by using the improved 
AP computer model, while the fractional bias comparison show that the results are only very 
slightly underestimated. The obtained results show that the use of the improved AP computer 
model  is  recommended,  not  only  in  situations  where  the  computational  resources  are 
constrained, but also in general to optimally take advantage of the available computational 
resources. 

The seventh hypothesis is again confirmed in section 6: controlling the number of particles in 
the simulation preserves the quality of the results at a constant level. The final comparison of 
the  results  of  the  validation  show that  the  time  used  for  the  advanced  simulation  run  is 
approximately the same as for the optimal simulation, but the correlation coefficient of the 
advanced simulation results is increased by 15% ,and root mean square error is decreased by 
50%, compared to the optimal simulation results.  The presented results do not include the 
computational  improvements  proposed  by  Schwere  et  al.,10 where  the  computational 
complexity could be reduced by an additional 50%.
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In this dissertation the following original contributions are proposed:

● The application of the clustering method for a reduction of the computational cost is 
contributed  to  a  decrease  of  the  computational  cost  by  decreasing  the  number  of 
particles in the simulations. The clustering method is proposed with recommendations 
about the optimal setting of the four basic parameters:  Nsub,  Nsize,  mmax and Nmax. It is 
recommended that the hierarchical clustering method with additional parameters can 
be used in practice only for the limitation of a very large number of particles. The 
strong limitation of the number of particles in reconstructions during typical situations 
with  the  clustering  method  is  not  recommended  ,because  the  quality  of  results 
becomes poorer. 

● The cell  concentration kernel density estimation method adaption is contributed to 
substitute  the box counting  concentration  estimation  method  and to  improving  the 
poor  quality  of  the  results  when  a  smaller  number  of  particles  is  used  in  the 
simulations. The final comparisons of the results prove that the correlation coefficient 
and the root mean square error can be significantly improved, while the fractional bias 
comparison showed that there is practically no underestimations in the results of the 
advanced simulation, which is crucial for long-term evaluations of the air pollution.. 

● The  Lagrangian  particle  dispersion  control  method  based  on  artificial  neural  
networks,  where two parameters are controlled:  PDNC and Nmax. The control rule is 
the following: when a high emission occurs the PDNC should be decreased and when 
a low emission occurs the  PDNC can be increased.  In special  situations, when the 
smallest possible  PDNC is used and it is still expected that computational resources 
will be exceeded, the clustering is activated to reduce the number of particles from the 
previous  air  pollution  by  the  parameter  Nmax.  The  method  consists  of  two  main 
subsequent  methods:  the prediction  of the percentage  of  lost  particles  used by the 
artificial neural network and a decision making method.

● The  integration  of  the  contributed  improvements  into  the  advanced,  enhanced 
Lagrangian  particle  dispersion  model,  where  the  mutual  use  of  the  contributed 
methods is proposed to obtain the best possible results within the given computational 
resources. The contributed integration is realised in ELPD computer model, which is 
validated on the Šaleška region and the Zasavje region field data sets. The obtained 
results  proved that  the use of an advanced air-pollution  modelling  methodology is 
recommended,  not  only  in  situations  where  the  computational  resources  are 
constrained,  but  also  in  general  to  optimally  take  advantage  of  the  available 
computational resources. The computational complexity of all the air pollution episode 
reconstructions is being balanced because approximately the same computational time 
is spent for each air-pollution episode reconstruction.
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APPENDIX A – SHORT AIR POLLUTION MODELLING GLOSSARY

air pollution

Air  pollution  applies  to  any  chemical,  physical  or  biological  agent  that 
modifies the natural composition of the atmosphere. It is the contamination 
of air by the discharge of harmful substances. Air pollution can cause health 
problems and it can also damage the environment and property.

air pollution dispersion

Air pollution dispersion is a spreading of air pollution in the atmosphere 
caused  by  many  atmospheric  factors  including  wind  direction  and  wind 
speed, type of terrain and heating effects.

air pollution episode

Air-pollution  situation  is  split  into  several  equally  long  episodes  of  air 
pollution for evaluation purposes.

air pollution model

Air pollution model  is  a mathematical  model  for air  pollution dispersion 
reconstructions.  Air  pollution  model  is  the  final  result  of  the  modelling 
process and is used for computer air pollution model design.

air pollution modelling

Air pollution modelling is defined as an attempt to describe a functional 
relation between emissions and occurring concentrations in the surrounding. 
It can give us a relatively complete and consistent description which also 
includes  an  analysis  of  the  causes  (emissions  sources)  which  lead  to 
measured concentrations.

air pollution modelling methodology

Air  pollution  modelling  methodology  describes  the  methods  used  in  air 
pollution modelling and its application.

air pollution simulation

Air  pollution  simulation  is  used  to  reconstruct  the  air-pollution  situation 
over selected area of interest for the selected period of time.

air pollution situation

Air  pollution  that  usually  lasts  for  some  defined  period  of  time.  It  is 
determined by average concentrations over area of interest.

area of interest

see domain

computer air pollution model

When an air pollution model is created a computer air pollution model is 
designed to be used in the computer simulation.



domain

Defines the region where air pollution occurs. It can be local (up to 30 km), 
local-to-regional  (30-300  km),  regional-to-continental  (300-3000  km)  or 
global (hemispheric to global scale).

field data set

Field data set consists of all available emission data, meteorological data 
and topographical data for selected area of interest.

Lagrangian particle dispersion model

Lagrangian particle dispersion model is a three dimensional model designed 
to simulate the airborne pollutant dispersion.

measuring campaign

The term describes an air-pollution measuring experiment that is performed 
over selected area of interest for longer time interval. During the measuring 
campaign  measurements  of  meteorology,  emission  and  air-pollution 
concentrations in the ambient air are collected at different locations. 


